i965: Consign COORD_REPLACE VS hacks to Pre-Gen6.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 static void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vs_compile *c)
62 {
63 const struct intel_context *intel = &brw->intel;
64 struct brw_vue_map *vue_map = &c->prog_data.vue_map;
65 GLbitfield64 outputs_written = c->prog_data.outputs_written;
66 int i;
67
68 vue_map->num_slots = 0;
69 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
70 vue_map->vert_result_to_slot[i] = -1;
71 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
72 }
73
74 /* VUE header: format depends on chip generation and whether clipping is
75 * enabled.
76 */
77 switch (intel->gen) {
78 case 4:
79 /* There are 8 dwords in VUE header pre-Ironlake:
80 * dword 0-3 is indices, point width, clip flags.
81 * dword 4-7 is ndc position
82 * dword 8-11 is the first vertex data.
83 */
84 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
85 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
86 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
87 break;
88 case 5:
89 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
90 * dword 0-3 of the header is indices, point width, clip flags.
91 * dword 4-7 is the ndc position
92 * dword 8-11 of the vertex header is the 4D space position
93 * dword 12-19 of the vertex header is the user clip distance.
94 * dword 20-23 is a pad so that the vertex element data is aligned
95 * dword 24-27 is the first vertex data we fill.
96 *
97 * Note: future pipeline stages expect 4D space position to be
98 * contiguous with the other vert_results, so we make dword 24-27 a
99 * duplicate copy of the 4D space position.
100 */
101 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
102 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
103 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
104 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
105 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
106 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
107 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
108 break;
109 case 6:
110 case 7:
111 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
112 * dword 0-3 of the header is indices, point width, clip flags.
113 * dword 4-7 is the 4D space position
114 * dword 8-15 of the vertex header is the user clip distance if
115 * enabled.
116 * dword 8-11 or 16-19 is the first vertex element data we fill.
117 */
118 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
119 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
120 if (c->key.userclip_active) {
121 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
122 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
123 }
124 /* front and back colors need to be consecutive so that we can use
125 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
126 * two-sided color.
127 */
128 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
129 assign_vue_slot(vue_map, VERT_RESULT_COL0);
130 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
131 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
132 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
133 assign_vue_slot(vue_map, VERT_RESULT_COL1);
134 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
135 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
136 break;
137 default:
138 assert (!"VUE map not known for this chip generation");
139 break;
140 }
141
142 /* The hardware doesn't care about the rest of the vertex outputs, so just
143 * assign them contiguously. Don't reassign outputs that already have a
144 * slot.
145 *
146 * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
147 * since it is unsupported. In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
148 * be needed for transform feedback; since we don't want to have to
149 * recompute the VUE map (and everything that depends on it) when transform
150 * feedback is enabled or disabled, just go ahead and assign a slot for it.
151 */
152 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
153 if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
154 continue;
155 if ((outputs_written & BITFIELD64_BIT(i)) &&
156 vue_map->vert_result_to_slot[i] == -1) {
157 assign_vue_slot(vue_map, i);
158 }
159 }
160 }
161
162
163 /**
164 * Decide which set of clip planes should be used when clipping via
165 * gl_Position or gl_ClipVertex.
166 */
167 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
168 {
169 if (ctx->Shader.CurrentVertexProgram) {
170 /* There is currently a GLSL vertex shader, so clip according to GLSL
171 * rules, which means compare gl_ClipVertex (or gl_Position, if
172 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
173 * that were stored in EyeUserPlane at the time the clip planes were
174 * specified.
175 */
176 return ctx->Transform.EyeUserPlane;
177 } else {
178 /* Either we are using fixed function or an ARB vertex program. In
179 * either case the clip planes are going to be compared against
180 * gl_Position (which is in clip coordinates) so we have to clip using
181 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
182 * core.
183 */
184 return ctx->Transform._ClipUserPlane;
185 }
186 }
187
188 bool
189 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
190 int aux_size, const void *in_key)
191 {
192 const struct brw_vs_prog_data *a = in_a;
193 const struct brw_vs_prog_data *b = in_b;
194
195 /* Compare all the struct up to the pointers. */
196 if (memcmp(a, b, offsetof(struct brw_vs_prog_data, param)))
197 return false;
198
199 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
200 return false;
201
202 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
203 return false;
204
205 return true;
206 }
207
208 static bool
209 do_vs_prog(struct brw_context *brw,
210 struct gl_shader_program *prog,
211 struct brw_vertex_program *vp,
212 struct brw_vs_prog_key *key)
213 {
214 struct intel_context *intel = &brw->intel;
215 GLuint program_size;
216 const GLuint *program;
217 struct brw_vs_compile c;
218 void *mem_ctx;
219 int i;
220 struct gl_shader *vs = NULL;
221
222 if (prog)
223 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
224
225 memset(&c, 0, sizeof(c));
226 memcpy(&c.key, key, sizeof(*key));
227
228 mem_ctx = ralloc_context(NULL);
229
230 c.vp = vp;
231
232 /* Allocate the references to the uniforms that will end up in the
233 * prog_data associated with the compiled program, and which will be freed
234 * by the state cache.
235 */
236 int param_count;
237 if (vs) {
238 /* We add padding around uniform values below vec4 size, with the worst
239 * case being a float value that gets blown up to a vec4, so be
240 * conservative here.
241 */
242 param_count = vs->num_uniform_components * 4;
243
244 } else {
245 param_count = vp->program.Base.Parameters->NumParameters * 4;
246 }
247 /* We also upload clip plane data as uniforms */
248 param_count += MAX_CLIP_PLANES * 4;
249
250 c.prog_data.param = rzalloc_array(NULL, const float *, param_count);
251 c.prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);
252
253 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
254 c.prog_data.inputs_read = vp->program.Base.InputsRead;
255
256 if (c.key.copy_edgeflag) {
257 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
258 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
259 }
260
261 if (intel->gen < 6) {
262 /* Put dummy slots into the VUE for the SF to put the replaced
263 * point sprite coords in. We shouldn't need these dummy slots,
264 * which take up precious URB space, but it would mean that the SF
265 * doesn't get nice aligned pairs of input coords into output
266 * coords, which would be a pain to handle.
267 */
268 for (i = 0; i < 8; i++) {
269 if (c.key.point_coord_replace & (1 << i))
270 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
271 }
272 }
273
274 brw_compute_vue_map(brw, &c);
275
276 if (0) {
277 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
278 true);
279 }
280
281 /* Emit GEN4 code.
282 */
283 program = brw_vs_emit(brw, prog, &c, mem_ctx, &program_size);
284 if (program == NULL) {
285 ralloc_free(mem_ctx);
286 return false;
287 }
288
289 if (c.prog_data.nr_pull_params)
290 c.prog_data.num_surfaces = 1;
291 if (c.vp->program.Base.SamplersUsed)
292 c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
293 if (prog &&
294 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
295 c.prog_data.num_surfaces =
296 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
297 }
298
299 /* Scratch space is used for register spilling */
300 if (c.last_scratch) {
301 perf_debug("Vertex shader triggered register spilling. "
302 "Try reducing the number of live vec4 values to "
303 "improve performance.\n");
304
305 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch*REG_SIZE);
306
307 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
308 c.prog_data.total_scratch * brw->max_vs_threads);
309 }
310
311 brw_upload_cache(&brw->cache, BRW_VS_PROG,
312 &c.key, sizeof(c.key),
313 program, program_size,
314 &c.prog_data, sizeof(c.prog_data),
315 &brw->vs.prog_offset, &brw->vs.prog_data);
316 ralloc_free(mem_ctx);
317
318 return true;
319 }
320
321 static bool
322 key_debug(const char *name, int a, int b)
323 {
324 if (a != b) {
325 perf_debug(" %s %d->%d\n", name, a, b);
326 return true;
327 }
328 return false;
329 }
330
331 void
332 brw_vs_debug_recompile(struct brw_context *brw,
333 struct gl_shader_program *prog,
334 const struct brw_vs_prog_key *key)
335 {
336 struct brw_cache_item *c = NULL;
337 const struct brw_vs_prog_key *old_key = NULL;
338 bool found = false;
339
340 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
341
342 for (unsigned int i = 0; i < brw->cache.size; i++) {
343 for (c = brw->cache.items[i]; c; c = c->next) {
344 if (c->cache_id == BRW_VS_PROG) {
345 old_key = c->key;
346
347 if (old_key->program_string_id == key->program_string_id)
348 break;
349 }
350 }
351 if (c)
352 break;
353 }
354
355 if (!c) {
356 perf_debug(" Didn't find previous compile in the shader cache for "
357 "debug\n");
358 return;
359 }
360
361 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
362 found |= key_debug("Vertex attrib w/a flags",
363 old_key->gl_attrib_wa_flags[i],
364 key->gl_attrib_wa_flags[i]);
365 }
366
367 found |= key_debug("user clip flags",
368 old_key->userclip_active, key->userclip_active);
369
370 found |= key_debug("user clipping planes as push constants",
371 old_key->nr_userclip_plane_consts,
372 key->nr_userclip_plane_consts);
373
374 found |= key_debug("clip distance enable",
375 old_key->uses_clip_distance, key->uses_clip_distance);
376 found |= key_debug("clip plane enable bitfield",
377 old_key->userclip_planes_enabled_gen_4_5,
378 key->userclip_planes_enabled_gen_4_5);
379 found |= key_debug("copy edgeflag",
380 old_key->copy_edgeflag, key->copy_edgeflag);
381 found |= key_debug("PointCoord replace",
382 old_key->point_coord_replace, key->point_coord_replace);
383 found |= key_debug("vertex color clamping",
384 old_key->clamp_vertex_color, key->clamp_vertex_color);
385
386 found |= brw_debug_recompile_sampler_key(&old_key->tex, &key->tex);
387
388 if (!found) {
389 perf_debug(" Something else\n");
390 }
391 }
392
393 static void brw_upload_vs_prog(struct brw_context *brw)
394 {
395 struct intel_context *intel = &brw->intel;
396 struct gl_context *ctx = &intel->ctx;
397 struct brw_vs_prog_key key;
398 /* BRW_NEW_VERTEX_PROGRAM */
399 struct brw_vertex_program *vp =
400 (struct brw_vertex_program *)brw->vertex_program;
401 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
402 int i;
403
404 memset(&key, 0, sizeof(key));
405
406 /* Just upload the program verbatim for now. Always send it all
407 * the inputs it asks for, whether they are varying or not.
408 */
409 key.program_string_id = vp->id;
410 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
411 key.uses_clip_distance = vp->program.UsesClipDistance;
412 if (key.userclip_active && !key.uses_clip_distance) {
413 if (intel->gen < 6) {
414 key.nr_userclip_plane_consts
415 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
416 key.userclip_planes_enabled_gen_4_5
417 = ctx->Transform.ClipPlanesEnabled;
418 } else {
419 key.nr_userclip_plane_consts
420 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
421 }
422 }
423
424 /* _NEW_POLYGON */
425 if (intel->gen < 6) {
426 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
427 ctx->Polygon.BackMode != GL_FILL);
428 }
429
430 /* _NEW_LIGHT | _NEW_BUFFERS */
431 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
432
433 /* _NEW_POINT */
434 if (intel->gen < 6 && ctx->Point.PointSprite) {
435 for (i = 0; i < 8; i++) {
436 if (ctx->Point.CoordReplace[i])
437 key.point_coord_replace |= (1 << i);
438 }
439 }
440
441 /* _NEW_TEXTURE */
442 brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
443
444 /* BRW_NEW_VERTICES */
445 if (intel->gen < 8 && !intel->is_haswell) {
446 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
447 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
448 */
449 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
450 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
451 continue;
452
453 uint8_t wa_flags = 0;
454
455 switch (brw->vb.inputs[i].glarray->Type) {
456
457 case GL_FIXED:
458 wa_flags = brw->vb.inputs[i].glarray->Size;
459 break;
460
461 case GL_INT_2_10_10_10_REV:
462 wa_flags |= BRW_ATTRIB_WA_SIGN;
463 /* fallthough */
464
465 case GL_UNSIGNED_INT_2_10_10_10_REV:
466 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
467 wa_flags |= BRW_ATTRIB_WA_BGRA;
468
469 if (brw->vb.inputs[i].glarray->Normalized)
470 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
471 else if (!brw->vb.inputs[i].glarray->Integer)
472 wa_flags |= BRW_ATTRIB_WA_SCALE;
473
474 break;
475 }
476
477 key.gl_attrib_wa_flags[i] = wa_flags;
478 }
479 }
480
481 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
482 &key, sizeof(key),
483 &brw->vs.prog_offset, &brw->vs.prog_data)) {
484 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
485 vp, &key);
486
487 assert(success);
488 }
489 }
490
491 /* See brw_vs.c:
492 */
493 const struct brw_tracked_state brw_vs_prog = {
494 .dirty = {
495 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
496 _NEW_TEXTURE |
497 _NEW_BUFFERS),
498 .brw = (BRW_NEW_VERTEX_PROGRAM |
499 BRW_NEW_VERTICES),
500 .cache = 0
501 },
502 .emit = brw_upload_vs_prog
503 };
504
505 bool
506 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
507 {
508 struct brw_context *brw = brw_context(ctx);
509 struct brw_vs_prog_key key;
510 uint32_t old_prog_offset = brw->vs.prog_offset;
511 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
512 bool success;
513
514 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
515 return true;
516
517 struct gl_vertex_program *vp = (struct gl_vertex_program *)
518 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
519 struct brw_vertex_program *bvp = brw_vertex_program(vp);
520
521 memset(&key, 0, sizeof(key));
522
523 key.program_string_id = bvp->id;
524 key.clamp_vertex_color = true;
525
526 for (int i = 0; i < MAX_SAMPLERS; i++) {
527 if (vp->Base.ShadowSamplers & (1 << i)) {
528 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
529 key.tex.swizzles[i] =
530 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
531 } else {
532 /* Color sampler: assume no swizzling. */
533 key.tex.swizzles[i] = SWIZZLE_XYZW;
534 }
535 }
536
537 success = do_vs_prog(brw, prog, bvp, &key);
538
539 brw->vs.prog_offset = old_prog_offset;
540 brw->vs.prog_data = old_prog_data;
541
542 return success;
543 }
544
545 void
546 brw_vs_prog_data_free(const void *in_prog_data)
547 {
548 const struct brw_vs_prog_data *prog_data = in_prog_data;
549
550 ralloc_free((void *)prog_data->param);
551 ralloc_free((void *)prog_data->pull_param);
552 }