i965: Support GL_FIXED and packed vertex formats natively on Haswell+.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 static void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vs_compile *c)
62 {
63 const struct intel_context *intel = &brw->intel;
64 struct brw_vue_map *vue_map = &c->prog_data.vue_map;
65 GLbitfield64 outputs_written = c->prog_data.outputs_written;
66 int i;
67
68 vue_map->num_slots = 0;
69 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
70 vue_map->vert_result_to_slot[i] = -1;
71 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
72 }
73
74 /* VUE header: format depends on chip generation and whether clipping is
75 * enabled.
76 */
77 switch (intel->gen) {
78 case 4:
79 /* There are 8 dwords in VUE header pre-Ironlake:
80 * dword 0-3 is indices, point width, clip flags.
81 * dword 4-7 is ndc position
82 * dword 8-11 is the first vertex data.
83 */
84 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
85 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
86 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
87 break;
88 case 5:
89 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
90 * dword 0-3 of the header is indices, point width, clip flags.
91 * dword 4-7 is the ndc position
92 * dword 8-11 of the vertex header is the 4D space position
93 * dword 12-19 of the vertex header is the user clip distance.
94 * dword 20-23 is a pad so that the vertex element data is aligned
95 * dword 24-27 is the first vertex data we fill.
96 *
97 * Note: future pipeline stages expect 4D space position to be
98 * contiguous with the other vert_results, so we make dword 24-27 a
99 * duplicate copy of the 4D space position.
100 */
101 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
102 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
103 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
104 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
105 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
106 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
107 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
108 break;
109 case 6:
110 case 7:
111 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
112 * dword 0-3 of the header is indices, point width, clip flags.
113 * dword 4-7 is the 4D space position
114 * dword 8-15 of the vertex header is the user clip distance if
115 * enabled.
116 * dword 8-11 or 16-19 is the first vertex element data we fill.
117 */
118 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
119 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
120 if (c->key.userclip_active) {
121 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
122 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
123 }
124 /* front and back colors need to be consecutive so that we can use
125 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
126 * two-sided color.
127 */
128 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
129 assign_vue_slot(vue_map, VERT_RESULT_COL0);
130 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
131 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
132 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
133 assign_vue_slot(vue_map, VERT_RESULT_COL1);
134 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
135 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
136 break;
137 default:
138 assert (!"VUE map not known for this chip generation");
139 break;
140 }
141
142 /* The hardware doesn't care about the rest of the vertex outputs, so just
143 * assign them contiguously. Don't reassign outputs that already have a
144 * slot.
145 *
146 * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
147 * since it is unsupported. In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
148 * be needed for transform feedback; since we don't want to have to
149 * recompute the VUE map (and everything that depends on it) when transform
150 * feedback is enabled or disabled, just go ahead and assign a slot for it.
151 */
152 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
153 if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
154 continue;
155 if ((outputs_written & BITFIELD64_BIT(i)) &&
156 vue_map->vert_result_to_slot[i] == -1) {
157 assign_vue_slot(vue_map, i);
158 }
159 }
160 }
161
162
163 /**
164 * Decide which set of clip planes should be used when clipping via
165 * gl_Position or gl_ClipVertex.
166 */
167 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
168 {
169 if (ctx->Shader.CurrentVertexProgram) {
170 /* There is currently a GLSL vertex shader, so clip according to GLSL
171 * rules, which means compare gl_ClipVertex (or gl_Position, if
172 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
173 * that were stored in EyeUserPlane at the time the clip planes were
174 * specified.
175 */
176 return ctx->Transform.EyeUserPlane;
177 } else {
178 /* Either we are using fixed function or an ARB vertex program. In
179 * either case the clip planes are going to be compared against
180 * gl_Position (which is in clip coordinates) so we have to clip using
181 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
182 * core.
183 */
184 return ctx->Transform._ClipUserPlane;
185 }
186 }
187
188 bool
189 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
190 int aux_size, const void *in_key)
191 {
192 const struct brw_vs_prog_data *a = in_a;
193 const struct brw_vs_prog_data *b = in_b;
194
195 /* Compare all the struct up to the pointers. */
196 if (memcmp(a, b, offsetof(struct brw_vs_prog_data, param)))
197 return false;
198
199 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
200 return false;
201
202 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
203 return false;
204
205 return true;
206 }
207
208 static bool
209 do_vs_prog(struct brw_context *brw,
210 struct gl_shader_program *prog,
211 struct brw_vertex_program *vp,
212 struct brw_vs_prog_key *key)
213 {
214 struct intel_context *intel = &brw->intel;
215 GLuint program_size;
216 const GLuint *program;
217 struct brw_vs_compile c;
218 void *mem_ctx;
219 int i;
220 struct gl_shader *vs = NULL;
221
222 if (prog)
223 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
224
225 memset(&c, 0, sizeof(c));
226 memcpy(&c.key, key, sizeof(*key));
227
228 mem_ctx = ralloc_context(NULL);
229
230 c.vp = vp;
231
232 /* Allocate the references to the uniforms that will end up in the
233 * prog_data associated with the compiled program, and which will be freed
234 * by the state cache.
235 */
236 int param_count;
237 if (vs) {
238 /* We add padding around uniform values below vec4 size, with the worst
239 * case being a float value that gets blown up to a vec4, so be
240 * conservative here.
241 */
242 param_count = vs->num_uniform_components * 4;
243
244 } else {
245 param_count = vp->program.Base.Parameters->NumParameters * 4;
246 }
247 /* We also upload clip plane data as uniforms */
248 param_count += MAX_CLIP_PLANES * 4;
249
250 c.prog_data.param = rzalloc_array(NULL, const float *, param_count);
251 c.prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);
252
253 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
254 c.prog_data.inputs_read = vp->program.Base.InputsRead;
255
256 if (c.key.copy_edgeflag) {
257 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
258 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
259 }
260
261 /* Put dummy slots into the VUE for the SF to put the replaced
262 * point sprite coords in. We shouldn't need these dummy slots,
263 * which take up precious URB space, but it would mean that the SF
264 * doesn't get nice aligned pairs of input coords into output
265 * coords, which would be a pain to handle.
266 */
267 for (i = 0; i < 8; i++) {
268 if (c.key.point_coord_replace & (1 << i))
269 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
270 }
271
272 brw_compute_vue_map(brw, &c);
273
274 if (0) {
275 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
276 true);
277 }
278
279 /* Emit GEN4 code.
280 */
281 program = brw_vs_emit(brw, prog, &c, mem_ctx, &program_size);
282 if (program == NULL) {
283 ralloc_free(mem_ctx);
284 return false;
285 }
286
287 if (c.prog_data.nr_pull_params)
288 c.prog_data.num_surfaces = 1;
289 if (c.vp->program.Base.SamplersUsed)
290 c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
291 if (prog &&
292 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
293 c.prog_data.num_surfaces =
294 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
295 }
296
297 /* Scratch space is used for register spilling */
298 if (c.last_scratch) {
299 perf_debug("Vertex shader triggered register spilling. "
300 "Try reducing the number of live vec4 values to "
301 "improve performance.\n");
302
303 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch*REG_SIZE);
304
305 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
306 c.prog_data.total_scratch * brw->max_vs_threads);
307 }
308
309 brw_upload_cache(&brw->cache, BRW_VS_PROG,
310 &c.key, sizeof(c.key),
311 program, program_size,
312 &c.prog_data, sizeof(c.prog_data),
313 &brw->vs.prog_offset, &brw->vs.prog_data);
314 ralloc_free(mem_ctx);
315
316 return true;
317 }
318
319 static bool
320 key_debug(const char *name, int a, int b)
321 {
322 if (a != b) {
323 perf_debug(" %s %d->%d\n", name, a, b);
324 return true;
325 }
326 return false;
327 }
328
329 void
330 brw_vs_debug_recompile(struct brw_context *brw,
331 struct gl_shader_program *prog,
332 const struct brw_vs_prog_key *key)
333 {
334 struct brw_cache_item *c = NULL;
335 const struct brw_vs_prog_key *old_key = NULL;
336 bool found = false;
337
338 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
339
340 for (unsigned int i = 0; i < brw->cache.size; i++) {
341 for (c = brw->cache.items[i]; c; c = c->next) {
342 if (c->cache_id == BRW_VS_PROG) {
343 old_key = c->key;
344
345 if (old_key->program_string_id == key->program_string_id)
346 break;
347 }
348 }
349 if (c)
350 break;
351 }
352
353 if (!c) {
354 perf_debug(" Didn't find previous compile in the shader cache for "
355 "debug\n");
356 return;
357 }
358
359 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
360 found |= key_debug("Vertex attrib w/a flags",
361 old_key->gl_attrib_wa_flags[i],
362 key->gl_attrib_wa_flags[i]);
363 }
364
365 found |= key_debug("user clip flags",
366 old_key->userclip_active, key->userclip_active);
367
368 found |= key_debug("user clipping planes as push constants",
369 old_key->nr_userclip_plane_consts,
370 key->nr_userclip_plane_consts);
371
372 found |= key_debug("clip distance enable",
373 old_key->uses_clip_distance, key->uses_clip_distance);
374 found |= key_debug("clip plane enable bitfield",
375 old_key->userclip_planes_enabled_gen_4_5,
376 key->userclip_planes_enabled_gen_4_5);
377 found |= key_debug("copy edgeflag",
378 old_key->copy_edgeflag, key->copy_edgeflag);
379 found |= key_debug("PointCoord replace",
380 old_key->point_coord_replace, key->point_coord_replace);
381 found |= key_debug("vertex color clamping",
382 old_key->clamp_vertex_color, key->clamp_vertex_color);
383
384 found |= brw_debug_recompile_sampler_key(&old_key->tex, &key->tex);
385
386 if (!found) {
387 perf_debug(" Something else\n");
388 }
389 }
390
391 static void brw_upload_vs_prog(struct brw_context *brw)
392 {
393 struct intel_context *intel = &brw->intel;
394 struct gl_context *ctx = &intel->ctx;
395 struct brw_vs_prog_key key;
396 /* BRW_NEW_VERTEX_PROGRAM */
397 struct brw_vertex_program *vp =
398 (struct brw_vertex_program *)brw->vertex_program;
399 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
400 int i;
401
402 memset(&key, 0, sizeof(key));
403
404 /* Just upload the program verbatim for now. Always send it all
405 * the inputs it asks for, whether they are varying or not.
406 */
407 key.program_string_id = vp->id;
408 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
409 key.uses_clip_distance = vp->program.UsesClipDistance;
410 if (key.userclip_active && !key.uses_clip_distance) {
411 if (intel->gen < 6) {
412 key.nr_userclip_plane_consts
413 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
414 key.userclip_planes_enabled_gen_4_5
415 = ctx->Transform.ClipPlanesEnabled;
416 } else {
417 key.nr_userclip_plane_consts
418 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
419 }
420 }
421
422 /* _NEW_POLYGON */
423 if (intel->gen < 6) {
424 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
425 ctx->Polygon.BackMode != GL_FILL);
426 }
427
428 /* _NEW_LIGHT | _NEW_BUFFERS */
429 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
430
431 /* _NEW_POINT */
432 if (ctx->Point.PointSprite) {
433 for (i = 0; i < 8; i++) {
434 if (ctx->Point.CoordReplace[i])
435 key.point_coord_replace |= (1 << i);
436 }
437 }
438
439 /* _NEW_TEXTURE */
440 brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
441
442 /* BRW_NEW_VERTICES */
443 if (intel->gen < 8 && !intel->is_haswell) {
444 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
445 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
446 */
447 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
448 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
449 continue;
450
451 uint8_t wa_flags = 0;
452
453 switch (brw->vb.inputs[i].glarray->Type) {
454
455 case GL_FIXED:
456 wa_flags = brw->vb.inputs[i].glarray->Size;
457 break;
458
459 case GL_INT_2_10_10_10_REV:
460 wa_flags |= BRW_ATTRIB_WA_SIGN;
461 /* fallthough */
462
463 case GL_UNSIGNED_INT_2_10_10_10_REV:
464 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
465 wa_flags |= BRW_ATTRIB_WA_BGRA;
466
467 if (brw->vb.inputs[i].glarray->Normalized)
468 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
469 else if (!brw->vb.inputs[i].glarray->Integer)
470 wa_flags |= BRW_ATTRIB_WA_SCALE;
471
472 break;
473 }
474
475 key.gl_attrib_wa_flags[i] = wa_flags;
476 }
477 }
478
479 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
480 &key, sizeof(key),
481 &brw->vs.prog_offset, &brw->vs.prog_data)) {
482 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
483 vp, &key);
484
485 assert(success);
486 }
487 }
488
489 /* See brw_vs.c:
490 */
491 const struct brw_tracked_state brw_vs_prog = {
492 .dirty = {
493 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
494 _NEW_TEXTURE |
495 _NEW_BUFFERS),
496 .brw = (BRW_NEW_VERTEX_PROGRAM |
497 BRW_NEW_VERTICES),
498 .cache = 0
499 },
500 .emit = brw_upload_vs_prog
501 };
502
503 bool
504 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
505 {
506 struct brw_context *brw = brw_context(ctx);
507 struct brw_vs_prog_key key;
508 uint32_t old_prog_offset = brw->vs.prog_offset;
509 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
510 bool success;
511
512 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
513 return true;
514
515 struct gl_vertex_program *vp = (struct gl_vertex_program *)
516 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
517 struct brw_vertex_program *bvp = brw_vertex_program(vp);
518
519 memset(&key, 0, sizeof(key));
520
521 key.program_string_id = bvp->id;
522 key.clamp_vertex_color = true;
523
524 for (int i = 0; i < MAX_SAMPLERS; i++) {
525 if (vp->Base.ShadowSamplers & (1 << i)) {
526 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
527 key.tex.swizzles[i] =
528 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
529 } else {
530 /* Color sampler: assume no swizzling. */
531 key.tex.swizzles[i] = SWIZZLE_XYZW;
532 }
533 }
534
535 success = do_vs_prog(brw, prog, bvp, &key);
536
537 brw->vs.prog_offset = old_prog_offset;
538 brw->vs.prog_data = old_prog_data;
539
540 return success;
541 }
542
543 void
544 brw_vs_prog_data_free(const void *in_prog_data)
545 {
546 const struct brw_vs_prog_data *prog_data = in_prog_data;
547
548 ralloc_free((void *)prog_data->param);
549 ralloc_free((void *)prog_data->pull_param);
550 }