i965: Fix up VS temporary array access for fixed index offset != 0.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/macros.h"
34 #include "program/program.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "brw_context.h"
38 #include "brw_vs.h"
39
40 /* Return the SrcReg index of the channels that can be immediate float operands
41 * instead of usage of PROGRAM_CONSTANT values through push/pull.
42 */
43 static GLboolean
44 brw_vs_arg_can_be_immediate(enum prog_opcode opcode, int arg)
45 {
46 int opcode_array[] = {
47 [OPCODE_ADD] = 2,
48 [OPCODE_CMP] = 3,
49 [OPCODE_DP3] = 2,
50 [OPCODE_DP4] = 2,
51 [OPCODE_DPH] = 2,
52 [OPCODE_MAX] = 2,
53 [OPCODE_MIN] = 2,
54 [OPCODE_MUL] = 2,
55 [OPCODE_SEQ] = 2,
56 [OPCODE_SGE] = 2,
57 [OPCODE_SGT] = 2,
58 [OPCODE_SLE] = 2,
59 [OPCODE_SLT] = 2,
60 [OPCODE_SNE] = 2,
61 [OPCODE_XPD] = 2,
62 };
63
64 /* These opcodes get broken down in a way that allow two
65 * args to be immediates.
66 */
67 if (opcode == OPCODE_MAD || opcode == OPCODE_LRP) {
68 if (arg == 1 || arg == 2)
69 return GL_TRUE;
70 }
71
72 if (opcode > ARRAY_SIZE(opcode_array))
73 return GL_FALSE;
74
75 return arg == opcode_array[opcode] - 1;
76 }
77
78 static struct brw_reg get_tmp( struct brw_vs_compile *c )
79 {
80 struct brw_reg tmp = brw_vec8_grf(c->last_tmp, 0);
81
82 if (++c->last_tmp > c->prog_data.total_grf)
83 c->prog_data.total_grf = c->last_tmp;
84
85 return tmp;
86 }
87
88 static void release_tmp( struct brw_vs_compile *c, struct brw_reg tmp )
89 {
90 if (tmp.nr == c->last_tmp-1)
91 c->last_tmp--;
92 }
93
94 static void release_tmps( struct brw_vs_compile *c )
95 {
96 c->last_tmp = c->first_tmp;
97 }
98
99
100 /**
101 * Preallocate GRF register before code emit.
102 * Do things as simply as possible. Allocate and populate all regs
103 * ahead of time.
104 */
105 static void brw_vs_alloc_regs( struct brw_vs_compile *c )
106 {
107 struct intel_context *intel = &c->func.brw->intel;
108 GLuint i, reg = 0, mrf;
109 int attributes_in_vue;
110
111 /* Determine whether to use a real constant buffer or use a block
112 * of GRF registers for constants. The later is faster but only
113 * works if everything fits in the GRF.
114 * XXX this heuristic/check may need some fine tuning...
115 */
116 if (c->vp->program.Base.Parameters->NumParameters +
117 c->vp->program.Base.NumTemporaries + 20 > BRW_MAX_GRF)
118 c->vp->use_const_buffer = GL_TRUE;
119 else
120 c->vp->use_const_buffer = GL_FALSE;
121
122 /*printf("use_const_buffer = %d\n", c->vp->use_const_buffer);*/
123
124 /* r0 -- reserved as usual
125 */
126 c->r0 = brw_vec8_grf(reg, 0);
127 reg++;
128
129 /* User clip planes from curbe:
130 */
131 if (c->key.nr_userclip) {
132 for (i = 0; i < c->key.nr_userclip; i++) {
133 c->userplane[i] = stride( brw_vec4_grf(reg+3+i/2, (i%2) * 4), 0, 4, 1);
134 }
135
136 /* Deal with curbe alignment:
137 */
138 reg += ((6 + c->key.nr_userclip + 3) / 4) * 2;
139 }
140
141 /* Vertex program parameters from curbe:
142 */
143 if (c->vp->use_const_buffer) {
144 int max_constant = BRW_MAX_GRF - 20 - c->vp->program.Base.NumTemporaries;
145 int constant = 0;
146
147 /* We've got more constants than we can load with the push
148 * mechanism. This is often correlated with reladdr loads where
149 * we should probably be using a pull mechanism anyway to avoid
150 * excessive reading. However, the pull mechanism is slow in
151 * general. So, we try to allocate as many non-reladdr-loaded
152 * constants through the push buffer as we can before giving up.
153 */
154 memset(c->constant_map, -1, c->vp->program.Base.Parameters->NumParameters);
155 for (i = 0;
156 i < c->vp->program.Base.NumInstructions && constant < max_constant;
157 i++) {
158 struct prog_instruction *inst = &c->vp->program.Base.Instructions[i];
159 int arg;
160
161 for (arg = 0; arg < 3 && constant < max_constant; arg++) {
162 if ((inst->SrcReg[arg].File != PROGRAM_STATE_VAR &&
163 inst->SrcReg[arg].File != PROGRAM_CONSTANT &&
164 inst->SrcReg[arg].File != PROGRAM_UNIFORM &&
165 inst->SrcReg[arg].File != PROGRAM_ENV_PARAM &&
166 inst->SrcReg[arg].File != PROGRAM_LOCAL_PARAM) ||
167 inst->SrcReg[arg].RelAddr)
168 continue;
169
170 if (c->constant_map[inst->SrcReg[arg].Index] == -1) {
171 c->constant_map[inst->SrcReg[arg].Index] = constant++;
172 }
173 }
174 }
175
176 for (i = 0; i < constant; i++) {
177 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2,
178 (i%2) * 4),
179 0, 4, 1);
180 }
181 reg += (constant + 1) / 2;
182 c->prog_data.curb_read_length = reg - 1;
183 /* XXX 0 causes a bug elsewhere... */
184 c->prog_data.nr_params = MAX2(constant * 4, 4);
185 }
186 else {
187 /* use a section of the GRF for constants */
188 GLuint nr_params = c->vp->program.Base.Parameters->NumParameters;
189 for (i = 0; i < nr_params; i++) {
190 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2, (i%2) * 4), 0, 4, 1);
191 }
192 reg += (nr_params + 1) / 2;
193 c->prog_data.curb_read_length = reg - 1;
194
195 c->prog_data.nr_params = nr_params * 4;
196 }
197
198 /* Allocate input regs:
199 */
200 c->nr_inputs = 0;
201 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
202 if (c->prog_data.inputs_read & (1 << i)) {
203 c->nr_inputs++;
204 c->regs[PROGRAM_INPUT][i] = brw_vec8_grf(reg, 0);
205 reg++;
206 }
207 }
208 /* If there are no inputs, we'll still be reading one attribute's worth
209 * because it's required -- see urb_read_length setting.
210 */
211 if (c->nr_inputs == 0)
212 reg++;
213
214 /* Allocate outputs. The non-position outputs go straight into message regs.
215 */
216 c->nr_outputs = 0;
217 c->first_output = reg;
218 c->first_overflow_output = 0;
219
220 if (intel->gen >= 6)
221 mrf = 4;
222 else if (intel->gen == 5)
223 mrf = 8;
224 else
225 mrf = 4;
226
227 for (i = 0; i < VERT_RESULT_MAX; i++) {
228 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
229 c->nr_outputs++;
230 assert(i < Elements(c->regs[PROGRAM_OUTPUT]));
231 if (i == VERT_RESULT_HPOS) {
232 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
233 reg++;
234 }
235 else if (i == VERT_RESULT_PSIZ) {
236 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
237 reg++;
238 mrf++; /* just a placeholder? XXX fix later stages & remove this */
239 }
240 else {
241 /* Two restrictions on our compute-to-MRF here. The
242 * message length for all SEND messages is restricted to
243 * [1,15], so we can't use mrf 15, as that means a length
244 * of 16.
245 *
246 * Additionally, URB writes are aligned to URB rows, so we
247 * need to put an even number of registers of URB data in
248 * each URB write so that the later write is aligned. A
249 * message length of 15 means 1 message header reg plus 14
250 * regs of URB data.
251 *
252 * For attributes beyond the compute-to-MRF, we compute to
253 * GRFs and they will be written in the second URB_WRITE.
254 */
255 if (mrf < 15) {
256 c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
257 mrf++;
258 }
259 else {
260 if (!c->first_overflow_output)
261 c->first_overflow_output = i;
262 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
263 reg++;
264 }
265 }
266 }
267 }
268
269 /* Allocate program temporaries:
270 */
271 for (i = 0; i < c->vp->program.Base.NumTemporaries; i++) {
272 c->regs[PROGRAM_TEMPORARY][i] = brw_vec8_grf(reg, 0);
273 reg++;
274 }
275
276 /* Address reg(s). Don't try to use the internal address reg until
277 * deref time.
278 */
279 for (i = 0; i < c->vp->program.Base.NumAddressRegs; i++) {
280 c->regs[PROGRAM_ADDRESS][i] = brw_reg(BRW_GENERAL_REGISTER_FILE,
281 reg,
282 0,
283 BRW_REGISTER_TYPE_D,
284 BRW_VERTICAL_STRIDE_8,
285 BRW_WIDTH_8,
286 BRW_HORIZONTAL_STRIDE_1,
287 BRW_SWIZZLE_XXXX,
288 WRITEMASK_X);
289 reg++;
290 }
291
292 if (c->vp->use_const_buffer) {
293 for (i = 0; i < 3; i++) {
294 c->current_const[i].index = -1;
295 c->current_const[i].reg = brw_vec8_grf(reg, 0);
296 reg++;
297 }
298 }
299
300 for (i = 0; i < 128; i++) {
301 if (c->output_regs[i].used_in_src) {
302 c->output_regs[i].reg = brw_vec8_grf(reg, 0);
303 reg++;
304 }
305 }
306
307 if (c->needs_stack) {
308 c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg, 0);
309 reg += 2;
310 }
311
312 /* Some opcodes need an internal temporary:
313 */
314 c->first_tmp = reg;
315 c->last_tmp = reg; /* for allocation purposes */
316
317 /* Each input reg holds data from two vertices. The
318 * urb_read_length is the number of registers read from *each*
319 * vertex urb, so is half the amount:
320 */
321 c->prog_data.urb_read_length = (c->nr_inputs + 1) / 2;
322 /* Setting this field to 0 leads to undefined behavior according to the
323 * the VS_STATE docs. Our VUEs will always have at least one attribute
324 * sitting in them, even if it's padding.
325 */
326 if (c->prog_data.urb_read_length == 0)
327 c->prog_data.urb_read_length = 1;
328
329 /* The VS VUEs are shared by VF (outputting our inputs) and VS, so size
330 * them to fit the biggest thing they need to.
331 */
332 attributes_in_vue = MAX2(c->nr_outputs, c->nr_inputs);
333
334 /* See emit_vertex_write() for where the VUE's overhead on top of the
335 * attributes comes from.
336 */
337 if (intel->gen >= 6)
338 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 7) / 8;
339 else if (intel->gen == 5)
340 c->prog_data.urb_entry_size = (attributes_in_vue + 6 + 3) / 4;
341 else
342 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 3) / 4;
343
344 c->prog_data.total_grf = reg;
345
346 if (INTEL_DEBUG & DEBUG_VS) {
347 printf("%s NumAddrRegs %d\n", __FUNCTION__, c->vp->program.Base.NumAddressRegs);
348 printf("%s NumTemps %d\n", __FUNCTION__, c->vp->program.Base.NumTemporaries);
349 printf("%s reg = %d\n", __FUNCTION__, reg);
350 }
351 }
352
353
354 /**
355 * If an instruction uses a temp reg both as a src and the dest, we
356 * sometimes need to allocate an intermediate temporary.
357 */
358 static void unalias1( struct brw_vs_compile *c,
359 struct brw_reg dst,
360 struct brw_reg arg0,
361 void (*func)( struct brw_vs_compile *,
362 struct brw_reg,
363 struct brw_reg ))
364 {
365 if (dst.file == arg0.file && dst.nr == arg0.nr) {
366 struct brw_compile *p = &c->func;
367 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
368 func(c, tmp, arg0);
369 brw_MOV(p, dst, tmp);
370 release_tmp(c, tmp);
371 }
372 else {
373 func(c, dst, arg0);
374 }
375 }
376
377 /**
378 * \sa unalias2
379 * Checkes if 2-operand instruction needs an intermediate temporary.
380 */
381 static void unalias2( struct brw_vs_compile *c,
382 struct brw_reg dst,
383 struct brw_reg arg0,
384 struct brw_reg arg1,
385 void (*func)( struct brw_vs_compile *,
386 struct brw_reg,
387 struct brw_reg,
388 struct brw_reg ))
389 {
390 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
391 (dst.file == arg1.file && dst.nr == arg1.nr)) {
392 struct brw_compile *p = &c->func;
393 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
394 func(c, tmp, arg0, arg1);
395 brw_MOV(p, dst, tmp);
396 release_tmp(c, tmp);
397 }
398 else {
399 func(c, dst, arg0, arg1);
400 }
401 }
402
403 /**
404 * \sa unalias2
405 * Checkes if 3-operand instruction needs an intermediate temporary.
406 */
407 static void unalias3( struct brw_vs_compile *c,
408 struct brw_reg dst,
409 struct brw_reg arg0,
410 struct brw_reg arg1,
411 struct brw_reg arg2,
412 void (*func)( struct brw_vs_compile *,
413 struct brw_reg,
414 struct brw_reg,
415 struct brw_reg,
416 struct brw_reg ))
417 {
418 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
419 (dst.file == arg1.file && dst.nr == arg1.nr) ||
420 (dst.file == arg2.file && dst.nr == arg2.nr)) {
421 struct brw_compile *p = &c->func;
422 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
423 func(c, tmp, arg0, arg1, arg2);
424 brw_MOV(p, dst, tmp);
425 release_tmp(c, tmp);
426 }
427 else {
428 func(c, dst, arg0, arg1, arg2);
429 }
430 }
431
432 static void emit_sop( struct brw_vs_compile *c,
433 struct brw_reg dst,
434 struct brw_reg arg0,
435 struct brw_reg arg1,
436 GLuint cond)
437 {
438 struct brw_compile *p = &c->func;
439
440 brw_MOV(p, dst, brw_imm_f(0.0f));
441 brw_CMP(p, brw_null_reg(), cond, arg0, arg1);
442 brw_MOV(p, dst, brw_imm_f(1.0f));
443 brw_set_predicate_control_flag_value(p, 0xff);
444 }
445
446 static void emit_seq( struct brw_vs_compile *c,
447 struct brw_reg dst,
448 struct brw_reg arg0,
449 struct brw_reg arg1 )
450 {
451 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_EQ);
452 }
453
454 static void emit_sne( struct brw_vs_compile *c,
455 struct brw_reg dst,
456 struct brw_reg arg0,
457 struct brw_reg arg1 )
458 {
459 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_NEQ);
460 }
461 static void emit_slt( struct brw_vs_compile *c,
462 struct brw_reg dst,
463 struct brw_reg arg0,
464 struct brw_reg arg1 )
465 {
466 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_L);
467 }
468
469 static void emit_sle( struct brw_vs_compile *c,
470 struct brw_reg dst,
471 struct brw_reg arg0,
472 struct brw_reg arg1 )
473 {
474 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_LE);
475 }
476
477 static void emit_sgt( struct brw_vs_compile *c,
478 struct brw_reg dst,
479 struct brw_reg arg0,
480 struct brw_reg arg1 )
481 {
482 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_G);
483 }
484
485 static void emit_sge( struct brw_vs_compile *c,
486 struct brw_reg dst,
487 struct brw_reg arg0,
488 struct brw_reg arg1 )
489 {
490 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_GE);
491 }
492
493 static void emit_cmp( struct brw_compile *p,
494 struct brw_reg dst,
495 struct brw_reg arg0,
496 struct brw_reg arg1,
497 struct brw_reg arg2 )
498 {
499 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, brw_imm_f(0));
500 brw_SEL(p, dst, arg1, arg2);
501 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
502 }
503
504 static void emit_max( struct brw_compile *p,
505 struct brw_reg dst,
506 struct brw_reg arg0,
507 struct brw_reg arg1 )
508 {
509 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0, arg1);
510 brw_SEL(p, dst, arg0, arg1);
511 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
512 }
513
514 static void emit_min( struct brw_compile *p,
515 struct brw_reg dst,
516 struct brw_reg arg0,
517 struct brw_reg arg1 )
518 {
519 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, arg1);
520 brw_SEL(p, dst, arg0, arg1);
521 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
522 }
523
524
525 static void emit_math1( struct brw_vs_compile *c,
526 GLuint function,
527 struct brw_reg dst,
528 struct brw_reg arg0,
529 GLuint precision)
530 {
531 /* There are various odd behaviours with SEND on the simulator. In
532 * addition there are documented issues with the fact that the GEN4
533 * processor doesn't do dependency control properly on SEND
534 * results. So, on balance, this kludge to get around failures
535 * with writemasked math results looks like it might be necessary
536 * whether that turns out to be a simulator bug or not:
537 */
538 struct brw_compile *p = &c->func;
539 struct intel_context *intel = &p->brw->intel;
540 struct brw_reg tmp = dst;
541 GLboolean need_tmp = (intel->gen < 6 &&
542 (dst.dw1.bits.writemask != 0xf ||
543 dst.file != BRW_GENERAL_REGISTER_FILE));
544
545 if (need_tmp)
546 tmp = get_tmp(c);
547
548 brw_math(p,
549 tmp,
550 function,
551 BRW_MATH_SATURATE_NONE,
552 2,
553 arg0,
554 BRW_MATH_DATA_SCALAR,
555 precision);
556
557 if (need_tmp) {
558 brw_MOV(p, dst, tmp);
559 release_tmp(c, tmp);
560 }
561 }
562
563
564 static void emit_math2( struct brw_vs_compile *c,
565 GLuint function,
566 struct brw_reg dst,
567 struct brw_reg arg0,
568 struct brw_reg arg1,
569 GLuint precision)
570 {
571 struct brw_compile *p = &c->func;
572 struct intel_context *intel = &p->brw->intel;
573 struct brw_reg tmp = dst;
574 GLboolean need_tmp = (intel->gen < 6 &&
575 (dst.dw1.bits.writemask != 0xf ||
576 dst.file != BRW_GENERAL_REGISTER_FILE));
577
578 if (need_tmp)
579 tmp = get_tmp(c);
580
581 brw_MOV(p, brw_message_reg(3), arg1);
582
583 brw_math(p,
584 tmp,
585 function,
586 BRW_MATH_SATURATE_NONE,
587 2,
588 arg0,
589 BRW_MATH_DATA_SCALAR,
590 precision);
591
592 if (need_tmp) {
593 brw_MOV(p, dst, tmp);
594 release_tmp(c, tmp);
595 }
596 }
597
598
599 static void emit_exp_noalias( struct brw_vs_compile *c,
600 struct brw_reg dst,
601 struct brw_reg arg0 )
602 {
603 struct brw_compile *p = &c->func;
604
605
606 if (dst.dw1.bits.writemask & WRITEMASK_X) {
607 struct brw_reg tmp = get_tmp(c);
608 struct brw_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
609
610 /* tmp_d = floor(arg0.x) */
611 brw_RNDD(p, tmp_d, brw_swizzle1(arg0, 0));
612
613 /* result[0] = 2.0 ^ tmp */
614
615 /* Adjust exponent for floating point:
616 * exp += 127
617 */
618 brw_ADD(p, brw_writemask(tmp_d, WRITEMASK_X), tmp_d, brw_imm_d(127));
619
620 /* Install exponent and sign.
621 * Excess drops off the edge:
622 */
623 brw_SHL(p, brw_writemask(retype(dst, BRW_REGISTER_TYPE_D), WRITEMASK_X),
624 tmp_d, brw_imm_d(23));
625
626 release_tmp(c, tmp);
627 }
628
629 if (dst.dw1.bits.writemask & WRITEMASK_Y) {
630 /* result[1] = arg0.x - floor(arg0.x) */
631 brw_FRC(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0, 0));
632 }
633
634 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
635 /* As with the LOG instruction, we might be better off just
636 * doing a taylor expansion here, seeing as we have to do all
637 * the prep work.
638 *
639 * If mathbox partial precision is too low, consider also:
640 * result[3] = result[0] * EXP(result[1])
641 */
642 emit_math1(c,
643 BRW_MATH_FUNCTION_EXP,
644 brw_writemask(dst, WRITEMASK_Z),
645 brw_swizzle1(arg0, 0),
646 BRW_MATH_PRECISION_FULL);
647 }
648
649 if (dst.dw1.bits.writemask & WRITEMASK_W) {
650 /* result[3] = 1.0; */
651 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), brw_imm_f(1));
652 }
653 }
654
655
656 static void emit_log_noalias( struct brw_vs_compile *c,
657 struct brw_reg dst,
658 struct brw_reg arg0 )
659 {
660 struct brw_compile *p = &c->func;
661 struct brw_reg tmp = dst;
662 struct brw_reg tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
663 struct brw_reg arg0_ud = retype(arg0, BRW_REGISTER_TYPE_UD);
664 GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
665 dst.file != BRW_GENERAL_REGISTER_FILE);
666
667 if (need_tmp) {
668 tmp = get_tmp(c);
669 tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
670 }
671
672 /* Perform mant = frexpf(fabsf(x), &exp), adjust exp and mnt
673 * according to spec:
674 *
675 * These almost look likey they could be joined up, but not really
676 * practical:
677 *
678 * result[0].f = (x.i & ((1<<31)-1) >> 23) - 127
679 * result[1].i = (x.i & ((1<<23)-1) + (127<<23)
680 */
681 if (dst.dw1.bits.writemask & WRITEMASK_XZ) {
682 brw_AND(p,
683 brw_writemask(tmp_ud, WRITEMASK_X),
684 brw_swizzle1(arg0_ud, 0),
685 brw_imm_ud((1U<<31)-1));
686
687 brw_SHR(p,
688 brw_writemask(tmp_ud, WRITEMASK_X),
689 tmp_ud,
690 brw_imm_ud(23));
691
692 brw_ADD(p,
693 brw_writemask(tmp, WRITEMASK_X),
694 retype(tmp_ud, BRW_REGISTER_TYPE_D), /* does it matter? */
695 brw_imm_d(-127));
696 }
697
698 if (dst.dw1.bits.writemask & WRITEMASK_YZ) {
699 brw_AND(p,
700 brw_writemask(tmp_ud, WRITEMASK_Y),
701 brw_swizzle1(arg0_ud, 0),
702 brw_imm_ud((1<<23)-1));
703
704 brw_OR(p,
705 brw_writemask(tmp_ud, WRITEMASK_Y),
706 tmp_ud,
707 brw_imm_ud(127<<23));
708 }
709
710 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
711 /* result[2] = result[0] + LOG2(result[1]); */
712
713 /* Why bother? The above is just a hint how to do this with a
714 * taylor series. Maybe we *should* use a taylor series as by
715 * the time all the above has been done it's almost certainly
716 * quicker than calling the mathbox, even with low precision.
717 *
718 * Options are:
719 * - result[0] + mathbox.LOG2(result[1])
720 * - mathbox.LOG2(arg0.x)
721 * - result[0] + inline_taylor_approx(result[1])
722 */
723 emit_math1(c,
724 BRW_MATH_FUNCTION_LOG,
725 brw_writemask(tmp, WRITEMASK_Z),
726 brw_swizzle1(tmp, 1),
727 BRW_MATH_PRECISION_FULL);
728
729 brw_ADD(p,
730 brw_writemask(tmp, WRITEMASK_Z),
731 brw_swizzle1(tmp, 2),
732 brw_swizzle1(tmp, 0));
733 }
734
735 if (dst.dw1.bits.writemask & WRITEMASK_W) {
736 /* result[3] = 1.0; */
737 brw_MOV(p, brw_writemask(tmp, WRITEMASK_W), brw_imm_f(1));
738 }
739
740 if (need_tmp) {
741 brw_MOV(p, dst, tmp);
742 release_tmp(c, tmp);
743 }
744 }
745
746
747 /* Need to unalias - consider swizzles: r0 = DST r0.xxxx r1
748 */
749 static void emit_dst_noalias( struct brw_vs_compile *c,
750 struct brw_reg dst,
751 struct brw_reg arg0,
752 struct brw_reg arg1)
753 {
754 struct brw_compile *p = &c->func;
755
756 /* There must be a better way to do this:
757 */
758 if (dst.dw1.bits.writemask & WRITEMASK_X)
759 brw_MOV(p, brw_writemask(dst, WRITEMASK_X), brw_imm_f(1.0));
760 if (dst.dw1.bits.writemask & WRITEMASK_Y)
761 brw_MUL(p, brw_writemask(dst, WRITEMASK_Y), arg0, arg1);
762 if (dst.dw1.bits.writemask & WRITEMASK_Z)
763 brw_MOV(p, brw_writemask(dst, WRITEMASK_Z), arg0);
764 if (dst.dw1.bits.writemask & WRITEMASK_W)
765 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), arg1);
766 }
767
768
769 static void emit_xpd( struct brw_compile *p,
770 struct brw_reg dst,
771 struct brw_reg t,
772 struct brw_reg u)
773 {
774 brw_MUL(p, brw_null_reg(), brw_swizzle(t, 1,2,0,3), brw_swizzle(u,2,0,1,3));
775 brw_MAC(p, dst, negate(brw_swizzle(t, 2,0,1,3)), brw_swizzle(u,1,2,0,3));
776 }
777
778
779 static void emit_lit_noalias( struct brw_vs_compile *c,
780 struct brw_reg dst,
781 struct brw_reg arg0 )
782 {
783 struct brw_compile *p = &c->func;
784 struct brw_instruction *if_insn;
785 struct brw_reg tmp = dst;
786 GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
787
788 if (need_tmp)
789 tmp = get_tmp(c);
790
791 brw_MOV(p, brw_writemask(dst, WRITEMASK_YZ), brw_imm_f(0));
792 brw_MOV(p, brw_writemask(dst, WRITEMASK_XW), brw_imm_f(1));
793
794 /* Need to use BRW_EXECUTE_8 and also do an 8-wide compare in order
795 * to get all channels active inside the IF. In the clipping code
796 * we run with NoMask, so it's not an option and we can use
797 * BRW_EXECUTE_1 for all comparisions.
798 */
799 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,0), brw_imm_f(0));
800 if_insn = brw_IF(p, BRW_EXECUTE_8);
801 {
802 brw_MOV(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0,0));
803
804 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,1), brw_imm_f(0));
805 brw_MOV(p, brw_writemask(tmp, WRITEMASK_Z), brw_swizzle1(arg0,1));
806 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
807
808 emit_math2(c,
809 BRW_MATH_FUNCTION_POW,
810 brw_writemask(dst, WRITEMASK_Z),
811 brw_swizzle1(tmp, 2),
812 brw_swizzle1(arg0, 3),
813 BRW_MATH_PRECISION_PARTIAL);
814 }
815
816 brw_ENDIF(p, if_insn);
817
818 release_tmp(c, tmp);
819 }
820
821 static void emit_lrp_noalias(struct brw_vs_compile *c,
822 struct brw_reg dst,
823 struct brw_reg arg0,
824 struct brw_reg arg1,
825 struct brw_reg arg2)
826 {
827 struct brw_compile *p = &c->func;
828
829 brw_ADD(p, dst, negate(arg0), brw_imm_f(1.0));
830 brw_MUL(p, brw_null_reg(), dst, arg2);
831 brw_MAC(p, dst, arg0, arg1);
832 }
833
834 /** 3 or 4-component vector normalization */
835 static void emit_nrm( struct brw_vs_compile *c,
836 struct brw_reg dst,
837 struct brw_reg arg0,
838 int num_comps)
839 {
840 struct brw_compile *p = &c->func;
841 struct brw_reg tmp = get_tmp(c);
842
843 /* tmp = dot(arg0, arg0) */
844 if (num_comps == 3)
845 brw_DP3(p, tmp, arg0, arg0);
846 else
847 brw_DP4(p, tmp, arg0, arg0);
848
849 /* tmp = 1 / sqrt(tmp) */
850 emit_math1(c, BRW_MATH_FUNCTION_RSQ, tmp, tmp, BRW_MATH_PRECISION_FULL);
851
852 /* dst = arg0 * tmp */
853 brw_MUL(p, dst, arg0, tmp);
854
855 release_tmp(c, tmp);
856 }
857
858
859 static struct brw_reg
860 get_constant(struct brw_vs_compile *c,
861 const struct prog_instruction *inst,
862 GLuint argIndex)
863 {
864 const struct prog_src_register *src = &inst->SrcReg[argIndex];
865 struct brw_compile *p = &c->func;
866 struct brw_reg const_reg = c->current_const[argIndex].reg;
867
868 assert(argIndex < 3);
869
870 if (c->current_const[argIndex].index != src->Index) {
871 /* Keep track of the last constant loaded in this slot, for reuse. */
872 c->current_const[argIndex].index = src->Index;
873
874 #if 0
875 printf(" fetch const[%d] for arg %d into reg %d\n",
876 src->Index, argIndex, c->current_const[argIndex].reg.nr);
877 #endif
878 /* need to fetch the constant now */
879 brw_dp_READ_4_vs(p,
880 const_reg, /* writeback dest */
881 16 * src->Index, /* byte offset */
882 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
883 );
884 }
885
886 /* replicate lower four floats into upper half (to get XYZWXYZW) */
887 const_reg = stride(const_reg, 0, 4, 0);
888 const_reg.subnr = 0;
889
890 return const_reg;
891 }
892
893 static struct brw_reg
894 get_reladdr_constant(struct brw_vs_compile *c,
895 const struct prog_instruction *inst,
896 GLuint argIndex)
897 {
898 const struct prog_src_register *src = &inst->SrcReg[argIndex];
899 struct brw_compile *p = &c->func;
900 struct brw_reg const_reg = c->current_const[argIndex].reg;
901 struct brw_reg addrReg = c->regs[PROGRAM_ADDRESS][0];
902 struct brw_reg byte_addr_reg = get_tmp(c);
903
904 assert(argIndex < 3);
905
906 /* Can't reuse a reladdr constant load. */
907 c->current_const[argIndex].index = -1;
908
909 #if 0
910 printf(" fetch const[a0.x+%d] for arg %d into reg %d\n",
911 src->Index, argIndex, c->current_const[argIndex].reg.nr);
912 #endif
913
914 brw_MUL(p, byte_addr_reg, addrReg, brw_imm_ud(16));
915
916 /* fetch the first vec4 */
917 brw_dp_READ_4_vs_relative(p,
918 const_reg, /* writeback dest */
919 byte_addr_reg, /* address register */
920 16 * src->Index, /* byte offset */
921 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
922 );
923
924 return const_reg;
925 }
926
927
928
929 /* TODO: relative addressing!
930 */
931 static struct brw_reg get_reg( struct brw_vs_compile *c,
932 gl_register_file file,
933 GLuint index )
934 {
935 switch (file) {
936 case PROGRAM_TEMPORARY:
937 case PROGRAM_INPUT:
938 case PROGRAM_OUTPUT:
939 assert(c->regs[file][index].nr != 0);
940 return c->regs[file][index];
941 case PROGRAM_STATE_VAR:
942 case PROGRAM_CONSTANT:
943 case PROGRAM_UNIFORM:
944 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
945 return c->regs[PROGRAM_STATE_VAR][index];
946 case PROGRAM_ADDRESS:
947 assert(index == 0);
948 return c->regs[file][index];
949
950 case PROGRAM_UNDEFINED: /* undef values */
951 return brw_null_reg();
952
953 case PROGRAM_LOCAL_PARAM:
954 case PROGRAM_ENV_PARAM:
955 case PROGRAM_WRITE_ONLY:
956 default:
957 assert(0);
958 return brw_null_reg();
959 }
960 }
961
962
963 /**
964 * Indirect addressing: get reg[[arg] + offset].
965 */
966 static struct brw_reg deref( struct brw_vs_compile *c,
967 struct brw_reg arg,
968 GLint offset,
969 GLuint reg_size )
970 {
971 struct brw_compile *p = &c->func;
972 struct brw_reg tmp = vec4(get_tmp(c));
973 struct brw_reg addr_reg = c->regs[PROGRAM_ADDRESS][0];
974 struct brw_reg vp_address = retype(vec1(addr_reg), BRW_REGISTER_TYPE_UW);
975 GLuint byte_offset = arg.nr * 32 + arg.subnr + offset * reg_size;
976 struct brw_reg indirect = brw_vec4_indirect(0,0);
977 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
978
979 {
980 brw_push_insn_state(p);
981 brw_set_access_mode(p, BRW_ALIGN_1);
982
983 /* This is pretty clunky - load the address register twice and
984 * fetch each 4-dword value in turn. There must be a way to do
985 * this in a single pass, but I couldn't get it to work.
986 */
987 brw_MUL(p, acc, vp_address, brw_imm_d(reg_size));
988 brw_ADD(p, brw_address_reg(0), acc, brw_imm_d(byte_offset));
989 brw_MOV(p, tmp, indirect);
990
991 brw_MUL(p, acc, suboffset(vp_address, 8), brw_imm_d(reg_size));
992 brw_ADD(p, brw_address_reg(0), acc, brw_imm_d(byte_offset));
993 brw_MOV(p, suboffset(tmp, 4), indirect);
994
995 brw_pop_insn_state(p);
996 }
997
998 /* NOTE: tmp not released */
999 return vec8(tmp);
1000 }
1001
1002
1003 /**
1004 * Get brw reg corresponding to the instruction's [argIndex] src reg.
1005 * TODO: relative addressing!
1006 */
1007 static struct brw_reg
1008 get_src_reg( struct brw_vs_compile *c,
1009 const struct prog_instruction *inst,
1010 GLuint argIndex )
1011 {
1012 const GLuint file = inst->SrcReg[argIndex].File;
1013 const GLint index = inst->SrcReg[argIndex].Index;
1014 const GLboolean relAddr = inst->SrcReg[argIndex].RelAddr;
1015
1016 if (brw_vs_arg_can_be_immediate(inst->Opcode, argIndex)) {
1017 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1018
1019 if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ZERO,
1020 SWIZZLE_ZERO,
1021 SWIZZLE_ZERO,
1022 SWIZZLE_ZERO)) {
1023 return brw_imm_f(0.0f);
1024 } else if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ONE,
1025 SWIZZLE_ONE,
1026 SWIZZLE_ONE,
1027 SWIZZLE_ONE)) {
1028 if (src->Negate)
1029 return brw_imm_f(-1.0F);
1030 else
1031 return brw_imm_f(1.0F);
1032 } else if (src->File == PROGRAM_CONSTANT) {
1033 const struct gl_program_parameter_list *params;
1034 float f;
1035 int component = -1;
1036
1037 switch (src->Swizzle) {
1038 case SWIZZLE_XXXX:
1039 component = 0;
1040 break;
1041 case SWIZZLE_YYYY:
1042 component = 1;
1043 break;
1044 case SWIZZLE_ZZZZ:
1045 component = 2;
1046 break;
1047 case SWIZZLE_WWWW:
1048 component = 3;
1049 break;
1050 }
1051
1052 if (component >= 0) {
1053 params = c->vp->program.Base.Parameters;
1054 f = params->ParameterValues[src->Index][component];
1055
1056 if (src->Abs)
1057 f = fabs(f);
1058 if (src->Negate)
1059 f = -f;
1060 return brw_imm_f(f);
1061 }
1062 }
1063 }
1064
1065 switch (file) {
1066 case PROGRAM_TEMPORARY:
1067 case PROGRAM_INPUT:
1068 case PROGRAM_OUTPUT:
1069 if (relAddr) {
1070 return deref(c, c->regs[file][0], index, 32);
1071 }
1072 else {
1073 assert(c->regs[file][index].nr != 0);
1074 return c->regs[file][index];
1075 }
1076
1077 case PROGRAM_STATE_VAR:
1078 case PROGRAM_CONSTANT:
1079 case PROGRAM_UNIFORM:
1080 case PROGRAM_ENV_PARAM:
1081 case PROGRAM_LOCAL_PARAM:
1082 if (c->vp->use_const_buffer) {
1083 if (!relAddr && c->constant_map[index] != -1) {
1084 assert(c->regs[PROGRAM_STATE_VAR][c->constant_map[index]].nr != 0);
1085 return c->regs[PROGRAM_STATE_VAR][c->constant_map[index]];
1086 } else if (relAddr)
1087 return get_reladdr_constant(c, inst, argIndex);
1088 else
1089 return get_constant(c, inst, argIndex);
1090 }
1091 else if (relAddr) {
1092 return deref(c, c->regs[PROGRAM_STATE_VAR][0], index, 16);
1093 }
1094 else {
1095 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
1096 return c->regs[PROGRAM_STATE_VAR][index];
1097 }
1098 case PROGRAM_ADDRESS:
1099 assert(index == 0);
1100 return c->regs[file][index];
1101
1102 case PROGRAM_UNDEFINED:
1103 /* this is a normal case since we loop over all three src args */
1104 return brw_null_reg();
1105
1106 case PROGRAM_WRITE_ONLY:
1107 default:
1108 assert(0);
1109 return brw_null_reg();
1110 }
1111 }
1112
1113 /**
1114 * Return the brw reg for the given instruction's src argument.
1115 * Will return mangled results for SWZ op. The emit_swz() function
1116 * ignores this result and recalculates taking extended swizzles into
1117 * account.
1118 */
1119 static struct brw_reg get_arg( struct brw_vs_compile *c,
1120 const struct prog_instruction *inst,
1121 GLuint argIndex )
1122 {
1123 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1124 struct brw_reg reg;
1125
1126 if (src->File == PROGRAM_UNDEFINED)
1127 return brw_null_reg();
1128
1129 reg = get_src_reg(c, inst, argIndex);
1130
1131 /* Convert 3-bit swizzle to 2-bit.
1132 */
1133 reg.dw1.bits.swizzle = BRW_SWIZZLE4(GET_SWZ(src->Swizzle, 0),
1134 GET_SWZ(src->Swizzle, 1),
1135 GET_SWZ(src->Swizzle, 2),
1136 GET_SWZ(src->Swizzle, 3));
1137
1138 /* Note this is ok for non-swizzle instructions:
1139 */
1140 reg.negate = src->Negate ? 1 : 0;
1141
1142 return reg;
1143 }
1144
1145
1146 /**
1147 * Get brw register for the given program dest register.
1148 */
1149 static struct brw_reg get_dst( struct brw_vs_compile *c,
1150 struct prog_dst_register dst )
1151 {
1152 struct brw_reg reg;
1153
1154 switch (dst.File) {
1155 case PROGRAM_TEMPORARY:
1156 case PROGRAM_OUTPUT:
1157 assert(c->regs[dst.File][dst.Index].nr != 0);
1158 reg = c->regs[dst.File][dst.Index];
1159 break;
1160 case PROGRAM_ADDRESS:
1161 assert(dst.Index == 0);
1162 reg = c->regs[dst.File][dst.Index];
1163 break;
1164 case PROGRAM_UNDEFINED:
1165 /* we may hit this for OPCODE_END, OPCODE_KIL, etc */
1166 reg = brw_null_reg();
1167 break;
1168 default:
1169 assert(0);
1170 reg = brw_null_reg();
1171 }
1172
1173 reg.dw1.bits.writemask = dst.WriteMask;
1174
1175 return reg;
1176 }
1177
1178
1179 static void emit_swz( struct brw_vs_compile *c,
1180 struct brw_reg dst,
1181 const struct prog_instruction *inst)
1182 {
1183 const GLuint argIndex = 0;
1184 const struct prog_src_register src = inst->SrcReg[argIndex];
1185 struct brw_compile *p = &c->func;
1186 GLuint zeros_mask = 0;
1187 GLuint ones_mask = 0;
1188 GLuint src_mask = 0;
1189 GLubyte src_swz[4];
1190 GLboolean need_tmp = (src.Negate &&
1191 dst.file != BRW_GENERAL_REGISTER_FILE);
1192 struct brw_reg tmp = dst;
1193 GLuint i;
1194
1195 if (need_tmp)
1196 tmp = get_tmp(c);
1197
1198 for (i = 0; i < 4; i++) {
1199 if (dst.dw1.bits.writemask & (1<<i)) {
1200 GLubyte s = GET_SWZ(src.Swizzle, i);
1201 switch (s) {
1202 case SWIZZLE_X:
1203 case SWIZZLE_Y:
1204 case SWIZZLE_Z:
1205 case SWIZZLE_W:
1206 src_mask |= 1<<i;
1207 src_swz[i] = s;
1208 break;
1209 case SWIZZLE_ZERO:
1210 zeros_mask |= 1<<i;
1211 break;
1212 case SWIZZLE_ONE:
1213 ones_mask |= 1<<i;
1214 break;
1215 }
1216 }
1217 }
1218
1219 /* Do src first, in case dst aliases src:
1220 */
1221 if (src_mask) {
1222 struct brw_reg arg0;
1223
1224 arg0 = get_src_reg(c, inst, argIndex);
1225
1226 arg0 = brw_swizzle(arg0,
1227 src_swz[0], src_swz[1],
1228 src_swz[2], src_swz[3]);
1229
1230 brw_MOV(p, brw_writemask(tmp, src_mask), arg0);
1231 }
1232
1233 if (zeros_mask)
1234 brw_MOV(p, brw_writemask(tmp, zeros_mask), brw_imm_f(0));
1235
1236 if (ones_mask)
1237 brw_MOV(p, brw_writemask(tmp, ones_mask), brw_imm_f(1));
1238
1239 if (src.Negate)
1240 brw_MOV(p, brw_writemask(tmp, src.Negate), negate(tmp));
1241
1242 if (need_tmp) {
1243 brw_MOV(p, dst, tmp);
1244 release_tmp(c, tmp);
1245 }
1246 }
1247
1248
1249 /**
1250 * Post-vertex-program processing. Send the results to the URB.
1251 */
1252 static void emit_vertex_write( struct brw_vs_compile *c)
1253 {
1254 struct brw_compile *p = &c->func;
1255 struct brw_context *brw = p->brw;
1256 struct intel_context *intel = &brw->intel;
1257 struct brw_reg pos = c->regs[PROGRAM_OUTPUT][VERT_RESULT_HPOS];
1258 struct brw_reg ndc;
1259 int eot;
1260 GLuint len_vertex_header = 2;
1261
1262 if (c->key.copy_edgeflag) {
1263 brw_MOV(p,
1264 get_reg(c, PROGRAM_OUTPUT, VERT_RESULT_EDGE),
1265 get_reg(c, PROGRAM_INPUT, VERT_ATTRIB_EDGEFLAG));
1266 }
1267
1268 if (intel->gen < 6) {
1269 /* Build ndc coords */
1270 ndc = get_tmp(c);
1271 /* ndc = 1.0 / pos.w */
1272 emit_math1(c, BRW_MATH_FUNCTION_INV, ndc, brw_swizzle1(pos, 3), BRW_MATH_PRECISION_FULL);
1273 /* ndc.xyz = pos * ndc */
1274 brw_MUL(p, brw_writemask(ndc, WRITEMASK_XYZ), pos, ndc);
1275 }
1276
1277 /* Update the header for point size, user clipping flags, and -ve rhw
1278 * workaround.
1279 */
1280 if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1281 c->key.nr_userclip || brw->has_negative_rhw_bug)
1282 {
1283 struct brw_reg header1 = retype(get_tmp(c), BRW_REGISTER_TYPE_UD);
1284 GLuint i;
1285
1286 brw_MOV(p, header1, brw_imm_ud(0));
1287
1288 brw_set_access_mode(p, BRW_ALIGN_16);
1289
1290 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1291 struct brw_reg psiz = c->regs[PROGRAM_OUTPUT][VERT_RESULT_PSIZ];
1292 brw_MUL(p, brw_writemask(header1, WRITEMASK_W), brw_swizzle1(psiz, 0), brw_imm_f(1<<11));
1293 brw_AND(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(0x7ff<<8));
1294 }
1295
1296 for (i = 0; i < c->key.nr_userclip; i++) {
1297 brw_set_conditionalmod(p, BRW_CONDITIONAL_L);
1298 brw_DP4(p, brw_null_reg(), pos, c->userplane[i]);
1299 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<i));
1300 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1301 }
1302
1303 /* i965 clipping workaround:
1304 * 1) Test for -ve rhw
1305 * 2) If set,
1306 * set ndc = (0,0,0,0)
1307 * set ucp[6] = 1
1308 *
1309 * Later, clipping will detect ucp[6] and ensure the primitive is
1310 * clipped against all fixed planes.
1311 */
1312 if (brw->has_negative_rhw_bug) {
1313 brw_CMP(p,
1314 vec8(brw_null_reg()),
1315 BRW_CONDITIONAL_L,
1316 brw_swizzle1(ndc, 3),
1317 brw_imm_f(0));
1318
1319 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1320 brw_MOV(p, ndc, brw_imm_f(0));
1321 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1322 }
1323
1324 brw_set_access_mode(p, BRW_ALIGN_1); /* why? */
1325 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), header1);
1326 brw_set_access_mode(p, BRW_ALIGN_16);
1327
1328 release_tmp(c, header1);
1329 }
1330 else {
1331 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
1332 }
1333
1334 /* Emit the (interleaved) headers for the two vertices - an 8-reg
1335 * of zeros followed by two sets of NDC coordinates:
1336 */
1337 brw_set_access_mode(p, BRW_ALIGN_1);
1338
1339 /* The VUE layout is documented in Volume 2a. */
1340 if (intel->gen >= 6) {
1341 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
1342 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1343 * dword 4-7 (m2) is the 4D space position
1344 * dword 8-15 (m3,m4) of the vertex header is the user clip distance if
1345 * enabled. We don't use it, so skip it.
1346 * m3 is the first vertex element data we fill, which is the vertex
1347 * position.
1348 */
1349 brw_MOV(p, brw_message_reg(2), pos);
1350 brw_MOV(p, brw_message_reg(3), pos);
1351 len_vertex_header = 2;
1352 } else if (intel->gen == 5) {
1353 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
1354 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1355 * dword 4-7 (m2) is the ndc position (set above)
1356 * dword 8-11 (m3) of the vertex header is the 4D space position
1357 * dword 12-19 (m4,m5) of the vertex header is the user clip distance.
1358 * m6 is a pad so that the vertex element data is aligned
1359 * m7 is the first vertex data we fill, which is the vertex position.
1360 */
1361 brw_MOV(p, brw_message_reg(2), ndc);
1362 brw_MOV(p, brw_message_reg(3), pos);
1363 brw_MOV(p, brw_message_reg(7), pos);
1364 len_vertex_header = 6;
1365 } else {
1366 /* There are 8 dwords in VUE header pre-Ironlake:
1367 * dword 0-3 (m1) is indices, point width, clip flags.
1368 * dword 4-7 (m2) is ndc position (set above)
1369 *
1370 * dword 8-11 (m3) is the first vertex data, which we always have be the
1371 * vertex position.
1372 */
1373 brw_MOV(p, brw_message_reg(2), ndc);
1374 brw_MOV(p, brw_message_reg(3), pos);
1375 len_vertex_header = 2;
1376 }
1377
1378 eot = (c->first_overflow_output == 0);
1379
1380 brw_urb_WRITE(p,
1381 brw_null_reg(), /* dest */
1382 0, /* starting mrf reg nr */
1383 c->r0, /* src */
1384 0, /* allocate */
1385 1, /* used */
1386 MIN2(c->nr_outputs + 1 + len_vertex_header, (BRW_MAX_MRF-1)), /* msg len */
1387 0, /* response len */
1388 eot, /* eot */
1389 eot, /* writes complete */
1390 0, /* urb destination offset */
1391 BRW_URB_SWIZZLE_INTERLEAVE);
1392
1393 if (c->first_overflow_output > 0) {
1394 /* Not all of the vertex outputs/results fit into the MRF.
1395 * Move the overflowed attributes from the GRF to the MRF and
1396 * issue another brw_urb_WRITE().
1397 */
1398 GLuint i, mrf = 1;
1399 for (i = c->first_overflow_output; i < VERT_RESULT_MAX; i++) {
1400 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
1401 /* move from GRF to MRF */
1402 brw_MOV(p, brw_message_reg(mrf), c->regs[PROGRAM_OUTPUT][i]);
1403 mrf++;
1404 }
1405 }
1406
1407 brw_urb_WRITE(p,
1408 brw_null_reg(), /* dest */
1409 0, /* starting mrf reg nr */
1410 c->r0, /* src */
1411 0, /* allocate */
1412 1, /* used */
1413 mrf, /* msg len */
1414 0, /* response len */
1415 1, /* eot */
1416 1, /* writes complete */
1417 14 / 2, /* urb destination offset */
1418 BRW_URB_SWIZZLE_INTERLEAVE);
1419 }
1420 }
1421
1422 static GLboolean
1423 accumulator_contains(struct brw_vs_compile *c, struct brw_reg val)
1424 {
1425 struct brw_compile *p = &c->func;
1426 struct brw_instruction *prev_insn = &p->store[p->nr_insn - 1];
1427
1428 if (p->nr_insn == 0)
1429 return GL_FALSE;
1430
1431 if (val.address_mode != BRW_ADDRESS_DIRECT)
1432 return GL_FALSE;
1433
1434 switch (prev_insn->header.opcode) {
1435 case BRW_OPCODE_MOV:
1436 case BRW_OPCODE_MAC:
1437 case BRW_OPCODE_MUL:
1438 if (prev_insn->header.access_mode == BRW_ALIGN_16 &&
1439 prev_insn->header.execution_size == val.width &&
1440 prev_insn->bits1.da1.dest_reg_file == val.file &&
1441 prev_insn->bits1.da1.dest_reg_type == val.type &&
1442 prev_insn->bits1.da1.dest_address_mode == val.address_mode &&
1443 prev_insn->bits1.da1.dest_reg_nr == val.nr &&
1444 prev_insn->bits1.da16.dest_subreg_nr == val.subnr / 16 &&
1445 prev_insn->bits1.da16.dest_writemask == 0xf)
1446 return GL_TRUE;
1447 else
1448 return GL_FALSE;
1449 default:
1450 return GL_FALSE;
1451 }
1452 }
1453
1454 static uint32_t
1455 get_predicate(const struct prog_instruction *inst)
1456 {
1457 if (inst->DstReg.CondMask == COND_TR)
1458 return BRW_PREDICATE_NONE;
1459
1460 /* All of GLSL only produces predicates for COND_NE and one channel per
1461 * vector. Fail badly if someone starts doing something else, as it might
1462 * mean infinite looping or something.
1463 *
1464 * We'd like to support all the condition codes, but our hardware doesn't
1465 * quite match the Mesa IR, which is modeled after the NV extensions. For
1466 * those, the instruction may update the condition codes or not, then any
1467 * later instruction may use one of those condition codes. For gen4, the
1468 * instruction may update the flags register based on one of the condition
1469 * codes output by the instruction, and then further instructions may
1470 * predicate on that. We can probably support this, but it won't
1471 * necessarily be easy.
1472 */
1473 assert(inst->DstReg.CondMask == COND_NE);
1474
1475 switch (inst->DstReg.CondSwizzle) {
1476 case SWIZZLE_XXXX:
1477 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
1478 case SWIZZLE_YYYY:
1479 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1480 case SWIZZLE_ZZZZ:
1481 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1482 case SWIZZLE_WWWW:
1483 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
1484 default:
1485 _mesa_problem(NULL, "Unexpected predicate: 0x%08x\n",
1486 inst->DstReg.CondMask);
1487 return BRW_PREDICATE_NORMAL;
1488 }
1489 }
1490
1491 /* Emit the vertex program instructions here.
1492 */
1493 void brw_vs_emit(struct brw_vs_compile *c )
1494 {
1495 #define MAX_IF_DEPTH 32
1496 #define MAX_LOOP_DEPTH 32
1497 struct brw_compile *p = &c->func;
1498 struct brw_context *brw = p->brw;
1499 struct intel_context *intel = &brw->intel;
1500 const GLuint nr_insns = c->vp->program.Base.NumInstructions;
1501 GLuint insn, if_depth = 0, loop_depth = 0;
1502 struct brw_instruction *if_inst[MAX_IF_DEPTH], *loop_inst[MAX_LOOP_DEPTH] = { 0 };
1503 const struct brw_indirect stack_index = brw_indirect(0, 0);
1504 GLuint index;
1505 GLuint file;
1506
1507 if (INTEL_DEBUG & DEBUG_VS) {
1508 printf("vs-mesa:\n");
1509 _mesa_print_program(&c->vp->program.Base);
1510 printf("\n");
1511 }
1512
1513 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1514 brw_set_access_mode(p, BRW_ALIGN_16);
1515
1516 for (insn = 0; insn < nr_insns; insn++) {
1517 GLuint i;
1518 struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1519
1520 /* Message registers can't be read, so copy the output into GRF
1521 * register if they are used in source registers
1522 */
1523 for (i = 0; i < 3; i++) {
1524 struct prog_src_register *src = &inst->SrcReg[i];
1525 GLuint index = src->Index;
1526 GLuint file = src->File;
1527 if (file == PROGRAM_OUTPUT && index != VERT_RESULT_HPOS)
1528 c->output_regs[index].used_in_src = GL_TRUE;
1529 }
1530
1531 switch (inst->Opcode) {
1532 case OPCODE_CAL:
1533 case OPCODE_RET:
1534 c->needs_stack = GL_TRUE;
1535 break;
1536 default:
1537 break;
1538 }
1539 }
1540
1541 /* Static register allocation
1542 */
1543 brw_vs_alloc_regs(c);
1544
1545 if (c->needs_stack)
1546 brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
1547
1548 for (insn = 0; insn < nr_insns; insn++) {
1549
1550 const struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1551 struct brw_reg args[3], dst;
1552 GLuint i;
1553
1554 #if 0
1555 printf("%d: ", insn);
1556 _mesa_print_instruction(inst);
1557 #endif
1558
1559 /* Get argument regs. SWZ is special and does this itself.
1560 */
1561 if (inst->Opcode != OPCODE_SWZ)
1562 for (i = 0; i < 3; i++) {
1563 const struct prog_src_register *src = &inst->SrcReg[i];
1564 index = src->Index;
1565 file = src->File;
1566 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1567 args[i] = c->output_regs[index].reg;
1568 else
1569 args[i] = get_arg(c, inst, i);
1570 }
1571
1572 /* Get dest regs. Note that it is possible for a reg to be both
1573 * dst and arg, given the static allocation of registers. So
1574 * care needs to be taken emitting multi-operation instructions.
1575 */
1576 index = inst->DstReg.Index;
1577 file = inst->DstReg.File;
1578 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1579 dst = c->output_regs[index].reg;
1580 else
1581 dst = get_dst(c, inst->DstReg);
1582
1583 if (inst->SaturateMode != SATURATE_OFF) {
1584 _mesa_problem(NULL, "Unsupported saturate %d in vertex shader",
1585 inst->SaturateMode);
1586 }
1587
1588 switch (inst->Opcode) {
1589 case OPCODE_ABS:
1590 brw_MOV(p, dst, brw_abs(args[0]));
1591 break;
1592 case OPCODE_ADD:
1593 brw_ADD(p, dst, args[0], args[1]);
1594 break;
1595 case OPCODE_COS:
1596 emit_math1(c, BRW_MATH_FUNCTION_COS, dst, args[0], BRW_MATH_PRECISION_FULL);
1597 break;
1598 case OPCODE_DP3:
1599 brw_DP3(p, dst, args[0], args[1]);
1600 break;
1601 case OPCODE_DP4:
1602 brw_DP4(p, dst, args[0], args[1]);
1603 break;
1604 case OPCODE_DPH:
1605 brw_DPH(p, dst, args[0], args[1]);
1606 break;
1607 case OPCODE_NRM3:
1608 emit_nrm(c, dst, args[0], 3);
1609 break;
1610 case OPCODE_NRM4:
1611 emit_nrm(c, dst, args[0], 4);
1612 break;
1613 case OPCODE_DST:
1614 unalias2(c, dst, args[0], args[1], emit_dst_noalias);
1615 break;
1616 case OPCODE_EXP:
1617 unalias1(c, dst, args[0], emit_exp_noalias);
1618 break;
1619 case OPCODE_EX2:
1620 emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, args[0], BRW_MATH_PRECISION_FULL);
1621 break;
1622 case OPCODE_ARL:
1623 brw_RNDD(p, dst, args[0]);
1624 break;
1625 case OPCODE_FLR:
1626 brw_RNDD(p, dst, args[0]);
1627 break;
1628 case OPCODE_FRC:
1629 brw_FRC(p, dst, args[0]);
1630 break;
1631 case OPCODE_LOG:
1632 unalias1(c, dst, args[0], emit_log_noalias);
1633 break;
1634 case OPCODE_LG2:
1635 emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, args[0], BRW_MATH_PRECISION_FULL);
1636 break;
1637 case OPCODE_LIT:
1638 unalias1(c, dst, args[0], emit_lit_noalias);
1639 break;
1640 case OPCODE_LRP:
1641 unalias3(c, dst, args[0], args[1], args[2], emit_lrp_noalias);
1642 break;
1643 case OPCODE_MAD:
1644 if (!accumulator_contains(c, args[2]))
1645 brw_MOV(p, brw_acc_reg(), args[2]);
1646 brw_MAC(p, dst, args[0], args[1]);
1647 break;
1648 case OPCODE_CMP:
1649 emit_cmp(p, dst, args[0], args[1], args[2]);
1650 break;
1651 case OPCODE_MAX:
1652 emit_max(p, dst, args[0], args[1]);
1653 break;
1654 case OPCODE_MIN:
1655 emit_min(p, dst, args[0], args[1]);
1656 break;
1657 case OPCODE_MOV:
1658 brw_MOV(p, dst, args[0]);
1659 break;
1660 case OPCODE_MUL:
1661 brw_MUL(p, dst, args[0], args[1]);
1662 break;
1663 case OPCODE_POW:
1664 emit_math2(c, BRW_MATH_FUNCTION_POW, dst, args[0], args[1], BRW_MATH_PRECISION_FULL);
1665 break;
1666 case OPCODE_RCP:
1667 emit_math1(c, BRW_MATH_FUNCTION_INV, dst, args[0], BRW_MATH_PRECISION_FULL);
1668 break;
1669 case OPCODE_RSQ:
1670 emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, args[0], BRW_MATH_PRECISION_FULL);
1671 break;
1672
1673 case OPCODE_SEQ:
1674 unalias2(c, dst, args[0], args[1], emit_seq);
1675 break;
1676 case OPCODE_SIN:
1677 emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, args[0], BRW_MATH_PRECISION_FULL);
1678 break;
1679 case OPCODE_SNE:
1680 unalias2(c, dst, args[0], args[1], emit_sne);
1681 break;
1682 case OPCODE_SGE:
1683 unalias2(c, dst, args[0], args[1], emit_sge);
1684 break;
1685 case OPCODE_SGT:
1686 unalias2(c, dst, args[0], args[1], emit_sgt);
1687 break;
1688 case OPCODE_SLT:
1689 unalias2(c, dst, args[0], args[1], emit_slt);
1690 break;
1691 case OPCODE_SLE:
1692 unalias2(c, dst, args[0], args[1], emit_sle);
1693 break;
1694 case OPCODE_SUB:
1695 brw_ADD(p, dst, args[0], negate(args[1]));
1696 break;
1697 case OPCODE_SWZ:
1698 /* The args[0] value can't be used here as it won't have
1699 * correctly encoded the full swizzle:
1700 */
1701 emit_swz(c, dst, inst);
1702 break;
1703 case OPCODE_TRUNC:
1704 /* round toward zero */
1705 brw_RNDZ(p, dst, args[0]);
1706 break;
1707 case OPCODE_XPD:
1708 emit_xpd(p, dst, args[0], args[1]);
1709 break;
1710 case OPCODE_IF:
1711 assert(if_depth < MAX_IF_DEPTH);
1712 if_inst[if_depth] = brw_IF(p, BRW_EXECUTE_8);
1713 /* Note that brw_IF smashes the predicate_control field. */
1714 if_inst[if_depth]->header.predicate_control = get_predicate(inst);
1715 if_depth++;
1716 break;
1717 case OPCODE_ELSE:
1718 assert(if_depth > 0);
1719 if_inst[if_depth-1] = brw_ELSE(p, if_inst[if_depth-1]);
1720 break;
1721 case OPCODE_ENDIF:
1722 assert(if_depth > 0);
1723 brw_ENDIF(p, if_inst[--if_depth]);
1724 break;
1725 case OPCODE_BGNLOOP:
1726 loop_inst[loop_depth++] = brw_DO(p, BRW_EXECUTE_8);
1727 break;
1728 case OPCODE_BRK:
1729 brw_set_predicate_control(p, get_predicate(inst));
1730 brw_BREAK(p);
1731 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1732 break;
1733 case OPCODE_CONT:
1734 brw_set_predicate_control(p, get_predicate(inst));
1735 brw_CONT(p);
1736 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1737 break;
1738 case OPCODE_ENDLOOP:
1739 {
1740 struct brw_instruction *inst0, *inst1;
1741 GLuint br = 1;
1742
1743 loop_depth--;
1744
1745 if (intel->gen == 5)
1746 br = 2;
1747
1748 inst0 = inst1 = brw_WHILE(p, loop_inst[loop_depth]);
1749 /* patch all the BREAK/CONT instructions from last BEGINLOOP */
1750 while (inst0 > loop_inst[loop_depth]) {
1751 inst0--;
1752 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
1753 inst0->bits3.if_else.jump_count == 0) {
1754 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
1755 inst0->bits3.if_else.pop_count = 0;
1756 }
1757 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
1758 inst0->bits3.if_else.jump_count == 0) {
1759 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
1760 inst0->bits3.if_else.pop_count = 0;
1761 }
1762 }
1763 }
1764 break;
1765 case OPCODE_BRA:
1766 brw_set_predicate_control(p, get_predicate(inst));
1767 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1768 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1769 break;
1770 case OPCODE_CAL:
1771 brw_set_access_mode(p, BRW_ALIGN_1);
1772 brw_ADD(p, deref_1d(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
1773 brw_set_access_mode(p, BRW_ALIGN_16);
1774 brw_ADD(p, get_addr_reg(stack_index),
1775 get_addr_reg(stack_index), brw_imm_d(4));
1776 brw_save_call(p, inst->Comment, p->nr_insn);
1777 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1778 break;
1779 case OPCODE_RET:
1780 brw_ADD(p, get_addr_reg(stack_index),
1781 get_addr_reg(stack_index), brw_imm_d(-4));
1782 brw_set_access_mode(p, BRW_ALIGN_1);
1783 brw_MOV(p, brw_ip_reg(), deref_1d(stack_index, 0));
1784 brw_set_access_mode(p, BRW_ALIGN_16);
1785 break;
1786 case OPCODE_END:
1787 emit_vertex_write(c);
1788 break;
1789 case OPCODE_PRINT:
1790 /* no-op */
1791 break;
1792 case OPCODE_BGNSUB:
1793 brw_save_label(p, inst->Comment, p->nr_insn);
1794 break;
1795 case OPCODE_ENDSUB:
1796 /* no-op */
1797 break;
1798 default:
1799 _mesa_problem(NULL, "Unsupported opcode %i (%s) in vertex shader",
1800 inst->Opcode, inst->Opcode < MAX_OPCODE ?
1801 _mesa_opcode_string(inst->Opcode) :
1802 "unknown");
1803 }
1804
1805 /* Set the predication update on the last instruction of the native
1806 * instruction sequence.
1807 *
1808 * This would be problematic if it was set on a math instruction,
1809 * but that shouldn't be the case with the current GLSL compiler.
1810 */
1811 if (inst->CondUpdate) {
1812 struct brw_instruction *hw_insn = &p->store[p->nr_insn - 1];
1813
1814 assert(hw_insn->header.destreg__conditionalmod == 0);
1815 hw_insn->header.destreg__conditionalmod = BRW_CONDITIONAL_NZ;
1816 }
1817
1818 if ((inst->DstReg.File == PROGRAM_OUTPUT)
1819 && (inst->DstReg.Index != VERT_RESULT_HPOS)
1820 && c->output_regs[inst->DstReg.Index].used_in_src) {
1821 brw_MOV(p, get_dst(c, inst->DstReg), dst);
1822 }
1823
1824 /* Result color clamping.
1825 *
1826 * When destination register is an output register and
1827 * it's primary/secondary front/back color, we have to clamp
1828 * the result to [0,1]. This is done by enabling the
1829 * saturation bit for the last instruction.
1830 *
1831 * We don't use brw_set_saturate() as it modifies
1832 * p->current->header.saturate, which affects all the subsequent
1833 * instructions. Instead, we directly modify the header
1834 * of the last (already stored) instruction.
1835 */
1836 if (inst->DstReg.File == PROGRAM_OUTPUT) {
1837 if ((inst->DstReg.Index == VERT_RESULT_COL0)
1838 || (inst->DstReg.Index == VERT_RESULT_COL1)
1839 || (inst->DstReg.Index == VERT_RESULT_BFC0)
1840 || (inst->DstReg.Index == VERT_RESULT_BFC1)) {
1841 p->store[p->nr_insn-1].header.saturate = 1;
1842 }
1843 }
1844
1845 release_tmps(c);
1846 }
1847
1848 brw_resolve_cals(p);
1849
1850 brw_optimize(p);
1851
1852 if (INTEL_DEBUG & DEBUG_VS) {
1853 int i;
1854
1855 printf("vs-native:\n");
1856 for (i = 0; i < p->nr_insn; i++)
1857 brw_disasm(stderr, &p->store[i], intel->gen);
1858 printf("\n");
1859 }
1860 }