i965: Share min/max between brw_wm_emit.c and brw_wm_glsl.c
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_util.h"
34 #include "brw_wm.h"
35 #include "brw_state.h"
36
37
38 /** Return number of src args for given instruction */
39 GLuint brw_wm_nr_args( GLuint opcode )
40 {
41 switch (opcode) {
42 case WM_FRONTFACING:
43 case WM_PIXELXY:
44 return 0;
45 case WM_CINTERP:
46 case WM_WPOSXY:
47 case WM_DELTAXY:
48 return 1;
49 case WM_LINTERP:
50 case WM_PIXELW:
51 return 2;
52 case WM_FB_WRITE:
53 case WM_PINTERP:
54 return 3;
55 default:
56 assert(opcode < MAX_OPCODE);
57 return _mesa_num_inst_src_regs(opcode);
58 }
59 }
60
61
62 GLuint brw_wm_is_scalar_result( GLuint opcode )
63 {
64 switch (opcode) {
65 case OPCODE_COS:
66 case OPCODE_EX2:
67 case OPCODE_LG2:
68 case OPCODE_POW:
69 case OPCODE_RCP:
70 case OPCODE_RSQ:
71 case OPCODE_SIN:
72 case OPCODE_DP3:
73 case OPCODE_DP4:
74 case OPCODE_DPH:
75 case OPCODE_DST:
76 return 1;
77
78 default:
79 return 0;
80 }
81 }
82
83
84 /**
85 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
86 * no flow control instructions so we can more readily do SSA-style
87 * optimizations.
88 */
89 static void
90 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
91 {
92 /* Augment fragment program. Add instructions for pre- and
93 * post-fragment-program tasks such as interpolation and fogging.
94 */
95 brw_wm_pass_fp(c);
96
97 /* Translate to intermediate representation. Build register usage
98 * chains.
99 */
100 brw_wm_pass0(c);
101
102 /* Dead code removal.
103 */
104 brw_wm_pass1(c);
105
106 /* Register allocation.
107 * Divide by two because we operate on 16 pixels at a time and require
108 * two GRF entries for each logical shader register.
109 */
110 c->grf_limit = BRW_WM_MAX_GRF / 2;
111
112 brw_wm_pass2(c);
113
114 /* how many general-purpose registers are used */
115 c->prog_data.total_grf = c->max_wm_grf;
116
117 /* Scratch space is used for register spilling */
118 if (c->last_scratch) {
119 c->prog_data.total_scratch = c->last_scratch + 0x40;
120 }
121 else {
122 c->prog_data.total_scratch = 0;
123 }
124
125 /* Emit GEN4 code.
126 */
127 brw_wm_emit(c);
128 }
129
130
131 /**
132 * All Mesa program -> GPU code generation goes through this function.
133 * Depending on the instructions used (i.e. flow control instructions)
134 * we'll use one of two code generators.
135 */
136 static void do_wm_prog( struct brw_context *brw,
137 struct brw_fragment_program *fp,
138 struct brw_wm_prog_key *key)
139 {
140 struct brw_wm_compile *c;
141 const GLuint *program;
142 GLuint program_size;
143
144 c = brw->wm.compile_data;
145 if (c == NULL) {
146 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
147 c = brw->wm.compile_data;
148 if (c == NULL) {
149 /* Ouch - big out of memory problem. Can't continue
150 * without triggering a segfault, no way to signal,
151 * so just return.
152 */
153 return;
154 }
155 } else {
156 memset(c, 0, sizeof(*brw->wm.compile_data));
157 }
158 memcpy(&c->key, key, sizeof(*key));
159
160 c->fp = fp;
161 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
162
163 brw_init_compile(brw, &c->func);
164
165 /* temporary sanity check assertion */
166 ASSERT(fp->isGLSL == brw_wm_is_glsl(&c->fp->program));
167
168 /*
169 * Shader which use GLSL features such as flow control are handled
170 * differently from "simple" shaders.
171 */
172 if (fp->isGLSL) {
173 c->dispatch_width = 8;
174 brw_wm_glsl_emit(brw, c);
175 }
176 else {
177 c->dispatch_width = 16;
178 brw_wm_non_glsl_emit(brw, c);
179 }
180
181 if (INTEL_DEBUG & DEBUG_WM)
182 fprintf(stderr, "\n");
183
184 /* get the program
185 */
186 program = brw_get_program(&c->func, &program_size);
187
188 dri_bo_unreference(brw->wm.prog_bo);
189 brw->wm.prog_bo = brw_upload_cache( &brw->cache, BRW_WM_PROG,
190 &c->key, sizeof(c->key),
191 NULL, 0,
192 program, program_size,
193 &c->prog_data,
194 &brw->wm.prog_data );
195 }
196
197
198
199 static void brw_wm_populate_key( struct brw_context *brw,
200 struct brw_wm_prog_key *key )
201 {
202 GLcontext *ctx = &brw->intel.ctx;
203 /* BRW_NEW_FRAGMENT_PROGRAM */
204 const struct brw_fragment_program *fp =
205 (struct brw_fragment_program *)brw->fragment_program;
206 GLboolean uses_depth = (fp->program.Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) != 0;
207 GLuint lookup = 0;
208 GLuint line_aa;
209 GLuint i;
210
211 memset(key, 0, sizeof(*key));
212
213 /* Build the index for table lookup
214 */
215 /* _NEW_COLOR */
216 if (fp->program.UsesKill ||
217 ctx->Color.AlphaEnabled)
218 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
219
220 if (fp->program.Base.OutputsWritten & (1<<FRAG_RESULT_DEPTH))
221 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
222
223 /* _NEW_DEPTH */
224 if (ctx->Depth.Test)
225 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
226
227 if (ctx->Depth.Test &&
228 ctx->Depth.Mask) /* ?? */
229 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
230
231 /* _NEW_STENCIL */
232 if (ctx->Stencil._Enabled) {
233 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
234
235 if (ctx->Stencil.WriteMask[0] ||
236 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
237 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
238 }
239
240 line_aa = AA_NEVER;
241
242 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
243 if (ctx->Line.SmoothFlag) {
244 if (brw->intel.reduced_primitive == GL_LINES) {
245 line_aa = AA_ALWAYS;
246 }
247 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
248 if (ctx->Polygon.FrontMode == GL_LINE) {
249 line_aa = AA_SOMETIMES;
250
251 if (ctx->Polygon.BackMode == GL_LINE ||
252 (ctx->Polygon.CullFlag &&
253 ctx->Polygon.CullFaceMode == GL_BACK))
254 line_aa = AA_ALWAYS;
255 }
256 else if (ctx->Polygon.BackMode == GL_LINE) {
257 line_aa = AA_SOMETIMES;
258
259 if ((ctx->Polygon.CullFlag &&
260 ctx->Polygon.CullFaceMode == GL_FRONT))
261 line_aa = AA_ALWAYS;
262 }
263 }
264 }
265
266 brw_wm_lookup_iz(line_aa,
267 lookup,
268 uses_depth,
269 key);
270
271
272 /* BRW_NEW_WM_INPUT_DIMENSIONS */
273 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
274
275 /* _NEW_LIGHT */
276 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
277
278 /* _NEW_HINT */
279 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
280
281 /* _NEW_TEXTURE */
282 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
283 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
284
285 if (unit->_ReallyEnabled) {
286 const struct gl_texture_object *t = unit->_Current;
287 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
288 if (img->InternalFormat == GL_YCBCR_MESA) {
289 key->yuvtex_mask |= 1 << i;
290 if (img->TexFormat == MESA_FORMAT_YCBCR)
291 key->yuvtex_swap_mask |= 1 << i;
292 }
293
294 key->tex_swizzles[i] = t->_Swizzle;
295 }
296 else {
297 key->tex_swizzles[i] = SWIZZLE_NOOP;
298 }
299 }
300
301 /* Shadow */
302 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
303
304 /* _NEW_BUFFERS */
305 /*
306 * Include the draw buffer origin and height so that we can calculate
307 * fragment position values relative to the bottom left of the drawable,
308 * from the incoming screen origin relative position we get as part of our
309 * payload.
310 *
311 * This is only needed for the WM_WPOSXY opcode when the fragment program
312 * uses the gl_FragCoord input.
313 *
314 * We could avoid recompiling by including this as a constant referenced by
315 * our program, but if we were to do that it would also be nice to handle
316 * getting that constant updated at batchbuffer submit time (when we
317 * hold the lock and know where the buffer really is) rather than at emit
318 * time when we don't hold the lock and are just guessing. We could also
319 * just avoid using this as key data if the program doesn't use
320 * fragment.position.
321 *
322 * For DRI2 the origin_x/y will always be (0,0) but we still need the
323 * drawable height in order to invert the Y axis.
324 */
325 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
326 if (brw->intel.driDrawable != NULL) {
327 key->origin_x = brw->intel.driDrawable->x;
328 key->origin_y = brw->intel.driDrawable->y;
329 key->drawable_height = brw->intel.driDrawable->h;
330 }
331 }
332
333 key->nr_color_regions = brw->state.nr_color_regions;
334
335 /* CACHE_NEW_VS_PROG */
336 key->vp_outputs_written = brw->vs.prog_data->outputs_written & DO_SETUP_BITS;
337
338 /* The unique fragment program ID */
339 key->program_string_id = fp->id;
340 }
341
342
343 static void brw_prepare_wm_prog(struct brw_context *brw)
344 {
345 struct brw_wm_prog_key key;
346 struct brw_fragment_program *fp = (struct brw_fragment_program *)
347 brw->fragment_program;
348
349 brw_wm_populate_key(brw, &key);
350
351 /* Make an early check for the key.
352 */
353 dri_bo_unreference(brw->wm.prog_bo);
354 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
355 &key, sizeof(key),
356 NULL, 0,
357 &brw->wm.prog_data);
358 if (brw->wm.prog_bo == NULL)
359 do_wm_prog(brw, fp, &key);
360 }
361
362
363 const struct brw_tracked_state brw_wm_prog = {
364 .dirty = {
365 .mesa = (_NEW_COLOR |
366 _NEW_DEPTH |
367 _NEW_HINT |
368 _NEW_STENCIL |
369 _NEW_POLYGON |
370 _NEW_LINE |
371 _NEW_LIGHT |
372 _NEW_BUFFERS |
373 _NEW_TEXTURE),
374 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
375 BRW_NEW_WM_INPUT_DIMENSIONS |
376 BRW_NEW_REDUCED_PRIMITIVE),
377 .cache = CACHE_NEW_VS_PROG,
378 },
379 .prepare = brw_prepare_wm_prog
380 };
381