intel: Add support for ARB_sampler_objects.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36 #include "main/samplerobj.h"
37
38 /** Return number of src args for given instruction */
39 GLuint brw_wm_nr_args( GLuint opcode )
40 {
41 switch (opcode) {
42 case WM_FRONTFACING:
43 case WM_PIXELXY:
44 return 0;
45 case WM_CINTERP:
46 case WM_WPOSXY:
47 case WM_DELTAXY:
48 return 1;
49 case WM_LINTERP:
50 case WM_PIXELW:
51 return 2;
52 case WM_FB_WRITE:
53 case WM_PINTERP:
54 return 3;
55 default:
56 assert(opcode < MAX_OPCODE);
57 return _mesa_num_inst_src_regs(opcode);
58 }
59 }
60
61
62 GLuint brw_wm_is_scalar_result( GLuint opcode )
63 {
64 switch (opcode) {
65 case OPCODE_COS:
66 case OPCODE_EX2:
67 case OPCODE_LG2:
68 case OPCODE_POW:
69 case OPCODE_RCP:
70 case OPCODE_RSQ:
71 case OPCODE_SIN:
72 case OPCODE_DP2:
73 case OPCODE_DP3:
74 case OPCODE_DP4:
75 case OPCODE_DPH:
76 case OPCODE_DST:
77 return 1;
78
79 default:
80 return 0;
81 }
82 }
83
84
85 /**
86 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
87 * no flow control instructions so we can more readily do SSA-style
88 * optimizations.
89 */
90 static void
91 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
92 {
93 /* Augment fragment program. Add instructions for pre- and
94 * post-fragment-program tasks such as interpolation and fogging.
95 */
96 brw_wm_pass_fp(c);
97
98 /* Translate to intermediate representation. Build register usage
99 * chains.
100 */
101 brw_wm_pass0(c);
102
103 /* Dead code removal.
104 */
105 brw_wm_pass1(c);
106
107 /* Register allocation.
108 * Divide by two because we operate on 16 pixels at a time and require
109 * two GRF entries for each logical shader register.
110 */
111 c->grf_limit = BRW_WM_MAX_GRF / 2;
112
113 brw_wm_pass2(c);
114
115 /* how many general-purpose registers are used */
116 c->prog_data.total_grf = c->max_wm_grf;
117
118 /* Emit GEN4 code.
119 */
120 brw_wm_emit(c);
121 }
122
123 static void
124 brw_wm_payload_setup(struct brw_context *brw,
125 struct brw_wm_compile *c)
126 {
127 struct intel_context *intel = &brw->intel;
128 bool uses_depth = (c->fp->program.Base.InputsRead &
129 (1 << FRAG_ATTRIB_WPOS)) != 0;
130
131 if (intel->gen >= 6) {
132 /* R0-1: masks, pixel X/Y coordinates. */
133 c->nr_payload_regs = 2;
134 /* R2: only for 32-pixel dispatch.*/
135 /* R3-4: perspective pixel location barycentric */
136 c->nr_payload_regs += 2;
137 /* R5-6: perspective pixel location bary for dispatch width != 8 */
138 if (c->dispatch_width == 16) {
139 c->nr_payload_regs += 2;
140 }
141 /* R7-10: perspective centroid barycentric */
142 /* R11-14: perspective sample barycentric */
143 /* R15-18: linear pixel location barycentric */
144 /* R19-22: linear centroid barycentric */
145 /* R23-26: linear sample barycentric */
146
147 /* R27: interpolated depth if uses source depth */
148 if (uses_depth) {
149 c->source_depth_reg = c->nr_payload_regs;
150 c->nr_payload_regs++;
151 if (c->dispatch_width == 16) {
152 /* R28: interpolated depth if not 8-wide. */
153 c->nr_payload_regs++;
154 }
155 }
156 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
157 */
158 if (uses_depth) {
159 c->source_w_reg = c->nr_payload_regs;
160 c->nr_payload_regs++;
161 if (c->dispatch_width == 16) {
162 /* R30: interpolated W if not 8-wide. */
163 c->nr_payload_regs++;
164 }
165 }
166 /* R31: MSAA position offsets. */
167 /* R32-: bary for 32-pixel. */
168 /* R58-59: interp W for 32-pixel. */
169
170 if (c->fp->program.Base.OutputsWritten &
171 BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
172 c->source_depth_to_render_target = GL_TRUE;
173 c->computes_depth = GL_TRUE;
174 }
175 } else {
176 brw_wm_lookup_iz(intel, c);
177 }
178 }
179
180 /**
181 * All Mesa program -> GPU code generation goes through this function.
182 * Depending on the instructions used (i.e. flow control instructions)
183 * we'll use one of two code generators.
184 */
185 static void do_wm_prog( struct brw_context *brw,
186 struct brw_fragment_program *fp,
187 struct brw_wm_prog_key *key)
188 {
189 struct intel_context *intel = &brw->intel;
190 struct brw_wm_compile *c;
191 const GLuint *program;
192 GLuint program_size;
193
194 c = brw->wm.compile_data;
195 if (c == NULL) {
196 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
197 c = brw->wm.compile_data;
198 if (c == NULL) {
199 /* Ouch - big out of memory problem. Can't continue
200 * without triggering a segfault, no way to signal,
201 * so just return.
202 */
203 return;
204 }
205 c->instruction = calloc(1, BRW_WM_MAX_INSN * sizeof(*c->instruction));
206 c->prog_instructions = calloc(1, BRW_WM_MAX_INSN *
207 sizeof(*c->prog_instructions));
208 c->vreg = calloc(1, BRW_WM_MAX_VREG * sizeof(*c->vreg));
209 c->refs = calloc(1, BRW_WM_MAX_REF * sizeof(*c->refs));
210 } else {
211 void *instruction = c->instruction;
212 void *prog_instructions = c->prog_instructions;
213 void *vreg = c->vreg;
214 void *refs = c->refs;
215 memset(c, 0, sizeof(*brw->wm.compile_data));
216 c->instruction = instruction;
217 c->prog_instructions = prog_instructions;
218 c->vreg = vreg;
219 c->refs = refs;
220 }
221 memcpy(&c->key, key, sizeof(*key));
222
223 c->fp = fp;
224 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
225
226 brw_init_compile(brw, &c->func);
227
228 brw_wm_payload_setup(brw, c);
229
230 if (!brw_wm_fs_emit(brw, c)) {
231 /*
232 * Shader which use GLSL features such as flow control are handled
233 * differently from "simple" shaders.
234 */
235 c->dispatch_width = 16;
236 brw_wm_payload_setup(brw, c);
237 brw_wm_non_glsl_emit(brw, c);
238 }
239 c->prog_data.dispatch_width = c->dispatch_width;
240
241 /* Scratch space is used for register spilling */
242 if (c->last_scratch) {
243 uint32_t total_scratch;
244
245 /* Per-thread scratch space is power-of-two sized. */
246 for (c->prog_data.total_scratch = 1024;
247 c->prog_data.total_scratch <= c->last_scratch;
248 c->prog_data.total_scratch *= 2) {
249 /* empty */
250 }
251 total_scratch = c->prog_data.total_scratch * brw->wm_max_threads;
252
253 if (brw->wm.scratch_bo && total_scratch > brw->wm.scratch_bo->size) {
254 drm_intel_bo_unreference(brw->wm.scratch_bo);
255 brw->wm.scratch_bo = NULL;
256 }
257 if (brw->wm.scratch_bo == NULL) {
258 brw->wm.scratch_bo = drm_intel_bo_alloc(intel->bufmgr,
259 "wm scratch",
260 total_scratch,
261 4096);
262 }
263 }
264 else {
265 c->prog_data.total_scratch = 0;
266 }
267
268 if (unlikely(INTEL_DEBUG & DEBUG_WM))
269 fprintf(stderr, "\n");
270
271 /* get the program
272 */
273 program = brw_get_program(&c->func, &program_size);
274
275 drm_intel_bo_unreference(brw->wm.prog_bo);
276 brw->wm.prog_bo = brw_upload_cache_with_auxdata(&brw->cache, BRW_WM_PROG,
277 &c->key, sizeof(c->key),
278 NULL, 0,
279 program, program_size,
280 &c->prog_data,
281 sizeof(c->prog_data),
282 &brw->wm.prog_data);
283 }
284
285
286
287 static void brw_wm_populate_key( struct brw_context *brw,
288 struct brw_wm_prog_key *key )
289 {
290 struct gl_context *ctx = &brw->intel.ctx;
291 /* BRW_NEW_FRAGMENT_PROGRAM */
292 const struct brw_fragment_program *fp =
293 (struct brw_fragment_program *)brw->fragment_program;
294 GLuint lookup = 0;
295 GLuint line_aa;
296 GLuint i;
297
298 memset(key, 0, sizeof(*key));
299
300 /* Build the index for table lookup
301 */
302 /* _NEW_COLOR */
303 key->alpha_test = ctx->Color.AlphaEnabled;
304 if (fp->program.UsesKill ||
305 ctx->Color.AlphaEnabled)
306 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
307
308 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
309 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
310
311 /* _NEW_DEPTH */
312 if (ctx->Depth.Test)
313 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
314
315 if (ctx->Depth.Test &&
316 ctx->Depth.Mask) /* ?? */
317 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
318
319 /* _NEW_STENCIL */
320 if (ctx->Stencil._Enabled) {
321 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
322
323 if (ctx->Stencil.WriteMask[0] ||
324 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
325 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
326 }
327
328 line_aa = AA_NEVER;
329
330 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
331 if (ctx->Line.SmoothFlag) {
332 if (brw->intel.reduced_primitive == GL_LINES) {
333 line_aa = AA_ALWAYS;
334 }
335 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
336 if (ctx->Polygon.FrontMode == GL_LINE) {
337 line_aa = AA_SOMETIMES;
338
339 if (ctx->Polygon.BackMode == GL_LINE ||
340 (ctx->Polygon.CullFlag &&
341 ctx->Polygon.CullFaceMode == GL_BACK))
342 line_aa = AA_ALWAYS;
343 }
344 else if (ctx->Polygon.BackMode == GL_LINE) {
345 line_aa = AA_SOMETIMES;
346
347 if ((ctx->Polygon.CullFlag &&
348 ctx->Polygon.CullFaceMode == GL_FRONT))
349 line_aa = AA_ALWAYS;
350 }
351 }
352 }
353
354 key->iz_lookup = lookup;
355 key->line_aa = line_aa;
356 key->stats_wm = brw->intel.stats_wm;
357
358 /* BRW_NEW_WM_INPUT_DIMENSIONS */
359 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
360
361 /* _NEW_LIGHT */
362 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
363
364 /* _NEW_HINT */
365 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
366
367 /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
368 key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
369
370 /* _NEW_TEXTURE */
371 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
372 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
373
374 if (unit->_ReallyEnabled) {
375 const struct gl_texture_object *t = unit->_Current;
376 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
377 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
378 int swizzles[SWIZZLE_NIL + 1] = {
379 SWIZZLE_X,
380 SWIZZLE_Y,
381 SWIZZLE_Z,
382 SWIZZLE_W,
383 SWIZZLE_ZERO,
384 SWIZZLE_ONE,
385 SWIZZLE_NIL
386 };
387
388 /* GL_DEPTH_TEXTURE_MODE is normally handled through
389 * brw_wm_surface_state, but it applies to shadow compares as
390 * well and our shadow compares always return the result in
391 * all 4 channels.
392 */
393 if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
394 if (sampler->DepthMode == GL_ALPHA) {
395 swizzles[0] = SWIZZLE_ZERO;
396 swizzles[1] = SWIZZLE_ZERO;
397 swizzles[2] = SWIZZLE_ZERO;
398 } else if (sampler->DepthMode == GL_LUMINANCE) {
399 swizzles[3] = SWIZZLE_ONE;
400 } else if (sampler->DepthMode == GL_RED) {
401 /* See table 3.23 of the GL 3.0 spec. */
402 swizzles[1] = SWIZZLE_ZERO;
403 swizzles[2] = SWIZZLE_ZERO;
404 swizzles[3] = SWIZZLE_ONE;
405 }
406 }
407
408 if (img->InternalFormat == GL_YCBCR_MESA) {
409 key->yuvtex_mask |= 1 << i;
410 if (img->TexFormat == MESA_FORMAT_YCBCR)
411 key->yuvtex_swap_mask |= 1 << i;
412 }
413
414 key->tex_swizzles[i] =
415 MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
416 swizzles[GET_SWZ(t->_Swizzle, 1)],
417 swizzles[GET_SWZ(t->_Swizzle, 2)],
418 swizzles[GET_SWZ(t->_Swizzle, 3)]);
419 }
420 else {
421 key->tex_swizzles[i] = SWIZZLE_NOOP;
422 }
423 }
424
425 /* Shadow */
426 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
427
428 /* _NEW_BUFFERS */
429 /*
430 * Include the draw buffer origin and height so that we can calculate
431 * fragment position values relative to the bottom left of the drawable,
432 * from the incoming screen origin relative position we get as part of our
433 * payload.
434 *
435 * This is only needed for the WM_WPOSXY opcode when the fragment program
436 * uses the gl_FragCoord input.
437 *
438 * We could avoid recompiling by including this as a constant referenced by
439 * our program, but if we were to do that it would also be nice to handle
440 * getting that constant updated at batchbuffer submit time (when we
441 * hold the lock and know where the buffer really is) rather than at emit
442 * time when we don't hold the lock and are just guessing. We could also
443 * just avoid using this as key data if the program doesn't use
444 * fragment.position.
445 *
446 * For DRI2 the origin_x/y will always be (0,0) but we still need the
447 * drawable height in order to invert the Y axis.
448 */
449 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
450 key->drawable_height = ctx->DrawBuffer->Height;
451 key->render_to_fbo = ctx->DrawBuffer->Name != 0;
452 }
453
454 /* _NEW_BUFFERS */
455 key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
456
457 /* CACHE_NEW_VS_PROG */
458 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
459
460 /* The unique fragment program ID */
461 key->program_string_id = fp->id;
462 }
463
464
465 static void brw_prepare_wm_prog(struct brw_context *brw)
466 {
467 struct brw_wm_prog_key key;
468 struct brw_fragment_program *fp = (struct brw_fragment_program *)
469 brw->fragment_program;
470
471 brw_wm_populate_key(brw, &key);
472
473 /* Make an early check for the key.
474 */
475 drm_intel_bo_unreference(brw->wm.prog_bo);
476 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
477 &key, sizeof(key),
478 NULL, 0,
479 &brw->wm.prog_data);
480 if (brw->wm.prog_bo == NULL)
481 do_wm_prog(brw, fp, &key);
482 }
483
484
485 const struct brw_tracked_state brw_wm_prog = {
486 .dirty = {
487 .mesa = (_NEW_COLOR |
488 _NEW_DEPTH |
489 _NEW_HINT |
490 _NEW_STENCIL |
491 _NEW_POLYGON |
492 _NEW_LINE |
493 _NEW_LIGHT |
494 _NEW_FRAG_CLAMP |
495 _NEW_BUFFERS |
496 _NEW_TEXTURE),
497 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
498 BRW_NEW_WM_INPUT_DIMENSIONS |
499 BRW_NEW_REDUCED_PRIMITIVE),
500 .cache = CACHE_NEW_VS_PROG,
501 },
502 .prepare = brw_prepare_wm_prog
503 };
504