i965: Remove dead shadowtex_mask entry in the WM key.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36 #include "main/samplerobj.h"
37
38 #include "../glsl/ralloc.h"
39
40 /** Return number of src args for given instruction */
41 GLuint brw_wm_nr_args( GLuint opcode )
42 {
43 switch (opcode) {
44 case WM_FRONTFACING:
45 case WM_PIXELXY:
46 return 0;
47 case WM_CINTERP:
48 case WM_WPOSXY:
49 case WM_DELTAXY:
50 return 1;
51 case WM_LINTERP:
52 case WM_PIXELW:
53 return 2;
54 case WM_FB_WRITE:
55 case WM_PINTERP:
56 return 3;
57 default:
58 assert(opcode < MAX_OPCODE);
59 return _mesa_num_inst_src_regs(opcode);
60 }
61 }
62
63
64 GLuint brw_wm_is_scalar_result( GLuint opcode )
65 {
66 switch (opcode) {
67 case OPCODE_COS:
68 case OPCODE_EX2:
69 case OPCODE_LG2:
70 case OPCODE_POW:
71 case OPCODE_RCP:
72 case OPCODE_RSQ:
73 case OPCODE_SIN:
74 case OPCODE_DP2:
75 case OPCODE_DP3:
76 case OPCODE_DP4:
77 case OPCODE_DPH:
78 case OPCODE_DST:
79 return 1;
80
81 default:
82 return 0;
83 }
84 }
85
86
87 /**
88 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
89 * no flow control instructions so we can more readily do SSA-style
90 * optimizations.
91 */
92 static void
93 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
94 {
95 /* Augment fragment program. Add instructions for pre- and
96 * post-fragment-program tasks such as interpolation and fogging.
97 */
98 brw_wm_pass_fp(c);
99
100 /* Translate to intermediate representation. Build register usage
101 * chains.
102 */
103 brw_wm_pass0(c);
104
105 /* Dead code removal.
106 */
107 brw_wm_pass1(c);
108
109 /* Register allocation.
110 * Divide by two because we operate on 16 pixels at a time and require
111 * two GRF entries for each logical shader register.
112 */
113 c->grf_limit = BRW_WM_MAX_GRF / 2;
114
115 brw_wm_pass2(c);
116
117 /* how many general-purpose registers are used */
118 c->prog_data.total_grf = c->max_wm_grf;
119
120 /* Emit GEN4 code.
121 */
122 brw_wm_emit(c);
123 }
124
125 void
126 brw_wm_payload_setup(struct brw_context *brw,
127 struct brw_wm_compile *c)
128 {
129 struct intel_context *intel = &brw->intel;
130 bool uses_depth = (c->fp->program.Base.InputsRead &
131 (1 << FRAG_ATTRIB_WPOS)) != 0;
132
133 if (intel->gen >= 6) {
134 /* R0-1: masks, pixel X/Y coordinates. */
135 c->nr_payload_regs = 2;
136 /* R2: only for 32-pixel dispatch.*/
137 /* R3-4: perspective pixel location barycentric */
138 c->nr_payload_regs += 2;
139 /* R5-6: perspective pixel location bary for dispatch width != 8 */
140 if (c->dispatch_width == 16) {
141 c->nr_payload_regs += 2;
142 }
143 /* R7-10: perspective centroid barycentric */
144 /* R11-14: perspective sample barycentric */
145 /* R15-18: linear pixel location barycentric */
146 /* R19-22: linear centroid barycentric */
147 /* R23-26: linear sample barycentric */
148
149 /* R27: interpolated depth if uses source depth */
150 if (uses_depth) {
151 c->source_depth_reg = c->nr_payload_regs;
152 c->nr_payload_regs++;
153 if (c->dispatch_width == 16) {
154 /* R28: interpolated depth if not 8-wide. */
155 c->nr_payload_regs++;
156 }
157 }
158 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
159 */
160 if (uses_depth) {
161 c->source_w_reg = c->nr_payload_regs;
162 c->nr_payload_regs++;
163 if (c->dispatch_width == 16) {
164 /* R30: interpolated W if not 8-wide. */
165 c->nr_payload_regs++;
166 }
167 }
168 /* R31: MSAA position offsets. */
169 /* R32-: bary for 32-pixel. */
170 /* R58-59: interp W for 32-pixel. */
171
172 if (c->fp->program.Base.OutputsWritten &
173 BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
174 c->source_depth_to_render_target = GL_TRUE;
175 c->computes_depth = GL_TRUE;
176 }
177 } else {
178 brw_wm_lookup_iz(intel, c);
179 }
180 }
181
182 /**
183 * All Mesa program -> GPU code generation goes through this function.
184 * Depending on the instructions used (i.e. flow control instructions)
185 * we'll use one of two code generators.
186 */
187 static void do_wm_prog( struct brw_context *brw,
188 struct brw_fragment_program *fp,
189 struct brw_wm_prog_key *key)
190 {
191 struct intel_context *intel = &brw->intel;
192 struct brw_wm_compile *c;
193 const GLuint *program;
194 GLuint program_size;
195
196 c = brw->wm.compile_data;
197 if (c == NULL) {
198 brw->wm.compile_data = rzalloc(NULL, struct brw_wm_compile);
199 c = brw->wm.compile_data;
200 if (c == NULL) {
201 /* Ouch - big out of memory problem. Can't continue
202 * without triggering a segfault, no way to signal,
203 * so just return.
204 */
205 return;
206 }
207 c->instruction = rzalloc_array(c, struct brw_wm_instruction, BRW_WM_MAX_INSN);
208 c->prog_instructions = rzalloc_array(c, struct prog_instruction, BRW_WM_MAX_INSN);
209 c->vreg = rzalloc_array(c, struct brw_wm_value, BRW_WM_MAX_VREG);
210 c->refs = rzalloc_array(c, struct brw_wm_ref, BRW_WM_MAX_REF);
211 } else {
212 void *instruction = c->instruction;
213 void *prog_instructions = c->prog_instructions;
214 void *vreg = c->vreg;
215 void *refs = c->refs;
216 memset(c, 0, sizeof(*brw->wm.compile_data));
217 c->instruction = instruction;
218 c->prog_instructions = prog_instructions;
219 c->vreg = vreg;
220 c->refs = refs;
221 }
222 memcpy(&c->key, key, sizeof(*key));
223
224 c->fp = fp;
225 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
226
227 brw_init_compile(brw, &c->func, c);
228
229 if (!brw_wm_fs_emit(brw, c)) {
230 /* Fallback for fixed function and ARB_fp shaders. */
231 c->dispatch_width = 16;
232 brw_wm_payload_setup(brw, c);
233 brw_wm_non_glsl_emit(brw, c);
234 c->prog_data.dispatch_width = 16;
235 }
236
237 /* Scratch space is used for register spilling */
238 if (c->last_scratch) {
239 uint32_t total_scratch;
240
241 /* Per-thread scratch space is power-of-two sized. */
242 for (c->prog_data.total_scratch = 1024;
243 c->prog_data.total_scratch <= c->last_scratch;
244 c->prog_data.total_scratch *= 2) {
245 /* empty */
246 }
247 total_scratch = c->prog_data.total_scratch * brw->wm_max_threads;
248
249 if (brw->wm.scratch_bo && total_scratch > brw->wm.scratch_bo->size) {
250 drm_intel_bo_unreference(brw->wm.scratch_bo);
251 brw->wm.scratch_bo = NULL;
252 }
253 if (brw->wm.scratch_bo == NULL) {
254 brw->wm.scratch_bo = drm_intel_bo_alloc(intel->bufmgr,
255 "wm scratch",
256 total_scratch,
257 4096);
258 }
259 }
260 else {
261 c->prog_data.total_scratch = 0;
262 }
263
264 if (unlikely(INTEL_DEBUG & DEBUG_WM))
265 fprintf(stderr, "\n");
266
267 /* get the program
268 */
269 program = brw_get_program(&c->func, &program_size);
270
271 drm_intel_bo_unreference(brw->wm.prog_bo);
272 brw->wm.prog_bo = brw_upload_cache(&brw->cache, BRW_WM_PROG,
273 &c->key, sizeof(c->key),
274 program, program_size,
275 &c->prog_data, sizeof(c->prog_data),
276 &brw->wm.prog_data);
277 }
278
279
280
281 static void brw_wm_populate_key( struct brw_context *brw,
282 struct brw_wm_prog_key *key )
283 {
284 struct gl_context *ctx = &brw->intel.ctx;
285 /* BRW_NEW_FRAGMENT_PROGRAM */
286 const struct brw_fragment_program *fp =
287 (struct brw_fragment_program *)brw->fragment_program;
288 GLuint lookup = 0;
289 GLuint line_aa;
290 GLuint i;
291
292 memset(key, 0, sizeof(*key));
293
294 /* Build the index for table lookup
295 */
296 /* _NEW_COLOR */
297 key->alpha_test = ctx->Color.AlphaEnabled;
298 if (fp->program.UsesKill ||
299 ctx->Color.AlphaEnabled)
300 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
301
302 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
303 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
304
305 /* _NEW_DEPTH */
306 if (ctx->Depth.Test)
307 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
308
309 if (ctx->Depth.Test &&
310 ctx->Depth.Mask) /* ?? */
311 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
312
313 /* _NEW_STENCIL */
314 if (ctx->Stencil._Enabled) {
315 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
316
317 if (ctx->Stencil.WriteMask[0] ||
318 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
319 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
320 }
321
322 line_aa = AA_NEVER;
323
324 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
325 if (ctx->Line.SmoothFlag) {
326 if (brw->intel.reduced_primitive == GL_LINES) {
327 line_aa = AA_ALWAYS;
328 }
329 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
330 if (ctx->Polygon.FrontMode == GL_LINE) {
331 line_aa = AA_SOMETIMES;
332
333 if (ctx->Polygon.BackMode == GL_LINE ||
334 (ctx->Polygon.CullFlag &&
335 ctx->Polygon.CullFaceMode == GL_BACK))
336 line_aa = AA_ALWAYS;
337 }
338 else if (ctx->Polygon.BackMode == GL_LINE) {
339 line_aa = AA_SOMETIMES;
340
341 if ((ctx->Polygon.CullFlag &&
342 ctx->Polygon.CullFaceMode == GL_FRONT))
343 line_aa = AA_ALWAYS;
344 }
345 }
346 }
347
348 key->iz_lookup = lookup;
349 key->line_aa = line_aa;
350 key->stats_wm = brw->intel.stats_wm;
351
352 /* BRW_NEW_WM_INPUT_DIMENSIONS */
353 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
354
355 /* _NEW_LIGHT */
356 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
357
358 /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
359 key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
360
361 /* _NEW_TEXTURE */
362 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
363 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
364
365 if (unit->_ReallyEnabled) {
366 const struct gl_texture_object *t = unit->_Current;
367 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
368 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
369 int swizzles[SWIZZLE_NIL + 1] = {
370 SWIZZLE_X,
371 SWIZZLE_Y,
372 SWIZZLE_Z,
373 SWIZZLE_W,
374 SWIZZLE_ZERO,
375 SWIZZLE_ONE,
376 SWIZZLE_NIL
377 };
378
379 /* GL_DEPTH_TEXTURE_MODE is normally handled through
380 * brw_wm_surface_state, but it applies to shadow compares as
381 * well and our shadow compares always return the result in
382 * all 4 channels.
383 */
384 if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
385 if (sampler->DepthMode == GL_ALPHA) {
386 swizzles[0] = SWIZZLE_ZERO;
387 swizzles[1] = SWIZZLE_ZERO;
388 swizzles[2] = SWIZZLE_ZERO;
389 } else if (sampler->DepthMode == GL_LUMINANCE) {
390 swizzles[3] = SWIZZLE_ONE;
391 } else if (sampler->DepthMode == GL_RED) {
392 /* See table 3.23 of the GL 3.0 spec. */
393 swizzles[1] = SWIZZLE_ZERO;
394 swizzles[2] = SWIZZLE_ZERO;
395 swizzles[3] = SWIZZLE_ONE;
396 }
397 }
398
399 if (img->InternalFormat == GL_YCBCR_MESA) {
400 key->yuvtex_mask |= 1 << i;
401 if (img->TexFormat == MESA_FORMAT_YCBCR)
402 key->yuvtex_swap_mask |= 1 << i;
403 }
404
405 key->tex_swizzles[i] =
406 MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
407 swizzles[GET_SWZ(t->_Swizzle, 1)],
408 swizzles[GET_SWZ(t->_Swizzle, 2)],
409 swizzles[GET_SWZ(t->_Swizzle, 3)]);
410
411 if (sampler->MinFilter != GL_NEAREST &&
412 sampler->MagFilter != GL_NEAREST) {
413 if (sampler->WrapS == GL_CLAMP)
414 key->gl_clamp_mask[0] |= 1 << i;
415 if (sampler->WrapT == GL_CLAMP)
416 key->gl_clamp_mask[1] |= 1 << i;
417 if (sampler->WrapR == GL_CLAMP)
418 key->gl_clamp_mask[2] |= 1 << i;
419 }
420 }
421 else {
422 key->tex_swizzles[i] = SWIZZLE_NOOP;
423 }
424 }
425
426 /* _NEW_BUFFERS */
427 /*
428 * Include the draw buffer origin and height so that we can calculate
429 * fragment position values relative to the bottom left of the drawable,
430 * from the incoming screen origin relative position we get as part of our
431 * payload.
432 *
433 * This is only needed for the WM_WPOSXY opcode when the fragment program
434 * uses the gl_FragCoord input.
435 *
436 * We could avoid recompiling by including this as a constant referenced by
437 * our program, but if we were to do that it would also be nice to handle
438 * getting that constant updated at batchbuffer submit time (when we
439 * hold the lock and know where the buffer really is) rather than at emit
440 * time when we don't hold the lock and are just guessing. We could also
441 * just avoid using this as key data if the program doesn't use
442 * fragment.position.
443 *
444 * For DRI2 the origin_x/y will always be (0,0) but we still need the
445 * drawable height in order to invert the Y axis.
446 */
447 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
448 key->drawable_height = ctx->DrawBuffer->Height;
449 key->render_to_fbo = ctx->DrawBuffer->Name != 0;
450 }
451
452 /* _NEW_BUFFERS */
453 key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
454
455 /* CACHE_NEW_VS_PROG */
456 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
457
458 /* The unique fragment program ID */
459 key->program_string_id = fp->id;
460 }
461
462
463 static void brw_prepare_wm_prog(struct brw_context *brw)
464 {
465 struct brw_wm_prog_key key;
466 struct brw_fragment_program *fp = (struct brw_fragment_program *)
467 brw->fragment_program;
468
469 brw_wm_populate_key(brw, &key);
470
471 /* Make an early check for the key.
472 */
473 drm_intel_bo_unreference(brw->wm.prog_bo);
474 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
475 &key, sizeof(key),
476 &brw->wm.prog_data);
477 if (brw->wm.prog_bo == NULL)
478 do_wm_prog(brw, fp, &key);
479 }
480
481
482 const struct brw_tracked_state brw_wm_prog = {
483 .dirty = {
484 .mesa = (_NEW_COLOR |
485 _NEW_DEPTH |
486 _NEW_STENCIL |
487 _NEW_POLYGON |
488 _NEW_LINE |
489 _NEW_LIGHT |
490 _NEW_FRAG_CLAMP |
491 _NEW_BUFFERS |
492 _NEW_TEXTURE),
493 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
494 BRW_NEW_WM_INPUT_DIMENSIONS |
495 BRW_NEW_REDUCED_PRIMITIVE),
496 .cache = CACHE_NEW_VS_PROG,
497 },
498 .prepare = brw_prepare_wm_prog
499 };
500