i965: Split out per-stage dirty-bit checking into separate functions
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "util/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 */
56 void
57 brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
58 GLbitfield64 slots_valid)
59 {
60 vue_map->slots_valid = slots_valid;
61 int i;
62
63 /* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
64 * are stored in the first VUE slot (VARYING_SLOT_PSIZ).
65 */
66 slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
67
68 /* Make sure that the values we store in vue_map->varying_to_slot and
69 * vue_map->slot_to_varying won't overflow the signed chars that are used
70 * to store them. Note that since vue_map->slot_to_varying sometimes holds
71 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
72 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
73 */
74 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
75
76 vue_map->num_slots = 0;
77 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
78 vue_map->varying_to_slot[i] = -1;
79 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
80 }
81
82 /* VUE header: format depends on chip generation and whether clipping is
83 * enabled.
84 */
85 if (brw->gen < 6) {
86 /* There are 8 dwords in VUE header pre-Ironlake:
87 * dword 0-3 is indices, point width, clip flags.
88 * dword 4-7 is ndc position
89 * dword 8-11 is the first vertex data.
90 *
91 * On Ironlake the VUE header is nominally 20 dwords, but the hardware
92 * will accept the same header layout as Gen4 [and should be a bit faster]
93 */
94 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
95 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
96 assign_vue_slot(vue_map, VARYING_SLOT_POS);
97 } else {
98 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
99 * dword 0-3 of the header is indices, point width, clip flags.
100 * dword 4-7 is the 4D space position
101 * dword 8-15 of the vertex header is the user clip distance if
102 * enabled.
103 * dword 8-11 or 16-19 is the first vertex element data we fill.
104 */
105 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
106 assign_vue_slot(vue_map, VARYING_SLOT_POS);
107 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
108 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
109 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
110 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
111
112 /* front and back colors need to be consecutive so that we can use
113 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
114 * two-sided color.
115 */
116 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
117 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
118 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
119 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
120 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
121 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
122 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
123 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
124 }
125
126 /* The hardware doesn't care about the rest of the vertex outputs, so just
127 * assign them contiguously. Don't reassign outputs that already have a
128 * slot.
129 *
130 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
131 * since it's encoded as the clip distances by emit_clip_distances().
132 * However, it may be output by transform feedback, and we'd rather not
133 * recompute state when TF changes, so we just always include it.
134 */
135 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
136 if ((slots_valid & BITFIELD64_BIT(i)) &&
137 vue_map->varying_to_slot[i] == -1) {
138 assign_vue_slot(vue_map, i);
139 }
140 }
141 }
142
143
144 /**
145 * Decide which set of clip planes should be used when clipping via
146 * gl_Position or gl_ClipVertex.
147 */
148 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
149 {
150 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
151 /* There is currently a GLSL vertex shader, so clip according to GLSL
152 * rules, which means compare gl_ClipVertex (or gl_Position, if
153 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
154 * that were stored in EyeUserPlane at the time the clip planes were
155 * specified.
156 */
157 return ctx->Transform.EyeUserPlane;
158 } else {
159 /* Either we are using fixed function or an ARB vertex program. In
160 * either case the clip planes are going to be compared against
161 * gl_Position (which is in clip coordinates) so we have to clip using
162 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
163 * core.
164 */
165 return ctx->Transform._ClipUserPlane;
166 }
167 }
168
169
170 bool
171 brw_vs_prog_data_compare(const void *in_a, const void *in_b)
172 {
173 const struct brw_vs_prog_data *a = in_a;
174 const struct brw_vs_prog_data *b = in_b;
175
176 /* Compare the base structure. */
177 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
178 return false;
179
180 /* Compare the rest of the struct. */
181 const unsigned offset = sizeof(struct brw_stage_prog_data);
182 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
183 sizeof(struct brw_vs_prog_data) - offset)) {
184 return false;
185 }
186
187 return true;
188 }
189
190 static bool
191 do_vs_prog(struct brw_context *brw,
192 struct gl_shader_program *prog,
193 struct brw_vertex_program *vp,
194 struct brw_vs_prog_key *key)
195 {
196 GLuint program_size;
197 const GLuint *program;
198 struct brw_vs_compile c;
199 struct brw_vs_prog_data prog_data;
200 struct brw_stage_prog_data *stage_prog_data = &prog_data.base.base;
201 void *mem_ctx;
202 int i;
203 struct gl_shader *vs = NULL;
204
205 if (prog)
206 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
207
208 memset(&c, 0, sizeof(c));
209 memcpy(&c.key, key, sizeof(*key));
210 memset(&prog_data, 0, sizeof(prog_data));
211
212 /* Use ALT floating point mode for ARB programs so that 0^0 == 1. */
213 if (!prog)
214 stage_prog_data->use_alt_mode = true;
215
216 mem_ctx = ralloc_context(NULL);
217
218 c.vp = vp;
219
220 /* Allocate the references to the uniforms that will end up in the
221 * prog_data associated with the compiled program, and which will be freed
222 * by the state cache.
223 */
224 int param_count;
225 if (vs) {
226 /* We add padding around uniform values below vec4 size, with the worst
227 * case being a float value that gets blown up to a vec4, so be
228 * conservative here.
229 */
230 param_count = vs->num_uniform_components * 4;
231
232 } else {
233 param_count = vp->program.Base.Parameters->NumParameters * 4;
234 }
235 /* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
236 * planes as uniforms.
237 */
238 param_count += c.key.base.nr_userclip_plane_consts * 4;
239
240 stage_prog_data->param =
241 rzalloc_array(NULL, const gl_constant_value *, param_count);
242 stage_prog_data->pull_param =
243 rzalloc_array(NULL, const gl_constant_value *, param_count);
244 stage_prog_data->nr_params = param_count;
245
246 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
247 prog_data.inputs_read = vp->program.Base.InputsRead;
248
249 if (c.key.copy_edgeflag) {
250 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
251 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
252 }
253
254 if (brw->gen < 6) {
255 /* Put dummy slots into the VUE for the SF to put the replaced
256 * point sprite coords in. We shouldn't need these dummy slots,
257 * which take up precious URB space, but it would mean that the SF
258 * doesn't get nice aligned pairs of input coords into output
259 * coords, which would be a pain to handle.
260 */
261 for (i = 0; i < 8; i++) {
262 if (c.key.point_coord_replace & (1 << i))
263 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
264 }
265
266 /* if back colors are written, allocate slots for front colors too */
267 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
268 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
269 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
270 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
271 }
272
273 /* In order for legacy clipping to work, we need to populate the clip
274 * distance varying slots whenever clipping is enabled, even if the vertex
275 * shader doesn't write to gl_ClipDistance.
276 */
277 if (c.key.base.userclip_active) {
278 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
279 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
280 }
281
282 brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written);
283
284 if (0) {
285 _mesa_fprint_program_opt(stderr, &c.vp->program.Base, PROG_PRINT_DEBUG,
286 true);
287 }
288
289 /* Emit GEN4 code.
290 */
291 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
292 if (program == NULL) {
293 ralloc_free(mem_ctx);
294 return false;
295 }
296
297 /* Scratch space is used for register spilling */
298 if (c.base.last_scratch) {
299 perf_debug("Vertex shader triggered register spilling. "
300 "Try reducing the number of live vec4 values to "
301 "improve performance.\n");
302
303 prog_data.base.base.total_scratch
304 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
305
306 brw_get_scratch_bo(brw, &brw->vs.base.scratch_bo,
307 prog_data.base.base.total_scratch *
308 brw->max_vs_threads);
309 }
310
311 brw_upload_cache(&brw->cache, BRW_CACHE_VS_PROG,
312 &c.key, sizeof(c.key),
313 program, program_size,
314 &prog_data, sizeof(prog_data),
315 &brw->vs.base.prog_offset, &brw->vs.prog_data);
316 ralloc_free(mem_ctx);
317
318 return true;
319 }
320
321 static bool
322 key_debug(struct brw_context *brw, const char *name, int a, int b)
323 {
324 if (a != b) {
325 perf_debug(" %s %d->%d\n", name, a, b);
326 return true;
327 }
328 return false;
329 }
330
331 void
332 brw_vs_debug_recompile(struct brw_context *brw,
333 struct gl_shader_program *prog,
334 const struct brw_vs_prog_key *key)
335 {
336 struct brw_cache_item *c = NULL;
337 const struct brw_vs_prog_key *old_key = NULL;
338 bool found = false;
339
340 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
341
342 for (unsigned int i = 0; i < brw->cache.size; i++) {
343 for (c = brw->cache.items[i]; c; c = c->next) {
344 if (c->cache_id == BRW_CACHE_VS_PROG) {
345 old_key = c->key;
346
347 if (old_key->base.program_string_id == key->base.program_string_id)
348 break;
349 }
350 }
351 if (c)
352 break;
353 }
354
355 if (!c) {
356 perf_debug(" Didn't find previous compile in the shader cache for "
357 "debug\n");
358 return;
359 }
360
361 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
362 found |= key_debug(brw, "Vertex attrib w/a flags",
363 old_key->gl_attrib_wa_flags[i],
364 key->gl_attrib_wa_flags[i]);
365 }
366
367 found |= key_debug(brw, "user clip flags",
368 old_key->base.userclip_active, key->base.userclip_active);
369
370 found |= key_debug(brw, "user clipping planes as push constants",
371 old_key->base.nr_userclip_plane_consts,
372 key->base.nr_userclip_plane_consts);
373
374 found |= key_debug(brw, "copy edgeflag",
375 old_key->copy_edgeflag, key->copy_edgeflag);
376 found |= key_debug(brw, "PointCoord replace",
377 old_key->point_coord_replace, key->point_coord_replace);
378 found |= key_debug(brw, "vertex color clamping",
379 old_key->clamp_vertex_color, key->clamp_vertex_color);
380
381 found |= brw_debug_recompile_sampler_key(brw, &old_key->base.tex,
382 &key->base.tex);
383
384 if (!found) {
385 perf_debug(" Something else\n");
386 }
387 }
388
389
390 void
391 brw_setup_vue_key_clip_info(struct brw_context *brw,
392 struct brw_vue_prog_key *key,
393 bool program_uses_clip_distance)
394 {
395 struct gl_context *ctx = &brw->ctx;
396
397 key->userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
398 if (key->userclip_active && !program_uses_clip_distance) {
399 key->nr_userclip_plane_consts
400 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
401 }
402 }
403
404 static bool
405 brw_vs_state_dirty(struct brw_context *brw)
406 {
407 return brw_state_dirty(brw,
408 _NEW_BUFFERS |
409 _NEW_LIGHT |
410 _NEW_POINT |
411 _NEW_POLYGON |
412 _NEW_TEXTURE |
413 _NEW_TRANSFORM,
414 BRW_NEW_VERTEX_PROGRAM |
415 BRW_NEW_VS_ATTRIB_WORKAROUNDS);
416 }
417
418 static void
419 brw_vs_populate_key(struct brw_context *brw,
420 struct brw_vs_prog_key *key)
421 {
422 struct gl_context *ctx = &brw->ctx;
423 /* BRW_NEW_VERTEX_PROGRAM */
424 struct brw_vertex_program *vp =
425 (struct brw_vertex_program *)brw->vertex_program;
426 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
427 int i;
428
429 memset(key, 0, sizeof(*key));
430
431 /* Just upload the program verbatim for now. Always send it all
432 * the inputs it asks for, whether they are varying or not.
433 */
434 key->base.program_string_id = vp->id;
435 brw_setup_vue_key_clip_info(brw, &key->base,
436 vp->program.Base.UsesClipDistanceOut);
437
438 /* _NEW_POLYGON */
439 if (brw->gen < 6) {
440 key->copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
441 ctx->Polygon.BackMode != GL_FILL);
442 }
443
444 if (prog->OutputsWritten & (VARYING_BIT_COL0 | VARYING_BIT_COL1 |
445 VARYING_BIT_BFC0 | VARYING_BIT_BFC1)) {
446 /* _NEW_LIGHT | _NEW_BUFFERS */
447 key->clamp_vertex_color = ctx->Light._ClampVertexColor;
448 }
449
450 /* _NEW_POINT */
451 if (brw->gen < 6 && ctx->Point.PointSprite) {
452 for (i = 0; i < 8; i++) {
453 if (ctx->Point.CoordReplace[i])
454 key->point_coord_replace |= (1 << i);
455 }
456 }
457
458 /* _NEW_TEXTURE */
459 brw_populate_sampler_prog_key_data(ctx, prog, brw->vs.base.sampler_count,
460 &key->base.tex);
461
462 /* BRW_NEW_VS_ATTRIB_WORKAROUNDS */
463 memcpy(key->gl_attrib_wa_flags, brw->vb.attrib_wa_flags,
464 sizeof(brw->vb.attrib_wa_flags));
465 }
466
467 void
468 brw_upload_vs_prog(struct brw_context *brw)
469 {
470 struct gl_context *ctx = &brw->ctx;
471 struct brw_vs_prog_key key;
472 /* BRW_NEW_VERTEX_PROGRAM */
473 struct brw_vertex_program *vp =
474 (struct brw_vertex_program *)brw->vertex_program;
475
476 if (!brw_vs_state_dirty(brw))
477 return;
478
479 brw_vs_populate_key(brw, &key);
480
481 if (!brw_search_cache(&brw->cache, BRW_CACHE_VS_PROG,
482 &key, sizeof(key),
483 &brw->vs.base.prog_offset, &brw->vs.prog_data)) {
484 bool success =
485 do_vs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX], vp,
486 &key);
487 (void) success;
488 assert(success);
489 }
490 brw->vs.base.prog_data = &brw->vs.prog_data->base.base;
491
492 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
493 sizeof(brw->vue_map_geom_out)) != 0) {
494 brw->vue_map_vs = brw->vs.prog_data->base.vue_map;
495 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_VS;
496 if (brw->gen < 6) {
497 /* No geometry shader support, so the VS VUE map is the VUE map for
498 * the output of the "geometry" portion of the pipeline.
499 */
500 brw->vue_map_geom_out = brw->vue_map_vs;
501 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
502 }
503 }
504 }
505
506 bool
507 brw_vs_precompile(struct gl_context *ctx,
508 struct gl_shader_program *shader_prog,
509 struct gl_program *prog)
510 {
511 struct brw_context *brw = brw_context(ctx);
512 struct brw_vs_prog_key key;
513 uint32_t old_prog_offset = brw->vs.base.prog_offset;
514 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
515 bool success;
516
517 struct gl_vertex_program *vp = (struct gl_vertex_program *) prog;
518 struct brw_vertex_program *bvp = brw_vertex_program(vp);
519
520 memset(&key, 0, sizeof(key));
521
522 brw_vue_setup_prog_key_for_precompile(ctx, &key.base, bvp->id, &vp->Base);
523 key.clamp_vertex_color =
524 (prog->OutputsWritten & (VARYING_BIT_COL0 | VARYING_BIT_COL1 |
525 VARYING_BIT_BFC0 | VARYING_BIT_BFC1));
526
527 success = do_vs_prog(brw, shader_prog, bvp, &key);
528
529 brw->vs.base.prog_offset = old_prog_offset;
530 brw->vs.prog_data = old_prog_data;
531
532 return success;
533 }