i965/gs: make the state atom for compiling Gen7 geometry shaders.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
62 GLbitfield64 slots_valid, bool userclip_active)
63 {
64 vue_map->slots_valid = slots_valid;
65 int i;
66
67 /* Make sure that the values we store in vue_map->varying_to_slot and
68 * vue_map->slot_to_varying won't overflow the signed chars that are used
69 * to store them. Note that since vue_map->slot_to_varying sometimes holds
70 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
71 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
72 */
73 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
74
75 vue_map->num_slots = 0;
76 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
77 vue_map->varying_to_slot[i] = -1;
78 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
79 }
80
81 /* VUE header: format depends on chip generation and whether clipping is
82 * enabled.
83 */
84 switch (brw->gen) {
85 case 4:
86 case 5:
87 /* There are 8 dwords in VUE header pre-Ironlake:
88 * dword 0-3 is indices, point width, clip flags.
89 * dword 4-7 is ndc position
90 * dword 8-11 is the first vertex data.
91 *
92 * On Ironlake the VUE header is nominally 20 dwords, but the hardware
93 * will accept the same header layout as Gen4 [and should be a bit faster]
94 */
95 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
96 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
97 assign_vue_slot(vue_map, VARYING_SLOT_POS);
98 break;
99 case 6:
100 case 7:
101 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
102 * dword 0-3 of the header is indices, point width, clip flags.
103 * dword 4-7 is the 4D space position
104 * dword 8-15 of the vertex header is the user clip distance if
105 * enabled.
106 * dword 8-11 or 16-19 is the first vertex element data we fill.
107 */
108 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
109 assign_vue_slot(vue_map, VARYING_SLOT_POS);
110 if (userclip_active) {
111 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
112 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
113 }
114 /* front and back colors need to be consecutive so that we can use
115 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
116 * two-sided color.
117 */
118 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
119 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
120 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
121 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
122 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
123 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
124 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
125 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
126 break;
127 default:
128 assert (!"VUE map not known for this chip generation");
129 break;
130 }
131
132 /* The hardware doesn't care about the rest of the vertex outputs, so just
133 * assign them contiguously. Don't reassign outputs that already have a
134 * slot.
135 *
136 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
137 * since it's encoded as the clip distances by emit_clip_distances().
138 * However, it may be output by transform feedback, and we'd rather not
139 * recompute state when TF changes, so we just always include it.
140 */
141 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
142 if ((slots_valid & BITFIELD64_BIT(i)) &&
143 vue_map->varying_to_slot[i] == -1) {
144 assign_vue_slot(vue_map, i);
145 }
146 }
147 }
148
149
150 /**
151 * Decide which set of clip planes should be used when clipping via
152 * gl_Position or gl_ClipVertex.
153 */
154 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
155 {
156 if (ctx->Shader.CurrentVertexProgram) {
157 /* There is currently a GLSL vertex shader, so clip according to GLSL
158 * rules, which means compare gl_ClipVertex (or gl_Position, if
159 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
160 * that were stored in EyeUserPlane at the time the clip planes were
161 * specified.
162 */
163 return ctx->Transform.EyeUserPlane;
164 } else {
165 /* Either we are using fixed function or an ARB vertex program. In
166 * either case the clip planes are going to be compared against
167 * gl_Position (which is in clip coordinates) so we have to clip using
168 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
169 * core.
170 */
171 return ctx->Transform._ClipUserPlane;
172 }
173 }
174
175
176 bool
177 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
178 int aux_size, const void *in_key)
179 {
180 const struct brw_vs_prog_data *a = in_a;
181 const struct brw_vs_prog_data *b = in_b;
182
183 /* Compare the base vec4 structure. */
184 if (!brw_vec4_prog_data_compare(&a->base, &b->base))
185 return false;
186
187 /* Compare the rest of the struct. */
188 const unsigned offset = sizeof(struct brw_vec4_prog_data);
189 if (memcmp(((char *) &a) + offset, ((char *) &b) + offset,
190 sizeof(struct brw_vs_prog_data) - offset)) {
191 return false;
192 }
193
194 return true;
195 }
196
197 static bool
198 do_vs_prog(struct brw_context *brw,
199 struct gl_shader_program *prog,
200 struct brw_vertex_program *vp,
201 struct brw_vs_prog_key *key)
202 {
203 GLuint program_size;
204 const GLuint *program;
205 struct brw_vs_compile c;
206 struct brw_vs_prog_data prog_data;
207 void *mem_ctx;
208 int i;
209 struct gl_shader *vs = NULL;
210
211 if (prog)
212 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
213
214 memset(&c, 0, sizeof(c));
215 memcpy(&c.key, key, sizeof(*key));
216 memset(&prog_data, 0, sizeof(prog_data));
217
218 mem_ctx = ralloc_context(NULL);
219
220 c.vp = vp;
221
222 /* Allocate the references to the uniforms that will end up in the
223 * prog_data associated with the compiled program, and which will be freed
224 * by the state cache.
225 */
226 int param_count;
227 if (vs) {
228 /* We add padding around uniform values below vec4 size, with the worst
229 * case being a float value that gets blown up to a vec4, so be
230 * conservative here.
231 */
232 param_count = vs->num_uniform_components * 4;
233
234 } else {
235 param_count = vp->program.Base.Parameters->NumParameters * 4;
236 }
237 /* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
238 * planes as uniforms.
239 */
240 param_count += c.key.base.nr_userclip_plane_consts * 4;
241
242 prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
243 prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);
244
245 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
246 prog_data.inputs_read = vp->program.Base.InputsRead;
247
248 if (c.key.copy_edgeflag) {
249 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
250 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
251 }
252
253 if (brw->gen < 6) {
254 /* Put dummy slots into the VUE for the SF to put the replaced
255 * point sprite coords in. We shouldn't need these dummy slots,
256 * which take up precious URB space, but it would mean that the SF
257 * doesn't get nice aligned pairs of input coords into output
258 * coords, which would be a pain to handle.
259 */
260 for (i = 0; i < 8; i++) {
261 if (c.key.point_coord_replace & (1 << i))
262 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
263 }
264
265 /* if back colors are written, allocate slots for front colors too */
266 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
267 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
268 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
269 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
270
271 if (c.key.base.userclip_active) {
272 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
273 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
274 }
275 }
276
277 brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written,
278 c.key.base.userclip_active);
279
280 if (0) {
281 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
282 true);
283 }
284
285 /* Emit GEN4 code.
286 */
287 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
288 if (program == NULL) {
289 ralloc_free(mem_ctx);
290 return false;
291 }
292
293 /* Scratch space is used for register spilling */
294 if (c.base.last_scratch) {
295 perf_debug("Vertex shader triggered register spilling. "
296 "Try reducing the number of live vec4 values to "
297 "improve performance.\n");
298
299 prog_data.base.total_scratch
300 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
301
302 brw_get_scratch_bo(brw, &brw->vs.base.scratch_bo,
303 prog_data.base.total_scratch * brw->max_vs_threads);
304 }
305
306 brw_upload_cache(&brw->cache, BRW_VS_PROG,
307 &c.key, sizeof(c.key),
308 program, program_size,
309 &prog_data, sizeof(prog_data),
310 &brw->vs.base.prog_offset, &brw->vs.prog_data);
311 ralloc_free(mem_ctx);
312
313 return true;
314 }
315
316 static bool
317 key_debug(struct brw_context *brw, const char *name, int a, int b)
318 {
319 if (a != b) {
320 perf_debug(" %s %d->%d\n", name, a, b);
321 return true;
322 }
323 return false;
324 }
325
326 void
327 brw_vs_debug_recompile(struct brw_context *brw,
328 struct gl_shader_program *prog,
329 const struct brw_vs_prog_key *key)
330 {
331 struct brw_cache_item *c = NULL;
332 const struct brw_vs_prog_key *old_key = NULL;
333 bool found = false;
334
335 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
336
337 for (unsigned int i = 0; i < brw->cache.size; i++) {
338 for (c = brw->cache.items[i]; c; c = c->next) {
339 if (c->cache_id == BRW_VS_PROG) {
340 old_key = c->key;
341
342 if (old_key->base.program_string_id == key->base.program_string_id)
343 break;
344 }
345 }
346 if (c)
347 break;
348 }
349
350 if (!c) {
351 perf_debug(" Didn't find previous compile in the shader cache for "
352 "debug\n");
353 return;
354 }
355
356 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
357 found |= key_debug(brw, "Vertex attrib w/a flags",
358 old_key->gl_attrib_wa_flags[i],
359 key->gl_attrib_wa_flags[i]);
360 }
361
362 found |= key_debug(brw, "user clip flags",
363 old_key->base.userclip_active, key->base.userclip_active);
364
365 found |= key_debug(brw, "user clipping planes as push constants",
366 old_key->base.nr_userclip_plane_consts,
367 key->base.nr_userclip_plane_consts);
368
369 found |= key_debug(brw, "clip distance enable",
370 old_key->base.uses_clip_distance, key->base.uses_clip_distance);
371 found |= key_debug(brw, "copy edgeflag",
372 old_key->copy_edgeflag, key->copy_edgeflag);
373 found |= key_debug(brw, "PointCoord replace",
374 old_key->point_coord_replace, key->point_coord_replace);
375 found |= key_debug(brw, "vertex color clamping",
376 old_key->base.clamp_vertex_color, key->base.clamp_vertex_color);
377
378 found |= brw_debug_recompile_sampler_key(brw, &old_key->base.tex,
379 &key->base.tex);
380
381 if (!found) {
382 perf_debug(" Something else\n");
383 }
384 }
385
386
387 void
388 brw_setup_vec4_key_clip_info(struct brw_context *brw,
389 struct brw_vec4_prog_key *key,
390 bool program_uses_clip_distance)
391 {
392 struct gl_context *ctx = &brw->ctx;
393
394 key->userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
395 key->uses_clip_distance = program_uses_clip_distance;
396 if (key->userclip_active && !key->uses_clip_distance) {
397 key->nr_userclip_plane_consts
398 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
399 }
400 }
401
402
403 static void brw_upload_vs_prog(struct brw_context *brw)
404 {
405 struct gl_context *ctx = &brw->ctx;
406 struct brw_vs_prog_key key;
407 /* BRW_NEW_VERTEX_PROGRAM */
408 struct brw_vertex_program *vp =
409 (struct brw_vertex_program *)brw->vertex_program;
410 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
411 int i;
412
413 memset(&key, 0, sizeof(key));
414
415 /* Just upload the program verbatim for now. Always send it all
416 * the inputs it asks for, whether they are varying or not.
417 */
418 key.base.program_string_id = vp->id;
419 brw_setup_vec4_key_clip_info(brw, &key.base, vp->program.UsesClipDistance);
420
421 /* _NEW_POLYGON */
422 if (brw->gen < 6) {
423 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
424 ctx->Polygon.BackMode != GL_FILL);
425 }
426
427 /* _NEW_LIGHT | _NEW_BUFFERS */
428 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
429
430 /* _NEW_POINT */
431 if (brw->gen < 6 && ctx->Point.PointSprite) {
432 for (i = 0; i < 8; i++) {
433 if (ctx->Point.CoordReplace[i])
434 key.point_coord_replace |= (1 << i);
435 }
436 }
437
438 /* _NEW_TEXTURE */
439 brw_populate_sampler_prog_key_data(ctx, prog, brw->vs.base.sampler_count,
440 &key.base.tex);
441
442 /* BRW_NEW_VERTICES */
443 if (brw->gen < 8 && !brw->is_haswell) {
444 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
445 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
446 */
447 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
448 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
449 continue;
450
451 uint8_t wa_flags = 0;
452
453 switch (brw->vb.inputs[i].glarray->Type) {
454
455 case GL_FIXED:
456 wa_flags = brw->vb.inputs[i].glarray->Size;
457 break;
458
459 case GL_INT_2_10_10_10_REV:
460 wa_flags |= BRW_ATTRIB_WA_SIGN;
461 /* fallthough */
462
463 case GL_UNSIGNED_INT_2_10_10_10_REV:
464 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
465 wa_flags |= BRW_ATTRIB_WA_BGRA;
466
467 if (brw->vb.inputs[i].glarray->Normalized)
468 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
469 else if (!brw->vb.inputs[i].glarray->Integer)
470 wa_flags |= BRW_ATTRIB_WA_SCALE;
471
472 break;
473 }
474
475 key.gl_attrib_wa_flags[i] = wa_flags;
476 }
477 }
478
479 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
480 &key, sizeof(key),
481 &brw->vs.base.prog_offset, &brw->vs.prog_data)) {
482 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
483 vp, &key);
484 (void) success;
485 assert(success);
486 }
487 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
488 sizeof(brw->vue_map_geom_out)) != 0) {
489 brw->vue_map_vs = brw->vs.prog_data->base.vue_map;
490 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_VS;
491 if (brw->gen < 7) {
492 /* No geometry shader support, so the VS VUE map is the VUE map for
493 * the output of the "geometry" portion of the pipeline.
494 */
495 brw->vue_map_geom_out = brw->vue_map_vs;
496 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
497 }
498 }
499 }
500
501 /* See brw_vs.c:
502 */
503 const struct brw_tracked_state brw_vs_prog = {
504 .dirty = {
505 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
506 _NEW_TEXTURE |
507 _NEW_BUFFERS),
508 .brw = (BRW_NEW_VERTEX_PROGRAM |
509 BRW_NEW_VERTICES),
510 .cache = 0
511 },
512 .emit = brw_upload_vs_prog
513 };
514
515 bool
516 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
517 {
518 struct brw_context *brw = brw_context(ctx);
519 struct brw_vs_prog_key key;
520 uint32_t old_prog_offset = brw->vs.base.prog_offset;
521 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
522 bool success;
523
524 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
525 return true;
526
527 struct gl_vertex_program *vp = (struct gl_vertex_program *)
528 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
529 struct brw_vertex_program *bvp = brw_vertex_program(vp);
530
531 memset(&key, 0, sizeof(key));
532
533 key.base.program_string_id = bvp->id;
534 key.base.clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
535
536 unsigned sampler_count = _mesa_fls(vp->Base.SamplersUsed);
537 for (unsigned i = 0; i < sampler_count; i++) {
538 if (vp->Base.ShadowSamplers & (1 << i)) {
539 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
540 key.base.tex.swizzles[i] =
541 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
542 } else {
543 /* Color sampler: assume no swizzling. */
544 key.base.tex.swizzles[i] = SWIZZLE_XYZW;
545 }
546 }
547
548 success = do_vs_prog(brw, prog, bvp, &key);
549
550 brw->vs.base.prog_offset = old_prog_offset;
551 brw->vs.prog_data = old_prog_data;
552
553 return success;
554 }
555
556
557 void
558 brw_vs_prog_data_free(const void *in_prog_data)
559 {
560 const struct brw_vs_prog_data *prog_data = in_prog_data;
561
562 brw_vec4_prog_data_free(&prog_data->base);
563 }