i965: Use device_info instead of the context for computing vue maps
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "util/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 */
56 void
57 brw_compute_vue_map(const struct brw_device_info *devinfo,
58 struct brw_vue_map *vue_map,
59 GLbitfield64 slots_valid)
60 {
61 vue_map->slots_valid = slots_valid;
62 int i;
63
64 /* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
65 * are stored in the first VUE slot (VARYING_SLOT_PSIZ).
66 */
67 slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
68
69 /* Make sure that the values we store in vue_map->varying_to_slot and
70 * vue_map->slot_to_varying won't overflow the signed chars that are used
71 * to store them. Note that since vue_map->slot_to_varying sometimes holds
72 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
73 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
74 */
75 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
76
77 vue_map->num_slots = 0;
78 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
79 vue_map->varying_to_slot[i] = -1;
80 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
81 }
82
83 /* VUE header: format depends on chip generation and whether clipping is
84 * enabled.
85 */
86 if (devinfo->gen < 6) {
87 /* There are 8 dwords in VUE header pre-Ironlake:
88 * dword 0-3 is indices, point width, clip flags.
89 * dword 4-7 is ndc position
90 * dword 8-11 is the first vertex data.
91 *
92 * On Ironlake the VUE header is nominally 20 dwords, but the hardware
93 * will accept the same header layout as Gen4 [and should be a bit faster]
94 */
95 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
96 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
97 assign_vue_slot(vue_map, VARYING_SLOT_POS);
98 } else {
99 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
100 * dword 0-3 of the header is indices, point width, clip flags.
101 * dword 4-7 is the 4D space position
102 * dword 8-15 of the vertex header is the user clip distance if
103 * enabled.
104 * dword 8-11 or 16-19 is the first vertex element data we fill.
105 */
106 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
107 assign_vue_slot(vue_map, VARYING_SLOT_POS);
108 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
109 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
110 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
111 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
112
113 /* front and back colors need to be consecutive so that we can use
114 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
115 * two-sided color.
116 */
117 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
118 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
119 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
120 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
121 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
122 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
123 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
124 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
125 }
126
127 /* The hardware doesn't care about the rest of the vertex outputs, so just
128 * assign them contiguously. Don't reassign outputs that already have a
129 * slot.
130 *
131 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
132 * since it's encoded as the clip distances by emit_clip_distances().
133 * However, it may be output by transform feedback, and we'd rather not
134 * recompute state when TF changes, so we just always include it.
135 */
136 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
137 if ((slots_valid & BITFIELD64_BIT(i)) &&
138 vue_map->varying_to_slot[i] == -1) {
139 assign_vue_slot(vue_map, i);
140 }
141 }
142 }
143
144
145 /**
146 * Decide which set of clip planes should be used when clipping via
147 * gl_Position or gl_ClipVertex.
148 */
149 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
150 {
151 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
152 /* There is currently a GLSL vertex shader, so clip according to GLSL
153 * rules, which means compare gl_ClipVertex (or gl_Position, if
154 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
155 * that were stored in EyeUserPlane at the time the clip planes were
156 * specified.
157 */
158 return ctx->Transform.EyeUserPlane;
159 } else {
160 /* Either we are using fixed function or an ARB vertex program. In
161 * either case the clip planes are going to be compared against
162 * gl_Position (which is in clip coordinates) so we have to clip using
163 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
164 * core.
165 */
166 return ctx->Transform._ClipUserPlane;
167 }
168 }
169
170
171 bool
172 brw_vs_prog_data_compare(const void *in_a, const void *in_b)
173 {
174 const struct brw_vs_prog_data *a = in_a;
175 const struct brw_vs_prog_data *b = in_b;
176
177 /* Compare the base structure. */
178 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
179 return false;
180
181 /* Compare the rest of the struct. */
182 const unsigned offset = sizeof(struct brw_stage_prog_data);
183 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
184 sizeof(struct brw_vs_prog_data) - offset)) {
185 return false;
186 }
187
188 return true;
189 }
190
191 bool
192 brw_compile_vs_prog(struct brw_context *brw,
193 struct gl_shader_program *prog,
194 struct brw_vertex_program *vp,
195 struct brw_vs_prog_key *key)
196 {
197 GLuint program_size;
198 const GLuint *program;
199 struct brw_vs_compile c;
200 struct brw_vs_prog_data prog_data;
201 struct brw_stage_prog_data *stage_prog_data = &prog_data.base.base;
202 void *mem_ctx;
203 int i;
204 struct gl_shader *vs = NULL;
205
206 if (prog)
207 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
208
209 memset(&c, 0, sizeof(c));
210 memcpy(&c.key, key, sizeof(*key));
211 memset(&prog_data, 0, sizeof(prog_data));
212
213 /* Use ALT floating point mode for ARB programs so that 0^0 == 1. */
214 if (!prog)
215 stage_prog_data->use_alt_mode = true;
216
217 mem_ctx = ralloc_context(NULL);
218
219 c.vp = vp;
220
221 /* Allocate the references to the uniforms that will end up in the
222 * prog_data associated with the compiled program, and which will be freed
223 * by the state cache.
224 */
225 int param_count;
226 if (vs) {
227 /* We add padding around uniform values below vec4 size, with the worst
228 * case being a float value that gets blown up to a vec4, so be
229 * conservative here.
230 */
231 param_count = vs->num_uniform_components * 4;
232
233 } else {
234 param_count = vp->program.Base.Parameters->NumParameters * 4;
235 }
236 /* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
237 * planes as uniforms.
238 */
239 param_count += c.key.base.nr_userclip_plane_consts * 4;
240
241 stage_prog_data->param =
242 rzalloc_array(NULL, const gl_constant_value *, param_count);
243 stage_prog_data->pull_param =
244 rzalloc_array(NULL, const gl_constant_value *, param_count);
245 stage_prog_data->nr_params = param_count;
246
247 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
248 prog_data.inputs_read = vp->program.Base.InputsRead;
249
250 if (c.key.copy_edgeflag) {
251 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
252 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
253 }
254
255 if (brw->gen < 6) {
256 /* Put dummy slots into the VUE for the SF to put the replaced
257 * point sprite coords in. We shouldn't need these dummy slots,
258 * which take up precious URB space, but it would mean that the SF
259 * doesn't get nice aligned pairs of input coords into output
260 * coords, which would be a pain to handle.
261 */
262 for (i = 0; i < 8; i++) {
263 if (c.key.point_coord_replace & (1 << i))
264 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
265 }
266
267 /* if back colors are written, allocate slots for front colors too */
268 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
269 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
270 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
271 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
272 }
273
274 /* In order for legacy clipping to work, we need to populate the clip
275 * distance varying slots whenever clipping is enabled, even if the vertex
276 * shader doesn't write to gl_ClipDistance.
277 */
278 if (c.key.base.userclip_active) {
279 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
280 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
281 }
282
283 brw_compute_vue_map(brw->intelScreen->devinfo,
284 &prog_data.base.vue_map, outputs_written);
285
286 if (0) {
287 _mesa_fprint_program_opt(stderr, &c.vp->program.Base, PROG_PRINT_DEBUG,
288 true);
289 }
290
291 /* Emit GEN4 code.
292 */
293 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
294 if (program == NULL) {
295 ralloc_free(mem_ctx);
296 return false;
297 }
298
299 /* Scratch space is used for register spilling */
300 if (c.base.last_scratch) {
301 perf_debug("Vertex shader triggered register spilling. "
302 "Try reducing the number of live vec4 values to "
303 "improve performance.\n");
304
305 prog_data.base.base.total_scratch
306 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
307
308 brw_get_scratch_bo(brw, &brw->vs.base.scratch_bo,
309 prog_data.base.base.total_scratch *
310 brw->max_vs_threads);
311 }
312
313 brw_upload_cache(&brw->cache, BRW_CACHE_VS_PROG,
314 &c.key, sizeof(c.key),
315 program, program_size,
316 &prog_data, sizeof(prog_data),
317 &brw->vs.base.prog_offset, &brw->vs.prog_data);
318 ralloc_free(mem_ctx);
319
320 return true;
321 }
322
323 static bool
324 key_debug(struct brw_context *brw, const char *name, int a, int b)
325 {
326 if (a != b) {
327 perf_debug(" %s %d->%d\n", name, a, b);
328 return true;
329 }
330 return false;
331 }
332
333 void
334 brw_vs_debug_recompile(struct brw_context *brw,
335 struct gl_shader_program *prog,
336 const struct brw_vs_prog_key *key)
337 {
338 struct brw_cache_item *c = NULL;
339 const struct brw_vs_prog_key *old_key = NULL;
340 bool found = false;
341
342 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
343
344 for (unsigned int i = 0; i < brw->cache.size; i++) {
345 for (c = brw->cache.items[i]; c; c = c->next) {
346 if (c->cache_id == BRW_CACHE_VS_PROG) {
347 old_key = c->key;
348
349 if (old_key->base.program_string_id == key->base.program_string_id)
350 break;
351 }
352 }
353 if (c)
354 break;
355 }
356
357 if (!c) {
358 perf_debug(" Didn't find previous compile in the shader cache for "
359 "debug\n");
360 return;
361 }
362
363 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
364 found |= key_debug(brw, "Vertex attrib w/a flags",
365 old_key->gl_attrib_wa_flags[i],
366 key->gl_attrib_wa_flags[i]);
367 }
368
369 found |= key_debug(brw, "user clip flags",
370 old_key->base.userclip_active, key->base.userclip_active);
371
372 found |= key_debug(brw, "user clipping planes as push constants",
373 old_key->base.nr_userclip_plane_consts,
374 key->base.nr_userclip_plane_consts);
375
376 found |= key_debug(brw, "copy edgeflag",
377 old_key->copy_edgeflag, key->copy_edgeflag);
378 found |= key_debug(brw, "PointCoord replace",
379 old_key->point_coord_replace, key->point_coord_replace);
380 found |= key_debug(brw, "vertex color clamping",
381 old_key->clamp_vertex_color, key->clamp_vertex_color);
382
383 found |= brw_debug_recompile_sampler_key(brw, &old_key->base.tex,
384 &key->base.tex);
385
386 if (!found) {
387 perf_debug(" Something else\n");
388 }
389 }
390
391
392 void
393 brw_setup_vue_key_clip_info(struct brw_context *brw,
394 struct brw_vue_prog_key *key,
395 bool program_uses_clip_distance)
396 {
397 struct gl_context *ctx = &brw->ctx;
398
399 key->userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
400 if (key->userclip_active && !program_uses_clip_distance) {
401 key->nr_userclip_plane_consts
402 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
403 }
404 }
405
406 static bool
407 brw_vs_state_dirty(struct brw_context *brw)
408 {
409 return brw_state_dirty(brw,
410 _NEW_BUFFERS |
411 _NEW_LIGHT |
412 _NEW_POINT |
413 _NEW_POLYGON |
414 _NEW_TEXTURE |
415 _NEW_TRANSFORM,
416 BRW_NEW_VERTEX_PROGRAM |
417 BRW_NEW_VS_ATTRIB_WORKAROUNDS);
418 }
419
420 static void
421 brw_vs_populate_key(struct brw_context *brw,
422 struct brw_vs_prog_key *key)
423 {
424 struct gl_context *ctx = &brw->ctx;
425 /* BRW_NEW_VERTEX_PROGRAM */
426 struct brw_vertex_program *vp =
427 (struct brw_vertex_program *)brw->vertex_program;
428 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
429 int i;
430
431 memset(key, 0, sizeof(*key));
432
433 /* Just upload the program verbatim for now. Always send it all
434 * the inputs it asks for, whether they are varying or not.
435 */
436 key->base.program_string_id = vp->id;
437 brw_setup_vue_key_clip_info(brw, &key->base,
438 vp->program.Base.UsesClipDistanceOut);
439
440 /* _NEW_POLYGON */
441 if (brw->gen < 6) {
442 key->copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
443 ctx->Polygon.BackMode != GL_FILL);
444 }
445
446 if (prog->OutputsWritten & (VARYING_BIT_COL0 | VARYING_BIT_COL1 |
447 VARYING_BIT_BFC0 | VARYING_BIT_BFC1)) {
448 /* _NEW_LIGHT | _NEW_BUFFERS */
449 key->clamp_vertex_color = ctx->Light._ClampVertexColor;
450 }
451
452 /* _NEW_POINT */
453 if (brw->gen < 6 && ctx->Point.PointSprite) {
454 for (i = 0; i < 8; i++) {
455 if (ctx->Point.CoordReplace[i])
456 key->point_coord_replace |= (1 << i);
457 }
458 }
459
460 /* _NEW_TEXTURE */
461 brw_populate_sampler_prog_key_data(ctx, prog, brw->vs.base.sampler_count,
462 &key->base.tex);
463
464 /* BRW_NEW_VS_ATTRIB_WORKAROUNDS */
465 memcpy(key->gl_attrib_wa_flags, brw->vb.attrib_wa_flags,
466 sizeof(brw->vb.attrib_wa_flags));
467 }
468
469 void
470 brw_upload_vs_prog(struct brw_context *brw)
471 {
472 struct gl_context *ctx = &brw->ctx;
473 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
474 struct brw_vs_prog_key key;
475 /* BRW_NEW_VERTEX_PROGRAM */
476 struct brw_vertex_program *vp =
477 (struct brw_vertex_program *)brw->vertex_program;
478
479 if (!brw_vs_state_dirty(brw))
480 return;
481
482 brw_vs_populate_key(brw, &key);
483
484 if (!brw_search_cache(&brw->cache, BRW_CACHE_VS_PROG,
485 &key, sizeof(key),
486 &brw->vs.base.prog_offset, &brw->vs.prog_data)) {
487 bool success = brw_compile_vs_prog(brw, current[MESA_SHADER_VERTEX],
488 vp, &key);
489 (void) success;
490 assert(success);
491 }
492 brw->vs.base.prog_data = &brw->vs.prog_data->base.base;
493
494 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
495 sizeof(brw->vue_map_geom_out)) != 0) {
496 brw->vue_map_vs = brw->vs.prog_data->base.vue_map;
497 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_VS;
498 if (brw->gen < 6) {
499 /* No geometry shader support, so the VS VUE map is the VUE map for
500 * the output of the "geometry" portion of the pipeline.
501 */
502 brw->vue_map_geom_out = brw->vue_map_vs;
503 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
504 }
505 }
506 }
507
508 bool
509 brw_vs_precompile(struct gl_context *ctx,
510 struct gl_shader_program *shader_prog,
511 struct gl_program *prog)
512 {
513 struct brw_context *brw = brw_context(ctx);
514 struct brw_vs_prog_key key;
515 uint32_t old_prog_offset = brw->vs.base.prog_offset;
516 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
517 bool success;
518
519 struct gl_vertex_program *vp = (struct gl_vertex_program *) prog;
520 struct brw_vertex_program *bvp = brw_vertex_program(vp);
521
522 memset(&key, 0, sizeof(key));
523
524 brw_vue_setup_prog_key_for_precompile(ctx, &key.base, bvp->id, &vp->Base);
525 key.clamp_vertex_color =
526 (prog->OutputsWritten & (VARYING_BIT_COL0 | VARYING_BIT_COL1 |
527 VARYING_BIT_BFC0 | VARYING_BIT_BFC1));
528
529 success = brw_compile_vs_prog(brw, shader_prog, bvp, &key);
530
531 brw->vs.base.prog_offset = old_prog_offset;
532 brw->vs.prog_data = old_prog_data;
533
534 return success;
535 }