190fa8901de05063a4a149e740bbb7f3083a747d
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/macros.h"
34 #include "program/program.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "brw_context.h"
38 #include "brw_vs.h"
39
40 /* Return the SrcReg index of the channels that can be immediate float operands
41 * instead of usage of PROGRAM_CONSTANT values through push/pull.
42 */
43 static GLboolean
44 brw_vs_arg_can_be_immediate(enum prog_opcode opcode, int arg)
45 {
46 int opcode_array[] = {
47 [OPCODE_ADD] = 2,
48 [OPCODE_CMP] = 3,
49 [OPCODE_DP3] = 2,
50 [OPCODE_DP4] = 2,
51 [OPCODE_DPH] = 2,
52 [OPCODE_MAX] = 2,
53 [OPCODE_MIN] = 2,
54 [OPCODE_MUL] = 2,
55 [OPCODE_SEQ] = 2,
56 [OPCODE_SGE] = 2,
57 [OPCODE_SGT] = 2,
58 [OPCODE_SLE] = 2,
59 [OPCODE_SLT] = 2,
60 [OPCODE_SNE] = 2,
61 [OPCODE_XPD] = 2,
62 };
63
64 /* These opcodes get broken down in a way that allow two
65 * args to be immediates.
66 */
67 if (opcode == OPCODE_MAD || opcode == OPCODE_LRP) {
68 if (arg == 1 || arg == 2)
69 return GL_TRUE;
70 }
71
72 if (opcode > ARRAY_SIZE(opcode_array))
73 return GL_FALSE;
74
75 return arg == opcode_array[opcode] - 1;
76 }
77
78 static struct brw_reg get_tmp( struct brw_vs_compile *c )
79 {
80 struct brw_reg tmp = brw_vec8_grf(c->last_tmp, 0);
81
82 if (++c->last_tmp > c->prog_data.total_grf)
83 c->prog_data.total_grf = c->last_tmp;
84
85 return tmp;
86 }
87
88 static void release_tmp( struct brw_vs_compile *c, struct brw_reg tmp )
89 {
90 if (tmp.nr == c->last_tmp-1)
91 c->last_tmp--;
92 }
93
94 static void release_tmps( struct brw_vs_compile *c )
95 {
96 c->last_tmp = c->first_tmp;
97 }
98
99
100 /**
101 * Preallocate GRF register before code emit.
102 * Do things as simply as possible. Allocate and populate all regs
103 * ahead of time.
104 */
105 static void brw_vs_alloc_regs( struct brw_vs_compile *c )
106 {
107 struct intel_context *intel = &c->func.brw->intel;
108 GLuint i, reg = 0, mrf;
109 int attributes_in_vue;
110
111 /* Determine whether to use a real constant buffer or use a block
112 * of GRF registers for constants. The later is faster but only
113 * works if everything fits in the GRF.
114 * XXX this heuristic/check may need some fine tuning...
115 */
116 if (c->vp->program.Base.Parameters->NumParameters +
117 c->vp->program.Base.NumTemporaries + 20 > BRW_MAX_GRF)
118 c->vp->use_const_buffer = GL_TRUE;
119 else
120 c->vp->use_const_buffer = GL_FALSE;
121
122 /*printf("use_const_buffer = %d\n", c->vp->use_const_buffer);*/
123
124 /* r0 -- reserved as usual
125 */
126 c->r0 = brw_vec8_grf(reg, 0);
127 reg++;
128
129 /* User clip planes from curbe:
130 */
131 if (c->key.nr_userclip) {
132 for (i = 0; i < c->key.nr_userclip; i++) {
133 c->userplane[i] = stride( brw_vec4_grf(reg+3+i/2, (i%2) * 4), 0, 4, 1);
134 }
135
136 /* Deal with curbe alignment:
137 */
138 reg += ((6 + c->key.nr_userclip + 3) / 4) * 2;
139 }
140
141 /* Vertex program parameters from curbe:
142 */
143 if (c->vp->use_const_buffer) {
144 int max_constant = BRW_MAX_GRF - 20 - c->vp->program.Base.NumTemporaries;
145 int constant = 0;
146
147 /* We've got more constants than we can load with the push
148 * mechanism. This is often correlated with reladdr loads where
149 * we should probably be using a pull mechanism anyway to avoid
150 * excessive reading. However, the pull mechanism is slow in
151 * general. So, we try to allocate as many non-reladdr-loaded
152 * constants through the push buffer as we can before giving up.
153 */
154 memset(c->constant_map, -1, c->vp->program.Base.Parameters->NumParameters);
155 for (i = 0;
156 i < c->vp->program.Base.NumInstructions && constant < max_constant;
157 i++) {
158 struct prog_instruction *inst = &c->vp->program.Base.Instructions[i];
159 int arg;
160
161 for (arg = 0; arg < 3 && constant < max_constant; arg++) {
162 if ((inst->SrcReg[arg].File != PROGRAM_STATE_VAR &&
163 inst->SrcReg[arg].File != PROGRAM_CONSTANT &&
164 inst->SrcReg[arg].File != PROGRAM_UNIFORM &&
165 inst->SrcReg[arg].File != PROGRAM_ENV_PARAM &&
166 inst->SrcReg[arg].File != PROGRAM_LOCAL_PARAM) ||
167 inst->SrcReg[arg].RelAddr)
168 continue;
169
170 if (c->constant_map[inst->SrcReg[arg].Index] == -1) {
171 c->constant_map[inst->SrcReg[arg].Index] = constant++;
172 }
173 }
174 }
175
176 for (i = 0; i < constant; i++) {
177 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2,
178 (i%2) * 4),
179 0, 4, 1);
180 }
181 reg += (constant + 1) / 2;
182 c->prog_data.curb_read_length = reg - 1;
183 /* XXX 0 causes a bug elsewhere... */
184 c->prog_data.nr_params = MAX2(constant * 4, 4);
185 }
186 else {
187 /* use a section of the GRF for constants */
188 GLuint nr_params = c->vp->program.Base.Parameters->NumParameters;
189 for (i = 0; i < nr_params; i++) {
190 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2, (i%2) * 4), 0, 4, 1);
191 }
192 reg += (nr_params + 1) / 2;
193 c->prog_data.curb_read_length = reg - 1;
194
195 c->prog_data.nr_params = nr_params * 4;
196 }
197
198 /* Allocate input regs:
199 */
200 c->nr_inputs = 0;
201 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
202 if (c->prog_data.inputs_read & (1 << i)) {
203 c->nr_inputs++;
204 c->regs[PROGRAM_INPUT][i] = brw_vec8_grf(reg, 0);
205 reg++;
206 }
207 }
208 /* If there are no inputs, we'll still be reading one attribute's worth
209 * because it's required -- see urb_read_length setting.
210 */
211 if (c->nr_inputs == 0)
212 reg++;
213
214 /* Allocate outputs. The non-position outputs go straight into message regs.
215 */
216 c->nr_outputs = 0;
217 c->first_output = reg;
218 c->first_overflow_output = 0;
219
220 if (intel->gen >= 6)
221 mrf = 4;
222 else if (intel->gen == 5)
223 mrf = 8;
224 else
225 mrf = 4;
226
227 for (i = 0; i < VERT_RESULT_MAX; i++) {
228 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
229 c->nr_outputs++;
230 assert(i < Elements(c->regs[PROGRAM_OUTPUT]));
231 if (i == VERT_RESULT_HPOS) {
232 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
233 reg++;
234 }
235 else if (i == VERT_RESULT_PSIZ) {
236 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
237 reg++;
238 mrf++; /* just a placeholder? XXX fix later stages & remove this */
239 }
240 else {
241 /* Two restrictions on our compute-to-MRF here. The
242 * message length for all SEND messages is restricted to
243 * [1,15], so we can't use mrf 15, as that means a length
244 * of 16.
245 *
246 * Additionally, URB writes are aligned to URB rows, so we
247 * need to put an even number of registers of URB data in
248 * each URB write so that the later write is aligned. A
249 * message length of 15 means 1 message header reg plus 14
250 * regs of URB data.
251 *
252 * For attributes beyond the compute-to-MRF, we compute to
253 * GRFs and they will be written in the second URB_WRITE.
254 */
255 if (mrf < 15) {
256 c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
257 mrf++;
258 }
259 else {
260 if (!c->first_overflow_output)
261 c->first_overflow_output = i;
262 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
263 reg++;
264 }
265 }
266 }
267 }
268
269 /* Allocate program temporaries:
270 */
271 for (i = 0; i < c->vp->program.Base.NumTemporaries; i++) {
272 c->regs[PROGRAM_TEMPORARY][i] = brw_vec8_grf(reg, 0);
273 reg++;
274 }
275
276 /* Address reg(s). Don't try to use the internal address reg until
277 * deref time.
278 */
279 for (i = 0; i < c->vp->program.Base.NumAddressRegs; i++) {
280 c->regs[PROGRAM_ADDRESS][i] = brw_reg(BRW_GENERAL_REGISTER_FILE,
281 reg,
282 0,
283 BRW_REGISTER_TYPE_D,
284 BRW_VERTICAL_STRIDE_8,
285 BRW_WIDTH_8,
286 BRW_HORIZONTAL_STRIDE_1,
287 BRW_SWIZZLE_XXXX,
288 WRITEMASK_X);
289 reg++;
290 }
291
292 if (c->vp->use_const_buffer) {
293 for (i = 0; i < 3; i++) {
294 c->current_const[i].index = -1;
295 c->current_const[i].reg = brw_vec8_grf(reg, 0);
296 reg++;
297 }
298 }
299
300 for (i = 0; i < 128; i++) {
301 if (c->output_regs[i].used_in_src) {
302 c->output_regs[i].reg = brw_vec8_grf(reg, 0);
303 reg++;
304 }
305 }
306
307 if (c->needs_stack) {
308 c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg, 0);
309 reg += 2;
310 }
311
312 /* Some opcodes need an internal temporary:
313 */
314 c->first_tmp = reg;
315 c->last_tmp = reg; /* for allocation purposes */
316
317 /* Each input reg holds data from two vertices. The
318 * urb_read_length is the number of registers read from *each*
319 * vertex urb, so is half the amount:
320 */
321 c->prog_data.urb_read_length = (c->nr_inputs + 1) / 2;
322 /* Setting this field to 0 leads to undefined behavior according to the
323 * the VS_STATE docs. Our VUEs will always have at least one attribute
324 * sitting in them, even if it's padding.
325 */
326 if (c->prog_data.urb_read_length == 0)
327 c->prog_data.urb_read_length = 1;
328
329 /* The VS VUEs are shared by VF (outputting our inputs) and VS, so size
330 * them to fit the biggest thing they need to.
331 */
332 attributes_in_vue = MAX2(c->nr_outputs, c->nr_inputs);
333
334 /* See emit_vertex_write() for where the VUE's overhead on top of the
335 * attributes comes from.
336 */
337 if (intel->gen >= 6)
338 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 7) / 8;
339 else if (intel->gen == 5)
340 c->prog_data.urb_entry_size = (attributes_in_vue + 6 + 3) / 4;
341 else
342 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 3) / 4;
343
344 c->prog_data.total_grf = reg;
345
346 if (INTEL_DEBUG & DEBUG_VS) {
347 printf("%s NumAddrRegs %d\n", __FUNCTION__, c->vp->program.Base.NumAddressRegs);
348 printf("%s NumTemps %d\n", __FUNCTION__, c->vp->program.Base.NumTemporaries);
349 printf("%s reg = %d\n", __FUNCTION__, reg);
350 }
351 }
352
353
354 /**
355 * If an instruction uses a temp reg both as a src and the dest, we
356 * sometimes need to allocate an intermediate temporary.
357 */
358 static void unalias1( struct brw_vs_compile *c,
359 struct brw_reg dst,
360 struct brw_reg arg0,
361 void (*func)( struct brw_vs_compile *,
362 struct brw_reg,
363 struct brw_reg ))
364 {
365 if (dst.file == arg0.file && dst.nr == arg0.nr) {
366 struct brw_compile *p = &c->func;
367 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
368 func(c, tmp, arg0);
369 brw_MOV(p, dst, tmp);
370 release_tmp(c, tmp);
371 }
372 else {
373 func(c, dst, arg0);
374 }
375 }
376
377 /**
378 * \sa unalias2
379 * Checkes if 2-operand instruction needs an intermediate temporary.
380 */
381 static void unalias2( struct brw_vs_compile *c,
382 struct brw_reg dst,
383 struct brw_reg arg0,
384 struct brw_reg arg1,
385 void (*func)( struct brw_vs_compile *,
386 struct brw_reg,
387 struct brw_reg,
388 struct brw_reg ))
389 {
390 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
391 (dst.file == arg1.file && dst.nr == arg1.nr)) {
392 struct brw_compile *p = &c->func;
393 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
394 func(c, tmp, arg0, arg1);
395 brw_MOV(p, dst, tmp);
396 release_tmp(c, tmp);
397 }
398 else {
399 func(c, dst, arg0, arg1);
400 }
401 }
402
403 /**
404 * \sa unalias2
405 * Checkes if 3-operand instruction needs an intermediate temporary.
406 */
407 static void unalias3( struct brw_vs_compile *c,
408 struct brw_reg dst,
409 struct brw_reg arg0,
410 struct brw_reg arg1,
411 struct brw_reg arg2,
412 void (*func)( struct brw_vs_compile *,
413 struct brw_reg,
414 struct brw_reg,
415 struct brw_reg,
416 struct brw_reg ))
417 {
418 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
419 (dst.file == arg1.file && dst.nr == arg1.nr) ||
420 (dst.file == arg2.file && dst.nr == arg2.nr)) {
421 struct brw_compile *p = &c->func;
422 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
423 func(c, tmp, arg0, arg1, arg2);
424 brw_MOV(p, dst, tmp);
425 release_tmp(c, tmp);
426 }
427 else {
428 func(c, dst, arg0, arg1, arg2);
429 }
430 }
431
432 static void emit_sop( struct brw_vs_compile *c,
433 struct brw_reg dst,
434 struct brw_reg arg0,
435 struct brw_reg arg1,
436 GLuint cond)
437 {
438 struct brw_compile *p = &c->func;
439
440 brw_MOV(p, dst, brw_imm_f(0.0f));
441 brw_CMP(p, brw_null_reg(), cond, arg0, arg1);
442 brw_MOV(p, dst, brw_imm_f(1.0f));
443 brw_set_predicate_control_flag_value(p, 0xff);
444 }
445
446 static void emit_seq( struct brw_vs_compile *c,
447 struct brw_reg dst,
448 struct brw_reg arg0,
449 struct brw_reg arg1 )
450 {
451 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_EQ);
452 }
453
454 static void emit_sne( struct brw_vs_compile *c,
455 struct brw_reg dst,
456 struct brw_reg arg0,
457 struct brw_reg arg1 )
458 {
459 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_NEQ);
460 }
461 static void emit_slt( struct brw_vs_compile *c,
462 struct brw_reg dst,
463 struct brw_reg arg0,
464 struct brw_reg arg1 )
465 {
466 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_L);
467 }
468
469 static void emit_sle( struct brw_vs_compile *c,
470 struct brw_reg dst,
471 struct brw_reg arg0,
472 struct brw_reg arg1 )
473 {
474 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_LE);
475 }
476
477 static void emit_sgt( struct brw_vs_compile *c,
478 struct brw_reg dst,
479 struct brw_reg arg0,
480 struct brw_reg arg1 )
481 {
482 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_G);
483 }
484
485 static void emit_sge( struct brw_vs_compile *c,
486 struct brw_reg dst,
487 struct brw_reg arg0,
488 struct brw_reg arg1 )
489 {
490 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_GE);
491 }
492
493 static void emit_cmp( struct brw_compile *p,
494 struct brw_reg dst,
495 struct brw_reg arg0,
496 struct brw_reg arg1,
497 struct brw_reg arg2 )
498 {
499 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, brw_imm_f(0));
500 brw_SEL(p, dst, arg1, arg2);
501 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
502 }
503
504 static void emit_max( struct brw_compile *p,
505 struct brw_reg dst,
506 struct brw_reg arg0,
507 struct brw_reg arg1 )
508 {
509 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0, arg1);
510 brw_SEL(p, dst, arg0, arg1);
511 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
512 }
513
514 static void emit_min( struct brw_compile *p,
515 struct brw_reg dst,
516 struct brw_reg arg0,
517 struct brw_reg arg1 )
518 {
519 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, arg1);
520 brw_SEL(p, dst, arg0, arg1);
521 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
522 }
523
524
525 static void emit_math1( struct brw_vs_compile *c,
526 GLuint function,
527 struct brw_reg dst,
528 struct brw_reg arg0,
529 GLuint precision)
530 {
531 /* There are various odd behaviours with SEND on the simulator. In
532 * addition there are documented issues with the fact that the GEN4
533 * processor doesn't do dependency control properly on SEND
534 * results. So, on balance, this kludge to get around failures
535 * with writemasked math results looks like it might be necessary
536 * whether that turns out to be a simulator bug or not:
537 */
538 struct brw_compile *p = &c->func;
539 struct intel_context *intel = &p->brw->intel;
540 struct brw_reg tmp = dst;
541 GLboolean need_tmp = (intel->gen < 6 &&
542 (dst.dw1.bits.writemask != 0xf ||
543 dst.file != BRW_GENERAL_REGISTER_FILE));
544
545 if (need_tmp)
546 tmp = get_tmp(c);
547
548 brw_math(p,
549 tmp,
550 function,
551 BRW_MATH_SATURATE_NONE,
552 2,
553 arg0,
554 BRW_MATH_DATA_SCALAR,
555 precision);
556
557 if (need_tmp) {
558 brw_MOV(p, dst, tmp);
559 release_tmp(c, tmp);
560 }
561 }
562
563
564 static void emit_math2( struct brw_vs_compile *c,
565 GLuint function,
566 struct brw_reg dst,
567 struct brw_reg arg0,
568 struct brw_reg arg1,
569 GLuint precision)
570 {
571 struct brw_compile *p = &c->func;
572 struct intel_context *intel = &p->brw->intel;
573 struct brw_reg tmp = dst;
574 GLboolean need_tmp = (intel->gen < 6 &&
575 (dst.dw1.bits.writemask != 0xf ||
576 dst.file != BRW_GENERAL_REGISTER_FILE));
577
578 if (need_tmp)
579 tmp = get_tmp(c);
580
581 brw_MOV(p, brw_message_reg(3), arg1);
582
583 brw_math(p,
584 tmp,
585 function,
586 BRW_MATH_SATURATE_NONE,
587 2,
588 arg0,
589 BRW_MATH_DATA_SCALAR,
590 precision);
591
592 if (need_tmp) {
593 brw_MOV(p, dst, tmp);
594 release_tmp(c, tmp);
595 }
596 }
597
598
599 static void emit_exp_noalias( struct brw_vs_compile *c,
600 struct brw_reg dst,
601 struct brw_reg arg0 )
602 {
603 struct brw_compile *p = &c->func;
604
605
606 if (dst.dw1.bits.writemask & WRITEMASK_X) {
607 struct brw_reg tmp = get_tmp(c);
608 struct brw_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
609
610 /* tmp_d = floor(arg0.x) */
611 brw_RNDD(p, tmp_d, brw_swizzle1(arg0, 0));
612
613 /* result[0] = 2.0 ^ tmp */
614
615 /* Adjust exponent for floating point:
616 * exp += 127
617 */
618 brw_ADD(p, brw_writemask(tmp_d, WRITEMASK_X), tmp_d, brw_imm_d(127));
619
620 /* Install exponent and sign.
621 * Excess drops off the edge:
622 */
623 brw_SHL(p, brw_writemask(retype(dst, BRW_REGISTER_TYPE_D), WRITEMASK_X),
624 tmp_d, brw_imm_d(23));
625
626 release_tmp(c, tmp);
627 }
628
629 if (dst.dw1.bits.writemask & WRITEMASK_Y) {
630 /* result[1] = arg0.x - floor(arg0.x) */
631 brw_FRC(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0, 0));
632 }
633
634 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
635 /* As with the LOG instruction, we might be better off just
636 * doing a taylor expansion here, seeing as we have to do all
637 * the prep work.
638 *
639 * If mathbox partial precision is too low, consider also:
640 * result[3] = result[0] * EXP(result[1])
641 */
642 emit_math1(c,
643 BRW_MATH_FUNCTION_EXP,
644 brw_writemask(dst, WRITEMASK_Z),
645 brw_swizzle1(arg0, 0),
646 BRW_MATH_PRECISION_FULL);
647 }
648
649 if (dst.dw1.bits.writemask & WRITEMASK_W) {
650 /* result[3] = 1.0; */
651 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), brw_imm_f(1));
652 }
653 }
654
655
656 static void emit_log_noalias( struct brw_vs_compile *c,
657 struct brw_reg dst,
658 struct brw_reg arg0 )
659 {
660 struct brw_compile *p = &c->func;
661 struct brw_reg tmp = dst;
662 struct brw_reg tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
663 struct brw_reg arg0_ud = retype(arg0, BRW_REGISTER_TYPE_UD);
664 GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
665 dst.file != BRW_GENERAL_REGISTER_FILE);
666
667 if (need_tmp) {
668 tmp = get_tmp(c);
669 tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
670 }
671
672 /* Perform mant = frexpf(fabsf(x), &exp), adjust exp and mnt
673 * according to spec:
674 *
675 * These almost look likey they could be joined up, but not really
676 * practical:
677 *
678 * result[0].f = (x.i & ((1<<31)-1) >> 23) - 127
679 * result[1].i = (x.i & ((1<<23)-1) + (127<<23)
680 */
681 if (dst.dw1.bits.writemask & WRITEMASK_XZ) {
682 brw_AND(p,
683 brw_writemask(tmp_ud, WRITEMASK_X),
684 brw_swizzle1(arg0_ud, 0),
685 brw_imm_ud((1U<<31)-1));
686
687 brw_SHR(p,
688 brw_writemask(tmp_ud, WRITEMASK_X),
689 tmp_ud,
690 brw_imm_ud(23));
691
692 brw_ADD(p,
693 brw_writemask(tmp, WRITEMASK_X),
694 retype(tmp_ud, BRW_REGISTER_TYPE_D), /* does it matter? */
695 brw_imm_d(-127));
696 }
697
698 if (dst.dw1.bits.writemask & WRITEMASK_YZ) {
699 brw_AND(p,
700 brw_writemask(tmp_ud, WRITEMASK_Y),
701 brw_swizzle1(arg0_ud, 0),
702 brw_imm_ud((1<<23)-1));
703
704 brw_OR(p,
705 brw_writemask(tmp_ud, WRITEMASK_Y),
706 tmp_ud,
707 brw_imm_ud(127<<23));
708 }
709
710 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
711 /* result[2] = result[0] + LOG2(result[1]); */
712
713 /* Why bother? The above is just a hint how to do this with a
714 * taylor series. Maybe we *should* use a taylor series as by
715 * the time all the above has been done it's almost certainly
716 * quicker than calling the mathbox, even with low precision.
717 *
718 * Options are:
719 * - result[0] + mathbox.LOG2(result[1])
720 * - mathbox.LOG2(arg0.x)
721 * - result[0] + inline_taylor_approx(result[1])
722 */
723 emit_math1(c,
724 BRW_MATH_FUNCTION_LOG,
725 brw_writemask(tmp, WRITEMASK_Z),
726 brw_swizzle1(tmp, 1),
727 BRW_MATH_PRECISION_FULL);
728
729 brw_ADD(p,
730 brw_writemask(tmp, WRITEMASK_Z),
731 brw_swizzle1(tmp, 2),
732 brw_swizzle1(tmp, 0));
733 }
734
735 if (dst.dw1.bits.writemask & WRITEMASK_W) {
736 /* result[3] = 1.0; */
737 brw_MOV(p, brw_writemask(tmp, WRITEMASK_W), brw_imm_f(1));
738 }
739
740 if (need_tmp) {
741 brw_MOV(p, dst, tmp);
742 release_tmp(c, tmp);
743 }
744 }
745
746
747 /* Need to unalias - consider swizzles: r0 = DST r0.xxxx r1
748 */
749 static void emit_dst_noalias( struct brw_vs_compile *c,
750 struct brw_reg dst,
751 struct brw_reg arg0,
752 struct brw_reg arg1)
753 {
754 struct brw_compile *p = &c->func;
755
756 /* There must be a better way to do this:
757 */
758 if (dst.dw1.bits.writemask & WRITEMASK_X)
759 brw_MOV(p, brw_writemask(dst, WRITEMASK_X), brw_imm_f(1.0));
760 if (dst.dw1.bits.writemask & WRITEMASK_Y)
761 brw_MUL(p, brw_writemask(dst, WRITEMASK_Y), arg0, arg1);
762 if (dst.dw1.bits.writemask & WRITEMASK_Z)
763 brw_MOV(p, brw_writemask(dst, WRITEMASK_Z), arg0);
764 if (dst.dw1.bits.writemask & WRITEMASK_W)
765 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), arg1);
766 }
767
768
769 static void emit_xpd( struct brw_compile *p,
770 struct brw_reg dst,
771 struct brw_reg t,
772 struct brw_reg u)
773 {
774 brw_MUL(p, brw_null_reg(), brw_swizzle(t, 1,2,0,3), brw_swizzle(u,2,0,1,3));
775 brw_MAC(p, dst, negate(brw_swizzle(t, 2,0,1,3)), brw_swizzle(u,1,2,0,3));
776 }
777
778
779 static void emit_lit_noalias( struct brw_vs_compile *c,
780 struct brw_reg dst,
781 struct brw_reg arg0 )
782 {
783 struct brw_compile *p = &c->func;
784 struct brw_instruction *if_insn;
785 struct brw_reg tmp = dst;
786 GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
787
788 if (need_tmp)
789 tmp = get_tmp(c);
790
791 brw_MOV(p, brw_writemask(dst, WRITEMASK_YZ), brw_imm_f(0));
792 brw_MOV(p, brw_writemask(dst, WRITEMASK_XW), brw_imm_f(1));
793
794 /* Need to use BRW_EXECUTE_8 and also do an 8-wide compare in order
795 * to get all channels active inside the IF. In the clipping code
796 * we run with NoMask, so it's not an option and we can use
797 * BRW_EXECUTE_1 for all comparisions.
798 */
799 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,0), brw_imm_f(0));
800 if_insn = brw_IF(p, BRW_EXECUTE_8);
801 {
802 brw_MOV(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0,0));
803
804 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,1), brw_imm_f(0));
805 brw_MOV(p, brw_writemask(tmp, WRITEMASK_Z), brw_swizzle1(arg0,1));
806 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
807
808 emit_math2(c,
809 BRW_MATH_FUNCTION_POW,
810 brw_writemask(dst, WRITEMASK_Z),
811 brw_swizzle1(tmp, 2),
812 brw_swizzle1(arg0, 3),
813 BRW_MATH_PRECISION_PARTIAL);
814 }
815
816 brw_ENDIF(p, if_insn);
817
818 release_tmp(c, tmp);
819 }
820
821 static void emit_lrp_noalias(struct brw_vs_compile *c,
822 struct brw_reg dst,
823 struct brw_reg arg0,
824 struct brw_reg arg1,
825 struct brw_reg arg2)
826 {
827 struct brw_compile *p = &c->func;
828
829 brw_ADD(p, dst, negate(arg0), brw_imm_f(1.0));
830 brw_MUL(p, brw_null_reg(), dst, arg2);
831 brw_MAC(p, dst, arg0, arg1);
832 }
833
834 /** 3 or 4-component vector normalization */
835 static void emit_nrm( struct brw_vs_compile *c,
836 struct brw_reg dst,
837 struct brw_reg arg0,
838 int num_comps)
839 {
840 struct brw_compile *p = &c->func;
841 struct brw_reg tmp = get_tmp(c);
842
843 /* tmp = dot(arg0, arg0) */
844 if (num_comps == 3)
845 brw_DP3(p, tmp, arg0, arg0);
846 else
847 brw_DP4(p, tmp, arg0, arg0);
848
849 /* tmp = 1 / sqrt(tmp) */
850 emit_math1(c, BRW_MATH_FUNCTION_RSQ, tmp, tmp, BRW_MATH_PRECISION_FULL);
851
852 /* dst = arg0 * tmp */
853 brw_MUL(p, dst, arg0, tmp);
854
855 release_tmp(c, tmp);
856 }
857
858
859 static struct brw_reg
860 get_constant(struct brw_vs_compile *c,
861 const struct prog_instruction *inst,
862 GLuint argIndex)
863 {
864 const struct prog_src_register *src = &inst->SrcReg[argIndex];
865 struct brw_compile *p = &c->func;
866 struct brw_reg const_reg = c->current_const[argIndex].reg;
867
868 assert(argIndex < 3);
869
870 if (c->current_const[argIndex].index != src->Index) {
871 /* Keep track of the last constant loaded in this slot, for reuse. */
872 c->current_const[argIndex].index = src->Index;
873
874 #if 0
875 printf(" fetch const[%d] for arg %d into reg %d\n",
876 src->Index, argIndex, c->current_const[argIndex].reg.nr);
877 #endif
878 /* need to fetch the constant now */
879 brw_dp_READ_4_vs(p,
880 const_reg, /* writeback dest */
881 0, /* oword */
882 0, /* relative indexing? */
883 brw_null_reg(), /* address register */
884 16 * src->Index, /* byte offset */
885 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
886 );
887 }
888
889 /* replicate lower four floats into upper half (to get XYZWXYZW) */
890 const_reg = stride(const_reg, 0, 4, 0);
891 const_reg.subnr = 0;
892
893 return const_reg;
894 }
895
896 static struct brw_reg
897 get_reladdr_constant(struct brw_vs_compile *c,
898 const struct prog_instruction *inst,
899 GLuint argIndex)
900 {
901 const struct prog_src_register *src = &inst->SrcReg[argIndex];
902 struct brw_compile *p = &c->func;
903 struct brw_reg const_reg = c->current_const[argIndex].reg;
904 struct brw_reg addrReg = c->regs[PROGRAM_ADDRESS][0];
905
906 assert(argIndex < 3);
907
908 /* Can't reuse a reladdr constant load. */
909 c->current_const[argIndex].index = -1;
910
911 #if 0
912 printf(" fetch const[a0.x+%d] for arg %d into reg %d\n",
913 src->Index, argIndex, c->current_const[argIndex].reg.nr);
914 #endif
915
916 /* fetch the first vec4 */
917 brw_dp_READ_4_vs_relative(p,
918 const_reg, /* writeback dest */
919 addrReg, /* address register */
920 16 * src->Index, /* byte offset */
921 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
922 );
923
924 return const_reg;
925 }
926
927
928
929 /* TODO: relative addressing!
930 */
931 static struct brw_reg get_reg( struct brw_vs_compile *c,
932 gl_register_file file,
933 GLuint index )
934 {
935 switch (file) {
936 case PROGRAM_TEMPORARY:
937 case PROGRAM_INPUT:
938 case PROGRAM_OUTPUT:
939 assert(c->regs[file][index].nr != 0);
940 return c->regs[file][index];
941 case PROGRAM_STATE_VAR:
942 case PROGRAM_CONSTANT:
943 case PROGRAM_UNIFORM:
944 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
945 return c->regs[PROGRAM_STATE_VAR][index];
946 case PROGRAM_ADDRESS:
947 assert(index == 0);
948 return c->regs[file][index];
949
950 case PROGRAM_UNDEFINED: /* undef values */
951 return brw_null_reg();
952
953 case PROGRAM_LOCAL_PARAM:
954 case PROGRAM_ENV_PARAM:
955 case PROGRAM_WRITE_ONLY:
956 default:
957 assert(0);
958 return brw_null_reg();
959 }
960 }
961
962
963 /**
964 * Indirect addressing: get reg[[arg] + offset].
965 */
966 static struct brw_reg deref( struct brw_vs_compile *c,
967 struct brw_reg arg,
968 GLint offset)
969 {
970 struct brw_compile *p = &c->func;
971 struct brw_reg tmp = vec4(get_tmp(c));
972 struct brw_reg addr_reg = c->regs[PROGRAM_ADDRESS][0];
973 struct brw_reg vp_address = retype(vec1(addr_reg), BRW_REGISTER_TYPE_UW);
974 GLuint byte_offset = arg.nr * 32 + arg.subnr + offset * 16;
975 struct brw_reg indirect = brw_vec4_indirect(0,0);
976
977 {
978 brw_push_insn_state(p);
979 brw_set_access_mode(p, BRW_ALIGN_1);
980
981 /* This is pretty clunky - load the address register twice and
982 * fetch each 4-dword value in turn. There must be a way to do
983 * this in a single pass, but I couldn't get it to work.
984 */
985 brw_ADD(p, brw_address_reg(0), vp_address, brw_imm_d(byte_offset));
986 brw_MOV(p, tmp, indirect);
987
988 brw_ADD(p, brw_address_reg(0), suboffset(vp_address, 8), brw_imm_d(byte_offset));
989 brw_MOV(p, suboffset(tmp, 4), indirect);
990
991 brw_pop_insn_state(p);
992 }
993
994 /* NOTE: tmp not released */
995 return vec8(tmp);
996 }
997
998
999 /**
1000 * Get brw reg corresponding to the instruction's [argIndex] src reg.
1001 * TODO: relative addressing!
1002 */
1003 static struct brw_reg
1004 get_src_reg( struct brw_vs_compile *c,
1005 const struct prog_instruction *inst,
1006 GLuint argIndex )
1007 {
1008 const GLuint file = inst->SrcReg[argIndex].File;
1009 const GLint index = inst->SrcReg[argIndex].Index;
1010 const GLboolean relAddr = inst->SrcReg[argIndex].RelAddr;
1011
1012 if (brw_vs_arg_can_be_immediate(inst->Opcode, argIndex)) {
1013 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1014
1015 if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ZERO,
1016 SWIZZLE_ZERO,
1017 SWIZZLE_ZERO,
1018 SWIZZLE_ZERO)) {
1019 return brw_imm_f(0.0f);
1020 } else if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ONE,
1021 SWIZZLE_ONE,
1022 SWIZZLE_ONE,
1023 SWIZZLE_ONE)) {
1024 if (src->Negate)
1025 return brw_imm_f(-1.0F);
1026 else
1027 return brw_imm_f(1.0F);
1028 } else if (src->File == PROGRAM_CONSTANT) {
1029 const struct gl_program_parameter_list *params;
1030 float f;
1031 int component = -1;
1032
1033 switch (src->Swizzle) {
1034 case SWIZZLE_XXXX:
1035 component = 0;
1036 break;
1037 case SWIZZLE_YYYY:
1038 component = 1;
1039 break;
1040 case SWIZZLE_ZZZZ:
1041 component = 2;
1042 break;
1043 case SWIZZLE_WWWW:
1044 component = 3;
1045 break;
1046 }
1047
1048 if (component >= 0) {
1049 params = c->vp->program.Base.Parameters;
1050 f = params->ParameterValues[src->Index][component];
1051
1052 if (src->Abs)
1053 f = fabs(f);
1054 if (src->Negate)
1055 f = -f;
1056 return brw_imm_f(f);
1057 }
1058 }
1059 }
1060
1061 switch (file) {
1062 case PROGRAM_TEMPORARY:
1063 case PROGRAM_INPUT:
1064 case PROGRAM_OUTPUT:
1065 if (relAddr) {
1066 return deref(c, c->regs[file][0], index);
1067 }
1068 else {
1069 assert(c->regs[file][index].nr != 0);
1070 return c->regs[file][index];
1071 }
1072
1073 case PROGRAM_STATE_VAR:
1074 case PROGRAM_CONSTANT:
1075 case PROGRAM_UNIFORM:
1076 case PROGRAM_ENV_PARAM:
1077 case PROGRAM_LOCAL_PARAM:
1078 if (c->vp->use_const_buffer) {
1079 if (!relAddr && c->constant_map[index] != -1) {
1080 assert(c->regs[PROGRAM_STATE_VAR][c->constant_map[index]].nr != 0);
1081 return c->regs[PROGRAM_STATE_VAR][c->constant_map[index]];
1082 } else if (relAddr)
1083 return get_reladdr_constant(c, inst, argIndex);
1084 else
1085 return get_constant(c, inst, argIndex);
1086 }
1087 else if (relAddr) {
1088 return deref(c, c->regs[PROGRAM_STATE_VAR][0], index);
1089 }
1090 else {
1091 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
1092 return c->regs[PROGRAM_STATE_VAR][index];
1093 }
1094 case PROGRAM_ADDRESS:
1095 assert(index == 0);
1096 return c->regs[file][index];
1097
1098 case PROGRAM_UNDEFINED:
1099 /* this is a normal case since we loop over all three src args */
1100 return brw_null_reg();
1101
1102 case PROGRAM_WRITE_ONLY:
1103 default:
1104 assert(0);
1105 return brw_null_reg();
1106 }
1107 }
1108
1109
1110 static void emit_arl( struct brw_vs_compile *c,
1111 struct brw_reg dst,
1112 struct brw_reg arg0 )
1113 {
1114 struct brw_compile *p = &c->func;
1115 struct brw_reg tmp = dst;
1116 GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
1117
1118 if (need_tmp)
1119 tmp = get_tmp(c);
1120
1121 brw_RNDD(p, tmp, arg0); /* tmp = round(arg0) */
1122 brw_MUL(p, dst, tmp, brw_imm_d(16)); /* dst = tmp * 16 */
1123
1124 if (need_tmp)
1125 release_tmp(c, tmp);
1126 }
1127
1128
1129 /**
1130 * Return the brw reg for the given instruction's src argument.
1131 * Will return mangled results for SWZ op. The emit_swz() function
1132 * ignores this result and recalculates taking extended swizzles into
1133 * account.
1134 */
1135 static struct brw_reg get_arg( struct brw_vs_compile *c,
1136 const struct prog_instruction *inst,
1137 GLuint argIndex )
1138 {
1139 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1140 struct brw_reg reg;
1141
1142 if (src->File == PROGRAM_UNDEFINED)
1143 return brw_null_reg();
1144
1145 reg = get_src_reg(c, inst, argIndex);
1146
1147 /* Convert 3-bit swizzle to 2-bit.
1148 */
1149 reg.dw1.bits.swizzle = BRW_SWIZZLE4(GET_SWZ(src->Swizzle, 0),
1150 GET_SWZ(src->Swizzle, 1),
1151 GET_SWZ(src->Swizzle, 2),
1152 GET_SWZ(src->Swizzle, 3));
1153
1154 /* Note this is ok for non-swizzle instructions:
1155 */
1156 reg.negate = src->Negate ? 1 : 0;
1157
1158 return reg;
1159 }
1160
1161
1162 /**
1163 * Get brw register for the given program dest register.
1164 */
1165 static struct brw_reg get_dst( struct brw_vs_compile *c,
1166 struct prog_dst_register dst )
1167 {
1168 struct brw_reg reg;
1169
1170 switch (dst.File) {
1171 case PROGRAM_TEMPORARY:
1172 case PROGRAM_OUTPUT:
1173 assert(c->regs[dst.File][dst.Index].nr != 0);
1174 reg = c->regs[dst.File][dst.Index];
1175 break;
1176 case PROGRAM_ADDRESS:
1177 assert(dst.Index == 0);
1178 reg = c->regs[dst.File][dst.Index];
1179 break;
1180 case PROGRAM_UNDEFINED:
1181 /* we may hit this for OPCODE_END, OPCODE_KIL, etc */
1182 reg = brw_null_reg();
1183 break;
1184 default:
1185 assert(0);
1186 reg = brw_null_reg();
1187 }
1188
1189 reg.dw1.bits.writemask = dst.WriteMask;
1190
1191 return reg;
1192 }
1193
1194
1195 static void emit_swz( struct brw_vs_compile *c,
1196 struct brw_reg dst,
1197 const struct prog_instruction *inst)
1198 {
1199 const GLuint argIndex = 0;
1200 const struct prog_src_register src = inst->SrcReg[argIndex];
1201 struct brw_compile *p = &c->func;
1202 GLuint zeros_mask = 0;
1203 GLuint ones_mask = 0;
1204 GLuint src_mask = 0;
1205 GLubyte src_swz[4];
1206 GLboolean need_tmp = (src.Negate &&
1207 dst.file != BRW_GENERAL_REGISTER_FILE);
1208 struct brw_reg tmp = dst;
1209 GLuint i;
1210
1211 if (need_tmp)
1212 tmp = get_tmp(c);
1213
1214 for (i = 0; i < 4; i++) {
1215 if (dst.dw1.bits.writemask & (1<<i)) {
1216 GLubyte s = GET_SWZ(src.Swizzle, i);
1217 switch (s) {
1218 case SWIZZLE_X:
1219 case SWIZZLE_Y:
1220 case SWIZZLE_Z:
1221 case SWIZZLE_W:
1222 src_mask |= 1<<i;
1223 src_swz[i] = s;
1224 break;
1225 case SWIZZLE_ZERO:
1226 zeros_mask |= 1<<i;
1227 break;
1228 case SWIZZLE_ONE:
1229 ones_mask |= 1<<i;
1230 break;
1231 }
1232 }
1233 }
1234
1235 /* Do src first, in case dst aliases src:
1236 */
1237 if (src_mask) {
1238 struct brw_reg arg0;
1239
1240 arg0 = get_src_reg(c, inst, argIndex);
1241
1242 arg0 = brw_swizzle(arg0,
1243 src_swz[0], src_swz[1],
1244 src_swz[2], src_swz[3]);
1245
1246 brw_MOV(p, brw_writemask(tmp, src_mask), arg0);
1247 }
1248
1249 if (zeros_mask)
1250 brw_MOV(p, brw_writemask(tmp, zeros_mask), brw_imm_f(0));
1251
1252 if (ones_mask)
1253 brw_MOV(p, brw_writemask(tmp, ones_mask), brw_imm_f(1));
1254
1255 if (src.Negate)
1256 brw_MOV(p, brw_writemask(tmp, src.Negate), negate(tmp));
1257
1258 if (need_tmp) {
1259 brw_MOV(p, dst, tmp);
1260 release_tmp(c, tmp);
1261 }
1262 }
1263
1264
1265 /**
1266 * Post-vertex-program processing. Send the results to the URB.
1267 */
1268 static void emit_vertex_write( struct brw_vs_compile *c)
1269 {
1270 struct brw_compile *p = &c->func;
1271 struct brw_context *brw = p->brw;
1272 struct intel_context *intel = &brw->intel;
1273 struct brw_reg pos = c->regs[PROGRAM_OUTPUT][VERT_RESULT_HPOS];
1274 struct brw_reg ndc;
1275 int eot;
1276 GLuint len_vertex_header = 2;
1277
1278 if (c->key.copy_edgeflag) {
1279 brw_MOV(p,
1280 get_reg(c, PROGRAM_OUTPUT, VERT_RESULT_EDGE),
1281 get_reg(c, PROGRAM_INPUT, VERT_ATTRIB_EDGEFLAG));
1282 }
1283
1284 if (intel->gen < 6) {
1285 /* Build ndc coords */
1286 ndc = get_tmp(c);
1287 /* ndc = 1.0 / pos.w */
1288 emit_math1(c, BRW_MATH_FUNCTION_INV, ndc, brw_swizzle1(pos, 3), BRW_MATH_PRECISION_FULL);
1289 /* ndc.xyz = pos * ndc */
1290 brw_MUL(p, brw_writemask(ndc, WRITEMASK_XYZ), pos, ndc);
1291 }
1292
1293 /* Update the header for point size, user clipping flags, and -ve rhw
1294 * workaround.
1295 */
1296 if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1297 c->key.nr_userclip || brw->has_negative_rhw_bug)
1298 {
1299 struct brw_reg header1 = retype(get_tmp(c), BRW_REGISTER_TYPE_UD);
1300 GLuint i;
1301
1302 brw_MOV(p, header1, brw_imm_ud(0));
1303
1304 brw_set_access_mode(p, BRW_ALIGN_16);
1305
1306 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1307 struct brw_reg psiz = c->regs[PROGRAM_OUTPUT][VERT_RESULT_PSIZ];
1308 brw_MUL(p, brw_writemask(header1, WRITEMASK_W), brw_swizzle1(psiz, 0), brw_imm_f(1<<11));
1309 brw_AND(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(0x7ff<<8));
1310 }
1311
1312 for (i = 0; i < c->key.nr_userclip; i++) {
1313 brw_set_conditionalmod(p, BRW_CONDITIONAL_L);
1314 brw_DP4(p, brw_null_reg(), pos, c->userplane[i]);
1315 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<i));
1316 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1317 }
1318
1319 /* i965 clipping workaround:
1320 * 1) Test for -ve rhw
1321 * 2) If set,
1322 * set ndc = (0,0,0,0)
1323 * set ucp[6] = 1
1324 *
1325 * Later, clipping will detect ucp[6] and ensure the primitive is
1326 * clipped against all fixed planes.
1327 */
1328 if (brw->has_negative_rhw_bug) {
1329 brw_CMP(p,
1330 vec8(brw_null_reg()),
1331 BRW_CONDITIONAL_L,
1332 brw_swizzle1(ndc, 3),
1333 brw_imm_f(0));
1334
1335 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1336 brw_MOV(p, ndc, brw_imm_f(0));
1337 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1338 }
1339
1340 brw_set_access_mode(p, BRW_ALIGN_1); /* why? */
1341 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), header1);
1342 brw_set_access_mode(p, BRW_ALIGN_16);
1343
1344 release_tmp(c, header1);
1345 }
1346 else {
1347 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
1348 }
1349
1350 /* Emit the (interleaved) headers for the two vertices - an 8-reg
1351 * of zeros followed by two sets of NDC coordinates:
1352 */
1353 brw_set_access_mode(p, BRW_ALIGN_1);
1354
1355 /* The VUE layout is documented in Volume 2a. */
1356 if (intel->gen >= 6) {
1357 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
1358 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1359 * dword 4-7 (m2) is the 4D space position
1360 * dword 8-15 (m3,m4) of the vertex header is the user clip distance if
1361 * enabled. We don't use it, so skip it.
1362 * m3 is the first vertex element data we fill, which is the vertex
1363 * position.
1364 */
1365 brw_MOV(p, brw_message_reg(2), pos);
1366 brw_MOV(p, brw_message_reg(3), pos);
1367 len_vertex_header = 2;
1368 } else if (intel->gen == 5) {
1369 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
1370 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1371 * dword 4-7 (m2) is the ndc position (set above)
1372 * dword 8-11 (m3) of the vertex header is the 4D space position
1373 * dword 12-19 (m4,m5) of the vertex header is the user clip distance.
1374 * m6 is a pad so that the vertex element data is aligned
1375 * m7 is the first vertex data we fill, which is the vertex position.
1376 */
1377 brw_MOV(p, brw_message_reg(2), ndc);
1378 brw_MOV(p, brw_message_reg(3), pos);
1379 brw_MOV(p, brw_message_reg(7), pos);
1380 len_vertex_header = 6;
1381 } else {
1382 /* There are 8 dwords in VUE header pre-Ironlake:
1383 * dword 0-3 (m1) is indices, point width, clip flags.
1384 * dword 4-7 (m2) is ndc position (set above)
1385 *
1386 * dword 8-11 (m3) is the first vertex data, which we always have be the
1387 * vertex position.
1388 */
1389 brw_MOV(p, brw_message_reg(2), ndc);
1390 brw_MOV(p, brw_message_reg(3), pos);
1391 len_vertex_header = 2;
1392 }
1393
1394 eot = (c->first_overflow_output == 0);
1395
1396 brw_urb_WRITE(p,
1397 brw_null_reg(), /* dest */
1398 0, /* starting mrf reg nr */
1399 c->r0, /* src */
1400 0, /* allocate */
1401 1, /* used */
1402 MIN2(c->nr_outputs + 1 + len_vertex_header, (BRW_MAX_MRF-1)), /* msg len */
1403 0, /* response len */
1404 eot, /* eot */
1405 eot, /* writes complete */
1406 0, /* urb destination offset */
1407 BRW_URB_SWIZZLE_INTERLEAVE);
1408
1409 if (c->first_overflow_output > 0) {
1410 /* Not all of the vertex outputs/results fit into the MRF.
1411 * Move the overflowed attributes from the GRF to the MRF and
1412 * issue another brw_urb_WRITE().
1413 */
1414 GLuint i, mrf = 1;
1415 for (i = c->first_overflow_output; i < VERT_RESULT_MAX; i++) {
1416 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
1417 /* move from GRF to MRF */
1418 brw_MOV(p, brw_message_reg(mrf), c->regs[PROGRAM_OUTPUT][i]);
1419 mrf++;
1420 }
1421 }
1422
1423 brw_urb_WRITE(p,
1424 brw_null_reg(), /* dest */
1425 0, /* starting mrf reg nr */
1426 c->r0, /* src */
1427 0, /* allocate */
1428 1, /* used */
1429 mrf, /* msg len */
1430 0, /* response len */
1431 1, /* eot */
1432 1, /* writes complete */
1433 14 / 2, /* urb destination offset */
1434 BRW_URB_SWIZZLE_INTERLEAVE);
1435 }
1436 }
1437
1438 static GLboolean
1439 accumulator_contains(struct brw_vs_compile *c, struct brw_reg val)
1440 {
1441 struct brw_compile *p = &c->func;
1442 struct brw_instruction *prev_insn = &p->store[p->nr_insn - 1];
1443
1444 if (p->nr_insn == 0)
1445 return GL_FALSE;
1446
1447 if (val.address_mode != BRW_ADDRESS_DIRECT)
1448 return GL_FALSE;
1449
1450 switch (prev_insn->header.opcode) {
1451 case BRW_OPCODE_MOV:
1452 case BRW_OPCODE_MAC:
1453 case BRW_OPCODE_MUL:
1454 if (prev_insn->header.access_mode == BRW_ALIGN_16 &&
1455 prev_insn->header.execution_size == val.width &&
1456 prev_insn->bits1.da1.dest_reg_file == val.file &&
1457 prev_insn->bits1.da1.dest_reg_type == val.type &&
1458 prev_insn->bits1.da1.dest_address_mode == val.address_mode &&
1459 prev_insn->bits1.da1.dest_reg_nr == val.nr &&
1460 prev_insn->bits1.da16.dest_subreg_nr == val.subnr / 16 &&
1461 prev_insn->bits1.da16.dest_writemask == 0xf)
1462 return GL_TRUE;
1463 else
1464 return GL_FALSE;
1465 default:
1466 return GL_FALSE;
1467 }
1468 }
1469
1470 static uint32_t
1471 get_predicate(const struct prog_instruction *inst)
1472 {
1473 if (inst->DstReg.CondMask == COND_TR)
1474 return BRW_PREDICATE_NONE;
1475
1476 /* All of GLSL only produces predicates for COND_NE and one channel per
1477 * vector. Fail badly if someone starts doing something else, as it might
1478 * mean infinite looping or something.
1479 *
1480 * We'd like to support all the condition codes, but our hardware doesn't
1481 * quite match the Mesa IR, which is modeled after the NV extensions. For
1482 * those, the instruction may update the condition codes or not, then any
1483 * later instruction may use one of those condition codes. For gen4, the
1484 * instruction may update the flags register based on one of the condition
1485 * codes output by the instruction, and then further instructions may
1486 * predicate on that. We can probably support this, but it won't
1487 * necessarily be easy.
1488 */
1489 assert(inst->DstReg.CondMask == COND_NE);
1490
1491 switch (inst->DstReg.CondSwizzle) {
1492 case SWIZZLE_XXXX:
1493 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
1494 case SWIZZLE_YYYY:
1495 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1496 case SWIZZLE_ZZZZ:
1497 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1498 case SWIZZLE_WWWW:
1499 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
1500 default:
1501 _mesa_problem(NULL, "Unexpected predicate: 0x%08x\n",
1502 inst->DstReg.CondMask);
1503 return BRW_PREDICATE_NORMAL;
1504 }
1505 }
1506
1507 /* Emit the vertex program instructions here.
1508 */
1509 void brw_vs_emit(struct brw_vs_compile *c )
1510 {
1511 #define MAX_IF_DEPTH 32
1512 #define MAX_LOOP_DEPTH 32
1513 struct brw_compile *p = &c->func;
1514 struct brw_context *brw = p->brw;
1515 struct intel_context *intel = &brw->intel;
1516 const GLuint nr_insns = c->vp->program.Base.NumInstructions;
1517 GLuint insn, if_depth = 0, loop_depth = 0;
1518 struct brw_instruction *if_inst[MAX_IF_DEPTH], *loop_inst[MAX_LOOP_DEPTH] = { 0 };
1519 const struct brw_indirect stack_index = brw_indirect(0, 0);
1520 GLuint index;
1521 GLuint file;
1522
1523 if (INTEL_DEBUG & DEBUG_VS) {
1524 printf("vs-mesa:\n");
1525 _mesa_print_program(&c->vp->program.Base);
1526 printf("\n");
1527 }
1528
1529 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1530 brw_set_access_mode(p, BRW_ALIGN_16);
1531
1532 for (insn = 0; insn < nr_insns; insn++) {
1533 GLuint i;
1534 struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1535
1536 /* Message registers can't be read, so copy the output into GRF
1537 * register if they are used in source registers
1538 */
1539 for (i = 0; i < 3; i++) {
1540 struct prog_src_register *src = &inst->SrcReg[i];
1541 GLuint index = src->Index;
1542 GLuint file = src->File;
1543 if (file == PROGRAM_OUTPUT && index != VERT_RESULT_HPOS)
1544 c->output_regs[index].used_in_src = GL_TRUE;
1545 }
1546
1547 switch (inst->Opcode) {
1548 case OPCODE_CAL:
1549 case OPCODE_RET:
1550 c->needs_stack = GL_TRUE;
1551 break;
1552 default:
1553 break;
1554 }
1555 }
1556
1557 /* Static register allocation
1558 */
1559 brw_vs_alloc_regs(c);
1560
1561 if (c->needs_stack)
1562 brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
1563
1564 for (insn = 0; insn < nr_insns; insn++) {
1565
1566 const struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1567 struct brw_reg args[3], dst;
1568 GLuint i;
1569
1570 #if 0
1571 printf("%d: ", insn);
1572 _mesa_print_instruction(inst);
1573 #endif
1574
1575 /* Get argument regs. SWZ is special and does this itself.
1576 */
1577 if (inst->Opcode != OPCODE_SWZ)
1578 for (i = 0; i < 3; i++) {
1579 const struct prog_src_register *src = &inst->SrcReg[i];
1580 index = src->Index;
1581 file = src->File;
1582 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1583 args[i] = c->output_regs[index].reg;
1584 else
1585 args[i] = get_arg(c, inst, i);
1586 }
1587
1588 /* Get dest regs. Note that it is possible for a reg to be both
1589 * dst and arg, given the static allocation of registers. So
1590 * care needs to be taken emitting multi-operation instructions.
1591 */
1592 index = inst->DstReg.Index;
1593 file = inst->DstReg.File;
1594 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1595 dst = c->output_regs[index].reg;
1596 else
1597 dst = get_dst(c, inst->DstReg);
1598
1599 if (inst->SaturateMode != SATURATE_OFF) {
1600 _mesa_problem(NULL, "Unsupported saturate %d in vertex shader",
1601 inst->SaturateMode);
1602 }
1603
1604 switch (inst->Opcode) {
1605 case OPCODE_ABS:
1606 brw_MOV(p, dst, brw_abs(args[0]));
1607 break;
1608 case OPCODE_ADD:
1609 brw_ADD(p, dst, args[0], args[1]);
1610 break;
1611 case OPCODE_COS:
1612 emit_math1(c, BRW_MATH_FUNCTION_COS, dst, args[0], BRW_MATH_PRECISION_FULL);
1613 break;
1614 case OPCODE_DP3:
1615 brw_DP3(p, dst, args[0], args[1]);
1616 break;
1617 case OPCODE_DP4:
1618 brw_DP4(p, dst, args[0], args[1]);
1619 break;
1620 case OPCODE_DPH:
1621 brw_DPH(p, dst, args[0], args[1]);
1622 break;
1623 case OPCODE_NRM3:
1624 emit_nrm(c, dst, args[0], 3);
1625 break;
1626 case OPCODE_NRM4:
1627 emit_nrm(c, dst, args[0], 4);
1628 break;
1629 case OPCODE_DST:
1630 unalias2(c, dst, args[0], args[1], emit_dst_noalias);
1631 break;
1632 case OPCODE_EXP:
1633 unalias1(c, dst, args[0], emit_exp_noalias);
1634 break;
1635 case OPCODE_EX2:
1636 emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, args[0], BRW_MATH_PRECISION_FULL);
1637 break;
1638 case OPCODE_ARL:
1639 emit_arl(c, dst, args[0]);
1640 break;
1641 case OPCODE_FLR:
1642 brw_RNDD(p, dst, args[0]);
1643 break;
1644 case OPCODE_FRC:
1645 brw_FRC(p, dst, args[0]);
1646 break;
1647 case OPCODE_LOG:
1648 unalias1(c, dst, args[0], emit_log_noalias);
1649 break;
1650 case OPCODE_LG2:
1651 emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, args[0], BRW_MATH_PRECISION_FULL);
1652 break;
1653 case OPCODE_LIT:
1654 unalias1(c, dst, args[0], emit_lit_noalias);
1655 break;
1656 case OPCODE_LRP:
1657 unalias3(c, dst, args[0], args[1], args[2], emit_lrp_noalias);
1658 break;
1659 case OPCODE_MAD:
1660 if (!accumulator_contains(c, args[2]))
1661 brw_MOV(p, brw_acc_reg(), args[2]);
1662 brw_MAC(p, dst, args[0], args[1]);
1663 break;
1664 case OPCODE_CMP:
1665 emit_cmp(p, dst, args[0], args[1], args[2]);
1666 break;
1667 case OPCODE_MAX:
1668 emit_max(p, dst, args[0], args[1]);
1669 break;
1670 case OPCODE_MIN:
1671 emit_min(p, dst, args[0], args[1]);
1672 break;
1673 case OPCODE_MOV:
1674 brw_MOV(p, dst, args[0]);
1675 break;
1676 case OPCODE_MUL:
1677 brw_MUL(p, dst, args[0], args[1]);
1678 break;
1679 case OPCODE_POW:
1680 emit_math2(c, BRW_MATH_FUNCTION_POW, dst, args[0], args[1], BRW_MATH_PRECISION_FULL);
1681 break;
1682 case OPCODE_RCP:
1683 emit_math1(c, BRW_MATH_FUNCTION_INV, dst, args[0], BRW_MATH_PRECISION_FULL);
1684 break;
1685 case OPCODE_RSQ:
1686 emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, args[0], BRW_MATH_PRECISION_FULL);
1687 break;
1688
1689 case OPCODE_SEQ:
1690 unalias2(c, dst, args[0], args[1], emit_seq);
1691 break;
1692 case OPCODE_SIN:
1693 emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, args[0], BRW_MATH_PRECISION_FULL);
1694 break;
1695 case OPCODE_SNE:
1696 unalias2(c, dst, args[0], args[1], emit_sne);
1697 break;
1698 case OPCODE_SGE:
1699 unalias2(c, dst, args[0], args[1], emit_sge);
1700 break;
1701 case OPCODE_SGT:
1702 unalias2(c, dst, args[0], args[1], emit_sgt);
1703 break;
1704 case OPCODE_SLT:
1705 unalias2(c, dst, args[0], args[1], emit_slt);
1706 break;
1707 case OPCODE_SLE:
1708 unalias2(c, dst, args[0], args[1], emit_sle);
1709 break;
1710 case OPCODE_SUB:
1711 brw_ADD(p, dst, args[0], negate(args[1]));
1712 break;
1713 case OPCODE_SWZ:
1714 /* The args[0] value can't be used here as it won't have
1715 * correctly encoded the full swizzle:
1716 */
1717 emit_swz(c, dst, inst);
1718 break;
1719 case OPCODE_TRUNC:
1720 /* round toward zero */
1721 brw_RNDZ(p, dst, args[0]);
1722 break;
1723 case OPCODE_XPD:
1724 emit_xpd(p, dst, args[0], args[1]);
1725 break;
1726 case OPCODE_IF:
1727 assert(if_depth < MAX_IF_DEPTH);
1728 if_inst[if_depth] = brw_IF(p, BRW_EXECUTE_8);
1729 /* Note that brw_IF smashes the predicate_control field. */
1730 if_inst[if_depth]->header.predicate_control = get_predicate(inst);
1731 if_depth++;
1732 break;
1733 case OPCODE_ELSE:
1734 assert(if_depth > 0);
1735 if_inst[if_depth-1] = brw_ELSE(p, if_inst[if_depth-1]);
1736 break;
1737 case OPCODE_ENDIF:
1738 assert(if_depth > 0);
1739 brw_ENDIF(p, if_inst[--if_depth]);
1740 break;
1741 case OPCODE_BGNLOOP:
1742 loop_inst[loop_depth++] = brw_DO(p, BRW_EXECUTE_8);
1743 break;
1744 case OPCODE_BRK:
1745 brw_set_predicate_control(p, get_predicate(inst));
1746 brw_BREAK(p);
1747 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1748 break;
1749 case OPCODE_CONT:
1750 brw_set_predicate_control(p, get_predicate(inst));
1751 brw_CONT(p);
1752 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1753 break;
1754 case OPCODE_ENDLOOP:
1755 {
1756 struct brw_instruction *inst0, *inst1;
1757 GLuint br = 1;
1758
1759 loop_depth--;
1760
1761 if (intel->gen == 5)
1762 br = 2;
1763
1764 inst0 = inst1 = brw_WHILE(p, loop_inst[loop_depth]);
1765 /* patch all the BREAK/CONT instructions from last BEGINLOOP */
1766 while (inst0 > loop_inst[loop_depth]) {
1767 inst0--;
1768 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
1769 inst0->bits3.if_else.jump_count == 0) {
1770 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
1771 inst0->bits3.if_else.pop_count = 0;
1772 }
1773 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
1774 inst0->bits3.if_else.jump_count == 0) {
1775 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
1776 inst0->bits3.if_else.pop_count = 0;
1777 }
1778 }
1779 }
1780 break;
1781 case OPCODE_BRA:
1782 brw_set_predicate_control(p, get_predicate(inst));
1783 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1784 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1785 break;
1786 case OPCODE_CAL:
1787 brw_set_access_mode(p, BRW_ALIGN_1);
1788 brw_ADD(p, deref_1d(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
1789 brw_set_access_mode(p, BRW_ALIGN_16);
1790 brw_ADD(p, get_addr_reg(stack_index),
1791 get_addr_reg(stack_index), brw_imm_d(4));
1792 brw_save_call(p, inst->Comment, p->nr_insn);
1793 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1794 break;
1795 case OPCODE_RET:
1796 brw_ADD(p, get_addr_reg(stack_index),
1797 get_addr_reg(stack_index), brw_imm_d(-4));
1798 brw_set_access_mode(p, BRW_ALIGN_1);
1799 brw_MOV(p, brw_ip_reg(), deref_1d(stack_index, 0));
1800 brw_set_access_mode(p, BRW_ALIGN_16);
1801 break;
1802 case OPCODE_END:
1803 emit_vertex_write(c);
1804 break;
1805 case OPCODE_PRINT:
1806 /* no-op */
1807 break;
1808 case OPCODE_BGNSUB:
1809 brw_save_label(p, inst->Comment, p->nr_insn);
1810 break;
1811 case OPCODE_ENDSUB:
1812 /* no-op */
1813 break;
1814 default:
1815 _mesa_problem(NULL, "Unsupported opcode %i (%s) in vertex shader",
1816 inst->Opcode, inst->Opcode < MAX_OPCODE ?
1817 _mesa_opcode_string(inst->Opcode) :
1818 "unknown");
1819 }
1820
1821 /* Set the predication update on the last instruction of the native
1822 * instruction sequence.
1823 *
1824 * This would be problematic if it was set on a math instruction,
1825 * but that shouldn't be the case with the current GLSL compiler.
1826 */
1827 if (inst->CondUpdate) {
1828 struct brw_instruction *hw_insn = &p->store[p->nr_insn - 1];
1829
1830 assert(hw_insn->header.destreg__conditionalmod == 0);
1831 hw_insn->header.destreg__conditionalmod = BRW_CONDITIONAL_NZ;
1832 }
1833
1834 if ((inst->DstReg.File == PROGRAM_OUTPUT)
1835 && (inst->DstReg.Index != VERT_RESULT_HPOS)
1836 && c->output_regs[inst->DstReg.Index].used_in_src) {
1837 brw_MOV(p, get_dst(c, inst->DstReg), dst);
1838 }
1839
1840 /* Result color clamping.
1841 *
1842 * When destination register is an output register and
1843 * it's primary/secondary front/back color, we have to clamp
1844 * the result to [0,1]. This is done by enabling the
1845 * saturation bit for the last instruction.
1846 *
1847 * We don't use brw_set_saturate() as it modifies
1848 * p->current->header.saturate, which affects all the subsequent
1849 * instructions. Instead, we directly modify the header
1850 * of the last (already stored) instruction.
1851 */
1852 if (inst->DstReg.File == PROGRAM_OUTPUT) {
1853 if ((inst->DstReg.Index == VERT_RESULT_COL0)
1854 || (inst->DstReg.Index == VERT_RESULT_COL1)
1855 || (inst->DstReg.Index == VERT_RESULT_BFC0)
1856 || (inst->DstReg.Index == VERT_RESULT_BFC1)) {
1857 p->store[p->nr_insn-1].header.saturate = 1;
1858 }
1859 }
1860
1861 release_tmps(c);
1862 }
1863
1864 brw_resolve_cals(p);
1865
1866 brw_optimize(p);
1867
1868 if (INTEL_DEBUG & DEBUG_VS) {
1869 int i;
1870
1871 printf("vs-native:\n");
1872 for (i = 0; i < p->nr_insn; i++)
1873 brw_disasm(stderr, &p->store[i], intel->gen);
1874 printf("\n");
1875 }
1876 }