Merge branch 'gallium-polygon-stipple'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36 #include "main/samplerobj.h"
37 #include "program/prog_parameter.h"
38
39 #include "../glsl/ralloc.h"
40
41 /** Return number of src args for given instruction */
42 GLuint brw_wm_nr_args( GLuint opcode )
43 {
44 switch (opcode) {
45 case WM_FRONTFACING:
46 case WM_PIXELXY:
47 return 0;
48 case WM_CINTERP:
49 case WM_WPOSXY:
50 case WM_DELTAXY:
51 return 1;
52 case WM_LINTERP:
53 case WM_PIXELW:
54 return 2;
55 case WM_FB_WRITE:
56 case WM_PINTERP:
57 return 3;
58 default:
59 assert(opcode < MAX_OPCODE);
60 return _mesa_num_inst_src_regs(opcode);
61 }
62 }
63
64
65 GLuint brw_wm_is_scalar_result( GLuint opcode )
66 {
67 switch (opcode) {
68 case OPCODE_COS:
69 case OPCODE_EX2:
70 case OPCODE_LG2:
71 case OPCODE_POW:
72 case OPCODE_RCP:
73 case OPCODE_RSQ:
74 case OPCODE_SIN:
75 case OPCODE_DP2:
76 case OPCODE_DP3:
77 case OPCODE_DP4:
78 case OPCODE_DPH:
79 case OPCODE_DST:
80 return 1;
81
82 default:
83 return 0;
84 }
85 }
86
87
88 /**
89 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
90 * no flow control instructions so we can more readily do SSA-style
91 * optimizations.
92 */
93 static void
94 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
95 {
96 /* Augment fragment program. Add instructions for pre- and
97 * post-fragment-program tasks such as interpolation and fogging.
98 */
99 brw_wm_pass_fp(c);
100
101 /* Translate to intermediate representation. Build register usage
102 * chains.
103 */
104 brw_wm_pass0(c);
105
106 /* Dead code removal.
107 */
108 brw_wm_pass1(c);
109
110 /* Register allocation.
111 * Divide by two because we operate on 16 pixels at a time and require
112 * two GRF entries for each logical shader register.
113 */
114 c->grf_limit = BRW_WM_MAX_GRF / 2;
115
116 brw_wm_pass2(c);
117
118 /* how many general-purpose registers are used */
119 c->prog_data.reg_blocks = brw_register_blocks(c->max_wm_grf);
120
121 /* Emit GEN4 code.
122 */
123 brw_wm_emit(c);
124 }
125
126 void
127 brw_wm_payload_setup(struct brw_context *brw,
128 struct brw_wm_compile *c)
129 {
130 struct intel_context *intel = &brw->intel;
131 bool uses_depth = (c->fp->program.Base.InputsRead &
132 (1 << FRAG_ATTRIB_WPOS)) != 0;
133
134 if (intel->gen >= 6) {
135 /* R0-1: masks, pixel X/Y coordinates. */
136 c->nr_payload_regs = 2;
137 /* R2: only for 32-pixel dispatch.*/
138 /* R3-4: perspective pixel location barycentric */
139 c->nr_payload_regs += 2;
140 /* R5-6: perspective pixel location bary for dispatch width != 8 */
141 if (c->dispatch_width == 16) {
142 c->nr_payload_regs += 2;
143 }
144 /* R7-10: perspective centroid barycentric */
145 /* R11-14: perspective sample barycentric */
146 /* R15-18: linear pixel location barycentric */
147 /* R19-22: linear centroid barycentric */
148 /* R23-26: linear sample barycentric */
149
150 /* R27: interpolated depth if uses source depth */
151 if (uses_depth) {
152 c->source_depth_reg = c->nr_payload_regs;
153 c->nr_payload_regs++;
154 if (c->dispatch_width == 16) {
155 /* R28: interpolated depth if not 8-wide. */
156 c->nr_payload_regs++;
157 }
158 }
159 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
160 */
161 if (uses_depth) {
162 c->source_w_reg = c->nr_payload_regs;
163 c->nr_payload_regs++;
164 if (c->dispatch_width == 16) {
165 /* R30: interpolated W if not 8-wide. */
166 c->nr_payload_regs++;
167 }
168 }
169 /* R31: MSAA position offsets. */
170 /* R32-: bary for 32-pixel. */
171 /* R58-59: interp W for 32-pixel. */
172
173 if (c->fp->program.Base.OutputsWritten &
174 BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
175 c->source_depth_to_render_target = GL_TRUE;
176 c->computes_depth = GL_TRUE;
177 }
178 } else {
179 brw_wm_lookup_iz(intel, c);
180 }
181 }
182
183 /**
184 * All Mesa program -> GPU code generation goes through this function.
185 * Depending on the instructions used (i.e. flow control instructions)
186 * we'll use one of two code generators.
187 */
188 bool do_wm_prog(struct brw_context *brw,
189 struct gl_shader_program *prog,
190 struct brw_fragment_program *fp,
191 struct brw_wm_prog_key *key)
192 {
193 struct intel_context *intel = &brw->intel;
194 struct brw_wm_compile *c;
195 const GLuint *program;
196 GLuint program_size;
197
198 c = brw->wm.compile_data;
199 if (c == NULL) {
200 brw->wm.compile_data = rzalloc(NULL, struct brw_wm_compile);
201 c = brw->wm.compile_data;
202 if (c == NULL) {
203 /* Ouch - big out of memory problem. Can't continue
204 * without triggering a segfault, no way to signal,
205 * so just return.
206 */
207 return false;
208 }
209 c->instruction = rzalloc_array(c, struct brw_wm_instruction, BRW_WM_MAX_INSN);
210 c->prog_instructions = rzalloc_array(c, struct prog_instruction, BRW_WM_MAX_INSN);
211 c->vreg = rzalloc_array(c, struct brw_wm_value, BRW_WM_MAX_VREG);
212 c->refs = rzalloc_array(c, struct brw_wm_ref, BRW_WM_MAX_REF);
213 } else {
214 void *instruction = c->instruction;
215 void *prog_instructions = c->prog_instructions;
216 void *vreg = c->vreg;
217 void *refs = c->refs;
218 memset(c, 0, sizeof(*brw->wm.compile_data));
219 c->instruction = instruction;
220 c->prog_instructions = prog_instructions;
221 c->vreg = vreg;
222 c->refs = refs;
223 }
224 memcpy(&c->key, key, sizeof(*key));
225
226 c->fp = fp;
227 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
228
229 brw_init_compile(brw, &c->func, c);
230
231 if (prog && prog->FragmentProgram) {
232 if (!brw_wm_fs_emit(brw, c, prog))
233 return false;
234 } else {
235 /* Fallback for fixed function and ARB_fp shaders. */
236 c->dispatch_width = 16;
237 brw_wm_payload_setup(brw, c);
238 brw_wm_non_glsl_emit(brw, c);
239 c->prog_data.dispatch_width = 16;
240 }
241
242 /* Scratch space is used for register spilling */
243 if (c->last_scratch) {
244 uint32_t total_scratch;
245
246 /* Per-thread scratch space is power-of-two sized. */
247 for (c->prog_data.total_scratch = 1024;
248 c->prog_data.total_scratch <= c->last_scratch;
249 c->prog_data.total_scratch *= 2) {
250 /* empty */
251 }
252 total_scratch = c->prog_data.total_scratch * brw->wm_max_threads;
253
254 if (brw->wm.scratch_bo && total_scratch > brw->wm.scratch_bo->size) {
255 drm_intel_bo_unreference(brw->wm.scratch_bo);
256 brw->wm.scratch_bo = NULL;
257 }
258 if (brw->wm.scratch_bo == NULL) {
259 brw->wm.scratch_bo = drm_intel_bo_alloc(intel->bufmgr,
260 "wm scratch",
261 total_scratch,
262 4096);
263 }
264 }
265 else {
266 c->prog_data.total_scratch = 0;
267 }
268
269 if (unlikely(INTEL_DEBUG & DEBUG_WM))
270 fprintf(stderr, "\n");
271
272 /* get the program
273 */
274 program = brw_get_program(&c->func, &program_size);
275
276 brw_upload_cache(&brw->cache, BRW_WM_PROG,
277 &c->key, sizeof(c->key),
278 program, program_size,
279 &c->prog_data, sizeof(c->prog_data),
280 &brw->wm.prog_offset, &brw->wm.prog_data);
281
282 return true;
283 }
284
285
286
287 static void brw_wm_populate_key( struct brw_context *brw,
288 struct brw_wm_prog_key *key )
289 {
290 struct gl_context *ctx = &brw->intel.ctx;
291 /* BRW_NEW_FRAGMENT_PROGRAM */
292 const struct brw_fragment_program *fp =
293 (struct brw_fragment_program *)brw->fragment_program;
294 GLuint lookup = 0;
295 GLuint line_aa;
296 GLuint i;
297
298 memset(key, 0, sizeof(*key));
299
300 /* Build the index for table lookup
301 */
302 /* _NEW_COLOR */
303 key->alpha_test = ctx->Color.AlphaEnabled;
304 if (fp->program.UsesKill ||
305 ctx->Color.AlphaEnabled)
306 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
307
308 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
309 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
310
311 /* _NEW_DEPTH */
312 if (ctx->Depth.Test)
313 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
314
315 if (ctx->Depth.Test &&
316 ctx->Depth.Mask) /* ?? */
317 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
318
319 /* _NEW_STENCIL */
320 if (ctx->Stencil._Enabled) {
321 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
322
323 if (ctx->Stencil.WriteMask[0] ||
324 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
325 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
326 }
327
328 line_aa = AA_NEVER;
329
330 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
331 if (ctx->Line.SmoothFlag) {
332 if (brw->intel.reduced_primitive == GL_LINES) {
333 line_aa = AA_ALWAYS;
334 }
335 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
336 if (ctx->Polygon.FrontMode == GL_LINE) {
337 line_aa = AA_SOMETIMES;
338
339 if (ctx->Polygon.BackMode == GL_LINE ||
340 (ctx->Polygon.CullFlag &&
341 ctx->Polygon.CullFaceMode == GL_BACK))
342 line_aa = AA_ALWAYS;
343 }
344 else if (ctx->Polygon.BackMode == GL_LINE) {
345 line_aa = AA_SOMETIMES;
346
347 if ((ctx->Polygon.CullFlag &&
348 ctx->Polygon.CullFaceMode == GL_FRONT))
349 line_aa = AA_ALWAYS;
350 }
351 }
352 }
353
354 key->iz_lookup = lookup;
355 key->line_aa = line_aa;
356 key->stats_wm = brw->intel.stats_wm;
357
358 /* BRW_NEW_WM_INPUT_DIMENSIONS */
359 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
360
361 /* _NEW_LIGHT */
362 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
363
364 /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
365 key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
366
367 /* _NEW_TEXTURE */
368 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
369 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
370
371 if (unit->_ReallyEnabled) {
372 const struct gl_texture_object *t = unit->_Current;
373 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
374 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
375 int swizzles[SWIZZLE_NIL + 1] = {
376 SWIZZLE_X,
377 SWIZZLE_Y,
378 SWIZZLE_Z,
379 SWIZZLE_W,
380 SWIZZLE_ZERO,
381 SWIZZLE_ONE,
382 SWIZZLE_NIL
383 };
384
385 /* GL_DEPTH_TEXTURE_MODE is normally handled through
386 * brw_wm_surface_state, but it applies to shadow compares as
387 * well and our shadow compares always return the result in
388 * all 4 channels.
389 */
390 if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
391 key->compare_funcs[i] = sampler->CompareFunc;
392
393 if (sampler->DepthMode == GL_ALPHA) {
394 swizzles[0] = SWIZZLE_ZERO;
395 swizzles[1] = SWIZZLE_ZERO;
396 swizzles[2] = SWIZZLE_ZERO;
397 } else if (sampler->DepthMode == GL_LUMINANCE) {
398 swizzles[3] = SWIZZLE_ONE;
399 } else if (sampler->DepthMode == GL_RED) {
400 /* See table 3.23 of the GL 3.0 spec. */
401 swizzles[1] = SWIZZLE_ZERO;
402 swizzles[2] = SWIZZLE_ZERO;
403 swizzles[3] = SWIZZLE_ONE;
404 }
405 }
406
407 if (img->InternalFormat == GL_YCBCR_MESA) {
408 key->yuvtex_mask |= 1 << i;
409 if (img->TexFormat == MESA_FORMAT_YCBCR)
410 key->yuvtex_swap_mask |= 1 << i;
411 }
412
413 key->tex_swizzles[i] =
414 MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
415 swizzles[GET_SWZ(t->_Swizzle, 1)],
416 swizzles[GET_SWZ(t->_Swizzle, 2)],
417 swizzles[GET_SWZ(t->_Swizzle, 3)]);
418
419 if (sampler->MinFilter != GL_NEAREST &&
420 sampler->MagFilter != GL_NEAREST) {
421 if (sampler->WrapS == GL_CLAMP)
422 key->gl_clamp_mask[0] |= 1 << i;
423 if (sampler->WrapT == GL_CLAMP)
424 key->gl_clamp_mask[1] |= 1 << i;
425 if (sampler->WrapR == GL_CLAMP)
426 key->gl_clamp_mask[2] |= 1 << i;
427 }
428 }
429 else {
430 key->tex_swizzles[i] = SWIZZLE_NOOP;
431 }
432 }
433
434 /* _NEW_BUFFERS */
435 /*
436 * Include the draw buffer origin and height so that we can calculate
437 * fragment position values relative to the bottom left of the drawable,
438 * from the incoming screen origin relative position we get as part of our
439 * payload.
440 *
441 * This is only needed for the WM_WPOSXY opcode when the fragment program
442 * uses the gl_FragCoord input.
443 *
444 * We could avoid recompiling by including this as a constant referenced by
445 * our program, but if we were to do that it would also be nice to handle
446 * getting that constant updated at batchbuffer submit time (when we
447 * hold the lock and know where the buffer really is) rather than at emit
448 * time when we don't hold the lock and are just guessing. We could also
449 * just avoid using this as key data if the program doesn't use
450 * fragment.position.
451 *
452 * For DRI2 the origin_x/y will always be (0,0) but we still need the
453 * drawable height in order to invert the Y axis.
454 */
455 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
456 key->drawable_height = ctx->DrawBuffer->Height;
457 key->render_to_fbo = ctx->DrawBuffer->Name != 0;
458 }
459
460 /* _NEW_BUFFERS */
461 key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
462
463 /* CACHE_NEW_VS_PROG */
464 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
465
466 /* The unique fragment program ID */
467 key->program_string_id = fp->id;
468 }
469
470
471 static void brw_prepare_wm_prog(struct brw_context *brw)
472 {
473 struct intel_context *intel = &brw->intel;
474 struct gl_context *ctx = &intel->ctx;
475 struct brw_wm_prog_key key;
476 struct brw_fragment_program *fp = (struct brw_fragment_program *)
477 brw->fragment_program;
478
479 brw_wm_populate_key(brw, &key);
480
481 if (!brw_search_cache(&brw->cache, BRW_WM_PROG,
482 &key, sizeof(key),
483 &brw->wm.prog_offset, &brw->wm.prog_data)) {
484 bool success = do_wm_prog(brw, ctx->Shader.CurrentFragmentProgram, fp,
485 &key);
486 assert(success);
487 }
488 }
489
490
491 const struct brw_tracked_state brw_wm_prog = {
492 .dirty = {
493 .mesa = (_NEW_COLOR |
494 _NEW_DEPTH |
495 _NEW_STENCIL |
496 _NEW_POLYGON |
497 _NEW_LINE |
498 _NEW_LIGHT |
499 _NEW_FRAG_CLAMP |
500 _NEW_BUFFERS |
501 _NEW_TEXTURE),
502 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
503 BRW_NEW_WM_INPUT_DIMENSIONS |
504 BRW_NEW_REDUCED_PRIMITIVE),
505 .cache = CACHE_NEW_VS_PROG,
506 },
507 .prepare = brw_prepare_wm_prog
508 };
509