e409620bbf26226bb591a7cd65cfcbc93b67bcd6
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs_tnl.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 2005 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "shader/prog_parameter.h"
37 #include "shader/prog_print.h"
38 #include "brw_vs.h"
39 #include "brw_state.h"
40
41
42 struct state_key {
43 unsigned light_global_enabled:1;
44 unsigned light_local_viewer:1;
45 unsigned light_twoside:1;
46 unsigned light_color_material:1;
47 unsigned light_color_material_mask:12;
48 unsigned light_material_mask:12;
49 unsigned normalize:1;
50 unsigned rescale_normals:1;
51 unsigned fog_source_is_depth:1;
52 unsigned tnl_do_vertex_fog:1;
53 unsigned separate_specular:1;
54 unsigned fog_option:2;
55 unsigned point_attenuated:1;
56 unsigned texture_enabled_global:1;
57 unsigned fragprog_inputs_read:12;
58
59 struct {
60 unsigned light_enabled:1;
61 unsigned light_eyepos3_is_zero:1;
62 unsigned light_spotcutoff_is_180:1;
63 unsigned light_attenuated:1;
64 unsigned texunit_really_enabled:1;
65 unsigned texmat_enabled:1;
66 unsigned texgen_enabled:4;
67 unsigned texgen_mode0:4;
68 unsigned texgen_mode1:4;
69 unsigned texgen_mode2:4;
70 unsigned texgen_mode3:4;
71 } unit[8];
72 };
73
74
75
76 #define FOG_NONE 0
77 #define FOG_LINEAR 1
78 #define FOG_EXP 2
79 #define FOG_EXP2 3
80
81 static GLuint translate_fog_mode( GLenum mode )
82 {
83 switch (mode) {
84 case GL_LINEAR: return FOG_LINEAR;
85 case GL_EXP: return FOG_EXP;
86 case GL_EXP2: return FOG_EXP2;
87 default: return FOG_NONE;
88 }
89 }
90
91 #define TXG_NONE 0
92 #define TXG_OBJ_LINEAR 1
93 #define TXG_EYE_LINEAR 2
94 #define TXG_SPHERE_MAP 3
95 #define TXG_REFLECTION_MAP 4
96 #define TXG_NORMAL_MAP 5
97
98 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
99 {
100 if (!enabled)
101 return TXG_NONE;
102
103 switch (mode) {
104 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
105 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
106 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
107 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
108 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
109 default: return TXG_NONE;
110 }
111 }
112
113 static void make_state_key( GLcontext *ctx, struct state_key *key )
114 {
115 struct brw_context *brw = brw_context(ctx);
116 const struct gl_fragment_program *fp = brw->fragment_program;
117 GLuint i;
118
119 /* This now relies on texenvprogram.c being active:
120 */
121 assert(fp);
122
123 memset(key, 0, sizeof(*key));
124
125 /* BRW_NEW_FRAGMENT_PROGRAM */
126 key->fragprog_inputs_read = fp->Base.InputsRead;
127
128 /* _NEW_LIGHT */
129 key->separate_specular = (brw->attribs.Light->Model.ColorControl ==
130 GL_SEPARATE_SPECULAR_COLOR);
131
132 /* _NEW_LIGHT */
133 if (brw->attribs.Light->Enabled) {
134 key->light_global_enabled = 1;
135
136 if (brw->attribs.Light->Model.LocalViewer)
137 key->light_local_viewer = 1;
138
139 if (brw->attribs.Light->Model.TwoSide)
140 key->light_twoside = 1;
141
142 if (brw->attribs.Light->ColorMaterialEnabled) {
143 key->light_color_material = 1;
144 key->light_color_material_mask = brw->attribs.Light->ColorMaterialBitmask;
145 }
146
147 /* BRW_NEW_INPUT_VARYING */
148
149 /* For these programs, material values are stuffed into the
150 * generic slots:
151 */
152 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
153 if (brw->vb.info.varying & (1<<(VERT_ATTRIB_GENERIC0 + i)))
154 key->light_material_mask |= 1<<i;
155
156 for (i = 0; i < MAX_LIGHTS; i++) {
157 struct gl_light *light = &brw->attribs.Light->Light[i];
158
159 if (light->Enabled) {
160 key->unit[i].light_enabled = 1;
161
162 if (light->EyePosition[3] == 0.0)
163 key->unit[i].light_eyepos3_is_zero = 1;
164
165 if (light->SpotCutoff == 180.0)
166 key->unit[i].light_spotcutoff_is_180 = 1;
167
168 if (light->ConstantAttenuation != 1.0 ||
169 light->LinearAttenuation != 0.0 ||
170 light->QuadraticAttenuation != 0.0)
171 key->unit[i].light_attenuated = 1;
172 }
173 }
174 }
175
176 /* _NEW_TRANSFORM */
177 if (brw->attribs.Transform->Normalize)
178 key->normalize = 1;
179
180 if (brw->attribs.Transform->RescaleNormals)
181 key->rescale_normals = 1;
182
183 /* BRW_NEW_FRAGMENT_PROGRAM */
184 key->fog_option = translate_fog_mode(fp->FogOption);
185 if (key->fog_option)
186 key->fragprog_inputs_read |= FRAG_BIT_FOGC;
187
188 /* _NEW_FOG */
189 if (brw->attribs.Fog->FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
190 key->fog_source_is_depth = 1;
191
192 /* _NEW_HINT, ??? */
193 if (1)
194 key->tnl_do_vertex_fog = 1;
195
196 /* _NEW_POINT */
197 if (brw->attribs.Point->_Attenuated)
198 key->point_attenuated = 1;
199
200 /* _NEW_TEXTURE */
201 if (brw->attribs.Texture->_TexGenEnabled ||
202 brw->attribs.Texture->_TexMatEnabled ||
203 brw->attribs.Texture->_EnabledUnits)
204 key->texture_enabled_global = 1;
205
206 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
207 struct gl_texture_unit *texUnit = &brw->attribs.Texture->Unit[i];
208
209 if (texUnit->_ReallyEnabled)
210 key->unit[i].texunit_really_enabled = 1;
211
212 if (brw->attribs.Texture->_TexMatEnabled & ENABLE_TEXMAT(i))
213 key->unit[i].texmat_enabled = 1;
214
215 if (texUnit->TexGenEnabled) {
216 key->unit[i].texgen_enabled = 1;
217
218 key->unit[i].texgen_mode0 =
219 translate_texgen( texUnit->TexGenEnabled & (1<<0),
220 texUnit->GenModeS );
221 key->unit[i].texgen_mode1 =
222 translate_texgen( texUnit->TexGenEnabled & (1<<1),
223 texUnit->GenModeT );
224 key->unit[i].texgen_mode2 =
225 translate_texgen( texUnit->TexGenEnabled & (1<<2),
226 texUnit->GenModeR );
227 key->unit[i].texgen_mode3 =
228 translate_texgen( texUnit->TexGenEnabled & (1<<3),
229 texUnit->GenModeQ );
230 }
231 }
232 }
233
234
235
236 /* Very useful debugging tool - produces annotated listing of
237 * generated program with line/function references for each
238 * instruction back into this file:
239 */
240 #define DISASSEM 0
241
242 /* Should be tunable by the driver - do we want to do matrix
243 * multiplications with DP4's or with MUL/MAD's? SSE works better
244 * with the latter, drivers may differ.
245 */
246 #define PREFER_DP4 1
247
248
249 /* Use uregs to represent registers internally, translate to Mesa's
250 * expected formats on emit.
251 *
252 * NOTE: These are passed by value extensively in this file rather
253 * than as usual by pointer reference. If this disturbs you, try
254 * remembering they are just 32bits in size.
255 *
256 * GCC is smart enough to deal with these dword-sized structures in
257 * much the same way as if I had defined them as dwords and was using
258 * macros to access and set the fields. This is much nicer and easier
259 * to evolve.
260 */
261 struct ureg {
262 GLuint file:4;
263 GLint idx:8; /* relative addressing may be negative */
264 GLuint negate:1;
265 GLuint swz:12;
266 GLuint pad:7;
267 };
268
269
270 struct tnl_program {
271 const struct state_key *state;
272 struct gl_vertex_program *program;
273
274 GLuint nr_instructions;
275 GLuint temp_in_use;
276 GLuint temp_reserved;
277
278 struct ureg eye_position;
279 struct ureg eye_position_normalized;
280 struct ureg eye_normal;
281 struct ureg identity;
282
283 GLuint materials;
284 GLuint color_materials;
285 };
286
287
288 const static struct ureg undef = {
289 PROGRAM_UNDEFINED,
290 ~0,
291 0,
292 0,
293 0
294 };
295
296 /* Local shorthand:
297 */
298 #define X SWIZZLE_X
299 #define Y SWIZZLE_Y
300 #define Z SWIZZLE_Z
301 #define W SWIZZLE_W
302
303
304 /* Construct a ureg:
305 */
306 static struct ureg make_ureg(GLuint file, GLint idx)
307 {
308 struct ureg reg;
309 reg.file = file;
310 reg.idx = idx;
311 reg.negate = 0;
312 reg.swz = SWIZZLE_NOOP;
313 reg.pad = 0;
314 return reg;
315 }
316
317
318
319 static struct ureg ureg_negate( struct ureg reg )
320 {
321 reg.negate ^= 1;
322 return reg;
323 }
324
325
326 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
327 {
328 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
329 GET_SWZ(reg.swz, y),
330 GET_SWZ(reg.swz, z),
331 GET_SWZ(reg.swz, w));
332
333 return reg;
334 }
335
336 static struct ureg swizzle1( struct ureg reg, int x )
337 {
338 return swizzle(reg, x, x, x, x);
339 }
340
341 static struct ureg get_temp( struct tnl_program *p )
342 {
343 int bit = ffs( ~p->temp_in_use );
344 if (!bit) {
345 fprintf(stderr, "%s: out of temporaries\n", __FILE__);
346 assert(0);
347 }
348
349 if (bit > p->program->Base.NumTemporaries)
350 p->program->Base.NumTemporaries = bit;
351
352 p->temp_in_use |= 1<<(bit-1);
353 return make_ureg(PROGRAM_TEMPORARY, bit-1);
354 }
355
356 static struct ureg reserve_temp( struct tnl_program *p )
357 {
358 struct ureg temp = get_temp( p );
359 p->temp_reserved |= 1<<temp.idx;
360 return temp;
361 }
362
363 static void release_temp( struct tnl_program *p, struct ureg reg )
364 {
365 if (reg.file == PROGRAM_TEMPORARY) {
366 p->temp_in_use &= ~(1<<reg.idx);
367 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
368 }
369 }
370
371 static void release_temps( struct tnl_program *p )
372 {
373 p->temp_in_use = p->temp_reserved;
374 }
375
376
377
378 static struct ureg register_input( struct tnl_program *p, GLuint input )
379 {
380 assert(input < 32);
381
382 p->program->Base.InputsRead |= (1<<input);
383 return make_ureg(PROGRAM_INPUT, input);
384 }
385
386 static struct ureg register_output( struct tnl_program *p, GLuint output )
387 {
388 p->program->Base.OutputsWritten |= (1<<output);
389 return make_ureg(PROGRAM_OUTPUT, output);
390 }
391
392 static struct ureg register_const4f( struct tnl_program *p,
393 GLfloat s0,
394 GLfloat s1,
395 GLfloat s2,
396 GLfloat s3)
397 {
398 GLfloat values[4];
399 GLint idx;
400 GLuint swizzle;
401 values[0] = s0;
402 values[1] = s1;
403 values[2] = s2;
404 values[3] = s3;
405 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
406 &swizzle);
407 assert(swizzle == SWIZZLE_NOOP); /* Need to handle swizzle in reg setup */
408 return make_ureg(PROGRAM_STATE_VAR, idx);
409 }
410
411 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
412 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
413 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
414 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
415
416 static GLboolean is_undef( struct ureg reg )
417 {
418 return reg.file == PROGRAM_UNDEFINED;
419 }
420
421 static struct ureg get_identity_param( struct tnl_program *p )
422 {
423 if (is_undef(p->identity))
424 p->identity = register_const4f(p, 0,0,0,1);
425
426 return p->identity;
427 }
428
429 static struct ureg register_param5( struct tnl_program *p,
430 GLint s0,
431 GLint s1,
432 GLint s2,
433 GLint s3,
434 GLint s4)
435 {
436 gl_state_index tokens[STATE_LENGTH];
437 GLint idx;
438 tokens[0] = s0;
439 tokens[1] = s1;
440 tokens[2] = s2;
441 tokens[3] = s3;
442 tokens[4] = s4;
443 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
444 return make_ureg(PROGRAM_STATE_VAR, idx);
445 }
446
447
448 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
449 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
450 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
451 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
452
453
454 static void register_matrix_param5( struct tnl_program *p,
455 GLint s0, /* matrix name */
456 GLint s1, /* texture matrix number */
457 GLint s2, /* first row */
458 GLint s3, /* last row */
459 GLint s4, /* modifier */
460 struct ureg *matrix )
461 {
462 GLint i;
463
464 /* This is a bit sad as the support is there to pull the whole
465 * matrix out in one go:
466 */
467 for (i = 0; i <= s3 - s2; i++)
468 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
469 }
470
471
472 static void emit_arg( struct prog_src_register *src,
473 struct ureg reg )
474 {
475 src->File = reg.file;
476 src->Index = reg.idx;
477 src->Swizzle = reg.swz;
478 src->RelAddr = 0;
479 src->NegateBase = reg.negate;
480 src->Abs = 0;
481 src->NegateAbs = 0;
482 }
483
484 static void emit_dst( struct prog_dst_register *dst,
485 struct ureg reg, GLuint mask )
486 {
487 dst->File = reg.file;
488 dst->Index = reg.idx;
489 /* allow zero as a shorthand for xyzw */
490 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
491 dst->CondMask = 0;
492 dst->CondSwizzle = 0;
493 dst->CondSrc = 0;
494 dst->pad = 0;
495 }
496
497 static void debug_insn( struct prog_instruction *inst, const char *fn,
498 GLuint line )
499 {
500 if (DISASSEM) {
501 static const char *last_fn;
502
503 if (fn != last_fn) {
504 last_fn = fn;
505 _mesa_printf("%s:\n", fn);
506 }
507
508 _mesa_printf("%d:\t", line);
509 _mesa_print_instruction(inst);
510 }
511 }
512
513
514 static void emit_op3fn(struct tnl_program *p,
515 GLuint op,
516 struct ureg dest,
517 GLuint mask,
518 struct ureg src0,
519 struct ureg src1,
520 struct ureg src2,
521 const char *fn,
522 GLuint line)
523 {
524 GLuint nr = p->program->Base.NumInstructions++;
525
526 if (nr >= p->nr_instructions) {
527 int new_nr_instructions = p->nr_instructions * 2;
528
529 p->program->Base.Instructions =
530 _mesa_realloc(p->program->Base.Instructions,
531 sizeof(struct prog_instruction) * p->nr_instructions,
532 sizeof(struct prog_instruction) * new_nr_instructions);
533 p->nr_instructions = new_nr_instructions;
534 }
535
536 {
537 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
538 memset(inst, 0, sizeof(*inst));
539 inst->Opcode = op;
540 inst->StringPos = 0;
541 inst->Data = 0;
542
543 emit_arg( &inst->SrcReg[0], src0 );
544 emit_arg( &inst->SrcReg[1], src1 );
545 emit_arg( &inst->SrcReg[2], src2 );
546
547 emit_dst( &inst->DstReg, dest, mask );
548
549 debug_insn(inst, fn, line);
550 }
551 }
552
553
554
555 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
556 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
557
558 #define emit_op2(p, op, dst, mask, src0, src1) \
559 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
560
561 #define emit_op1(p, op, dst, mask, src0) \
562 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
563
564
565 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
566 {
567 if (reg.file == PROGRAM_TEMPORARY &&
568 !(p->temp_reserved & (1<<reg.idx)))
569 return reg;
570 else {
571 struct ureg temp = get_temp(p);
572 emit_op1(p, OPCODE_MOV, temp, 0, reg);
573 return temp;
574 }
575 }
576
577
578 /* Currently no tracking performed of input/output/register size or
579 * active elements. Could be used to reduce these operations, as
580 * could the matrix type.
581 */
582 static void emit_matrix_transform_vec4( struct tnl_program *p,
583 struct ureg dest,
584 const struct ureg *mat,
585 struct ureg src)
586 {
587 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
588 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
589 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
590 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
591 }
592
593 /* This version is much easier to implement if writemasks are not
594 * supported natively on the target or (like SSE), the target doesn't
595 * have a clean/obvious dotproduct implementation.
596 */
597 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
598 struct ureg dest,
599 const struct ureg *mat,
600 struct ureg src)
601 {
602 struct ureg tmp;
603
604 if (dest.file != PROGRAM_TEMPORARY)
605 tmp = get_temp(p);
606 else
607 tmp = dest;
608
609 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
610 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
611 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
612 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
613
614 if (dest.file != PROGRAM_TEMPORARY)
615 release_temp(p, tmp);
616 }
617
618 static void emit_matrix_transform_vec3( struct tnl_program *p,
619 struct ureg dest,
620 const struct ureg *mat,
621 struct ureg src)
622 {
623 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
624 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
625 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
626 }
627
628
629 static void emit_normalize_vec3( struct tnl_program *p,
630 struct ureg dest,
631 struct ureg src )
632 {
633 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_W, src, src);
634 emit_op1(p, OPCODE_RSQ, dest, WRITEMASK_W, swizzle1(dest,W));
635 emit_op2(p, OPCODE_MUL, dest, WRITEMASK_XYZ, src, swizzle1(dest,W));
636 }
637
638 static void emit_passthrough( struct tnl_program *p,
639 GLuint input,
640 GLuint output )
641 {
642 struct ureg out = register_output(p, output);
643 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
644 }
645
646 static struct ureg get_eye_position( struct tnl_program *p )
647 {
648 if (is_undef(p->eye_position)) {
649 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
650 struct ureg modelview[4];
651
652 p->eye_position = reserve_temp(p);
653
654 if (PREFER_DP4) {
655 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
656 0, modelview );
657
658 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
659 }
660 else {
661 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
662 STATE_MATRIX_TRANSPOSE, modelview );
663
664 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
665 }
666 }
667
668 return p->eye_position;
669 }
670
671
672 #if 0
673 static struct ureg get_eye_z( struct tnl_program *p )
674 {
675 if (!is_undef(p->eye_position)) {
676 return swizzle1(p->eye_position, Z);
677 }
678 else if (!is_undef(p->eye_z)) {
679 struct ureg pos = register_input( p, BRW_ATTRIB_POS );
680 struct ureg modelview2;
681
682 p->eye_z = reserve_temp(p);
683
684 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 2, 1,
685 STATE_MATRIX, &modelview2 );
686
687 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
688 emit_op2(p, OPCODE_DP4, p->eye_z, WRITEMASK_Z, pos, modelview2);
689 }
690
691 return swizzle1(p->eye_z, Z)
692 }
693 #endif
694
695
696
697 static struct ureg get_eye_position_normalized( struct tnl_program *p )
698 {
699 if (is_undef(p->eye_position_normalized)) {
700 struct ureg eye = get_eye_position(p);
701 p->eye_position_normalized = reserve_temp(p);
702 emit_normalize_vec3(p, p->eye_position_normalized, eye);
703 }
704
705 return p->eye_position_normalized;
706 }
707
708
709 static struct ureg get_eye_normal( struct tnl_program *p )
710 {
711 if (is_undef(p->eye_normal)) {
712 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
713 struct ureg mvinv[3];
714
715 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
716 STATE_MATRIX_INVTRANS, mvinv );
717
718 p->eye_normal = reserve_temp(p);
719
720 /* Transform to eye space:
721 */
722 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
723
724 /* Normalize/Rescale:
725 */
726 if (p->state->normalize) {
727 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
728 }
729 else if (p->state->rescale_normals) {
730 struct ureg rescale = register_param2(p, STATE_INTERNAL,
731 STATE_NORMAL_SCALE);
732
733 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, p->eye_normal,
734 swizzle1(rescale, X));
735 }
736 }
737
738 return p->eye_normal;
739 }
740
741
742
743 static void build_hpos( struct tnl_program *p )
744 {
745 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
746 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
747 struct ureg mvp[4];
748
749 if (PREFER_DP4) {
750 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
751 0, mvp );
752 emit_matrix_transform_vec4( p, hpos, mvp, pos );
753 }
754 else {
755 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
756 STATE_MATRIX_TRANSPOSE, mvp );
757 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
758 }
759 }
760
761
762 static GLuint material_attrib( GLuint side, GLuint property )
763 {
764 return (property - STATE_AMBIENT) * 2 + side;
765 }
766
767 /* Get a bitmask of which material values vary on a per-vertex basis.
768 */
769 static void set_material_flags( struct tnl_program *p )
770 {
771 p->color_materials = 0;
772 p->materials = 0;
773
774 if (p->state->light_color_material) {
775 p->materials =
776 p->color_materials = p->state->light_color_material_mask;
777 }
778
779 p->materials |= p->state->light_material_mask;
780 }
781
782
783 static struct ureg get_material( struct tnl_program *p, GLuint side,
784 GLuint property )
785 {
786 GLuint attrib = material_attrib(side, property);
787
788 if (p->color_materials & (1<<attrib))
789 return register_input(p, VERT_ATTRIB_COLOR0);
790 else if (p->materials & (1<<attrib))
791 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
792 else
793 return register_param3( p, STATE_MATERIAL, side, property );
794 }
795
796 #define SCENE_COLOR_BITS(side) ((MAT_BIT_FRONT_EMISSION | \
797 MAT_BIT_FRONT_AMBIENT | \
798 MAT_BIT_FRONT_DIFFUSE) << (side))
799
800 /* Either return a precalculated constant value or emit code to
801 * calculate these values dynamically in the case where material calls
802 * are present between begin/end pairs.
803 *
804 * Probably want to shift this to the program compilation phase - if
805 * we always emitted the calculation here, a smart compiler could
806 * detect that it was constant (given a certain set of inputs), and
807 * lift it out of the main loop. That way the programs created here
808 * would be independent of the vertex_buffer details.
809 */
810 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
811 {
812 if (p->materials & SCENE_COLOR_BITS(side)) {
813 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
814 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
815 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
816 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
817 struct ureg tmp = make_temp(p, material_diffuse);
818 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
819 material_ambient, material_emission);
820 return tmp;
821 }
822 else
823 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
824 }
825
826
827 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
828 GLuint side, GLuint property )
829 {
830 GLuint attrib = material_attrib(side, property);
831 if (p->materials & (1<<attrib)) {
832 struct ureg light_value =
833 register_param3(p, STATE_LIGHT, light, property);
834 struct ureg material_value = get_material(p, side, property);
835 struct ureg tmp = get_temp(p);
836 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
837 return tmp;
838 }
839 else
840 return register_param4(p, STATE_LIGHTPROD, light, side, property);
841 }
842
843 static struct ureg calculate_light_attenuation( struct tnl_program *p,
844 GLuint i,
845 struct ureg VPpli,
846 struct ureg dist )
847 {
848 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
849 STATE_ATTENUATION);
850 struct ureg att = get_temp(p);
851
852 /* Calculate spot attenuation:
853 */
854 if (!p->state->unit[i].light_spotcutoff_is_180) {
855 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
856 STATE_SPOT_DIR_NORMALIZED, i);
857 struct ureg spot = get_temp(p);
858 struct ureg slt = get_temp(p);
859
860 emit_op2(p, OPCODE_DP3, spot, 0, ureg_negate(VPpli), spot_dir_norm);
861 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
862 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
863 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
864
865 release_temp(p, spot);
866 release_temp(p, slt);
867 }
868
869 /* Calculate distance attenuation:
870 */
871 if (p->state->unit[i].light_attenuated) {
872
873 /* 1/d,d,d,1/d */
874 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
875 /* 1,d,d*d,1/d */
876 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
877 /* 1/dist-atten */
878 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
879
880 if (!p->state->unit[i].light_spotcutoff_is_180) {
881 /* dist-atten */
882 emit_op1(p, OPCODE_RCP, dist, 0, dist);
883 /* spot-atten * dist-atten */
884 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
885 } else {
886 /* dist-atten */
887 emit_op1(p, OPCODE_RCP, att, 0, dist);
888 }
889 }
890
891 return att;
892 }
893
894
895
896
897
898 /* Need to add some addtional parameters to allow lighting in object
899 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
900 * space lighting.
901 */
902 static void build_lighting( struct tnl_program *p )
903 {
904 const GLboolean twoside = p->state->light_twoside;
905 const GLboolean separate = p->state->separate_specular;
906 GLuint nr_lights = 0, count = 0;
907 struct ureg normal = get_eye_normal(p);
908 struct ureg lit = get_temp(p);
909 struct ureg dots = get_temp(p);
910 struct ureg _col0 = undef, _col1 = undef;
911 struct ureg _bfc0 = undef, _bfc1 = undef;
912 GLuint i;
913
914 for (i = 0; i < MAX_LIGHTS; i++)
915 if (p->state->unit[i].light_enabled)
916 nr_lights++;
917
918 set_material_flags(p);
919
920 {
921 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
922 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
923 release_temp(p, shininess);
924
925 _col0 = make_temp(p, get_scenecolor(p, 0));
926 if (separate)
927 _col1 = make_temp(p, get_identity_param(p));
928 else
929 _col1 = _col0;
930
931 }
932
933 if (twoside) {
934 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
935 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
936 ureg_negate(swizzle1(shininess,X)));
937 release_temp(p, shininess);
938
939 _bfc0 = make_temp(p, get_scenecolor(p, 1));
940 if (separate)
941 _bfc1 = make_temp(p, get_identity_param(p));
942 else
943 _bfc1 = _bfc0;
944 }
945
946
947 /* If no lights, still need to emit the scenecolor.
948 */
949 /* KW: changed to do this always - v1.17 "Fix lighting alpha result"?
950 */
951 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
952 {
953 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
954 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
955
956 if (twoside) {
957 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
958 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
959 }
960 }
961
962 if (separate && (p->state->fragprog_inputs_read & FRAG_BIT_COL1)) {
963
964 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
965 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
966
967 if (twoside) {
968 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
969 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
970 }
971 }
972
973 if (nr_lights == 0) {
974 release_temps(p);
975 return;
976 }
977
978
979 for (i = 0; i < MAX_LIGHTS; i++) {
980 if (p->state->unit[i].light_enabled) {
981 struct ureg half = undef;
982 struct ureg att = undef, VPpli = undef;
983
984 count++;
985
986 if (p->state->unit[i].light_eyepos3_is_zero) {
987 /* Can used precomputed constants in this case.
988 * Attenuation never applies to infinite lights.
989 */
990 VPpli = register_param3(p, STATE_LIGHT, i,
991 STATE_POSITION_NORMALIZED);
992 if (p->state->light_local_viewer) {
993 struct ureg eye_hat = get_eye_position_normalized(p);
994 half = get_temp(p);
995 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
996 emit_normalize_vec3(p, half, half);
997 } else {
998 half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
999 }
1000 }
1001 else {
1002 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
1003 STATE_POSITION);
1004 struct ureg V = get_eye_position(p);
1005 struct ureg dist = get_temp(p);
1006 struct ureg tmpPpli = get_temp(p);
1007
1008 VPpli = get_temp(p);
1009 half = get_temp(p);
1010
1011 /* In homogeneous object coordinates
1012 */
1013 emit_op1(p, OPCODE_RCP, dist, 0, swizzle1(Ppli, W));
1014 emit_op2(p, OPCODE_MUL, tmpPpli, 0, Ppli, dist);
1015
1016 /* Calulate VPpli vector
1017 */
1018 emit_op2(p, OPCODE_SUB, VPpli, 0, tmpPpli, V);
1019
1020 /* Normalize VPpli. The dist value also used in
1021 * attenuation below.
1022 */
1023 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1024 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1025 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1026
1027
1028 /* Calculate attenuation:
1029 */
1030 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1031 p->state->unit[i].light_attenuated) {
1032 att = calculate_light_attenuation(p, i, VPpli, dist);
1033 }
1034
1035
1036 /* Calculate viewer direction, or use infinite viewer:
1037 */
1038 if (p->state->light_local_viewer) {
1039 struct ureg eye_hat = get_eye_position_normalized(p);
1040 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1041 }
1042 else {
1043 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1044 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1045 }
1046
1047 emit_normalize_vec3(p, half, half);
1048
1049 release_temp(p, dist);
1050 release_temp(p, tmpPpli);
1051 }
1052
1053 /* Calculate dot products:
1054 */
1055 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1056 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1057
1058
1059 /* Front face lighting:
1060 */
1061 {
1062 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1063 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1064 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1065 struct ureg res0, res1;
1066 GLuint mask0, mask1;
1067
1068 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1069
1070 if (!is_undef(att))
1071 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1072
1073
1074 mask0 = 0;
1075 mask1 = 0;
1076 res0 = _col0;
1077 res1 = _col1;
1078
1079 if (count == nr_lights) {
1080 if (separate) {
1081 mask0 = WRITEMASK_XYZ;
1082 mask1 = WRITEMASK_XYZ;
1083
1084 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1085 res0 = register_output( p, VERT_RESULT_COL0 );
1086
1087 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1088 res1 = register_output( p, VERT_RESULT_COL1 );
1089 }
1090 else {
1091 mask1 = WRITEMASK_XYZ;
1092
1093 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1094 res1 = register_output( p, VERT_RESULT_COL0 );
1095 }
1096 }
1097
1098 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1099 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1100 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1101
1102 release_temp(p, ambient);
1103 release_temp(p, diffuse);
1104 release_temp(p, specular);
1105 }
1106
1107 /* Back face lighting:
1108 */
1109 if (twoside) {
1110 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1111 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1112 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1113 struct ureg res0, res1;
1114 GLuint mask0, mask1;
1115
1116 emit_op1(p, OPCODE_LIT, lit, 0, ureg_negate(swizzle(dots,X,Y,W,Z)));
1117
1118 if (!is_undef(att))
1119 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1120
1121 mask0 = 0;
1122 mask1 = 0;
1123 res0 = _bfc0;
1124 res1 = _bfc1;
1125
1126 if (count == nr_lights) {
1127 if (separate) {
1128 mask0 = WRITEMASK_XYZ;
1129 mask1 = WRITEMASK_XYZ;
1130 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1131 res0 = register_output( p, VERT_RESULT_BFC0 );
1132
1133 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1134 res1 = register_output( p, VERT_RESULT_BFC1 );
1135 }
1136 else {
1137 mask1 = WRITEMASK_XYZ;
1138
1139 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1140 res1 = register_output( p, VERT_RESULT_BFC0 );
1141 }
1142 }
1143
1144 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1145 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1146 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1147
1148 release_temp(p, ambient);
1149 release_temp(p, diffuse);
1150 release_temp(p, specular);
1151 }
1152
1153 release_temp(p, half);
1154 release_temp(p, VPpli);
1155 release_temp(p, att);
1156 }
1157 }
1158
1159 release_temps( p );
1160 }
1161
1162
1163 static void build_fog( struct tnl_program *p )
1164 {
1165 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1166 struct ureg input;
1167 GLuint useabs = p->state->fog_source_is_depth && p->state->fog_option &&
1168 (p->state->fog_option != FOG_EXP2);
1169
1170 if (p->state->fog_source_is_depth) {
1171 input = swizzle1(get_eye_position(p), Z);
1172 }
1173 else {
1174 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1175 if (p->state->fog_option &&
1176 p->state->tnl_do_vertex_fog)
1177 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1178 else
1179 input = register_input(p, VERT_ATTRIB_FOG);
1180 }
1181
1182 if (p->state->fog_option &&
1183 p->state->tnl_do_vertex_fog) {
1184 struct ureg params = register_param2(p, STATE_INTERNAL,
1185 STATE_FOG_PARAMS_OPTIMIZED);
1186 struct ureg tmp = get_temp(p);
1187 struct ureg id = get_identity_param(p);
1188
1189 emit_op1(p, OPCODE_MOV, fog, 0, id);
1190
1191 if (useabs) {
1192 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1193 }
1194
1195 switch (p->state->fog_option) {
1196 case FOG_LINEAR: {
1197 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1198 swizzle1(params,X), swizzle1(params,Y));
1199 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1200 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1201 break;
1202 }
1203 case FOG_EXP:
1204 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1205 swizzle1(params,Z));
1206 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, ureg_negate(tmp));
1207 break;
1208 case FOG_EXP2:
1209 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1210 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1211 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, ureg_negate(tmp));
1212 break;
1213 }
1214
1215 release_temp(p, tmp);
1216 }
1217 else {
1218 /* results = incoming fog coords (compute fog per-fragment later)
1219 *
1220 * KW: Is it really necessary to do anything in this case?
1221 */
1222 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, 0, input);
1223 }
1224 }
1225
1226 static void build_reflect_texgen( struct tnl_program *p,
1227 struct ureg dest,
1228 GLuint writemask )
1229 {
1230 struct ureg normal = get_eye_normal(p);
1231 struct ureg eye_hat = get_eye_position_normalized(p);
1232 struct ureg tmp = get_temp(p);
1233
1234 /* n.u */
1235 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1236 /* 2n.u */
1237 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1238 /* (-2n.u)n + u */
1239 emit_op3(p, OPCODE_MAD, dest, writemask, ureg_negate(tmp), normal, eye_hat);
1240
1241 release_temp(p, tmp);
1242 }
1243
1244 static void build_sphere_texgen( struct tnl_program *p,
1245 struct ureg dest,
1246 GLuint writemask )
1247 {
1248 struct ureg normal = get_eye_normal(p);
1249 struct ureg eye_hat = get_eye_position_normalized(p);
1250 struct ureg tmp = get_temp(p);
1251 struct ureg half = register_scalar_const(p, .5);
1252 struct ureg r = get_temp(p);
1253 struct ureg inv_m = get_temp(p);
1254 struct ureg id = get_identity_param(p);
1255
1256 /* Could share the above calculations, but it would be
1257 * a fairly odd state for someone to set (both sphere and
1258 * reflection active for different texture coordinate
1259 * components. Of course - if two texture units enable
1260 * reflect and/or sphere, things start to tilt in favour
1261 * of seperating this out:
1262 */
1263
1264 /* n.u */
1265 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1266 /* 2n.u */
1267 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1268 /* (-2n.u)n + u */
1269 emit_op3(p, OPCODE_MAD, r, 0, ureg_negate(tmp), normal, eye_hat);
1270 /* r + 0,0,1 */
1271 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1272 /* rx^2 + ry^2 + (rz+1)^2 */
1273 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1274 /* 2/m */
1275 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1276 /* 1/m */
1277 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1278 /* r/m + 1/2 */
1279 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1280
1281 release_temp(p, tmp);
1282 release_temp(p, r);
1283 release_temp(p, inv_m);
1284 }
1285
1286
1287 static void build_texture_transform( struct tnl_program *p )
1288 {
1289 GLuint i, j;
1290
1291 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1292
1293 if (!(p->state->fragprog_inputs_read & (FRAG_BIT_TEX0<<i)))
1294 continue;
1295
1296 if (p->state->unit[i].texgen_enabled ||
1297 p->state->unit[i].texmat_enabled) {
1298
1299 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1300 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1301 struct ureg out_texgen = undef;
1302
1303 if (p->state->unit[i].texgen_enabled) {
1304 GLuint copy_mask = 0;
1305 GLuint sphere_mask = 0;
1306 GLuint reflect_mask = 0;
1307 GLuint normal_mask = 0;
1308 GLuint modes[4];
1309
1310 if (texmat_enabled)
1311 out_texgen = get_temp(p);
1312 else
1313 out_texgen = out;
1314
1315 modes[0] = p->state->unit[i].texgen_mode0;
1316 modes[1] = p->state->unit[i].texgen_mode1;
1317 modes[2] = p->state->unit[i].texgen_mode2;
1318 modes[3] = p->state->unit[i].texgen_mode3;
1319
1320 for (j = 0; j < 4; j++) {
1321 switch (modes[j]) {
1322 case TXG_OBJ_LINEAR: {
1323 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1324 struct ureg plane =
1325 register_param3(p, STATE_TEXGEN, i,
1326 STATE_TEXGEN_OBJECT_S + j);
1327
1328 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1329 obj, plane );
1330 break;
1331 }
1332 case TXG_EYE_LINEAR: {
1333 struct ureg eye = get_eye_position(p);
1334 struct ureg plane =
1335 register_param3(p, STATE_TEXGEN, i,
1336 STATE_TEXGEN_EYE_S + j);
1337
1338 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1339 eye, plane );
1340 break;
1341 }
1342 case TXG_SPHERE_MAP:
1343 sphere_mask |= WRITEMASK_X << j;
1344 break;
1345 case TXG_REFLECTION_MAP:
1346 reflect_mask |= WRITEMASK_X << j;
1347 break;
1348 case TXG_NORMAL_MAP:
1349 normal_mask |= WRITEMASK_X << j;
1350 break;
1351 case TXG_NONE:
1352 copy_mask |= WRITEMASK_X << j;
1353 }
1354
1355 }
1356
1357
1358 if (sphere_mask) {
1359 build_sphere_texgen(p, out_texgen, sphere_mask);
1360 }
1361
1362 if (reflect_mask) {
1363 build_reflect_texgen(p, out_texgen, reflect_mask);
1364 }
1365
1366 if (normal_mask) {
1367 struct ureg normal = get_eye_normal(p);
1368 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1369 }
1370
1371 if (copy_mask) {
1372 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1373 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1374 }
1375 }
1376
1377 if (texmat_enabled) {
1378 struct ureg texmat[4];
1379 struct ureg in = (!is_undef(out_texgen) ?
1380 out_texgen :
1381 register_input(p, VERT_ATTRIB_TEX0+i));
1382 if (PREFER_DP4) {
1383 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1384 0, texmat );
1385 emit_matrix_transform_vec4( p, out, texmat, in );
1386 }
1387 else {
1388 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1389 STATE_MATRIX_TRANSPOSE, texmat );
1390 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1391 }
1392 }
1393
1394 release_temps(p);
1395 }
1396 else {
1397 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1398 }
1399 }
1400 }
1401
1402
1403 /* Seems like it could be tighter:
1404 */
1405 static void build_pointsize( struct tnl_program *p )
1406 {
1407 struct ureg eye = get_eye_position(p);
1408 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1409 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1410 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1411 struct ureg ut = get_temp(p);
1412
1413 /* 1, Z, Z * Z, 1 */
1414 emit_op1(p, OPCODE_MOV, ut, WRITEMASK_XW, swizzle1(get_identity_param(p), W));
1415 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_YZ, swizzle1(eye, Z));
1416 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_Z, ut, ut);
1417
1418
1419 /* p1 + p2 * dist + p3 * dist * dist, 0 */
1420 emit_op2(p, OPCODE_DP3, ut, WRITEMASK_X, ut, state_attenuation);
1421
1422 /* 1 / sqrt(factor) */
1423 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1424
1425 /* ut = pointSize / factor */
1426 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1427
1428 /* Clamp to min/max - state_size.[yz]
1429 */
1430 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1431 emit_op2(p, OPCODE_MIN, out, 0, swizzle1(ut, X), swizzle1(state_size, Z));
1432
1433 release_temp(p, ut);
1434 }
1435
1436 static void build_tnl_program( struct tnl_program *p )
1437 {
1438 /* Emit the program, starting with modelviewproject:
1439 */
1440 build_hpos(p);
1441
1442 /* Lighting calculations:
1443 */
1444 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1445 if (p->state->light_global_enabled)
1446 build_lighting(p);
1447 else {
1448 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1449 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1450
1451 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1452 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1453 }
1454 }
1455
1456 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1457 p->state->fog_option != FOG_NONE)
1458 build_fog(p);
1459
1460 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1461 build_texture_transform(p);
1462
1463 if (p->state->point_attenuated)
1464 build_pointsize(p);
1465
1466 /* Finish up:
1467 */
1468 emit_op1(p, OPCODE_END, undef, 0, undef);
1469
1470 /* Disassemble:
1471 */
1472 if (DISASSEM) {
1473 _mesa_printf ("\n");
1474 }
1475 }
1476
1477
1478 static void build_new_tnl_program( const struct state_key *key,
1479 struct gl_vertex_program *program,
1480 GLuint max_temps)
1481 {
1482 struct tnl_program p;
1483
1484 _mesa_memset(&p, 0, sizeof(p));
1485 p.state = key;
1486 p.program = program;
1487 p.eye_position = undef;
1488 p.eye_position_normalized = undef;
1489 p.eye_normal = undef;
1490 p.identity = undef;
1491 p.temp_in_use = 0;
1492 p.nr_instructions = 16;
1493
1494 if (max_temps >= sizeof(int) * 8)
1495 p.temp_reserved = 0;
1496 else
1497 p.temp_reserved = ~((1<<max_temps)-1);
1498
1499 p.program->Base.Instructions =
1500 _mesa_malloc(sizeof(struct prog_instruction) * p.nr_instructions);
1501 p.program->Base.String = 0;
1502 p.program->Base.NumInstructions =
1503 p.program->Base.NumTemporaries =
1504 p.program->Base.NumParameters =
1505 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1506 p.program->Base.Parameters = _mesa_new_parameter_list();
1507 p.program->Base.InputsRead = 0;
1508 p.program->Base.OutputsWritten = 0;
1509
1510 build_tnl_program( &p );
1511 }
1512
1513 static void *search_cache( struct brw_tnl_cache *cache,
1514 GLuint hash,
1515 const void *key,
1516 GLuint keysize)
1517 {
1518 struct brw_tnl_cache_item *c;
1519
1520 for (c = cache->items[hash % cache->size]; c; c = c->next) {
1521 if (c->hash == hash && memcmp(c->key, key, keysize) == 0)
1522 return c->data;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 static void rehash( struct brw_tnl_cache *cache )
1529 {
1530 struct brw_tnl_cache_item **items;
1531 struct brw_tnl_cache_item *c, *next;
1532 GLuint size, i;
1533
1534 size = cache->size * 3;
1535 items = (struct brw_tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1536 _mesa_memset(items, 0, size * sizeof(*items));
1537
1538 for (i = 0; i < cache->size; i++)
1539 for (c = cache->items[i]; c; c = next) {
1540 next = c->next;
1541 c->next = items[c->hash % size];
1542 items[c->hash % size] = c;
1543 }
1544
1545 FREE(cache->items);
1546 cache->items = items;
1547 cache->size = size;
1548 }
1549
1550 static void cache_item( struct brw_tnl_cache *cache,
1551 GLuint hash,
1552 const struct state_key *key,
1553 void *data )
1554 {
1555 struct brw_tnl_cache_item *c = MALLOC(sizeof(*c));
1556 c->hash = hash;
1557
1558 c->key = malloc(sizeof(*key));
1559 memcpy(c->key, key, sizeof(*key));
1560
1561 c->data = data;
1562
1563 if (++cache->n_items > cache->size * 1.5)
1564 rehash(cache);
1565
1566 c->next = cache->items[hash % cache->size];
1567 cache->items[hash % cache->size] = c;
1568 }
1569
1570
1571 static GLuint hash_key( struct state_key *key )
1572 {
1573 GLuint *ikey = (GLuint *)key;
1574 GLuint hash = 0, i;
1575
1576 /* I'm sure this can be improved on, but speed is important:
1577 */
1578 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1579 hash += ikey[i];
1580
1581 return hash;
1582 }
1583
1584 static int prepare_tnl_program( struct brw_context *brw )
1585 {
1586 GLcontext *ctx = &brw->intel.ctx;
1587 struct state_key key;
1588 GLuint hash;
1589 struct gl_vertex_program *old = brw->tnl_program;
1590
1591 /* _NEW_PROGRAM */
1592 if (brw->attribs.VertexProgram->_Current)
1593 return 0;
1594
1595 /* Grab all the relevent state and put it in a single structure:
1596 */
1597 make_state_key(ctx, &key);
1598 hash = hash_key(&key);
1599
1600 /* Look for an already-prepared program for this state:
1601 */
1602 brw->tnl_program = (struct gl_vertex_program *)
1603 search_cache( &brw->tnl_program_cache, hash, &key, sizeof(key) );
1604
1605 /* OK, we'll have to build a new one:
1606 */
1607 if (!brw->tnl_program) {
1608 brw->tnl_program = (struct gl_vertex_program *)
1609 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1610
1611 build_new_tnl_program( &key, brw->tnl_program,
1612 /* ctx->Const.MaxVertexProgramTemps */
1613 32
1614 );
1615
1616 if (ctx->Driver.ProgramStringNotify)
1617 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1618 &brw->tnl_program->Base );
1619
1620 cache_item( &brw->tnl_program_cache,
1621 hash, &key, brw->tnl_program );
1622 }
1623
1624 if (old != brw->tnl_program)
1625 brw->state.dirty.brw |= BRW_NEW_TNL_PROGRAM;
1626 return 0;
1627 }
1628
1629 /* Note: See brw_draw.c - the vertex program must not rely on
1630 * brw->primitive or brw->reduced_prim.
1631 */
1632 const struct brw_tracked_state brw_tnl_vertprog = {
1633 .dirty = {
1634 .mesa = (_NEW_PROGRAM |
1635 _NEW_LIGHT |
1636 _NEW_TRANSFORM |
1637 _NEW_FOG |
1638 _NEW_HINT |
1639 _NEW_POINT |
1640 _NEW_TEXTURE |
1641 _NEW_TEXTURE_MATRIX),
1642 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
1643 BRW_NEW_INPUT_VARYING),
1644 .cache = 0
1645 },
1646 .prepare = prepare_tnl_program
1647 };
1648
1649
1650
1651
1652 static int prepare_active_vertprog( struct brw_context *brw )
1653 {
1654 const struct gl_vertex_program *prev = brw->vertex_program;
1655
1656 /* NEW_PROGRAM */
1657 if (brw->attribs.VertexProgram->_Current) {
1658 brw->vertex_program = brw->attribs.VertexProgram->_Current;
1659 }
1660 else {
1661 /* BRW_NEW_TNL_PROGRAM */
1662 brw->vertex_program = brw->tnl_program;
1663 }
1664
1665 if (brw->vertex_program != prev)
1666 brw->state.dirty.brw |= BRW_NEW_VERTEX_PROGRAM;
1667
1668 return 0;
1669 }
1670
1671
1672
1673 const struct brw_tracked_state brw_active_vertprog = {
1674 .dirty = {
1675 .mesa = _NEW_PROGRAM,
1676 .brw = BRW_NEW_TNL_PROGRAM,
1677 .cache = 0
1678 },
1679 .prepare = prepare_active_vertprog
1680 };
1681
1682
1683 void brw_ProgramCacheInit( GLcontext *ctx )
1684 {
1685 struct brw_context *brw = brw_context(ctx);
1686
1687 brw->tnl_program_cache.size = 17;
1688 brw->tnl_program_cache.n_items = 0;
1689 brw->tnl_program_cache.items = (struct brw_tnl_cache_item **)
1690 _mesa_calloc(brw->tnl_program_cache.size *
1691 sizeof(struct brw_tnl_cache_item));
1692 }
1693
1694 void brw_ProgramCacheDestroy( GLcontext *ctx )
1695 {
1696 struct brw_context *brw = brw_context(ctx);
1697 struct brw_tnl_cache_item *c, *next;
1698 GLuint i;
1699
1700 for (i = 0; i < brw->tnl_program_cache.size; i++)
1701 for (c = brw->tnl_program_cache.items[i]; c; c = next) {
1702 next = c->next;
1703 FREE(c->key);
1704 FREE(c->data);
1705 FREE(c);
1706 }
1707
1708 FREE(brw->tnl_program_cache.items);
1709 }