i965: Clean up dead code from the VS get_constant/get_reladdr_constant split.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/macros.h"
34 #include "program/program.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "brw_context.h"
38 #include "brw_vs.h"
39
40 /* Return the SrcReg index of the channels that can be immediate float operands
41 * instead of usage of PROGRAM_CONSTANT values through push/pull.
42 */
43 static GLboolean
44 brw_vs_arg_can_be_immediate(enum prog_opcode opcode, int arg)
45 {
46 int opcode_array[] = {
47 [OPCODE_ADD] = 2,
48 [OPCODE_CMP] = 3,
49 [OPCODE_DP3] = 2,
50 [OPCODE_DP4] = 2,
51 [OPCODE_DPH] = 2,
52 [OPCODE_MAX] = 2,
53 [OPCODE_MIN] = 2,
54 [OPCODE_MUL] = 2,
55 [OPCODE_SEQ] = 2,
56 [OPCODE_SGE] = 2,
57 [OPCODE_SGT] = 2,
58 [OPCODE_SLE] = 2,
59 [OPCODE_SLT] = 2,
60 [OPCODE_SNE] = 2,
61 [OPCODE_XPD] = 2,
62 };
63
64 /* These opcodes get broken down in a way that allow two
65 * args to be immediates.
66 */
67 if (opcode == OPCODE_MAD || opcode == OPCODE_LRP) {
68 if (arg == 1 || arg == 2)
69 return GL_TRUE;
70 }
71
72 if (opcode > ARRAY_SIZE(opcode_array))
73 return GL_FALSE;
74
75 return arg == opcode_array[opcode] - 1;
76 }
77
78 static struct brw_reg get_tmp( struct brw_vs_compile *c )
79 {
80 struct brw_reg tmp = brw_vec8_grf(c->last_tmp, 0);
81
82 if (++c->last_tmp > c->prog_data.total_grf)
83 c->prog_data.total_grf = c->last_tmp;
84
85 return tmp;
86 }
87
88 static void release_tmp( struct brw_vs_compile *c, struct brw_reg tmp )
89 {
90 if (tmp.nr == c->last_tmp-1)
91 c->last_tmp--;
92 }
93
94 static void release_tmps( struct brw_vs_compile *c )
95 {
96 c->last_tmp = c->first_tmp;
97 }
98
99
100 /**
101 * Preallocate GRF register before code emit.
102 * Do things as simply as possible. Allocate and populate all regs
103 * ahead of time.
104 */
105 static void brw_vs_alloc_regs( struct brw_vs_compile *c )
106 {
107 struct intel_context *intel = &c->func.brw->intel;
108 GLuint i, reg = 0, mrf;
109 int attributes_in_vue;
110
111 /* Determine whether to use a real constant buffer or use a block
112 * of GRF registers for constants. The later is faster but only
113 * works if everything fits in the GRF.
114 * XXX this heuristic/check may need some fine tuning...
115 */
116 if (c->vp->program.Base.Parameters->NumParameters +
117 c->vp->program.Base.NumTemporaries + 20 > BRW_MAX_GRF)
118 c->vp->use_const_buffer = GL_TRUE;
119 else
120 c->vp->use_const_buffer = GL_FALSE;
121
122 /*printf("use_const_buffer = %d\n", c->vp->use_const_buffer);*/
123
124 /* r0 -- reserved as usual
125 */
126 c->r0 = brw_vec8_grf(reg, 0);
127 reg++;
128
129 /* User clip planes from curbe:
130 */
131 if (c->key.nr_userclip) {
132 for (i = 0; i < c->key.nr_userclip; i++) {
133 c->userplane[i] = stride( brw_vec4_grf(reg+3+i/2, (i%2) * 4), 0, 4, 1);
134 }
135
136 /* Deal with curbe alignment:
137 */
138 reg += ((6 + c->key.nr_userclip + 3) / 4) * 2;
139 }
140
141 /* Vertex program parameters from curbe:
142 */
143 if (c->vp->use_const_buffer) {
144 int max_constant = BRW_MAX_GRF - 20 - c->vp->program.Base.NumTemporaries;
145 int constant = 0;
146
147 /* We've got more constants than we can load with the push
148 * mechanism. This is often correlated with reladdr loads where
149 * we should probably be using a pull mechanism anyway to avoid
150 * excessive reading. However, the pull mechanism is slow in
151 * general. So, we try to allocate as many non-reladdr-loaded
152 * constants through the push buffer as we can before giving up.
153 */
154 memset(c->constant_map, -1, c->vp->program.Base.Parameters->NumParameters);
155 for (i = 0;
156 i < c->vp->program.Base.NumInstructions && constant < max_constant;
157 i++) {
158 struct prog_instruction *inst = &c->vp->program.Base.Instructions[i];
159 int arg;
160
161 for (arg = 0; arg < 3 && constant < max_constant; arg++) {
162 if ((inst->SrcReg[arg].File != PROGRAM_STATE_VAR &&
163 inst->SrcReg[arg].File != PROGRAM_CONSTANT &&
164 inst->SrcReg[arg].File != PROGRAM_UNIFORM &&
165 inst->SrcReg[arg].File != PROGRAM_ENV_PARAM &&
166 inst->SrcReg[arg].File != PROGRAM_LOCAL_PARAM) ||
167 inst->SrcReg[arg].RelAddr)
168 continue;
169
170 if (c->constant_map[inst->SrcReg[arg].Index] == -1) {
171 c->constant_map[inst->SrcReg[arg].Index] = constant++;
172 }
173 }
174 }
175
176 for (i = 0; i < constant; i++) {
177 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2,
178 (i%2) * 4),
179 0, 4, 1);
180 }
181 reg += (constant + 1) / 2;
182 c->prog_data.curb_read_length = reg - 1;
183 /* XXX 0 causes a bug elsewhere... */
184 c->prog_data.nr_params = MAX2(constant * 4, 4);
185 }
186 else {
187 /* use a section of the GRF for constants */
188 GLuint nr_params = c->vp->program.Base.Parameters->NumParameters;
189 for (i = 0; i < nr_params; i++) {
190 c->regs[PROGRAM_STATE_VAR][i] = stride( brw_vec4_grf(reg+i/2, (i%2) * 4), 0, 4, 1);
191 }
192 reg += (nr_params + 1) / 2;
193 c->prog_data.curb_read_length = reg - 1;
194
195 c->prog_data.nr_params = nr_params * 4;
196 }
197
198 /* Allocate input regs:
199 */
200 c->nr_inputs = 0;
201 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
202 if (c->prog_data.inputs_read & (1 << i)) {
203 c->nr_inputs++;
204 c->regs[PROGRAM_INPUT][i] = brw_vec8_grf(reg, 0);
205 reg++;
206 }
207 }
208 /* If there are no inputs, we'll still be reading one attribute's worth
209 * because it's required -- see urb_read_length setting.
210 */
211 if (c->nr_inputs == 0)
212 reg++;
213
214 /* Allocate outputs. The non-position outputs go straight into message regs.
215 */
216 c->nr_outputs = 0;
217 c->first_output = reg;
218 c->first_overflow_output = 0;
219
220 if (intel->gen >= 6)
221 mrf = 4;
222 else if (intel->gen == 5)
223 mrf = 8;
224 else
225 mrf = 4;
226
227 for (i = 0; i < VERT_RESULT_MAX; i++) {
228 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
229 c->nr_outputs++;
230 assert(i < Elements(c->regs[PROGRAM_OUTPUT]));
231 if (i == VERT_RESULT_HPOS) {
232 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
233 reg++;
234 }
235 else if (i == VERT_RESULT_PSIZ) {
236 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
237 reg++;
238 mrf++; /* just a placeholder? XXX fix later stages & remove this */
239 }
240 else {
241 /* Two restrictions on our compute-to-MRF here. The
242 * message length for all SEND messages is restricted to
243 * [1,15], so we can't use mrf 15, as that means a length
244 * of 16.
245 *
246 * Additionally, URB writes are aligned to URB rows, so we
247 * need to put an even number of registers of URB data in
248 * each URB write so that the later write is aligned. A
249 * message length of 15 means 1 message header reg plus 14
250 * regs of URB data.
251 *
252 * For attributes beyond the compute-to-MRF, we compute to
253 * GRFs and they will be written in the second URB_WRITE.
254 */
255 if (mrf < 15) {
256 c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
257 mrf++;
258 }
259 else {
260 if (!c->first_overflow_output)
261 c->first_overflow_output = i;
262 c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
263 reg++;
264 }
265 }
266 }
267 }
268
269 /* Allocate program temporaries:
270 */
271 for (i = 0; i < c->vp->program.Base.NumTemporaries; i++) {
272 c->regs[PROGRAM_TEMPORARY][i] = brw_vec8_grf(reg, 0);
273 reg++;
274 }
275
276 /* Address reg(s). Don't try to use the internal address reg until
277 * deref time.
278 */
279 for (i = 0; i < c->vp->program.Base.NumAddressRegs; i++) {
280 c->regs[PROGRAM_ADDRESS][i] = brw_reg(BRW_GENERAL_REGISTER_FILE,
281 reg,
282 0,
283 BRW_REGISTER_TYPE_D,
284 BRW_VERTICAL_STRIDE_8,
285 BRW_WIDTH_8,
286 BRW_HORIZONTAL_STRIDE_1,
287 BRW_SWIZZLE_XXXX,
288 WRITEMASK_X);
289 reg++;
290 }
291
292 if (c->vp->use_const_buffer) {
293 for (i = 0; i < 3; i++) {
294 c->current_const[i].index = -1;
295 c->current_const[i].reg = brw_vec8_grf(reg, 0);
296 reg++;
297 }
298 }
299
300 for (i = 0; i < 128; i++) {
301 if (c->output_regs[i].used_in_src) {
302 c->output_regs[i].reg = brw_vec8_grf(reg, 0);
303 reg++;
304 }
305 }
306
307 if (c->needs_stack) {
308 c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg, 0);
309 reg += 2;
310 }
311
312 /* Some opcodes need an internal temporary:
313 */
314 c->first_tmp = reg;
315 c->last_tmp = reg; /* for allocation purposes */
316
317 /* Each input reg holds data from two vertices. The
318 * urb_read_length is the number of registers read from *each*
319 * vertex urb, so is half the amount:
320 */
321 c->prog_data.urb_read_length = (c->nr_inputs + 1) / 2;
322 /* Setting this field to 0 leads to undefined behavior according to the
323 * the VS_STATE docs. Our VUEs will always have at least one attribute
324 * sitting in them, even if it's padding.
325 */
326 if (c->prog_data.urb_read_length == 0)
327 c->prog_data.urb_read_length = 1;
328
329 /* The VS VUEs are shared by VF (outputting our inputs) and VS, so size
330 * them to fit the biggest thing they need to.
331 */
332 attributes_in_vue = MAX2(c->nr_outputs, c->nr_inputs);
333
334 /* See emit_vertex_write() for where the VUE's overhead on top of the
335 * attributes comes from.
336 */
337 if (intel->gen >= 6)
338 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 7) / 8;
339 else if (intel->gen == 5)
340 c->prog_data.urb_entry_size = (attributes_in_vue + 6 + 3) / 4;
341 else
342 c->prog_data.urb_entry_size = (attributes_in_vue + 2 + 3) / 4;
343
344 c->prog_data.total_grf = reg;
345
346 if (INTEL_DEBUG & DEBUG_VS) {
347 printf("%s NumAddrRegs %d\n", __FUNCTION__, c->vp->program.Base.NumAddressRegs);
348 printf("%s NumTemps %d\n", __FUNCTION__, c->vp->program.Base.NumTemporaries);
349 printf("%s reg = %d\n", __FUNCTION__, reg);
350 }
351 }
352
353
354 /**
355 * If an instruction uses a temp reg both as a src and the dest, we
356 * sometimes need to allocate an intermediate temporary.
357 */
358 static void unalias1( struct brw_vs_compile *c,
359 struct brw_reg dst,
360 struct brw_reg arg0,
361 void (*func)( struct brw_vs_compile *,
362 struct brw_reg,
363 struct brw_reg ))
364 {
365 if (dst.file == arg0.file && dst.nr == arg0.nr) {
366 struct brw_compile *p = &c->func;
367 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
368 func(c, tmp, arg0);
369 brw_MOV(p, dst, tmp);
370 release_tmp(c, tmp);
371 }
372 else {
373 func(c, dst, arg0);
374 }
375 }
376
377 /**
378 * \sa unalias2
379 * Checkes if 2-operand instruction needs an intermediate temporary.
380 */
381 static void unalias2( struct brw_vs_compile *c,
382 struct brw_reg dst,
383 struct brw_reg arg0,
384 struct brw_reg arg1,
385 void (*func)( struct brw_vs_compile *,
386 struct brw_reg,
387 struct brw_reg,
388 struct brw_reg ))
389 {
390 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
391 (dst.file == arg1.file && dst.nr == arg1.nr)) {
392 struct brw_compile *p = &c->func;
393 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
394 func(c, tmp, arg0, arg1);
395 brw_MOV(p, dst, tmp);
396 release_tmp(c, tmp);
397 }
398 else {
399 func(c, dst, arg0, arg1);
400 }
401 }
402
403 /**
404 * \sa unalias2
405 * Checkes if 3-operand instruction needs an intermediate temporary.
406 */
407 static void unalias3( struct brw_vs_compile *c,
408 struct brw_reg dst,
409 struct brw_reg arg0,
410 struct brw_reg arg1,
411 struct brw_reg arg2,
412 void (*func)( struct brw_vs_compile *,
413 struct brw_reg,
414 struct brw_reg,
415 struct brw_reg,
416 struct brw_reg ))
417 {
418 if ((dst.file == arg0.file && dst.nr == arg0.nr) ||
419 (dst.file == arg1.file && dst.nr == arg1.nr) ||
420 (dst.file == arg2.file && dst.nr == arg2.nr)) {
421 struct brw_compile *p = &c->func;
422 struct brw_reg tmp = brw_writemask(get_tmp(c), dst.dw1.bits.writemask);
423 func(c, tmp, arg0, arg1, arg2);
424 brw_MOV(p, dst, tmp);
425 release_tmp(c, tmp);
426 }
427 else {
428 func(c, dst, arg0, arg1, arg2);
429 }
430 }
431
432 static void emit_sop( struct brw_vs_compile *c,
433 struct brw_reg dst,
434 struct brw_reg arg0,
435 struct brw_reg arg1,
436 GLuint cond)
437 {
438 struct brw_compile *p = &c->func;
439
440 brw_MOV(p, dst, brw_imm_f(0.0f));
441 brw_CMP(p, brw_null_reg(), cond, arg0, arg1);
442 brw_MOV(p, dst, brw_imm_f(1.0f));
443 brw_set_predicate_control_flag_value(p, 0xff);
444 }
445
446 static void emit_seq( struct brw_vs_compile *c,
447 struct brw_reg dst,
448 struct brw_reg arg0,
449 struct brw_reg arg1 )
450 {
451 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_EQ);
452 }
453
454 static void emit_sne( struct brw_vs_compile *c,
455 struct brw_reg dst,
456 struct brw_reg arg0,
457 struct brw_reg arg1 )
458 {
459 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_NEQ);
460 }
461 static void emit_slt( struct brw_vs_compile *c,
462 struct brw_reg dst,
463 struct brw_reg arg0,
464 struct brw_reg arg1 )
465 {
466 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_L);
467 }
468
469 static void emit_sle( struct brw_vs_compile *c,
470 struct brw_reg dst,
471 struct brw_reg arg0,
472 struct brw_reg arg1 )
473 {
474 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_LE);
475 }
476
477 static void emit_sgt( struct brw_vs_compile *c,
478 struct brw_reg dst,
479 struct brw_reg arg0,
480 struct brw_reg arg1 )
481 {
482 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_G);
483 }
484
485 static void emit_sge( struct brw_vs_compile *c,
486 struct brw_reg dst,
487 struct brw_reg arg0,
488 struct brw_reg arg1 )
489 {
490 emit_sop(c, dst, arg0, arg1, BRW_CONDITIONAL_GE);
491 }
492
493 static void emit_cmp( struct brw_compile *p,
494 struct brw_reg dst,
495 struct brw_reg arg0,
496 struct brw_reg arg1,
497 struct brw_reg arg2 )
498 {
499 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, brw_imm_f(0));
500 brw_SEL(p, dst, arg1, arg2);
501 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
502 }
503
504 static void emit_max( struct brw_compile *p,
505 struct brw_reg dst,
506 struct brw_reg arg0,
507 struct brw_reg arg1 )
508 {
509 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0, arg1);
510 brw_SEL(p, dst, arg0, arg1);
511 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
512 }
513
514 static void emit_min( struct brw_compile *p,
515 struct brw_reg dst,
516 struct brw_reg arg0,
517 struct brw_reg arg1 )
518 {
519 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0, arg1);
520 brw_SEL(p, dst, arg0, arg1);
521 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
522 }
523
524
525 static void emit_math1( struct brw_vs_compile *c,
526 GLuint function,
527 struct brw_reg dst,
528 struct brw_reg arg0,
529 GLuint precision)
530 {
531 /* There are various odd behaviours with SEND on the simulator. In
532 * addition there are documented issues with the fact that the GEN4
533 * processor doesn't do dependency control properly on SEND
534 * results. So, on balance, this kludge to get around failures
535 * with writemasked math results looks like it might be necessary
536 * whether that turns out to be a simulator bug or not:
537 */
538 struct brw_compile *p = &c->func;
539 struct intel_context *intel = &p->brw->intel;
540 struct brw_reg tmp = dst;
541 GLboolean need_tmp = (intel->gen < 6 &&
542 (dst.dw1.bits.writemask != 0xf ||
543 dst.file != BRW_GENERAL_REGISTER_FILE));
544
545 if (need_tmp)
546 tmp = get_tmp(c);
547
548 brw_math(p,
549 tmp,
550 function,
551 BRW_MATH_SATURATE_NONE,
552 2,
553 arg0,
554 BRW_MATH_DATA_SCALAR,
555 precision);
556
557 if (need_tmp) {
558 brw_MOV(p, dst, tmp);
559 release_tmp(c, tmp);
560 }
561 }
562
563
564 static void emit_math2( struct brw_vs_compile *c,
565 GLuint function,
566 struct brw_reg dst,
567 struct brw_reg arg0,
568 struct brw_reg arg1,
569 GLuint precision)
570 {
571 struct brw_compile *p = &c->func;
572 struct intel_context *intel = &p->brw->intel;
573 struct brw_reg tmp = dst;
574 GLboolean need_tmp = (intel->gen < 6 &&
575 (dst.dw1.bits.writemask != 0xf ||
576 dst.file != BRW_GENERAL_REGISTER_FILE));
577
578 if (need_tmp)
579 tmp = get_tmp(c);
580
581 brw_MOV(p, brw_message_reg(3), arg1);
582
583 brw_math(p,
584 tmp,
585 function,
586 BRW_MATH_SATURATE_NONE,
587 2,
588 arg0,
589 BRW_MATH_DATA_SCALAR,
590 precision);
591
592 if (need_tmp) {
593 brw_MOV(p, dst, tmp);
594 release_tmp(c, tmp);
595 }
596 }
597
598
599 static void emit_exp_noalias( struct brw_vs_compile *c,
600 struct brw_reg dst,
601 struct brw_reg arg0 )
602 {
603 struct brw_compile *p = &c->func;
604
605
606 if (dst.dw1.bits.writemask & WRITEMASK_X) {
607 struct brw_reg tmp = get_tmp(c);
608 struct brw_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
609
610 /* tmp_d = floor(arg0.x) */
611 brw_RNDD(p, tmp_d, brw_swizzle1(arg0, 0));
612
613 /* result[0] = 2.0 ^ tmp */
614
615 /* Adjust exponent for floating point:
616 * exp += 127
617 */
618 brw_ADD(p, brw_writemask(tmp_d, WRITEMASK_X), tmp_d, brw_imm_d(127));
619
620 /* Install exponent and sign.
621 * Excess drops off the edge:
622 */
623 brw_SHL(p, brw_writemask(retype(dst, BRW_REGISTER_TYPE_D), WRITEMASK_X),
624 tmp_d, brw_imm_d(23));
625
626 release_tmp(c, tmp);
627 }
628
629 if (dst.dw1.bits.writemask & WRITEMASK_Y) {
630 /* result[1] = arg0.x - floor(arg0.x) */
631 brw_FRC(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0, 0));
632 }
633
634 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
635 /* As with the LOG instruction, we might be better off just
636 * doing a taylor expansion here, seeing as we have to do all
637 * the prep work.
638 *
639 * If mathbox partial precision is too low, consider also:
640 * result[3] = result[0] * EXP(result[1])
641 */
642 emit_math1(c,
643 BRW_MATH_FUNCTION_EXP,
644 brw_writemask(dst, WRITEMASK_Z),
645 brw_swizzle1(arg0, 0),
646 BRW_MATH_PRECISION_FULL);
647 }
648
649 if (dst.dw1.bits.writemask & WRITEMASK_W) {
650 /* result[3] = 1.0; */
651 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), brw_imm_f(1));
652 }
653 }
654
655
656 static void emit_log_noalias( struct brw_vs_compile *c,
657 struct brw_reg dst,
658 struct brw_reg arg0 )
659 {
660 struct brw_compile *p = &c->func;
661 struct brw_reg tmp = dst;
662 struct brw_reg tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
663 struct brw_reg arg0_ud = retype(arg0, BRW_REGISTER_TYPE_UD);
664 GLboolean need_tmp = (dst.dw1.bits.writemask != 0xf ||
665 dst.file != BRW_GENERAL_REGISTER_FILE);
666
667 if (need_tmp) {
668 tmp = get_tmp(c);
669 tmp_ud = retype(tmp, BRW_REGISTER_TYPE_UD);
670 }
671
672 /* Perform mant = frexpf(fabsf(x), &exp), adjust exp and mnt
673 * according to spec:
674 *
675 * These almost look likey they could be joined up, but not really
676 * practical:
677 *
678 * result[0].f = (x.i & ((1<<31)-1) >> 23) - 127
679 * result[1].i = (x.i & ((1<<23)-1) + (127<<23)
680 */
681 if (dst.dw1.bits.writemask & WRITEMASK_XZ) {
682 brw_AND(p,
683 brw_writemask(tmp_ud, WRITEMASK_X),
684 brw_swizzle1(arg0_ud, 0),
685 brw_imm_ud((1U<<31)-1));
686
687 brw_SHR(p,
688 brw_writemask(tmp_ud, WRITEMASK_X),
689 tmp_ud,
690 brw_imm_ud(23));
691
692 brw_ADD(p,
693 brw_writemask(tmp, WRITEMASK_X),
694 retype(tmp_ud, BRW_REGISTER_TYPE_D), /* does it matter? */
695 brw_imm_d(-127));
696 }
697
698 if (dst.dw1.bits.writemask & WRITEMASK_YZ) {
699 brw_AND(p,
700 brw_writemask(tmp_ud, WRITEMASK_Y),
701 brw_swizzle1(arg0_ud, 0),
702 brw_imm_ud((1<<23)-1));
703
704 brw_OR(p,
705 brw_writemask(tmp_ud, WRITEMASK_Y),
706 tmp_ud,
707 brw_imm_ud(127<<23));
708 }
709
710 if (dst.dw1.bits.writemask & WRITEMASK_Z) {
711 /* result[2] = result[0] + LOG2(result[1]); */
712
713 /* Why bother? The above is just a hint how to do this with a
714 * taylor series. Maybe we *should* use a taylor series as by
715 * the time all the above has been done it's almost certainly
716 * quicker than calling the mathbox, even with low precision.
717 *
718 * Options are:
719 * - result[0] + mathbox.LOG2(result[1])
720 * - mathbox.LOG2(arg0.x)
721 * - result[0] + inline_taylor_approx(result[1])
722 */
723 emit_math1(c,
724 BRW_MATH_FUNCTION_LOG,
725 brw_writemask(tmp, WRITEMASK_Z),
726 brw_swizzle1(tmp, 1),
727 BRW_MATH_PRECISION_FULL);
728
729 brw_ADD(p,
730 brw_writemask(tmp, WRITEMASK_Z),
731 brw_swizzle1(tmp, 2),
732 brw_swizzle1(tmp, 0));
733 }
734
735 if (dst.dw1.bits.writemask & WRITEMASK_W) {
736 /* result[3] = 1.0; */
737 brw_MOV(p, brw_writemask(tmp, WRITEMASK_W), brw_imm_f(1));
738 }
739
740 if (need_tmp) {
741 brw_MOV(p, dst, tmp);
742 release_tmp(c, tmp);
743 }
744 }
745
746
747 /* Need to unalias - consider swizzles: r0 = DST r0.xxxx r1
748 */
749 static void emit_dst_noalias( struct brw_vs_compile *c,
750 struct brw_reg dst,
751 struct brw_reg arg0,
752 struct brw_reg arg1)
753 {
754 struct brw_compile *p = &c->func;
755
756 /* There must be a better way to do this:
757 */
758 if (dst.dw1.bits.writemask & WRITEMASK_X)
759 brw_MOV(p, brw_writemask(dst, WRITEMASK_X), brw_imm_f(1.0));
760 if (dst.dw1.bits.writemask & WRITEMASK_Y)
761 brw_MUL(p, brw_writemask(dst, WRITEMASK_Y), arg0, arg1);
762 if (dst.dw1.bits.writemask & WRITEMASK_Z)
763 brw_MOV(p, brw_writemask(dst, WRITEMASK_Z), arg0);
764 if (dst.dw1.bits.writemask & WRITEMASK_W)
765 brw_MOV(p, brw_writemask(dst, WRITEMASK_W), arg1);
766 }
767
768
769 static void emit_xpd( struct brw_compile *p,
770 struct brw_reg dst,
771 struct brw_reg t,
772 struct brw_reg u)
773 {
774 brw_MUL(p, brw_null_reg(), brw_swizzle(t, 1,2,0,3), brw_swizzle(u,2,0,1,3));
775 brw_MAC(p, dst, negate(brw_swizzle(t, 2,0,1,3)), brw_swizzle(u,1,2,0,3));
776 }
777
778
779 static void emit_lit_noalias( struct brw_vs_compile *c,
780 struct brw_reg dst,
781 struct brw_reg arg0 )
782 {
783 struct brw_compile *p = &c->func;
784 struct brw_instruction *if_insn;
785 struct brw_reg tmp = dst;
786 GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
787
788 if (need_tmp)
789 tmp = get_tmp(c);
790
791 brw_MOV(p, brw_writemask(dst, WRITEMASK_YZ), brw_imm_f(0));
792 brw_MOV(p, brw_writemask(dst, WRITEMASK_XW), brw_imm_f(1));
793
794 /* Need to use BRW_EXECUTE_8 and also do an 8-wide compare in order
795 * to get all channels active inside the IF. In the clipping code
796 * we run with NoMask, so it's not an option and we can use
797 * BRW_EXECUTE_1 for all comparisions.
798 */
799 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,0), brw_imm_f(0));
800 if_insn = brw_IF(p, BRW_EXECUTE_8);
801 {
802 brw_MOV(p, brw_writemask(dst, WRITEMASK_Y), brw_swizzle1(arg0,0));
803
804 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, brw_swizzle1(arg0,1), brw_imm_f(0));
805 brw_MOV(p, brw_writemask(tmp, WRITEMASK_Z), brw_swizzle1(arg0,1));
806 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
807
808 emit_math2(c,
809 BRW_MATH_FUNCTION_POW,
810 brw_writemask(dst, WRITEMASK_Z),
811 brw_swizzle1(tmp, 2),
812 brw_swizzle1(arg0, 3),
813 BRW_MATH_PRECISION_PARTIAL);
814 }
815
816 brw_ENDIF(p, if_insn);
817
818 release_tmp(c, tmp);
819 }
820
821 static void emit_lrp_noalias(struct brw_vs_compile *c,
822 struct brw_reg dst,
823 struct brw_reg arg0,
824 struct brw_reg arg1,
825 struct brw_reg arg2)
826 {
827 struct brw_compile *p = &c->func;
828
829 brw_ADD(p, dst, negate(arg0), brw_imm_f(1.0));
830 brw_MUL(p, brw_null_reg(), dst, arg2);
831 brw_MAC(p, dst, arg0, arg1);
832 }
833
834 /** 3 or 4-component vector normalization */
835 static void emit_nrm( struct brw_vs_compile *c,
836 struct brw_reg dst,
837 struct brw_reg arg0,
838 int num_comps)
839 {
840 struct brw_compile *p = &c->func;
841 struct brw_reg tmp = get_tmp(c);
842
843 /* tmp = dot(arg0, arg0) */
844 if (num_comps == 3)
845 brw_DP3(p, tmp, arg0, arg0);
846 else
847 brw_DP4(p, tmp, arg0, arg0);
848
849 /* tmp = 1 / sqrt(tmp) */
850 emit_math1(c, BRW_MATH_FUNCTION_RSQ, tmp, tmp, BRW_MATH_PRECISION_FULL);
851
852 /* dst = arg0 * tmp */
853 brw_MUL(p, dst, arg0, tmp);
854
855 release_tmp(c, tmp);
856 }
857
858
859 static struct brw_reg
860 get_constant(struct brw_vs_compile *c,
861 const struct prog_instruction *inst,
862 GLuint argIndex)
863 {
864 const struct prog_src_register *src = &inst->SrcReg[argIndex];
865 struct brw_compile *p = &c->func;
866 struct brw_reg const_reg = c->current_const[argIndex].reg;
867
868 assert(argIndex < 3);
869
870 if (c->current_const[argIndex].index != src->Index) {
871 /* Keep track of the last constant loaded in this slot, for reuse. */
872 c->current_const[argIndex].index = src->Index;
873
874 #if 0
875 printf(" fetch const[%d] for arg %d into reg %d\n",
876 src->Index, argIndex, c->current_const[argIndex].reg.nr);
877 #endif
878 /* need to fetch the constant now */
879 brw_dp_READ_4_vs(p,
880 const_reg, /* writeback dest */
881 0, /* oword */
882 0, /* relative indexing? */
883 brw_null_reg(), /* address register */
884 16 * src->Index, /* byte offset */
885 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
886 );
887 }
888
889 /* replicate lower four floats into upper half (to get XYZWXYZW) */
890 const_reg = stride(const_reg, 0, 4, 0);
891 const_reg.subnr = 0;
892
893 return const_reg;
894 }
895
896 static struct brw_reg
897 get_reladdr_constant(struct brw_vs_compile *c,
898 const struct prog_instruction *inst,
899 GLuint argIndex)
900 {
901 const struct prog_src_register *src = &inst->SrcReg[argIndex];
902 struct brw_compile *p = &c->func;
903 struct brw_reg const_reg = c->current_const[argIndex].reg;
904 struct brw_reg const2_reg;
905 struct brw_reg addrReg = c->regs[PROGRAM_ADDRESS][0];
906
907 assert(argIndex < 3);
908
909 /* Can't reuse a reladdr constant load. */
910 c->current_const[argIndex].index = -1;
911
912 #if 0
913 printf(" fetch const[a0.x+%d] for arg %d into reg %d\n",
914 src->Index, argIndex, c->current_const[argIndex].reg.nr);
915 #endif
916
917 /* fetch the first vec4 */
918 brw_dp_READ_4_vs(p,
919 const_reg, /* writeback dest */
920 0, /* oword */
921 1, /* relative indexing? */
922 addrReg, /* address register */
923 16 * src->Index, /* byte offset */
924 SURF_INDEX_VERT_CONST_BUFFER /* binding table index */
925 );
926 /* second vec4 */
927 const2_reg = get_tmp(c);
928
929 /* use upper half of address reg for second read */
930 addrReg = stride(addrReg, 0, 4, 0);
931 addrReg.subnr = 16;
932
933 brw_dp_READ_4_vs(p,
934 const2_reg, /* writeback dest */
935 1, /* oword */
936 1, /* relative indexing? */
937 addrReg, /* address register */
938 16 * src->Index, /* byte offset */
939 SURF_INDEX_VERT_CONST_BUFFER
940 );
941
942 /* merge the two Owords into the constant register */
943 /* const_reg[7..4] = const2_reg[7..4] */
944 brw_MOV(p,
945 suboffset(stride(const_reg, 0, 4, 1), 4),
946 suboffset(stride(const2_reg, 0, 4, 1), 4));
947 release_tmp(c, const2_reg);
948
949 return const_reg;
950 }
951
952
953
954 /* TODO: relative addressing!
955 */
956 static struct brw_reg get_reg( struct brw_vs_compile *c,
957 gl_register_file file,
958 GLuint index )
959 {
960 switch (file) {
961 case PROGRAM_TEMPORARY:
962 case PROGRAM_INPUT:
963 case PROGRAM_OUTPUT:
964 assert(c->regs[file][index].nr != 0);
965 return c->regs[file][index];
966 case PROGRAM_STATE_VAR:
967 case PROGRAM_CONSTANT:
968 case PROGRAM_UNIFORM:
969 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
970 return c->regs[PROGRAM_STATE_VAR][index];
971 case PROGRAM_ADDRESS:
972 assert(index == 0);
973 return c->regs[file][index];
974
975 case PROGRAM_UNDEFINED: /* undef values */
976 return brw_null_reg();
977
978 case PROGRAM_LOCAL_PARAM:
979 case PROGRAM_ENV_PARAM:
980 case PROGRAM_WRITE_ONLY:
981 default:
982 assert(0);
983 return brw_null_reg();
984 }
985 }
986
987
988 /**
989 * Indirect addressing: get reg[[arg] + offset].
990 */
991 static struct brw_reg deref( struct brw_vs_compile *c,
992 struct brw_reg arg,
993 GLint offset)
994 {
995 struct brw_compile *p = &c->func;
996 struct brw_reg tmp = vec4(get_tmp(c));
997 struct brw_reg addr_reg = c->regs[PROGRAM_ADDRESS][0];
998 struct brw_reg vp_address = retype(vec1(addr_reg), BRW_REGISTER_TYPE_UW);
999 GLuint byte_offset = arg.nr * 32 + arg.subnr + offset * 16;
1000 struct brw_reg indirect = brw_vec4_indirect(0,0);
1001
1002 {
1003 brw_push_insn_state(p);
1004 brw_set_access_mode(p, BRW_ALIGN_1);
1005
1006 /* This is pretty clunky - load the address register twice and
1007 * fetch each 4-dword value in turn. There must be a way to do
1008 * this in a single pass, but I couldn't get it to work.
1009 */
1010 brw_ADD(p, brw_address_reg(0), vp_address, brw_imm_d(byte_offset));
1011 brw_MOV(p, tmp, indirect);
1012
1013 brw_ADD(p, brw_address_reg(0), suboffset(vp_address, 8), brw_imm_d(byte_offset));
1014 brw_MOV(p, suboffset(tmp, 4), indirect);
1015
1016 brw_pop_insn_state(p);
1017 }
1018
1019 /* NOTE: tmp not released */
1020 return vec8(tmp);
1021 }
1022
1023
1024 /**
1025 * Get brw reg corresponding to the instruction's [argIndex] src reg.
1026 * TODO: relative addressing!
1027 */
1028 static struct brw_reg
1029 get_src_reg( struct brw_vs_compile *c,
1030 const struct prog_instruction *inst,
1031 GLuint argIndex )
1032 {
1033 const GLuint file = inst->SrcReg[argIndex].File;
1034 const GLint index = inst->SrcReg[argIndex].Index;
1035 const GLboolean relAddr = inst->SrcReg[argIndex].RelAddr;
1036
1037 if (brw_vs_arg_can_be_immediate(inst->Opcode, argIndex)) {
1038 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1039
1040 if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ZERO,
1041 SWIZZLE_ZERO,
1042 SWIZZLE_ZERO,
1043 SWIZZLE_ZERO)) {
1044 return brw_imm_f(0.0f);
1045 } else if (src->Swizzle == MAKE_SWIZZLE4(SWIZZLE_ONE,
1046 SWIZZLE_ONE,
1047 SWIZZLE_ONE,
1048 SWIZZLE_ONE)) {
1049 if (src->Negate)
1050 return brw_imm_f(-1.0F);
1051 else
1052 return brw_imm_f(1.0F);
1053 } else if (src->File == PROGRAM_CONSTANT) {
1054 const struct gl_program_parameter_list *params;
1055 float f;
1056 int component = -1;
1057
1058 switch (src->Swizzle) {
1059 case SWIZZLE_XXXX:
1060 component = 0;
1061 break;
1062 case SWIZZLE_YYYY:
1063 component = 1;
1064 break;
1065 case SWIZZLE_ZZZZ:
1066 component = 2;
1067 break;
1068 case SWIZZLE_WWWW:
1069 component = 3;
1070 break;
1071 }
1072
1073 if (component >= 0) {
1074 params = c->vp->program.Base.Parameters;
1075 f = params->ParameterValues[src->Index][component];
1076
1077 if (src->Abs)
1078 f = fabs(f);
1079 if (src->Negate)
1080 f = -f;
1081 return brw_imm_f(f);
1082 }
1083 }
1084 }
1085
1086 switch (file) {
1087 case PROGRAM_TEMPORARY:
1088 case PROGRAM_INPUT:
1089 case PROGRAM_OUTPUT:
1090 if (relAddr) {
1091 return deref(c, c->regs[file][0], index);
1092 }
1093 else {
1094 assert(c->regs[file][index].nr != 0);
1095 return c->regs[file][index];
1096 }
1097
1098 case PROGRAM_STATE_VAR:
1099 case PROGRAM_CONSTANT:
1100 case PROGRAM_UNIFORM:
1101 case PROGRAM_ENV_PARAM:
1102 case PROGRAM_LOCAL_PARAM:
1103 if (c->vp->use_const_buffer) {
1104 if (!relAddr && c->constant_map[index] != -1) {
1105 assert(c->regs[PROGRAM_STATE_VAR][c->constant_map[index]].nr != 0);
1106 return c->regs[PROGRAM_STATE_VAR][c->constant_map[index]];
1107 } else if (relAddr)
1108 return get_reladdr_constant(c, inst, argIndex);
1109 else
1110 return get_constant(c, inst, argIndex);
1111 }
1112 else if (relAddr) {
1113 return deref(c, c->regs[PROGRAM_STATE_VAR][0], index);
1114 }
1115 else {
1116 assert(c->regs[PROGRAM_STATE_VAR][index].nr != 0);
1117 return c->regs[PROGRAM_STATE_VAR][index];
1118 }
1119 case PROGRAM_ADDRESS:
1120 assert(index == 0);
1121 return c->regs[file][index];
1122
1123 case PROGRAM_UNDEFINED:
1124 /* this is a normal case since we loop over all three src args */
1125 return brw_null_reg();
1126
1127 case PROGRAM_WRITE_ONLY:
1128 default:
1129 assert(0);
1130 return brw_null_reg();
1131 }
1132 }
1133
1134
1135 static void emit_arl( struct brw_vs_compile *c,
1136 struct brw_reg dst,
1137 struct brw_reg arg0 )
1138 {
1139 struct brw_compile *p = &c->func;
1140 struct brw_reg tmp = dst;
1141 GLboolean need_tmp = (dst.file != BRW_GENERAL_REGISTER_FILE);
1142
1143 if (need_tmp)
1144 tmp = get_tmp(c);
1145
1146 brw_RNDD(p, tmp, arg0); /* tmp = round(arg0) */
1147 brw_MUL(p, dst, tmp, brw_imm_d(16)); /* dst = tmp * 16 */
1148
1149 if (need_tmp)
1150 release_tmp(c, tmp);
1151 }
1152
1153
1154 /**
1155 * Return the brw reg for the given instruction's src argument.
1156 * Will return mangled results for SWZ op. The emit_swz() function
1157 * ignores this result and recalculates taking extended swizzles into
1158 * account.
1159 */
1160 static struct brw_reg get_arg( struct brw_vs_compile *c,
1161 const struct prog_instruction *inst,
1162 GLuint argIndex )
1163 {
1164 const struct prog_src_register *src = &inst->SrcReg[argIndex];
1165 struct brw_reg reg;
1166
1167 if (src->File == PROGRAM_UNDEFINED)
1168 return brw_null_reg();
1169
1170 reg = get_src_reg(c, inst, argIndex);
1171
1172 /* Convert 3-bit swizzle to 2-bit.
1173 */
1174 reg.dw1.bits.swizzle = BRW_SWIZZLE4(GET_SWZ(src->Swizzle, 0),
1175 GET_SWZ(src->Swizzle, 1),
1176 GET_SWZ(src->Swizzle, 2),
1177 GET_SWZ(src->Swizzle, 3));
1178
1179 /* Note this is ok for non-swizzle instructions:
1180 */
1181 reg.negate = src->Negate ? 1 : 0;
1182
1183 return reg;
1184 }
1185
1186
1187 /**
1188 * Get brw register for the given program dest register.
1189 */
1190 static struct brw_reg get_dst( struct brw_vs_compile *c,
1191 struct prog_dst_register dst )
1192 {
1193 struct brw_reg reg;
1194
1195 switch (dst.File) {
1196 case PROGRAM_TEMPORARY:
1197 case PROGRAM_OUTPUT:
1198 assert(c->regs[dst.File][dst.Index].nr != 0);
1199 reg = c->regs[dst.File][dst.Index];
1200 break;
1201 case PROGRAM_ADDRESS:
1202 assert(dst.Index == 0);
1203 reg = c->regs[dst.File][dst.Index];
1204 break;
1205 case PROGRAM_UNDEFINED:
1206 /* we may hit this for OPCODE_END, OPCODE_KIL, etc */
1207 reg = brw_null_reg();
1208 break;
1209 default:
1210 assert(0);
1211 reg = brw_null_reg();
1212 }
1213
1214 reg.dw1.bits.writemask = dst.WriteMask;
1215
1216 return reg;
1217 }
1218
1219
1220 static void emit_swz( struct brw_vs_compile *c,
1221 struct brw_reg dst,
1222 const struct prog_instruction *inst)
1223 {
1224 const GLuint argIndex = 0;
1225 const struct prog_src_register src = inst->SrcReg[argIndex];
1226 struct brw_compile *p = &c->func;
1227 GLuint zeros_mask = 0;
1228 GLuint ones_mask = 0;
1229 GLuint src_mask = 0;
1230 GLubyte src_swz[4];
1231 GLboolean need_tmp = (src.Negate &&
1232 dst.file != BRW_GENERAL_REGISTER_FILE);
1233 struct brw_reg tmp = dst;
1234 GLuint i;
1235
1236 if (need_tmp)
1237 tmp = get_tmp(c);
1238
1239 for (i = 0; i < 4; i++) {
1240 if (dst.dw1.bits.writemask & (1<<i)) {
1241 GLubyte s = GET_SWZ(src.Swizzle, i);
1242 switch (s) {
1243 case SWIZZLE_X:
1244 case SWIZZLE_Y:
1245 case SWIZZLE_Z:
1246 case SWIZZLE_W:
1247 src_mask |= 1<<i;
1248 src_swz[i] = s;
1249 break;
1250 case SWIZZLE_ZERO:
1251 zeros_mask |= 1<<i;
1252 break;
1253 case SWIZZLE_ONE:
1254 ones_mask |= 1<<i;
1255 break;
1256 }
1257 }
1258 }
1259
1260 /* Do src first, in case dst aliases src:
1261 */
1262 if (src_mask) {
1263 struct brw_reg arg0;
1264
1265 arg0 = get_src_reg(c, inst, argIndex);
1266
1267 arg0 = brw_swizzle(arg0,
1268 src_swz[0], src_swz[1],
1269 src_swz[2], src_swz[3]);
1270
1271 brw_MOV(p, brw_writemask(tmp, src_mask), arg0);
1272 }
1273
1274 if (zeros_mask)
1275 brw_MOV(p, brw_writemask(tmp, zeros_mask), brw_imm_f(0));
1276
1277 if (ones_mask)
1278 brw_MOV(p, brw_writemask(tmp, ones_mask), brw_imm_f(1));
1279
1280 if (src.Negate)
1281 brw_MOV(p, brw_writemask(tmp, src.Negate), negate(tmp));
1282
1283 if (need_tmp) {
1284 brw_MOV(p, dst, tmp);
1285 release_tmp(c, tmp);
1286 }
1287 }
1288
1289
1290 /**
1291 * Post-vertex-program processing. Send the results to the URB.
1292 */
1293 static void emit_vertex_write( struct brw_vs_compile *c)
1294 {
1295 struct brw_compile *p = &c->func;
1296 struct brw_context *brw = p->brw;
1297 struct intel_context *intel = &brw->intel;
1298 struct brw_reg pos = c->regs[PROGRAM_OUTPUT][VERT_RESULT_HPOS];
1299 struct brw_reg ndc;
1300 int eot;
1301 GLuint len_vertex_header = 2;
1302
1303 if (c->key.copy_edgeflag) {
1304 brw_MOV(p,
1305 get_reg(c, PROGRAM_OUTPUT, VERT_RESULT_EDGE),
1306 get_reg(c, PROGRAM_INPUT, VERT_ATTRIB_EDGEFLAG));
1307 }
1308
1309 if (intel->gen < 6) {
1310 /* Build ndc coords */
1311 ndc = get_tmp(c);
1312 /* ndc = 1.0 / pos.w */
1313 emit_math1(c, BRW_MATH_FUNCTION_INV, ndc, brw_swizzle1(pos, 3), BRW_MATH_PRECISION_FULL);
1314 /* ndc.xyz = pos * ndc */
1315 brw_MUL(p, brw_writemask(ndc, WRITEMASK_XYZ), pos, ndc);
1316 }
1317
1318 /* Update the header for point size, user clipping flags, and -ve rhw
1319 * workaround.
1320 */
1321 if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
1322 c->key.nr_userclip || brw->has_negative_rhw_bug)
1323 {
1324 struct brw_reg header1 = retype(get_tmp(c), BRW_REGISTER_TYPE_UD);
1325 GLuint i;
1326
1327 brw_MOV(p, header1, brw_imm_ud(0));
1328
1329 brw_set_access_mode(p, BRW_ALIGN_16);
1330
1331 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
1332 struct brw_reg psiz = c->regs[PROGRAM_OUTPUT][VERT_RESULT_PSIZ];
1333 brw_MUL(p, brw_writemask(header1, WRITEMASK_W), brw_swizzle1(psiz, 0), brw_imm_f(1<<11));
1334 brw_AND(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(0x7ff<<8));
1335 }
1336
1337 for (i = 0; i < c->key.nr_userclip; i++) {
1338 brw_set_conditionalmod(p, BRW_CONDITIONAL_L);
1339 brw_DP4(p, brw_null_reg(), pos, c->userplane[i]);
1340 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<i));
1341 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1342 }
1343
1344 /* i965 clipping workaround:
1345 * 1) Test for -ve rhw
1346 * 2) If set,
1347 * set ndc = (0,0,0,0)
1348 * set ucp[6] = 1
1349 *
1350 * Later, clipping will detect ucp[6] and ensure the primitive is
1351 * clipped against all fixed planes.
1352 */
1353 if (brw->has_negative_rhw_bug) {
1354 brw_CMP(p,
1355 vec8(brw_null_reg()),
1356 BRW_CONDITIONAL_L,
1357 brw_swizzle1(ndc, 3),
1358 brw_imm_f(0));
1359
1360 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
1361 brw_MOV(p, ndc, brw_imm_f(0));
1362 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1363 }
1364
1365 brw_set_access_mode(p, BRW_ALIGN_1); /* why? */
1366 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), header1);
1367 brw_set_access_mode(p, BRW_ALIGN_16);
1368
1369 release_tmp(c, header1);
1370 }
1371 else {
1372 brw_MOV(p, retype(brw_message_reg(1), BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
1373 }
1374
1375 /* Emit the (interleaved) headers for the two vertices - an 8-reg
1376 * of zeros followed by two sets of NDC coordinates:
1377 */
1378 brw_set_access_mode(p, BRW_ALIGN_1);
1379
1380 /* The VUE layout is documented in Volume 2a. */
1381 if (intel->gen >= 6) {
1382 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
1383 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1384 * dword 4-7 (m2) is the 4D space position
1385 * dword 8-15 (m3,m4) of the vertex header is the user clip distance if
1386 * enabled. We don't use it, so skip it.
1387 * m3 is the first vertex element data we fill, which is the vertex
1388 * position.
1389 */
1390 brw_MOV(p, brw_message_reg(2), pos);
1391 brw_MOV(p, brw_message_reg(3), pos);
1392 len_vertex_header = 2;
1393 } else if (intel->gen == 5) {
1394 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
1395 * dword 0-3 (m1) of the header is indices, point width, clip flags.
1396 * dword 4-7 (m2) is the ndc position (set above)
1397 * dword 8-11 (m3) of the vertex header is the 4D space position
1398 * dword 12-19 (m4,m5) of the vertex header is the user clip distance.
1399 * m6 is a pad so that the vertex element data is aligned
1400 * m7 is the first vertex data we fill, which is the vertex position.
1401 */
1402 brw_MOV(p, brw_message_reg(2), ndc);
1403 brw_MOV(p, brw_message_reg(3), pos);
1404 brw_MOV(p, brw_message_reg(7), pos);
1405 len_vertex_header = 6;
1406 } else {
1407 /* There are 8 dwords in VUE header pre-Ironlake:
1408 * dword 0-3 (m1) is indices, point width, clip flags.
1409 * dword 4-7 (m2) is ndc position (set above)
1410 *
1411 * dword 8-11 (m3) is the first vertex data, which we always have be the
1412 * vertex position.
1413 */
1414 brw_MOV(p, brw_message_reg(2), ndc);
1415 brw_MOV(p, brw_message_reg(3), pos);
1416 len_vertex_header = 2;
1417 }
1418
1419 eot = (c->first_overflow_output == 0);
1420
1421 brw_urb_WRITE(p,
1422 brw_null_reg(), /* dest */
1423 0, /* starting mrf reg nr */
1424 c->r0, /* src */
1425 0, /* allocate */
1426 1, /* used */
1427 MIN2(c->nr_outputs + 1 + len_vertex_header, (BRW_MAX_MRF-1)), /* msg len */
1428 0, /* response len */
1429 eot, /* eot */
1430 eot, /* writes complete */
1431 0, /* urb destination offset */
1432 BRW_URB_SWIZZLE_INTERLEAVE);
1433
1434 if (c->first_overflow_output > 0) {
1435 /* Not all of the vertex outputs/results fit into the MRF.
1436 * Move the overflowed attributes from the GRF to the MRF and
1437 * issue another brw_urb_WRITE().
1438 */
1439 GLuint i, mrf = 1;
1440 for (i = c->first_overflow_output; i < VERT_RESULT_MAX; i++) {
1441 if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
1442 /* move from GRF to MRF */
1443 brw_MOV(p, brw_message_reg(mrf), c->regs[PROGRAM_OUTPUT][i]);
1444 mrf++;
1445 }
1446 }
1447
1448 brw_urb_WRITE(p,
1449 brw_null_reg(), /* dest */
1450 0, /* starting mrf reg nr */
1451 c->r0, /* src */
1452 0, /* allocate */
1453 1, /* used */
1454 mrf, /* msg len */
1455 0, /* response len */
1456 1, /* eot */
1457 1, /* writes complete */
1458 14 / 2, /* urb destination offset */
1459 BRW_URB_SWIZZLE_INTERLEAVE);
1460 }
1461 }
1462
1463 static GLboolean
1464 accumulator_contains(struct brw_vs_compile *c, struct brw_reg val)
1465 {
1466 struct brw_compile *p = &c->func;
1467 struct brw_instruction *prev_insn = &p->store[p->nr_insn - 1];
1468
1469 if (p->nr_insn == 0)
1470 return GL_FALSE;
1471
1472 if (val.address_mode != BRW_ADDRESS_DIRECT)
1473 return GL_FALSE;
1474
1475 switch (prev_insn->header.opcode) {
1476 case BRW_OPCODE_MOV:
1477 case BRW_OPCODE_MAC:
1478 case BRW_OPCODE_MUL:
1479 if (prev_insn->header.access_mode == BRW_ALIGN_16 &&
1480 prev_insn->header.execution_size == val.width &&
1481 prev_insn->bits1.da1.dest_reg_file == val.file &&
1482 prev_insn->bits1.da1.dest_reg_type == val.type &&
1483 prev_insn->bits1.da1.dest_address_mode == val.address_mode &&
1484 prev_insn->bits1.da1.dest_reg_nr == val.nr &&
1485 prev_insn->bits1.da16.dest_subreg_nr == val.subnr / 16 &&
1486 prev_insn->bits1.da16.dest_writemask == 0xf)
1487 return GL_TRUE;
1488 else
1489 return GL_FALSE;
1490 default:
1491 return GL_FALSE;
1492 }
1493 }
1494
1495 static uint32_t
1496 get_predicate(const struct prog_instruction *inst)
1497 {
1498 if (inst->DstReg.CondMask == COND_TR)
1499 return BRW_PREDICATE_NONE;
1500
1501 /* All of GLSL only produces predicates for COND_NE and one channel per
1502 * vector. Fail badly if someone starts doing something else, as it might
1503 * mean infinite looping or something.
1504 *
1505 * We'd like to support all the condition codes, but our hardware doesn't
1506 * quite match the Mesa IR, which is modeled after the NV extensions. For
1507 * those, the instruction may update the condition codes or not, then any
1508 * later instruction may use one of those condition codes. For gen4, the
1509 * instruction may update the flags register based on one of the condition
1510 * codes output by the instruction, and then further instructions may
1511 * predicate on that. We can probably support this, but it won't
1512 * necessarily be easy.
1513 */
1514 assert(inst->DstReg.CondMask == COND_NE);
1515
1516 switch (inst->DstReg.CondSwizzle) {
1517 case SWIZZLE_XXXX:
1518 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
1519 case SWIZZLE_YYYY:
1520 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1521 case SWIZZLE_ZZZZ:
1522 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1523 case SWIZZLE_WWWW:
1524 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
1525 default:
1526 _mesa_problem(NULL, "Unexpected predicate: 0x%08x\n",
1527 inst->DstReg.CondMask);
1528 return BRW_PREDICATE_NORMAL;
1529 }
1530 }
1531
1532 /* Emit the vertex program instructions here.
1533 */
1534 void brw_vs_emit(struct brw_vs_compile *c )
1535 {
1536 #define MAX_IF_DEPTH 32
1537 #define MAX_LOOP_DEPTH 32
1538 struct brw_compile *p = &c->func;
1539 struct brw_context *brw = p->brw;
1540 struct intel_context *intel = &brw->intel;
1541 const GLuint nr_insns = c->vp->program.Base.NumInstructions;
1542 GLuint insn, if_depth = 0, loop_depth = 0;
1543 struct brw_instruction *if_inst[MAX_IF_DEPTH], *loop_inst[MAX_LOOP_DEPTH] = { 0 };
1544 const struct brw_indirect stack_index = brw_indirect(0, 0);
1545 GLuint index;
1546 GLuint file;
1547
1548 if (INTEL_DEBUG & DEBUG_VS) {
1549 printf("vs-mesa:\n");
1550 _mesa_print_program(&c->vp->program.Base);
1551 printf("\n");
1552 }
1553
1554 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1555 brw_set_access_mode(p, BRW_ALIGN_16);
1556
1557 for (insn = 0; insn < nr_insns; insn++) {
1558 GLuint i;
1559 struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1560
1561 /* Message registers can't be read, so copy the output into GRF
1562 * register if they are used in source registers
1563 */
1564 for (i = 0; i < 3; i++) {
1565 struct prog_src_register *src = &inst->SrcReg[i];
1566 GLuint index = src->Index;
1567 GLuint file = src->File;
1568 if (file == PROGRAM_OUTPUT && index != VERT_RESULT_HPOS)
1569 c->output_regs[index].used_in_src = GL_TRUE;
1570 }
1571
1572 switch (inst->Opcode) {
1573 case OPCODE_CAL:
1574 case OPCODE_RET:
1575 c->needs_stack = GL_TRUE;
1576 break;
1577 default:
1578 break;
1579 }
1580 }
1581
1582 /* Static register allocation
1583 */
1584 brw_vs_alloc_regs(c);
1585
1586 if (c->needs_stack)
1587 brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
1588
1589 for (insn = 0; insn < nr_insns; insn++) {
1590
1591 const struct prog_instruction *inst = &c->vp->program.Base.Instructions[insn];
1592 struct brw_reg args[3], dst;
1593 GLuint i;
1594
1595 #if 0
1596 printf("%d: ", insn);
1597 _mesa_print_instruction(inst);
1598 #endif
1599
1600 /* Get argument regs. SWZ is special and does this itself.
1601 */
1602 if (inst->Opcode != OPCODE_SWZ)
1603 for (i = 0; i < 3; i++) {
1604 const struct prog_src_register *src = &inst->SrcReg[i];
1605 index = src->Index;
1606 file = src->File;
1607 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1608 args[i] = c->output_regs[index].reg;
1609 else
1610 args[i] = get_arg(c, inst, i);
1611 }
1612
1613 /* Get dest regs. Note that it is possible for a reg to be both
1614 * dst and arg, given the static allocation of registers. So
1615 * care needs to be taken emitting multi-operation instructions.
1616 */
1617 index = inst->DstReg.Index;
1618 file = inst->DstReg.File;
1619 if (file == PROGRAM_OUTPUT && c->output_regs[index].used_in_src)
1620 dst = c->output_regs[index].reg;
1621 else
1622 dst = get_dst(c, inst->DstReg);
1623
1624 if (inst->SaturateMode != SATURATE_OFF) {
1625 _mesa_problem(NULL, "Unsupported saturate %d in vertex shader",
1626 inst->SaturateMode);
1627 }
1628
1629 switch (inst->Opcode) {
1630 case OPCODE_ABS:
1631 brw_MOV(p, dst, brw_abs(args[0]));
1632 break;
1633 case OPCODE_ADD:
1634 brw_ADD(p, dst, args[0], args[1]);
1635 break;
1636 case OPCODE_COS:
1637 emit_math1(c, BRW_MATH_FUNCTION_COS, dst, args[0], BRW_MATH_PRECISION_FULL);
1638 break;
1639 case OPCODE_DP3:
1640 brw_DP3(p, dst, args[0], args[1]);
1641 break;
1642 case OPCODE_DP4:
1643 brw_DP4(p, dst, args[0], args[1]);
1644 break;
1645 case OPCODE_DPH:
1646 brw_DPH(p, dst, args[0], args[1]);
1647 break;
1648 case OPCODE_NRM3:
1649 emit_nrm(c, dst, args[0], 3);
1650 break;
1651 case OPCODE_NRM4:
1652 emit_nrm(c, dst, args[0], 4);
1653 break;
1654 case OPCODE_DST:
1655 unalias2(c, dst, args[0], args[1], emit_dst_noalias);
1656 break;
1657 case OPCODE_EXP:
1658 unalias1(c, dst, args[0], emit_exp_noalias);
1659 break;
1660 case OPCODE_EX2:
1661 emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, args[0], BRW_MATH_PRECISION_FULL);
1662 break;
1663 case OPCODE_ARL:
1664 emit_arl(c, dst, args[0]);
1665 break;
1666 case OPCODE_FLR:
1667 brw_RNDD(p, dst, args[0]);
1668 break;
1669 case OPCODE_FRC:
1670 brw_FRC(p, dst, args[0]);
1671 break;
1672 case OPCODE_LOG:
1673 unalias1(c, dst, args[0], emit_log_noalias);
1674 break;
1675 case OPCODE_LG2:
1676 emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, args[0], BRW_MATH_PRECISION_FULL);
1677 break;
1678 case OPCODE_LIT:
1679 unalias1(c, dst, args[0], emit_lit_noalias);
1680 break;
1681 case OPCODE_LRP:
1682 unalias3(c, dst, args[0], args[1], args[2], emit_lrp_noalias);
1683 break;
1684 case OPCODE_MAD:
1685 if (!accumulator_contains(c, args[2]))
1686 brw_MOV(p, brw_acc_reg(), args[2]);
1687 brw_MAC(p, dst, args[0], args[1]);
1688 break;
1689 case OPCODE_CMP:
1690 emit_cmp(p, dst, args[0], args[1], args[2]);
1691 break;
1692 case OPCODE_MAX:
1693 emit_max(p, dst, args[0], args[1]);
1694 break;
1695 case OPCODE_MIN:
1696 emit_min(p, dst, args[0], args[1]);
1697 break;
1698 case OPCODE_MOV:
1699 brw_MOV(p, dst, args[0]);
1700 break;
1701 case OPCODE_MUL:
1702 brw_MUL(p, dst, args[0], args[1]);
1703 break;
1704 case OPCODE_POW:
1705 emit_math2(c, BRW_MATH_FUNCTION_POW, dst, args[0], args[1], BRW_MATH_PRECISION_FULL);
1706 break;
1707 case OPCODE_RCP:
1708 emit_math1(c, BRW_MATH_FUNCTION_INV, dst, args[0], BRW_MATH_PRECISION_FULL);
1709 break;
1710 case OPCODE_RSQ:
1711 emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, args[0], BRW_MATH_PRECISION_FULL);
1712 break;
1713
1714 case OPCODE_SEQ:
1715 unalias2(c, dst, args[0], args[1], emit_seq);
1716 break;
1717 case OPCODE_SIN:
1718 emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, args[0], BRW_MATH_PRECISION_FULL);
1719 break;
1720 case OPCODE_SNE:
1721 unalias2(c, dst, args[0], args[1], emit_sne);
1722 break;
1723 case OPCODE_SGE:
1724 unalias2(c, dst, args[0], args[1], emit_sge);
1725 break;
1726 case OPCODE_SGT:
1727 unalias2(c, dst, args[0], args[1], emit_sgt);
1728 break;
1729 case OPCODE_SLT:
1730 unalias2(c, dst, args[0], args[1], emit_slt);
1731 break;
1732 case OPCODE_SLE:
1733 unalias2(c, dst, args[0], args[1], emit_sle);
1734 break;
1735 case OPCODE_SUB:
1736 brw_ADD(p, dst, args[0], negate(args[1]));
1737 break;
1738 case OPCODE_SWZ:
1739 /* The args[0] value can't be used here as it won't have
1740 * correctly encoded the full swizzle:
1741 */
1742 emit_swz(c, dst, inst);
1743 break;
1744 case OPCODE_TRUNC:
1745 /* round toward zero */
1746 brw_RNDZ(p, dst, args[0]);
1747 break;
1748 case OPCODE_XPD:
1749 emit_xpd(p, dst, args[0], args[1]);
1750 break;
1751 case OPCODE_IF:
1752 assert(if_depth < MAX_IF_DEPTH);
1753 if_inst[if_depth] = brw_IF(p, BRW_EXECUTE_8);
1754 /* Note that brw_IF smashes the predicate_control field. */
1755 if_inst[if_depth]->header.predicate_control = get_predicate(inst);
1756 if_depth++;
1757 break;
1758 case OPCODE_ELSE:
1759 assert(if_depth > 0);
1760 if_inst[if_depth-1] = brw_ELSE(p, if_inst[if_depth-1]);
1761 break;
1762 case OPCODE_ENDIF:
1763 assert(if_depth > 0);
1764 brw_ENDIF(p, if_inst[--if_depth]);
1765 break;
1766 case OPCODE_BGNLOOP:
1767 loop_inst[loop_depth++] = brw_DO(p, BRW_EXECUTE_8);
1768 break;
1769 case OPCODE_BRK:
1770 brw_set_predicate_control(p, get_predicate(inst));
1771 brw_BREAK(p);
1772 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1773 break;
1774 case OPCODE_CONT:
1775 brw_set_predicate_control(p, get_predicate(inst));
1776 brw_CONT(p);
1777 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1778 break;
1779 case OPCODE_ENDLOOP:
1780 {
1781 struct brw_instruction *inst0, *inst1;
1782 GLuint br = 1;
1783
1784 loop_depth--;
1785
1786 if (intel->gen == 5)
1787 br = 2;
1788
1789 inst0 = inst1 = brw_WHILE(p, loop_inst[loop_depth]);
1790 /* patch all the BREAK/CONT instructions from last BEGINLOOP */
1791 while (inst0 > loop_inst[loop_depth]) {
1792 inst0--;
1793 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
1794 inst0->bits3.if_else.jump_count == 0) {
1795 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
1796 inst0->bits3.if_else.pop_count = 0;
1797 }
1798 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
1799 inst0->bits3.if_else.jump_count == 0) {
1800 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
1801 inst0->bits3.if_else.pop_count = 0;
1802 }
1803 }
1804 }
1805 break;
1806 case OPCODE_BRA:
1807 brw_set_predicate_control(p, get_predicate(inst));
1808 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1809 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1810 break;
1811 case OPCODE_CAL:
1812 brw_set_access_mode(p, BRW_ALIGN_1);
1813 brw_ADD(p, deref_1d(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
1814 brw_set_access_mode(p, BRW_ALIGN_16);
1815 brw_ADD(p, get_addr_reg(stack_index),
1816 get_addr_reg(stack_index), brw_imm_d(4));
1817 brw_save_call(p, inst->Comment, p->nr_insn);
1818 brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
1819 break;
1820 case OPCODE_RET:
1821 brw_ADD(p, get_addr_reg(stack_index),
1822 get_addr_reg(stack_index), brw_imm_d(-4));
1823 brw_set_access_mode(p, BRW_ALIGN_1);
1824 brw_MOV(p, brw_ip_reg(), deref_1d(stack_index, 0));
1825 brw_set_access_mode(p, BRW_ALIGN_16);
1826 break;
1827 case OPCODE_END:
1828 emit_vertex_write(c);
1829 break;
1830 case OPCODE_PRINT:
1831 /* no-op */
1832 break;
1833 case OPCODE_BGNSUB:
1834 brw_save_label(p, inst->Comment, p->nr_insn);
1835 break;
1836 case OPCODE_ENDSUB:
1837 /* no-op */
1838 break;
1839 default:
1840 _mesa_problem(NULL, "Unsupported opcode %i (%s) in vertex shader",
1841 inst->Opcode, inst->Opcode < MAX_OPCODE ?
1842 _mesa_opcode_string(inst->Opcode) :
1843 "unknown");
1844 }
1845
1846 /* Set the predication update on the last instruction of the native
1847 * instruction sequence.
1848 *
1849 * This would be problematic if it was set on a math instruction,
1850 * but that shouldn't be the case with the current GLSL compiler.
1851 */
1852 if (inst->CondUpdate) {
1853 struct brw_instruction *hw_insn = &p->store[p->nr_insn - 1];
1854
1855 assert(hw_insn->header.destreg__conditionalmod == 0);
1856 hw_insn->header.destreg__conditionalmod = BRW_CONDITIONAL_NZ;
1857 }
1858
1859 if ((inst->DstReg.File == PROGRAM_OUTPUT)
1860 && (inst->DstReg.Index != VERT_RESULT_HPOS)
1861 && c->output_regs[inst->DstReg.Index].used_in_src) {
1862 brw_MOV(p, get_dst(c, inst->DstReg), dst);
1863 }
1864
1865 /* Result color clamping.
1866 *
1867 * When destination register is an output register and
1868 * it's primary/secondary front/back color, we have to clamp
1869 * the result to [0,1]. This is done by enabling the
1870 * saturation bit for the last instruction.
1871 *
1872 * We don't use brw_set_saturate() as it modifies
1873 * p->current->header.saturate, which affects all the subsequent
1874 * instructions. Instead, we directly modify the header
1875 * of the last (already stored) instruction.
1876 */
1877 if (inst->DstReg.File == PROGRAM_OUTPUT) {
1878 if ((inst->DstReg.Index == VERT_RESULT_COL0)
1879 || (inst->DstReg.Index == VERT_RESULT_COL1)
1880 || (inst->DstReg.Index == VERT_RESULT_BFC0)
1881 || (inst->DstReg.Index == VERT_RESULT_BFC1)) {
1882 p->store[p->nr_insn-1].header.saturate = 1;
1883 }
1884 }
1885
1886 release_tmps(c);
1887 }
1888
1889 brw_resolve_cals(p);
1890
1891 brw_optimize(p);
1892
1893 if (INTEL_DEBUG & DEBUG_VS) {
1894 int i;
1895
1896 printf("vs-native:\n");
1897 for (i = 0; i < p->nr_insn; i++)
1898 brw_disasm(stderr, &p->store[i], intel->gen);
1899 printf("\n");
1900 }
1901 }