Merge commit 'origin/gallium-0.1'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "main/texformat.h"
33 #include "brw_context.h"
34 #include "brw_util.h"
35 #include "brw_wm.h"
36 #include "brw_state.h"
37
38
39 /** Return number of src args for given instruction */
40 GLuint brw_wm_nr_args( GLuint opcode )
41 {
42 switch (opcode) {
43 case WM_PIXELXY:
44 case WM_CINTERP:
45 case WM_WPOSXY:
46 return 1;
47 case WM_LINTERP:
48 case WM_DELTAXY:
49 case WM_PIXELW:
50 return 2;
51 case WM_FB_WRITE:
52 case WM_PINTERP:
53 return 3;
54 default:
55 assert(opcode < MAX_OPCODE);
56 return _mesa_num_inst_src_regs(opcode);
57 }
58 }
59
60
61 GLuint brw_wm_is_scalar_result( GLuint opcode )
62 {
63 switch (opcode) {
64 case OPCODE_COS:
65 case OPCODE_EX2:
66 case OPCODE_LG2:
67 case OPCODE_POW:
68 case OPCODE_RCP:
69 case OPCODE_RSQ:
70 case OPCODE_SIN:
71 case OPCODE_DP3:
72 case OPCODE_DP4:
73 case OPCODE_DPH:
74 case OPCODE_DST:
75 return 1;
76
77 default:
78 return 0;
79 }
80 }
81
82
83 /**
84 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
85 * no flow control instructions so we can more readily do SSA-style
86 * optimizations.
87 */
88 static void
89 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
90 {
91 /* Augment fragment program. Add instructions for pre- and
92 * post-fragment-program tasks such as interpolation and fogging.
93 */
94 brw_wm_pass_fp(c);
95
96 /* Translate to intermediate representation. Build register usage
97 * chains.
98 */
99 brw_wm_pass0(c);
100
101 /* Dead code removal.
102 */
103 brw_wm_pass1(c);
104
105 /* Register allocation.
106 */
107 c->grf_limit = BRW_WM_MAX_GRF / 2;
108
109 brw_wm_pass2(c);
110
111 c->prog_data.total_grf = c->max_wm_grf;
112 if (c->last_scratch) {
113 c->prog_data.total_scratch = c->last_scratch + 0x40;
114 }
115 else {
116 c->prog_data.total_scratch = 0;
117 }
118
119 /* Emit GEN4 code.
120 */
121 brw_wm_emit(c);
122 }
123
124
125 /**
126 * All Mesa program -> GPU code generation goes through this function.
127 * Depending on the instructions used (i.e. flow control instructions)
128 * we'll use one of two code generators.
129 */
130 static void do_wm_prog( struct brw_context *brw,
131 struct brw_fragment_program *fp,
132 struct brw_wm_prog_key *key)
133 {
134 struct brw_wm_compile *c;
135 const GLuint *program;
136 GLuint program_size;
137
138 c = brw->wm.compile_data;
139 if (c == NULL) {
140 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
141 c = brw->wm.compile_data;
142 } else {
143 memset(c, 0, sizeof(*brw->wm.compile_data));
144 }
145 memcpy(&c->key, key, sizeof(*key));
146
147 c->fp = fp;
148 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
149
150 brw_init_compile(brw, &c->func);
151
152 /*
153 * Shader which use GLSL features such as flow control are handled
154 * differently from "simple" shaders.
155 */
156 if (brw_wm_is_glsl(&c->fp->program)) {
157 brw_wm_glsl_emit(brw, c);
158 }
159 else {
160 brw_wm_non_glsl_emit(brw, c);
161 }
162
163 if (INTEL_DEBUG & DEBUG_WM)
164 fprintf(stderr, "\n");
165
166 /* get the program
167 */
168 program = brw_get_program(&c->func, &program_size);
169
170 dri_bo_unreference(brw->wm.prog_bo);
171 brw->wm.prog_bo = brw_upload_cache( &brw->cache, BRW_WM_PROG,
172 &c->key, sizeof(c->key),
173 NULL, 0,
174 program, program_size,
175 &c->prog_data,
176 &brw->wm.prog_data );
177 }
178
179
180
181 static void brw_wm_populate_key( struct brw_context *brw,
182 struct brw_wm_prog_key *key )
183 {
184 GLcontext *ctx = &brw->intel.ctx;
185 /* BRW_NEW_FRAGMENT_PROGRAM */
186 const struct brw_fragment_program *fp =
187 (struct brw_fragment_program *)brw->fragment_program;
188 GLuint lookup = 0;
189 GLuint line_aa;
190 GLuint i;
191
192 memset(key, 0, sizeof(*key));
193
194 /* Build the index for table lookup
195 */
196 /* _NEW_COLOR */
197 if (fp->program.UsesKill ||
198 ctx->Color.AlphaEnabled)
199 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
200
201 if (fp->program.Base.OutputsWritten & (1<<FRAG_RESULT_DEPTH))
202 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
203
204 /* _NEW_DEPTH */
205 if (ctx->Depth.Test)
206 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
207
208 if (ctx->Depth.Test &&
209 ctx->Depth.Mask) /* ?? */
210 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
211
212 /* _NEW_STENCIL */
213 if (ctx->Stencil._Enabled) {
214 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
215
216 if (ctx->Stencil.WriteMask[0] ||
217 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
218 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
219 }
220
221 line_aa = AA_NEVER;
222
223 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
224 if (ctx->Line.SmoothFlag) {
225 if (brw->intel.reduced_primitive == GL_LINES) {
226 line_aa = AA_ALWAYS;
227 }
228 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
229 if (ctx->Polygon.FrontMode == GL_LINE) {
230 line_aa = AA_SOMETIMES;
231
232 if (ctx->Polygon.BackMode == GL_LINE ||
233 (ctx->Polygon.CullFlag &&
234 ctx->Polygon.CullFaceMode == GL_BACK))
235 line_aa = AA_ALWAYS;
236 }
237 else if (ctx->Polygon.BackMode == GL_LINE) {
238 line_aa = AA_SOMETIMES;
239
240 if ((ctx->Polygon.CullFlag &&
241 ctx->Polygon.CullFaceMode == GL_FRONT))
242 line_aa = AA_ALWAYS;
243 }
244 }
245 }
246
247 brw_wm_lookup_iz(line_aa,
248 lookup,
249 key);
250
251
252 /* BRW_NEW_WM_INPUT_DIMENSIONS */
253 key->projtex_mask = brw->wm.input_size_masks[4-1] >> (FRAG_ATTRIB_TEX0 - FRAG_ATTRIB_WPOS);
254
255 /* _NEW_LIGHT */
256 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
257
258 /* _NEW_TEXTURE */
259 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
260 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
261
262 if (unit->_ReallyEnabled) {
263 const struct gl_texture_object *t = unit->_Current;
264 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
265 if (img->InternalFormat == GL_YCBCR_MESA) {
266 key->yuvtex_mask |= 1 << i;
267 if (img->TexFormat->MesaFormat == MESA_FORMAT_YCBCR)
268 key->yuvtex_swap_mask |= 1 << i;
269 }
270
271 key->tex_swizzles[i] = t->_Swizzle;
272 }
273 else {
274 key->tex_swizzles[i] = SWIZZLE_NOOP;
275 }
276 }
277
278 /* Shadow */
279 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
280
281 /* _NEW_BUFFERS */
282 /*
283 * Include the draw buffer origin and height so that we can calculate
284 * fragment position values relative to the bottom left of the drawable,
285 * from the incoming screen origin relative position we get as part of our
286 * payload.
287 *
288 * We could avoid recompiling by including this as a constant referenced by
289 * our program, but if we were to do that it would also be nice to handle
290 * getting that constant updated at batchbuffer submit time (when we
291 * hold the lock and know where the buffer really is) rather than at emit
292 * time when we don't hold the lock and are just guessing. We could also
293 * just avoid using this as key data if the program doesn't use
294 * fragment.position.
295 *
296 * This pretty much becomes moot with DRI2 and redirected buffers anyway,
297 * as our origins will always be zero then.
298 */
299 if (brw->intel.driDrawable != NULL) {
300 key->origin_x = brw->intel.driDrawable->x;
301 key->origin_y = brw->intel.driDrawable->y;
302 key->drawable_height = brw->intel.driDrawable->h;
303 }
304
305 /* The unique fragment program ID */
306 key->program_string_id = fp->id;
307 }
308
309
310 static void brw_prepare_wm_prog(struct brw_context *brw)
311 {
312 struct brw_wm_prog_key key;
313 struct brw_fragment_program *fp = (struct brw_fragment_program *)
314 brw->fragment_program;
315
316 brw_wm_populate_key(brw, &key);
317
318 /* Make an early check for the key.
319 */
320 dri_bo_unreference(brw->wm.prog_bo);
321 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
322 &key, sizeof(key),
323 NULL, 0,
324 &brw->wm.prog_data);
325 if (brw->wm.prog_bo == NULL)
326 do_wm_prog(brw, fp, &key);
327 }
328
329
330 const struct brw_tracked_state brw_wm_prog = {
331 .dirty = {
332 .mesa = (_NEW_COLOR |
333 _NEW_DEPTH |
334 _NEW_STENCIL |
335 _NEW_POLYGON |
336 _NEW_LINE |
337 _NEW_LIGHT |
338 _NEW_BUFFERS |
339 _NEW_TEXTURE),
340 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
341 BRW_NEW_WM_INPUT_DIMENSIONS |
342 BRW_NEW_REDUCED_PRIMITIVE),
343 .cache = 0
344 },
345 .prepare = brw_prepare_wm_prog
346 };
347