Merge branch 'kasanen-post-process-v2'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36 #include "main/samplerobj.h"
37 #include "program/prog_parameter.h"
38
39 #include "../glsl/ralloc.h"
40
41 /** Return number of src args for given instruction */
42 GLuint brw_wm_nr_args( GLuint opcode )
43 {
44 switch (opcode) {
45 case WM_FRONTFACING:
46 case WM_PIXELXY:
47 return 0;
48 case WM_CINTERP:
49 case WM_WPOSXY:
50 case WM_DELTAXY:
51 return 1;
52 case WM_LINTERP:
53 case WM_PIXELW:
54 return 2;
55 case WM_FB_WRITE:
56 case WM_PINTERP:
57 return 3;
58 default:
59 assert(opcode < MAX_OPCODE);
60 return _mesa_num_inst_src_regs(opcode);
61 }
62 }
63
64
65 GLuint brw_wm_is_scalar_result( GLuint opcode )
66 {
67 switch (opcode) {
68 case OPCODE_COS:
69 case OPCODE_EX2:
70 case OPCODE_LG2:
71 case OPCODE_POW:
72 case OPCODE_RCP:
73 case OPCODE_RSQ:
74 case OPCODE_SIN:
75 case OPCODE_DP2:
76 case OPCODE_DP3:
77 case OPCODE_DP4:
78 case OPCODE_DPH:
79 case OPCODE_DST:
80 return 1;
81
82 default:
83 return 0;
84 }
85 }
86
87
88 /**
89 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
90 * no flow control instructions so we can more readily do SSA-style
91 * optimizations.
92 */
93 static void
94 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
95 {
96 /* Augment fragment program. Add instructions for pre- and
97 * post-fragment-program tasks such as interpolation and fogging.
98 */
99 brw_wm_pass_fp(c);
100
101 /* Translate to intermediate representation. Build register usage
102 * chains.
103 */
104 brw_wm_pass0(c);
105
106 /* Dead code removal.
107 */
108 brw_wm_pass1(c);
109
110 /* Register allocation.
111 * Divide by two because we operate on 16 pixels at a time and require
112 * two GRF entries for each logical shader register.
113 */
114 c->grf_limit = BRW_WM_MAX_GRF / 2;
115
116 brw_wm_pass2(c);
117
118 /* how many general-purpose registers are used */
119 c->prog_data.reg_blocks = brw_register_blocks(c->max_wm_grf);
120
121 /* Emit GEN4 code.
122 */
123 brw_wm_emit(c);
124 }
125
126 void
127 brw_wm_payload_setup(struct brw_context *brw,
128 struct brw_wm_compile *c)
129 {
130 struct intel_context *intel = &brw->intel;
131 bool uses_depth = (c->fp->program.Base.InputsRead &
132 (1 << FRAG_ATTRIB_WPOS)) != 0;
133
134 if (intel->gen >= 6) {
135 /* R0-1: masks, pixel X/Y coordinates. */
136 c->nr_payload_regs = 2;
137 /* R2: only for 32-pixel dispatch.*/
138 /* R3-4: perspective pixel location barycentric */
139 c->nr_payload_regs += 2;
140 /* R5-6: perspective pixel location bary for dispatch width != 8 */
141 if (c->dispatch_width == 16) {
142 c->nr_payload_regs += 2;
143 }
144 /* R7-10: perspective centroid barycentric */
145 /* R11-14: perspective sample barycentric */
146 /* R15-18: linear pixel location barycentric */
147 /* R19-22: linear centroid barycentric */
148 /* R23-26: linear sample barycentric */
149
150 /* R27: interpolated depth if uses source depth */
151 if (uses_depth) {
152 c->source_depth_reg = c->nr_payload_regs;
153 c->nr_payload_regs++;
154 if (c->dispatch_width == 16) {
155 /* R28: interpolated depth if not 8-wide. */
156 c->nr_payload_regs++;
157 }
158 }
159 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
160 */
161 if (uses_depth) {
162 c->source_w_reg = c->nr_payload_regs;
163 c->nr_payload_regs++;
164 if (c->dispatch_width == 16) {
165 /* R30: interpolated W if not 8-wide. */
166 c->nr_payload_regs++;
167 }
168 }
169 /* R31: MSAA position offsets. */
170 /* R32-: bary for 32-pixel. */
171 /* R58-59: interp W for 32-pixel. */
172
173 if (c->fp->program.Base.OutputsWritten &
174 BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
175 c->source_depth_to_render_target = GL_TRUE;
176 c->computes_depth = GL_TRUE;
177 }
178 } else {
179 brw_wm_lookup_iz(intel, c);
180 }
181 }
182
183 /**
184 * All Mesa program -> GPU code generation goes through this function.
185 * Depending on the instructions used (i.e. flow control instructions)
186 * we'll use one of two code generators.
187 */
188 bool do_wm_prog(struct brw_context *brw,
189 struct gl_shader_program *prog,
190 struct brw_fragment_program *fp,
191 struct brw_wm_prog_key *key)
192 {
193 struct intel_context *intel = &brw->intel;
194 struct brw_wm_compile *c;
195 const GLuint *program;
196 GLuint program_size;
197
198 c = brw->wm.compile_data;
199 if (c == NULL) {
200 brw->wm.compile_data = rzalloc(NULL, struct brw_wm_compile);
201 c = brw->wm.compile_data;
202 if (c == NULL) {
203 /* Ouch - big out of memory problem. Can't continue
204 * without triggering a segfault, no way to signal,
205 * so just return.
206 */
207 return false;
208 }
209 } else {
210 void *instruction = c->instruction;
211 void *prog_instructions = c->prog_instructions;
212 void *vreg = c->vreg;
213 void *refs = c->refs;
214 memset(c, 0, sizeof(*brw->wm.compile_data));
215 c->instruction = instruction;
216 c->prog_instructions = prog_instructions;
217 c->vreg = vreg;
218 c->refs = refs;
219 }
220 memcpy(&c->key, key, sizeof(*key));
221
222 c->fp = fp;
223 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
224
225 brw_init_compile(brw, &c->func, c);
226
227 if (prog && prog->FragmentProgram) {
228 if (!brw_wm_fs_emit(brw, c, prog))
229 return false;
230 } else {
231 if (!c->instruction) {
232 c->instruction = rzalloc_array(c, struct brw_wm_instruction, BRW_WM_MAX_INSN);
233 c->prog_instructions = rzalloc_array(c, struct prog_instruction, BRW_WM_MAX_INSN);
234 c->vreg = rzalloc_array(c, struct brw_wm_value, BRW_WM_MAX_VREG);
235 c->refs = rzalloc_array(c, struct brw_wm_ref, BRW_WM_MAX_REF);
236 }
237
238 /* Fallback for fixed function and ARB_fp shaders. */
239 c->dispatch_width = 16;
240 brw_wm_payload_setup(brw, c);
241 brw_wm_non_glsl_emit(brw, c);
242 c->prog_data.dispatch_width = 16;
243 }
244
245 /* Scratch space is used for register spilling */
246 if (c->last_scratch) {
247 c->prog_data.total_scratch = brw_get_scratch_size(c->last_scratch);
248
249 brw_get_scratch_bo(intel, &brw->wm.scratch_bo,
250 c->prog_data.total_scratch * brw->wm_max_threads);
251 }
252
253 if (unlikely(INTEL_DEBUG & DEBUG_WM))
254 fprintf(stderr, "\n");
255
256 /* get the program
257 */
258 program = brw_get_program(&c->func, &program_size);
259
260 brw_upload_cache(&brw->cache, BRW_WM_PROG,
261 &c->key, sizeof(c->key),
262 program, program_size,
263 &c->prog_data, sizeof(c->prog_data),
264 &brw->wm.prog_offset, &brw->wm.prog_data);
265
266 return true;
267 }
268
269
270
271 static void brw_wm_populate_key( struct brw_context *brw,
272 struct brw_wm_prog_key *key )
273 {
274 struct gl_context *ctx = &brw->intel.ctx;
275 /* BRW_NEW_FRAGMENT_PROGRAM */
276 const struct brw_fragment_program *fp =
277 (struct brw_fragment_program *)brw->fragment_program;
278 GLuint lookup = 0;
279 GLuint line_aa;
280 GLuint i;
281
282 memset(key, 0, sizeof(*key));
283
284 /* Build the index for table lookup
285 */
286 /* _NEW_COLOR */
287 key->alpha_test = ctx->Color.AlphaEnabled;
288 if (fp->program.UsesKill ||
289 ctx->Color.AlphaEnabled)
290 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
291
292 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
293 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
294
295 /* _NEW_DEPTH */
296 if (ctx->Depth.Test)
297 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
298
299 if (ctx->Depth.Test &&
300 ctx->Depth.Mask) /* ?? */
301 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
302
303 /* _NEW_STENCIL */
304 if (ctx->Stencil._Enabled) {
305 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
306
307 if (ctx->Stencil.WriteMask[0] ||
308 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
309 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
310 }
311
312 line_aa = AA_NEVER;
313
314 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
315 if (ctx->Line.SmoothFlag) {
316 if (brw->intel.reduced_primitive == GL_LINES) {
317 line_aa = AA_ALWAYS;
318 }
319 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
320 if (ctx->Polygon.FrontMode == GL_LINE) {
321 line_aa = AA_SOMETIMES;
322
323 if (ctx->Polygon.BackMode == GL_LINE ||
324 (ctx->Polygon.CullFlag &&
325 ctx->Polygon.CullFaceMode == GL_BACK))
326 line_aa = AA_ALWAYS;
327 }
328 else if (ctx->Polygon.BackMode == GL_LINE) {
329 line_aa = AA_SOMETIMES;
330
331 if ((ctx->Polygon.CullFlag &&
332 ctx->Polygon.CullFaceMode == GL_FRONT))
333 line_aa = AA_ALWAYS;
334 }
335 }
336 }
337
338 key->iz_lookup = lookup;
339 key->line_aa = line_aa;
340 key->stats_wm = brw->intel.stats_wm;
341
342 /* BRW_NEW_WM_INPUT_DIMENSIONS */
343 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
344
345 /* _NEW_LIGHT */
346 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
347
348 /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
349 key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
350
351 /* _NEW_TEXTURE */
352 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
353 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
354
355 if (unit->_ReallyEnabled) {
356 const struct gl_texture_object *t = unit->_Current;
357 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
358 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
359 int swizzles[SWIZZLE_NIL + 1] = {
360 SWIZZLE_X,
361 SWIZZLE_Y,
362 SWIZZLE_Z,
363 SWIZZLE_W,
364 SWIZZLE_ZERO,
365 SWIZZLE_ONE,
366 SWIZZLE_NIL
367 };
368
369 /* GL_DEPTH_TEXTURE_MODE is normally handled through
370 * brw_wm_surface_state, but it applies to shadow compares as
371 * well and our shadow compares always return the result in
372 * all 4 channels.
373 */
374 if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
375 key->compare_funcs[i] = sampler->CompareFunc;
376
377 if (sampler->DepthMode == GL_ALPHA) {
378 swizzles[0] = SWIZZLE_ZERO;
379 swizzles[1] = SWIZZLE_ZERO;
380 swizzles[2] = SWIZZLE_ZERO;
381 } else if (sampler->DepthMode == GL_LUMINANCE) {
382 swizzles[3] = SWIZZLE_ONE;
383 } else if (sampler->DepthMode == GL_RED) {
384 /* See table 3.23 of the GL 3.0 spec. */
385 swizzles[1] = SWIZZLE_ZERO;
386 swizzles[2] = SWIZZLE_ZERO;
387 swizzles[3] = SWIZZLE_ONE;
388 }
389 }
390
391 if (img->InternalFormat == GL_YCBCR_MESA) {
392 key->yuvtex_mask |= 1 << i;
393 if (img->TexFormat == MESA_FORMAT_YCBCR)
394 key->yuvtex_swap_mask |= 1 << i;
395 }
396
397 key->tex_swizzles[i] =
398 MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
399 swizzles[GET_SWZ(t->_Swizzle, 1)],
400 swizzles[GET_SWZ(t->_Swizzle, 2)],
401 swizzles[GET_SWZ(t->_Swizzle, 3)]);
402
403 if (sampler->MinFilter != GL_NEAREST &&
404 sampler->MagFilter != GL_NEAREST) {
405 if (sampler->WrapS == GL_CLAMP)
406 key->gl_clamp_mask[0] |= 1 << i;
407 if (sampler->WrapT == GL_CLAMP)
408 key->gl_clamp_mask[1] |= 1 << i;
409 if (sampler->WrapR == GL_CLAMP)
410 key->gl_clamp_mask[2] |= 1 << i;
411 }
412 }
413 else {
414 key->tex_swizzles[i] = SWIZZLE_NOOP;
415 }
416 }
417
418 /* _NEW_BUFFERS */
419 /*
420 * Include the draw buffer origin and height so that we can calculate
421 * fragment position values relative to the bottom left of the drawable,
422 * from the incoming screen origin relative position we get as part of our
423 * payload.
424 *
425 * This is only needed for the WM_WPOSXY opcode when the fragment program
426 * uses the gl_FragCoord input.
427 *
428 * We could avoid recompiling by including this as a constant referenced by
429 * our program, but if we were to do that it would also be nice to handle
430 * getting that constant updated at batchbuffer submit time (when we
431 * hold the lock and know where the buffer really is) rather than at emit
432 * time when we don't hold the lock and are just guessing. We could also
433 * just avoid using this as key data if the program doesn't use
434 * fragment.position.
435 *
436 * For DRI2 the origin_x/y will always be (0,0) but we still need the
437 * drawable height in order to invert the Y axis.
438 */
439 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
440 key->drawable_height = ctx->DrawBuffer->Height;
441 key->render_to_fbo = ctx->DrawBuffer->Name != 0;
442 }
443
444 /* _NEW_BUFFERS */
445 key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
446
447 /* CACHE_NEW_VS_PROG */
448 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
449
450 /* The unique fragment program ID */
451 key->program_string_id = fp->id;
452 }
453
454
455 static void brw_prepare_wm_prog(struct brw_context *brw)
456 {
457 struct intel_context *intel = &brw->intel;
458 struct gl_context *ctx = &intel->ctx;
459 struct brw_wm_prog_key key;
460 struct brw_fragment_program *fp = (struct brw_fragment_program *)
461 brw->fragment_program;
462
463 brw_wm_populate_key(brw, &key);
464
465 if (!brw_search_cache(&brw->cache, BRW_WM_PROG,
466 &key, sizeof(key),
467 &brw->wm.prog_offset, &brw->wm.prog_data)) {
468 bool success = do_wm_prog(brw, ctx->Shader.CurrentFragmentProgram, fp,
469 &key);
470 assert(success);
471 }
472 }
473
474
475 const struct brw_tracked_state brw_wm_prog = {
476 .dirty = {
477 .mesa = (_NEW_COLOR |
478 _NEW_DEPTH |
479 _NEW_STENCIL |
480 _NEW_POLYGON |
481 _NEW_LINE |
482 _NEW_LIGHT |
483 _NEW_FRAG_CLAMP |
484 _NEW_BUFFERS |
485 _NEW_TEXTURE),
486 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
487 BRW_NEW_WM_INPUT_DIMENSIONS |
488 BRW_NEW_REDUCED_PRIMITIVE),
489 .cache = CACHE_NEW_VS_PROG,
490 },
491 .prepare = brw_prepare_wm_prog
492 };
493