i965 Gen6: Implement gl_ClipVertex.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 */
56 void
57 brw_compute_vue_map(struct brw_vue_map *vue_map,
58 const struct intel_context *intel, int nr_userclip,
59 GLbitfield64 outputs_written)
60 {
61 int i;
62
63 vue_map->num_slots = 0;
64 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
65 vue_map->vert_result_to_slot[i] = -1;
66 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
67 }
68
69 /* VUE header: format depends on chip generation and whether clipping is
70 * enabled.
71 */
72 switch (intel->gen) {
73 case 4:
74 /* There are 8 dwords in VUE header pre-Ironlake:
75 * dword 0-3 is indices, point width, clip flags.
76 * dword 4-7 is ndc position
77 * dword 8-11 is the first vertex data.
78 */
79 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
80 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
81 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
82 break;
83 case 5:
84 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
85 * dword 0-3 of the header is indices, point width, clip flags.
86 * dword 4-7 is the ndc position
87 * dword 8-11 of the vertex header is the 4D space position
88 * dword 12-19 of the vertex header is the user clip distance.
89 * dword 20-23 is a pad so that the vertex element data is aligned
90 * dword 24-27 is the first vertex data we fill.
91 *
92 * Note: future pipeline stages expect 4D space position to be
93 * contiguous with the other vert_results, so we make dword 24-27 a
94 * duplicate copy of the 4D space position.
95 */
96 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
97 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
98 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
99 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
100 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
101 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
102 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
103 break;
104 case 6:
105 case 7:
106 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
107 * dword 0-3 of the header is indices, point width, clip flags.
108 * dword 4-7 is the 4D space position
109 * dword 8-15 of the vertex header is the user clip distance if
110 * enabled.
111 * dword 8-11 or 16-19 is the first vertex element data we fill.
112 */
113 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
114 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
115 if (nr_userclip) {
116 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
117 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
118 }
119 /* front and back colors need to be consecutive so that we can use
120 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
121 * two-sided color.
122 */
123 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
124 assign_vue_slot(vue_map, VERT_RESULT_COL0);
125 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
126 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
127 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
128 assign_vue_slot(vue_map, VERT_RESULT_COL1);
129 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
130 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
131 break;
132 default:
133 assert (!"VUE map not known for this chip generation");
134 break;
135 }
136
137 /* The hardware doesn't care about the rest of the vertex outputs, so just
138 * assign them contiguously. Don't reassign outputs that already have a
139 * slot.
140 *
141 * Also, don't assign a slot for VERT_RESULT_CLIP_VERTEX, since it is
142 * unsupported in pre-GEN6, and in GEN6+ the vertex shader converts it into
143 * clip distances.
144 */
145 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
146 if ((outputs_written & BITFIELD64_BIT(i)) &&
147 vue_map->vert_result_to_slot[i] == -1 &&
148 i != VERT_RESULT_CLIP_VERTEX) {
149 assign_vue_slot(vue_map, i);
150 }
151 }
152 }
153
154
155 /**
156 * Decide which set of clip planes should be used when clipping via
157 * gl_Position or gl_ClipVertex.
158 */
159 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
160 {
161 if (ctx->Shader.CurrentVertexProgram) {
162 /* There is currently a GLSL vertex shader, so clip according to GLSL
163 * rules, which means compare gl_ClipVertex (or gl_Position, if
164 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
165 * that were stored in EyeUserPlane at the time the clip planes were
166 * specified.
167 */
168 return ctx->Transform.EyeUserPlane;
169 } else {
170 /* Either we are using fixed function or an ARB vertex program. In
171 * either case the clip planes are going to be compared against
172 * gl_Position (which is in clip coordinates) so we have to clip using
173 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
174 * core.
175 */
176 return ctx->Transform._ClipUserPlane;
177 }
178 }
179
180
181 static bool
182 do_vs_prog(struct brw_context *brw,
183 struct gl_shader_program *prog,
184 struct brw_vertex_program *vp,
185 struct brw_vs_prog_key *key)
186 {
187 struct gl_context *ctx = &brw->intel.ctx;
188 struct intel_context *intel = &brw->intel;
189 GLuint program_size;
190 const GLuint *program;
191 struct brw_vs_compile c;
192 void *mem_ctx;
193 int aux_size;
194 int i;
195
196 memset(&c, 0, sizeof(c));
197 memcpy(&c.key, key, sizeof(*key));
198
199 mem_ctx = ralloc_context(NULL);
200
201 brw_init_compile(brw, &c.func, mem_ctx);
202 c.vp = vp;
203
204 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
205 c.prog_data.inputs_read = vp->program.Base.InputsRead;
206
207 if (c.key.copy_edgeflag) {
208 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
209 c.prog_data.inputs_read |= 1<<VERT_ATTRIB_EDGEFLAG;
210 }
211
212 /* Put dummy slots into the VUE for the SF to put the replaced
213 * point sprite coords in. We shouldn't need these dummy slots,
214 * which take up precious URB space, but it would mean that the SF
215 * doesn't get nice aligned pairs of input coords into output
216 * coords, which would be a pain to handle.
217 */
218 for (i = 0; i < 8; i++) {
219 if (c.key.point_coord_replace & (1 << i))
220 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
221 }
222
223 if (0) {
224 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
225 GL_TRUE);
226 }
227
228 /* Emit GEN4 code.
229 */
230 if (brw->new_vs_backend && prog) {
231 if (!brw_vs_emit(prog, &c)) {
232 ralloc_free(mem_ctx);
233 return false;
234 }
235 } else {
236 brw_old_vs_emit(&c);
237 }
238
239 /* Scratch space is used for register spilling */
240 if (c.last_scratch) {
241 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
242
243 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
244 c.prog_data.total_scratch * brw->vs_max_threads);
245 }
246
247 /* get the program
248 */
249 program = brw_get_program(&c.func, &program_size);
250
251 /* We upload from &c.prog_data including the constant_map assuming
252 * they're packed together. It would be nice to have a
253 * compile-time assert macro here.
254 */
255 assert(c.constant_map == (int8_t *)&c.prog_data +
256 sizeof(c.prog_data));
257 assert(ctx->Const.VertexProgram.MaxNativeParameters ==
258 ARRAY_SIZE(c.constant_map));
259 (void) ctx;
260
261 aux_size = sizeof(c.prog_data);
262 /* constant_map */
263 aux_size += c.vp->program.Base.Parameters->NumParameters;
264
265 brw_upload_cache(&brw->cache, BRW_VS_PROG,
266 &c.key, sizeof(c.key),
267 program, program_size,
268 &c.prog_data, aux_size,
269 &brw->vs.prog_offset, &brw->vs.prog_data);
270 ralloc_free(mem_ctx);
271
272 return true;
273 }
274
275
276 static void brw_upload_vs_prog(struct brw_context *brw)
277 {
278 struct gl_context *ctx = &brw->intel.ctx;
279 struct brw_vs_prog_key key;
280 struct brw_vertex_program *vp =
281 (struct brw_vertex_program *)brw->vertex_program;
282 int i;
283
284 memset(&key, 0, sizeof(key));
285
286 /* Just upload the program verbatim for now. Always send it all
287 * the inputs it asks for, whether they are varying or not.
288 */
289 key.program_string_id = vp->id;
290 key.nr_userclip = brw_count_bits(ctx->Transform.ClipPlanesEnabled);
291 key.uses_clip_distance = vp->program.UsesClipDistance;
292 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
293 ctx->Polygon.BackMode != GL_FILL);
294
295 /* _NEW_LIGHT | _NEW_BUFFERS */
296 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
297
298 /* _NEW_POINT */
299 if (ctx->Point.PointSprite) {
300 for (i = 0; i < 8; i++) {
301 if (ctx->Point.CoordReplace[i])
302 key.point_coord_replace |= (1 << i);
303 }
304 }
305
306 /* BRW_NEW_VERTICES */
307 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
308 if (vp->program.Base.InputsRead & (1 << i) &&
309 brw->vb.inputs[i].glarray->Type == GL_FIXED) {
310 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
311 }
312 }
313
314 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
315 &key, sizeof(key),
316 &brw->vs.prog_offset, &brw->vs.prog_data)) {
317 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
318 vp, &key);
319
320 assert(success);
321 }
322 brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
323 sizeof(*brw->vs.prog_data));
324 }
325
326 /* See brw_vs.c:
327 */
328 const struct brw_tracked_state brw_vs_prog = {
329 .dirty = {
330 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
331 _NEW_BUFFERS),
332 .brw = (BRW_NEW_VERTEX_PROGRAM |
333 BRW_NEW_VERTICES),
334 .cache = 0
335 },
336 .prepare = brw_upload_vs_prog
337 };
338
339 bool
340 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
341 {
342 struct brw_context *brw = brw_context(ctx);
343 struct brw_vs_prog_key key;
344 struct gl_vertex_program *vp = prog->VertexProgram;
345 struct brw_vertex_program *bvp = brw_vertex_program(vp);
346 uint32_t old_prog_offset = brw->vs.prog_offset;
347 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
348 bool success;
349
350 if (!vp)
351 return true;
352
353 memset(&key, 0, sizeof(key));
354
355 key.program_string_id = bvp->id;
356 key.clamp_vertex_color = true;
357
358 success = do_vs_prog(brw, prog, bvp, &key);
359
360 brw->vs.prog_offset = old_prog_offset;
361 brw->vs.prog_data = old_prog_data;
362
363 return success;
364 }