i965: Move VUE map computation to once at VS compile time.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 static void
61 brw_compute_vue_map(struct brw_vs_compile *c)
62 {
63 struct brw_context *brw = c->func.brw;
64 const struct intel_context *intel = &brw->intel;
65 struct brw_vue_map *vue_map = &c->prog_data.vue_map;
66 GLbitfield64 outputs_written = c->prog_data.outputs_written;
67 int i;
68
69 vue_map->num_slots = 0;
70 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
71 vue_map->vert_result_to_slot[i] = -1;
72 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
73 }
74
75 /* VUE header: format depends on chip generation and whether clipping is
76 * enabled.
77 */
78 switch (intel->gen) {
79 case 4:
80 /* There are 8 dwords in VUE header pre-Ironlake:
81 * dword 0-3 is indices, point width, clip flags.
82 * dword 4-7 is ndc position
83 * dword 8-11 is the first vertex data.
84 */
85 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
86 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
87 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
88 break;
89 case 5:
90 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
91 * dword 0-3 of the header is indices, point width, clip flags.
92 * dword 4-7 is the ndc position
93 * dword 8-11 of the vertex header is the 4D space position
94 * dword 12-19 of the vertex header is the user clip distance.
95 * dword 20-23 is a pad so that the vertex element data is aligned
96 * dword 24-27 is the first vertex data we fill.
97 *
98 * Note: future pipeline stages expect 4D space position to be
99 * contiguous with the other vert_results, so we make dword 24-27 a
100 * duplicate copy of the 4D space position.
101 */
102 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
103 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
104 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
105 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
106 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
107 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
108 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
109 break;
110 case 6:
111 case 7:
112 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
113 * dword 0-3 of the header is indices, point width, clip flags.
114 * dword 4-7 is the 4D space position
115 * dword 8-15 of the vertex header is the user clip distance if
116 * enabled.
117 * dword 8-11 or 16-19 is the first vertex element data we fill.
118 */
119 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
120 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
121 if (c->key.userclip_active) {
122 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
123 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
124 }
125 /* front and back colors need to be consecutive so that we can use
126 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
127 * two-sided color.
128 */
129 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
130 assign_vue_slot(vue_map, VERT_RESULT_COL0);
131 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
132 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
133 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
134 assign_vue_slot(vue_map, VERT_RESULT_COL1);
135 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
136 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
137 break;
138 default:
139 assert (!"VUE map not known for this chip generation");
140 break;
141 }
142
143 /* The hardware doesn't care about the rest of the vertex outputs, so just
144 * assign them contiguously. Don't reassign outputs that already have a
145 * slot.
146 *
147 * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
148 * since it is unsupported. In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
149 * be needed for transform feedback; since we don't want to have to
150 * recompute the VUE map (and everything that depends on it) when transform
151 * feedback is enabled or disabled, just go ahead and assign a slot for it.
152 */
153 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
154 if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
155 continue;
156 if ((outputs_written & BITFIELD64_BIT(i)) &&
157 vue_map->vert_result_to_slot[i] == -1) {
158 assign_vue_slot(vue_map, i);
159 }
160 }
161 }
162
163
164 /**
165 * Decide which set of clip planes should be used when clipping via
166 * gl_Position or gl_ClipVertex.
167 */
168 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
169 {
170 if (ctx->Shader.CurrentVertexProgram) {
171 /* There is currently a GLSL vertex shader, so clip according to GLSL
172 * rules, which means compare gl_ClipVertex (or gl_Position, if
173 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
174 * that were stored in EyeUserPlane at the time the clip planes were
175 * specified.
176 */
177 return ctx->Transform.EyeUserPlane;
178 } else {
179 /* Either we are using fixed function or an ARB vertex program. In
180 * either case the clip planes are going to be compared against
181 * gl_Position (which is in clip coordinates) so we have to clip using
182 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
183 * core.
184 */
185 return ctx->Transform._ClipUserPlane;
186 }
187 }
188
189
190 static bool
191 do_vs_prog(struct brw_context *brw,
192 struct gl_shader_program *prog,
193 struct brw_vertex_program *vp,
194 struct brw_vs_prog_key *key)
195 {
196 struct gl_context *ctx = &brw->intel.ctx;
197 struct intel_context *intel = &brw->intel;
198 GLuint program_size;
199 const GLuint *program;
200 struct brw_vs_compile c;
201 void *mem_ctx;
202 int aux_size;
203 int i;
204
205 memset(&c, 0, sizeof(c));
206 memcpy(&c.key, key, sizeof(*key));
207
208 mem_ctx = ralloc_context(NULL);
209
210 brw_init_compile(brw, &c.func, mem_ctx);
211 c.vp = vp;
212
213 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
214 c.prog_data.inputs_read = vp->program.Base.InputsRead;
215
216 if (c.key.copy_edgeflag) {
217 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
218 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
219 }
220
221 brw_compute_vue_map(&c);
222
223 /* Put dummy slots into the VUE for the SF to put the replaced
224 * point sprite coords in. We shouldn't need these dummy slots,
225 * which take up precious URB space, but it would mean that the SF
226 * doesn't get nice aligned pairs of input coords into output
227 * coords, which would be a pain to handle.
228 */
229 for (i = 0; i < 8; i++) {
230 if (c.key.point_coord_replace & (1 << i))
231 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
232 }
233
234 if (0) {
235 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
236 true);
237 }
238
239 /* Emit GEN4 code.
240 */
241 if (prog) {
242 if (!brw_vs_emit(prog, &c)) {
243 ralloc_free(mem_ctx);
244 return false;
245 }
246 } else {
247 brw_old_vs_emit(&c);
248 }
249
250 /* Scratch space is used for register spilling */
251 if (c.last_scratch) {
252 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
253
254 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
255 c.prog_data.total_scratch * brw->max_vs_threads);
256 }
257
258 /* get the program
259 */
260 program = brw_get_program(&c.func, &program_size);
261
262 /* We upload from &c.prog_data including the constant_map assuming
263 * they're packed together. It would be nice to have a
264 * compile-time assert macro here.
265 */
266 assert(c.constant_map == (int8_t *)&c.prog_data +
267 sizeof(c.prog_data));
268 assert(ctx->Const.VertexProgram.MaxNativeParameters ==
269 ARRAY_SIZE(c.constant_map));
270 (void) ctx;
271
272 aux_size = sizeof(c.prog_data);
273 /* constant_map */
274 aux_size += c.vp->program.Base.Parameters->NumParameters;
275
276 brw_upload_cache(&brw->cache, BRW_VS_PROG,
277 &c.key, sizeof(c.key),
278 program, program_size,
279 &c.prog_data, aux_size,
280 &brw->vs.prog_offset, &brw->vs.prog_data);
281 ralloc_free(mem_ctx);
282
283 return true;
284 }
285
286
287 static void brw_upload_vs_prog(struct brw_context *brw)
288 {
289 struct intel_context *intel = &brw->intel;
290 struct gl_context *ctx = &intel->ctx;
291 struct brw_vs_prog_key key;
292 /* BRW_NEW_VERTEX_PROGRAM */
293 struct brw_vertex_program *vp =
294 (struct brw_vertex_program *)brw->vertex_program;
295 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
296 int i;
297
298 memset(&key, 0, sizeof(key));
299
300 /* Just upload the program verbatim for now. Always send it all
301 * the inputs it asks for, whether they are varying or not.
302 */
303 key.program_string_id = vp->id;
304 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
305 key.uses_clip_distance = vp->program.UsesClipDistance;
306 if (key.userclip_active && !key.uses_clip_distance) {
307 if (intel->gen < 6) {
308 key.nr_userclip_plane_consts
309 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
310 key.userclip_planes_enabled_gen_4_5
311 = ctx->Transform.ClipPlanesEnabled;
312 } else {
313 key.nr_userclip_plane_consts
314 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
315 }
316 }
317 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
318 ctx->Polygon.BackMode != GL_FILL);
319
320 /* _NEW_LIGHT | _NEW_BUFFERS */
321 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
322
323 /* _NEW_POINT */
324 if (ctx->Point.PointSprite) {
325 for (i = 0; i < 8; i++) {
326 if (ctx->Point.CoordReplace[i])
327 key.point_coord_replace |= (1 << i);
328 }
329 }
330
331 /* _NEW_TEXTURE */
332 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
333 if (prog->TexturesUsed[i])
334 brw_populate_sampler_prog_key_data(ctx, &key.tex, i);
335 }
336
337 /* BRW_NEW_VERTICES */
338 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
339 if (vp->program.Base.InputsRead & BITFIELD64_BIT(i) &&
340 brw->vb.inputs[i].glarray->Type == GL_FIXED) {
341 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
342 }
343 }
344
345 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
346 &key, sizeof(key),
347 &brw->vs.prog_offset, &brw->vs.prog_data)) {
348 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
349 vp, &key);
350
351 assert(success);
352 }
353 brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
354 sizeof(*brw->vs.prog_data));
355 }
356
357 /* See brw_vs.c:
358 */
359 const struct brw_tracked_state brw_vs_prog = {
360 .dirty = {
361 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
362 _NEW_TEXTURE |
363 _NEW_BUFFERS),
364 .brw = (BRW_NEW_VERTEX_PROGRAM |
365 BRW_NEW_VERTICES),
366 .cache = 0
367 },
368 .emit = brw_upload_vs_prog
369 };
370
371 bool
372 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
373 {
374 struct brw_context *brw = brw_context(ctx);
375 struct brw_vs_prog_key key;
376 uint32_t old_prog_offset = brw->vs.prog_offset;
377 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
378 bool success;
379
380 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
381 return true;
382
383 struct gl_vertex_program *vp = (struct gl_vertex_program *)
384 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
385 struct brw_vertex_program *bvp = brw_vertex_program(vp);
386
387 memset(&key, 0, sizeof(key));
388
389 key.program_string_id = bvp->id;
390 key.clamp_vertex_color = true;
391
392 success = do_vs_prog(brw, prog, bvp, &key);
393
394 brw->vs.prog_offset = old_prog_offset;
395 brw->vs.prog_data = old_prog_data;
396
397 return success;
398 }