i965/vs: Add texture related data to brw_vs_prog_key.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 */
56 void
57 brw_compute_vue_map(struct brw_vue_map *vue_map,
58 const struct intel_context *intel,
59 bool userclip_active,
60 GLbitfield64 outputs_written)
61 {
62 int i;
63
64 vue_map->num_slots = 0;
65 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
66 vue_map->vert_result_to_slot[i] = -1;
67 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
68 }
69
70 /* VUE header: format depends on chip generation and whether clipping is
71 * enabled.
72 */
73 switch (intel->gen) {
74 case 4:
75 /* There are 8 dwords in VUE header pre-Ironlake:
76 * dword 0-3 is indices, point width, clip flags.
77 * dword 4-7 is ndc position
78 * dword 8-11 is the first vertex data.
79 */
80 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
81 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
82 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
83 break;
84 case 5:
85 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
86 * dword 0-3 of the header is indices, point width, clip flags.
87 * dword 4-7 is the ndc position
88 * dword 8-11 of the vertex header is the 4D space position
89 * dword 12-19 of the vertex header is the user clip distance.
90 * dword 20-23 is a pad so that the vertex element data is aligned
91 * dword 24-27 is the first vertex data we fill.
92 *
93 * Note: future pipeline stages expect 4D space position to be
94 * contiguous with the other vert_results, so we make dword 24-27 a
95 * duplicate copy of the 4D space position.
96 */
97 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
98 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
99 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
100 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
101 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
102 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
103 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
104 break;
105 case 6:
106 case 7:
107 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
108 * dword 0-3 of the header is indices, point width, clip flags.
109 * dword 4-7 is the 4D space position
110 * dword 8-15 of the vertex header is the user clip distance if
111 * enabled.
112 * dword 8-11 or 16-19 is the first vertex element data we fill.
113 */
114 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
115 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
116 if (userclip_active) {
117 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
118 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
119 }
120 /* front and back colors need to be consecutive so that we can use
121 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
122 * two-sided color.
123 */
124 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
125 assign_vue_slot(vue_map, VERT_RESULT_COL0);
126 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
127 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
128 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
129 assign_vue_slot(vue_map, VERT_RESULT_COL1);
130 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
131 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
132 break;
133 default:
134 assert (!"VUE map not known for this chip generation");
135 break;
136 }
137
138 /* The hardware doesn't care about the rest of the vertex outputs, so just
139 * assign them contiguously. Don't reassign outputs that already have a
140 * slot.
141 *
142 * Also, don't assign a slot for VERT_RESULT_CLIP_VERTEX, since it is
143 * unsupported in pre-GEN6, and in GEN6+ the vertex shader converts it into
144 * clip distances.
145 */
146 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
147 if ((outputs_written & BITFIELD64_BIT(i)) &&
148 vue_map->vert_result_to_slot[i] == -1 &&
149 i != VERT_RESULT_CLIP_VERTEX) {
150 assign_vue_slot(vue_map, i);
151 }
152 }
153 }
154
155
156 /**
157 * Decide which set of clip planes should be used when clipping via
158 * gl_Position or gl_ClipVertex.
159 */
160 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
161 {
162 if (ctx->Shader.CurrentVertexProgram) {
163 /* There is currently a GLSL vertex shader, so clip according to GLSL
164 * rules, which means compare gl_ClipVertex (or gl_Position, if
165 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
166 * that were stored in EyeUserPlane at the time the clip planes were
167 * specified.
168 */
169 return ctx->Transform.EyeUserPlane;
170 } else {
171 /* Either we are using fixed function or an ARB vertex program. In
172 * either case the clip planes are going to be compared against
173 * gl_Position (which is in clip coordinates) so we have to clip using
174 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
175 * core.
176 */
177 return ctx->Transform._ClipUserPlane;
178 }
179 }
180
181
182 static bool
183 do_vs_prog(struct brw_context *brw,
184 struct gl_shader_program *prog,
185 struct brw_vertex_program *vp,
186 struct brw_vs_prog_key *key)
187 {
188 struct gl_context *ctx = &brw->intel.ctx;
189 struct intel_context *intel = &brw->intel;
190 GLuint program_size;
191 const GLuint *program;
192 struct brw_vs_compile c;
193 void *mem_ctx;
194 int aux_size;
195 int i;
196
197 memset(&c, 0, sizeof(c));
198 memcpy(&c.key, key, sizeof(*key));
199
200 mem_ctx = ralloc_context(NULL);
201
202 brw_init_compile(brw, &c.func, mem_ctx);
203 c.vp = vp;
204
205 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
206 c.prog_data.inputs_read = vp->program.Base.InputsRead;
207
208 if (c.key.copy_edgeflag) {
209 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
210 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
211 }
212
213 /* Put dummy slots into the VUE for the SF to put the replaced
214 * point sprite coords in. We shouldn't need these dummy slots,
215 * which take up precious URB space, but it would mean that the SF
216 * doesn't get nice aligned pairs of input coords into output
217 * coords, which would be a pain to handle.
218 */
219 for (i = 0; i < 8; i++) {
220 if (c.key.point_coord_replace & (1 << i))
221 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
222 }
223
224 if (0) {
225 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
226 true);
227 }
228
229 /* Emit GEN4 code.
230 */
231 if (brw->new_vs_backend && prog) {
232 if (!brw_vs_emit(prog, &c)) {
233 ralloc_free(mem_ctx);
234 return false;
235 }
236 } else {
237 brw_old_vs_emit(&c);
238 }
239
240 /* Scratch space is used for register spilling */
241 if (c.last_scratch) {
242 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
243
244 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
245 c.prog_data.total_scratch * brw->max_vs_threads);
246 }
247
248 /* get the program
249 */
250 program = brw_get_program(&c.func, &program_size);
251
252 /* We upload from &c.prog_data including the constant_map assuming
253 * they're packed together. It would be nice to have a
254 * compile-time assert macro here.
255 */
256 assert(c.constant_map == (int8_t *)&c.prog_data +
257 sizeof(c.prog_data));
258 assert(ctx->Const.VertexProgram.MaxNativeParameters ==
259 ARRAY_SIZE(c.constant_map));
260 (void) ctx;
261
262 aux_size = sizeof(c.prog_data);
263 /* constant_map */
264 aux_size += c.vp->program.Base.Parameters->NumParameters;
265
266 brw_upload_cache(&brw->cache, BRW_VS_PROG,
267 &c.key, sizeof(c.key),
268 program, program_size,
269 &c.prog_data, aux_size,
270 &brw->vs.prog_offset, &brw->vs.prog_data);
271 ralloc_free(mem_ctx);
272
273 return true;
274 }
275
276
277 static void brw_upload_vs_prog(struct brw_context *brw)
278 {
279 struct intel_context *intel = &brw->intel;
280 struct gl_context *ctx = &intel->ctx;
281 struct brw_vs_prog_key key;
282 /* BRW_NEW_VERTEX_PROGRAM */
283 struct brw_vertex_program *vp =
284 (struct brw_vertex_program *)brw->vertex_program;
285 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
286 int i;
287
288 memset(&key, 0, sizeof(key));
289
290 /* Just upload the program verbatim for now. Always send it all
291 * the inputs it asks for, whether they are varying or not.
292 */
293 key.program_string_id = vp->id;
294 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
295 key.uses_clip_distance = vp->program.UsesClipDistance;
296 if (key.userclip_active && !key.uses_clip_distance) {
297 if (intel->gen < 6) {
298 key.nr_userclip_plane_consts
299 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
300 key.userclip_planes_enabled_gen_4_5
301 = ctx->Transform.ClipPlanesEnabled;
302 } else {
303 key.nr_userclip_plane_consts
304 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
305 }
306 }
307 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
308 ctx->Polygon.BackMode != GL_FILL);
309
310 /* _NEW_LIGHT | _NEW_BUFFERS */
311 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
312
313 /* _NEW_POINT */
314 if (ctx->Point.PointSprite) {
315 for (i = 0; i < 8; i++) {
316 if (ctx->Point.CoordReplace[i])
317 key.point_coord_replace |= (1 << i);
318 }
319 }
320
321 /* _NEW_TEXTURE */
322 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
323 if (prog->TexturesUsed[i])
324 brw_populate_sampler_prog_key_data(ctx, &key.tex, i);
325 }
326
327 /* BRW_NEW_VERTICES */
328 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
329 if (vp->program.Base.InputsRead & BITFIELD64_BIT(i) &&
330 brw->vb.inputs[i].glarray->Type == GL_FIXED) {
331 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
332 }
333 }
334
335 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
336 &key, sizeof(key),
337 &brw->vs.prog_offset, &brw->vs.prog_data)) {
338 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
339 vp, &key);
340
341 assert(success);
342 }
343 brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
344 sizeof(*brw->vs.prog_data));
345 }
346
347 /* See brw_vs.c:
348 */
349 const struct brw_tracked_state brw_vs_prog = {
350 .dirty = {
351 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
352 _NEW_BUFFERS),
353 .brw = (BRW_NEW_VERTEX_PROGRAM |
354 BRW_NEW_VERTICES),
355 .cache = 0
356 },
357 .emit = brw_upload_vs_prog
358 };
359
360 bool
361 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
362 {
363 struct brw_context *brw = brw_context(ctx);
364 struct brw_vs_prog_key key;
365 uint32_t old_prog_offset = brw->vs.prog_offset;
366 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
367 bool success;
368
369 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
370 return true;
371
372 struct gl_vertex_program *vp = (struct gl_vertex_program *)
373 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
374 struct brw_vertex_program *bvp = brw_vertex_program(vp);
375
376 memset(&key, 0, sizeof(key));
377
378 key.program_string_id = bvp->id;
379 key.clamp_vertex_color = true;
380
381 success = do_vs_prog(brw, prog, bvp, &key);
382
383 brw->vs.prog_offset = old_prog_offset;
384 brw->vs.prog_data = old_prog_data;
385
386 return success;
387 }