i965: Allow for variable-sized auxdata in the state cache.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_util.h"
34 #include "brw_wm.h"
35 #include "brw_state.h"
36
37
38 /** Return number of src args for given instruction */
39 GLuint brw_wm_nr_args( GLuint opcode )
40 {
41 switch (opcode) {
42 case WM_FRONTFACING:
43 case WM_PIXELXY:
44 return 0;
45 case WM_CINTERP:
46 case WM_WPOSXY:
47 case WM_DELTAXY:
48 return 1;
49 case WM_LINTERP:
50 case WM_PIXELW:
51 return 2;
52 case WM_FB_WRITE:
53 case WM_PINTERP:
54 return 3;
55 default:
56 assert(opcode < MAX_OPCODE);
57 return _mesa_num_inst_src_regs(opcode);
58 }
59 }
60
61
62 GLuint brw_wm_is_scalar_result( GLuint opcode )
63 {
64 switch (opcode) {
65 case OPCODE_COS:
66 case OPCODE_EX2:
67 case OPCODE_LG2:
68 case OPCODE_POW:
69 case OPCODE_RCP:
70 case OPCODE_RSQ:
71 case OPCODE_SIN:
72 case OPCODE_DP3:
73 case OPCODE_DP4:
74 case OPCODE_DPH:
75 case OPCODE_DST:
76 return 1;
77
78 default:
79 return 0;
80 }
81 }
82
83
84 /**
85 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
86 * no flow control instructions so we can more readily do SSA-style
87 * optimizations.
88 */
89 static void
90 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
91 {
92 /* Augment fragment program. Add instructions for pre- and
93 * post-fragment-program tasks such as interpolation and fogging.
94 */
95 brw_wm_pass_fp(c);
96
97 /* Translate to intermediate representation. Build register usage
98 * chains.
99 */
100 brw_wm_pass0(c);
101
102 /* Dead code removal.
103 */
104 brw_wm_pass1(c);
105
106 /* Register allocation.
107 * Divide by two because we operate on 16 pixels at a time and require
108 * two GRF entries for each logical shader register.
109 */
110 c->grf_limit = BRW_WM_MAX_GRF / 2;
111
112 brw_wm_pass2(c);
113
114 /* how many general-purpose registers are used */
115 c->prog_data.total_grf = c->max_wm_grf;
116
117 /* Scratch space is used for register spilling */
118 if (c->last_scratch) {
119 c->prog_data.total_scratch = c->last_scratch + 0x40;
120 }
121 else {
122 c->prog_data.total_scratch = 0;
123 }
124
125 /* Emit GEN4 code.
126 */
127 brw_wm_emit(c);
128 }
129
130
131 /**
132 * All Mesa program -> GPU code generation goes through this function.
133 * Depending on the instructions used (i.e. flow control instructions)
134 * we'll use one of two code generators.
135 */
136 static void do_wm_prog( struct brw_context *brw,
137 struct brw_fragment_program *fp,
138 struct brw_wm_prog_key *key)
139 {
140 struct brw_wm_compile *c;
141 const GLuint *program;
142 GLuint program_size;
143
144 c = brw->wm.compile_data;
145 if (c == NULL) {
146 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
147 c = brw->wm.compile_data;
148 if (c == NULL) {
149 /* Ouch - big out of memory problem. Can't continue
150 * without triggering a segfault, no way to signal,
151 * so just return.
152 */
153 return;
154 }
155 c->instruction = _mesa_calloc(BRW_WM_MAX_INSN * sizeof(*c->instruction));
156 c->prog_instructions = _mesa_calloc(BRW_WM_MAX_INSN *
157 sizeof(*c->prog_instructions));
158 c->vreg = _mesa_calloc(BRW_WM_MAX_VREG * sizeof(*c->vreg));
159 c->refs = _mesa_calloc(BRW_WM_MAX_REF * sizeof(*c->refs));
160 } else {
161 void *instruction = c->instruction;
162 void *prog_instructions = c->prog_instructions;
163 void *vreg = c->vreg;
164 void *refs = c->refs;
165 memset(c, 0, sizeof(*brw->wm.compile_data));
166 c->instruction = instruction;
167 c->prog_instructions = prog_instructions;
168 c->vreg = vreg;
169 c->refs = refs;
170 }
171 memcpy(&c->key, key, sizeof(*key));
172
173 c->fp = fp;
174 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
175
176 brw_init_compile(brw, &c->func);
177
178 /* temporary sanity check assertion */
179 ASSERT(fp->isGLSL == brw_wm_is_glsl(&c->fp->program));
180
181 /*
182 * Shader which use GLSL features such as flow control are handled
183 * differently from "simple" shaders.
184 */
185 if (fp->isGLSL) {
186 c->dispatch_width = 8;
187 brw_wm_glsl_emit(brw, c);
188 }
189 else {
190 c->dispatch_width = 16;
191 brw_wm_non_glsl_emit(brw, c);
192 }
193
194 if (INTEL_DEBUG & DEBUG_WM)
195 fprintf(stderr, "\n");
196
197 /* get the program
198 */
199 program = brw_get_program(&c->func, &program_size);
200
201 dri_bo_unreference(brw->wm.prog_bo);
202 brw->wm.prog_bo = brw_upload_cache_with_auxdata(&brw->cache, BRW_WM_PROG,
203 &c->key, sizeof(c->key),
204 NULL, 0,
205 program, program_size,
206 &c->prog_data,
207 sizeof(c->prog_data),
208 &brw->wm.prog_data);
209 }
210
211
212
213 static void brw_wm_populate_key( struct brw_context *brw,
214 struct brw_wm_prog_key *key )
215 {
216 GLcontext *ctx = &brw->intel.ctx;
217 /* BRW_NEW_FRAGMENT_PROGRAM */
218 const struct brw_fragment_program *fp =
219 (struct brw_fragment_program *)brw->fragment_program;
220 GLboolean uses_depth = (fp->program.Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) != 0;
221 GLuint lookup = 0;
222 GLuint line_aa;
223 GLuint i;
224
225 memset(key, 0, sizeof(*key));
226
227 /* Build the index for table lookup
228 */
229 /* _NEW_COLOR */
230 if (fp->program.UsesKill ||
231 ctx->Color.AlphaEnabled)
232 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
233
234 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
235 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
236
237 /* _NEW_DEPTH */
238 if (ctx->Depth.Test)
239 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
240
241 if (ctx->Depth.Test &&
242 ctx->Depth.Mask) /* ?? */
243 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
244
245 /* _NEW_STENCIL */
246 if (ctx->Stencil._Enabled) {
247 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
248
249 if (ctx->Stencil.WriteMask[0] ||
250 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
251 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
252 }
253
254 line_aa = AA_NEVER;
255
256 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
257 if (ctx->Line.SmoothFlag) {
258 if (brw->intel.reduced_primitive == GL_LINES) {
259 line_aa = AA_ALWAYS;
260 }
261 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
262 if (ctx->Polygon.FrontMode == GL_LINE) {
263 line_aa = AA_SOMETIMES;
264
265 if (ctx->Polygon.BackMode == GL_LINE ||
266 (ctx->Polygon.CullFlag &&
267 ctx->Polygon.CullFaceMode == GL_BACK))
268 line_aa = AA_ALWAYS;
269 }
270 else if (ctx->Polygon.BackMode == GL_LINE) {
271 line_aa = AA_SOMETIMES;
272
273 if ((ctx->Polygon.CullFlag &&
274 ctx->Polygon.CullFaceMode == GL_FRONT))
275 line_aa = AA_ALWAYS;
276 }
277 }
278 }
279
280 brw_wm_lookup_iz(line_aa,
281 lookup,
282 uses_depth,
283 key);
284
285
286 /* BRW_NEW_WM_INPUT_DIMENSIONS */
287 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
288
289 /* _NEW_LIGHT */
290 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
291
292 /* _NEW_HINT */
293 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
294
295 /* _NEW_TEXTURE */
296 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
297 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
298
299 if (unit->_ReallyEnabled) {
300 const struct gl_texture_object *t = unit->_Current;
301 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
302 if (img->InternalFormat == GL_YCBCR_MESA) {
303 key->yuvtex_mask |= 1 << i;
304 if (img->TexFormat == MESA_FORMAT_YCBCR)
305 key->yuvtex_swap_mask |= 1 << i;
306 }
307
308 key->tex_swizzles[i] = t->_Swizzle;
309 }
310 else {
311 key->tex_swizzles[i] = SWIZZLE_NOOP;
312 }
313 }
314
315 /* Shadow */
316 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
317
318 /* _NEW_BUFFERS */
319 /*
320 * Include the draw buffer origin and height so that we can calculate
321 * fragment position values relative to the bottom left of the drawable,
322 * from the incoming screen origin relative position we get as part of our
323 * payload.
324 *
325 * This is only needed for the WM_WPOSXY opcode when the fragment program
326 * uses the gl_FragCoord input.
327 *
328 * We could avoid recompiling by including this as a constant referenced by
329 * our program, but if we were to do that it would also be nice to handle
330 * getting that constant updated at batchbuffer submit time (when we
331 * hold the lock and know where the buffer really is) rather than at emit
332 * time when we don't hold the lock and are just guessing. We could also
333 * just avoid using this as key data if the program doesn't use
334 * fragment.position.
335 *
336 * For DRI2 the origin_x/y will always be (0,0) but we still need the
337 * drawable height in order to invert the Y axis.
338 */
339 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
340 if (brw->intel.driDrawable != NULL) {
341 key->origin_x = brw->intel.driDrawable->x;
342 key->origin_y = brw->intel.driDrawable->y;
343 key->drawable_height = brw->intel.driDrawable->h;
344 }
345 }
346
347 key->nr_color_regions = brw->state.nr_color_regions;
348
349 /* CACHE_NEW_VS_PROG */
350 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
351
352 /* The unique fragment program ID */
353 key->program_string_id = fp->id;
354 }
355
356
357 static void brw_prepare_wm_prog(struct brw_context *brw)
358 {
359 struct brw_wm_prog_key key;
360 struct brw_fragment_program *fp = (struct brw_fragment_program *)
361 brw->fragment_program;
362
363 brw_wm_populate_key(brw, &key);
364
365 /* Make an early check for the key.
366 */
367 dri_bo_unreference(brw->wm.prog_bo);
368 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
369 &key, sizeof(key),
370 NULL, 0,
371 &brw->wm.prog_data);
372 if (brw->wm.prog_bo == NULL)
373 do_wm_prog(brw, fp, &key);
374 }
375
376
377 const struct brw_tracked_state brw_wm_prog = {
378 .dirty = {
379 .mesa = (_NEW_COLOR |
380 _NEW_DEPTH |
381 _NEW_HINT |
382 _NEW_STENCIL |
383 _NEW_POLYGON |
384 _NEW_LINE |
385 _NEW_LIGHT |
386 _NEW_BUFFERS |
387 _NEW_TEXTURE),
388 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
389 BRW_NEW_WM_INPUT_DIMENSIONS |
390 BRW_NEW_REDUCED_PRIMITIVE),
391 .cache = CACHE_NEW_VS_PROG,
392 },
393 .prepare = brw_prepare_wm_prog
394 };
395