899e9b1dfb592d552fe37147a0a9ab6ffacb9e5f
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36
37 /** Return number of src args for given instruction */
38 GLuint brw_wm_nr_args( GLuint opcode )
39 {
40 switch (opcode) {
41 case WM_FRONTFACING:
42 case WM_PIXELXY:
43 return 0;
44 case WM_CINTERP:
45 case WM_WPOSXY:
46 case WM_DELTAXY:
47 return 1;
48 case WM_LINTERP:
49 case WM_PIXELW:
50 return 2;
51 case WM_FB_WRITE:
52 case WM_PINTERP:
53 return 3;
54 default:
55 assert(opcode < MAX_OPCODE);
56 return _mesa_num_inst_src_regs(opcode);
57 }
58 }
59
60
61 GLuint brw_wm_is_scalar_result( GLuint opcode )
62 {
63 switch (opcode) {
64 case OPCODE_COS:
65 case OPCODE_EX2:
66 case OPCODE_LG2:
67 case OPCODE_POW:
68 case OPCODE_RCP:
69 case OPCODE_RSQ:
70 case OPCODE_SIN:
71 case OPCODE_DP3:
72 case OPCODE_DP4:
73 case OPCODE_DPH:
74 case OPCODE_DST:
75 return 1;
76
77 default:
78 return 0;
79 }
80 }
81
82
83 /**
84 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
85 * no flow control instructions so we can more readily do SSA-style
86 * optimizations.
87 */
88 static void
89 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
90 {
91 /* Augment fragment program. Add instructions for pre- and
92 * post-fragment-program tasks such as interpolation and fogging.
93 */
94 brw_wm_pass_fp(c);
95
96 /* Translate to intermediate representation. Build register usage
97 * chains.
98 */
99 brw_wm_pass0(c);
100
101 /* Dead code removal.
102 */
103 brw_wm_pass1(c);
104
105 /* Register allocation.
106 * Divide by two because we operate on 16 pixels at a time and require
107 * two GRF entries for each logical shader register.
108 */
109 c->grf_limit = BRW_WM_MAX_GRF / 2;
110
111 brw_wm_pass2(c);
112
113 /* how many general-purpose registers are used */
114 c->prog_data.total_grf = c->max_wm_grf;
115
116 /* Scratch space is used for register spilling */
117 if (c->last_scratch) {
118 c->prog_data.total_scratch = c->last_scratch + 0x40;
119 }
120 else {
121 c->prog_data.total_scratch = 0;
122 }
123
124 /* Emit GEN4 code.
125 */
126 brw_wm_emit(c);
127 }
128
129
130 /**
131 * All Mesa program -> GPU code generation goes through this function.
132 * Depending on the instructions used (i.e. flow control instructions)
133 * we'll use one of two code generators.
134 */
135 static void do_wm_prog( struct brw_context *brw,
136 struct brw_fragment_program *fp,
137 struct brw_wm_prog_key *key)
138 {
139 struct brw_wm_compile *c;
140 const GLuint *program;
141 GLuint program_size;
142
143 c = brw->wm.compile_data;
144 if (c == NULL) {
145 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
146 c = brw->wm.compile_data;
147 if (c == NULL) {
148 /* Ouch - big out of memory problem. Can't continue
149 * without triggering a segfault, no way to signal,
150 * so just return.
151 */
152 return;
153 }
154 c->instruction = calloc(1, BRW_WM_MAX_INSN * sizeof(*c->instruction));
155 c->prog_instructions = calloc(1, BRW_WM_MAX_INSN *
156 sizeof(*c->prog_instructions));
157 c->vreg = calloc(1, BRW_WM_MAX_VREG * sizeof(*c->vreg));
158 c->refs = calloc(1, BRW_WM_MAX_REF * sizeof(*c->refs));
159 } else {
160 void *instruction = c->instruction;
161 void *prog_instructions = c->prog_instructions;
162 void *vreg = c->vreg;
163 void *refs = c->refs;
164 memset(c, 0, sizeof(*brw->wm.compile_data));
165 c->instruction = instruction;
166 c->prog_instructions = prog_instructions;
167 c->vreg = vreg;
168 c->refs = refs;
169 }
170 memcpy(&c->key, key, sizeof(*key));
171
172 c->fp = fp;
173 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
174
175 brw_init_compile(brw, &c->func);
176
177 /* temporary sanity check assertion */
178 ASSERT(fp->isGLSL == brw_wm_is_glsl(&c->fp->program));
179
180 if (!brw_wm_fs_emit(brw, c)) {
181 /*
182 * Shader which use GLSL features such as flow control are handled
183 * differently from "simple" shaders.
184 */
185 if (fp->isGLSL) {
186 c->dispatch_width = 8;
187 brw_wm_glsl_emit(brw, c);
188 }
189 else {
190 c->dispatch_width = 16;
191 brw_wm_non_glsl_emit(brw, c);
192 }
193 }
194
195 if (INTEL_DEBUG & DEBUG_WM)
196 fprintf(stderr, "\n");
197
198 /* get the program
199 */
200 program = brw_get_program(&c->func, &program_size);
201
202 drm_intel_bo_unreference(brw->wm.prog_bo);
203 brw->wm.prog_bo = brw_upload_cache_with_auxdata(&brw->cache, BRW_WM_PROG,
204 &c->key, sizeof(c->key),
205 NULL, 0,
206 program, program_size,
207 &c->prog_data,
208 sizeof(c->prog_data),
209 &brw->wm.prog_data);
210 }
211
212
213
214 static void brw_wm_populate_key( struct brw_context *brw,
215 struct brw_wm_prog_key *key )
216 {
217 GLcontext *ctx = &brw->intel.ctx;
218 /* BRW_NEW_FRAGMENT_PROGRAM */
219 const struct brw_fragment_program *fp =
220 (struct brw_fragment_program *)brw->fragment_program;
221 GLboolean uses_depth = (fp->program.Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) != 0;
222 GLuint lookup = 0;
223 GLuint line_aa;
224 GLuint i;
225
226 memset(key, 0, sizeof(*key));
227
228 /* Build the index for table lookup
229 */
230 /* _NEW_COLOR */
231 if (fp->program.UsesKill ||
232 ctx->Color.AlphaEnabled)
233 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
234
235 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
236 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
237
238 /* _NEW_DEPTH */
239 if (ctx->Depth.Test)
240 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
241
242 if (ctx->Depth.Test &&
243 ctx->Depth.Mask) /* ?? */
244 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
245
246 /* _NEW_STENCIL */
247 if (ctx->Stencil._Enabled) {
248 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
249
250 if (ctx->Stencil.WriteMask[0] ||
251 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
252 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
253 }
254
255 line_aa = AA_NEVER;
256
257 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
258 if (ctx->Line.SmoothFlag) {
259 if (brw->intel.reduced_primitive == GL_LINES) {
260 line_aa = AA_ALWAYS;
261 }
262 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
263 if (ctx->Polygon.FrontMode == GL_LINE) {
264 line_aa = AA_SOMETIMES;
265
266 if (ctx->Polygon.BackMode == GL_LINE ||
267 (ctx->Polygon.CullFlag &&
268 ctx->Polygon.CullFaceMode == GL_BACK))
269 line_aa = AA_ALWAYS;
270 }
271 else if (ctx->Polygon.BackMode == GL_LINE) {
272 line_aa = AA_SOMETIMES;
273
274 if ((ctx->Polygon.CullFlag &&
275 ctx->Polygon.CullFaceMode == GL_FRONT))
276 line_aa = AA_ALWAYS;
277 }
278 }
279 }
280
281 brw_wm_lookup_iz(line_aa,
282 lookup,
283 uses_depth,
284 key);
285
286
287 /* BRW_NEW_WM_INPUT_DIMENSIONS */
288 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
289
290 /* _NEW_LIGHT */
291 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
292
293 /* _NEW_HINT */
294 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
295
296 /* _NEW_TEXTURE */
297 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
298 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
299
300 if (unit->_ReallyEnabled) {
301 const struct gl_texture_object *t = unit->_Current;
302 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
303 if (img->InternalFormat == GL_YCBCR_MESA) {
304 key->yuvtex_mask |= 1 << i;
305 if (img->TexFormat == MESA_FORMAT_YCBCR)
306 key->yuvtex_swap_mask |= 1 << i;
307 }
308
309 key->tex_swizzles[i] = t->_Swizzle;
310 }
311 else {
312 key->tex_swizzles[i] = SWIZZLE_NOOP;
313 }
314 }
315
316 /* Shadow */
317 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
318
319 /* _NEW_BUFFERS */
320 /*
321 * Include the draw buffer origin and height so that we can calculate
322 * fragment position values relative to the bottom left of the drawable,
323 * from the incoming screen origin relative position we get as part of our
324 * payload.
325 *
326 * This is only needed for the WM_WPOSXY opcode when the fragment program
327 * uses the gl_FragCoord input.
328 *
329 * We could avoid recompiling by including this as a constant referenced by
330 * our program, but if we were to do that it would also be nice to handle
331 * getting that constant updated at batchbuffer submit time (when we
332 * hold the lock and know where the buffer really is) rather than at emit
333 * time when we don't hold the lock and are just guessing. We could also
334 * just avoid using this as key data if the program doesn't use
335 * fragment.position.
336 *
337 * For DRI2 the origin_x/y will always be (0,0) but we still need the
338 * drawable height in order to invert the Y axis.
339 */
340 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
341 key->drawable_height = ctx->DrawBuffer->Height;
342 }
343
344 key->nr_color_regions = brw->state.nr_color_regions;
345
346 /* CACHE_NEW_VS_PROG */
347 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
348
349 /* The unique fragment program ID */
350 key->program_string_id = fp->id;
351 }
352
353
354 static void brw_prepare_wm_prog(struct brw_context *brw)
355 {
356 struct brw_wm_prog_key key;
357 struct brw_fragment_program *fp = (struct brw_fragment_program *)
358 brw->fragment_program;
359
360 brw_wm_populate_key(brw, &key);
361
362 /* Make an early check for the key.
363 */
364 drm_intel_bo_unreference(brw->wm.prog_bo);
365 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
366 &key, sizeof(key),
367 NULL, 0,
368 &brw->wm.prog_data);
369 if (brw->wm.prog_bo == NULL)
370 do_wm_prog(brw, fp, &key);
371 }
372
373
374 const struct brw_tracked_state brw_wm_prog = {
375 .dirty = {
376 .mesa = (_NEW_COLOR |
377 _NEW_DEPTH |
378 _NEW_HINT |
379 _NEW_STENCIL |
380 _NEW_POLYGON |
381 _NEW_LINE |
382 _NEW_LIGHT |
383 _NEW_BUFFERS |
384 _NEW_TEXTURE),
385 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
386 BRW_NEW_WM_INPUT_DIMENSIONS |
387 BRW_NEW_REDUCED_PRIMITIVE),
388 .cache = CACHE_NEW_VS_PROG,
389 },
390 .prepare = brw_prepare_wm_prog
391 };
392