mesa: Track fixed-function fragment shader as a shader
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36 #include "main/samplerobj.h"
37 #include "program/prog_parameter.h"
38
39 #include "glsl/ralloc.h"
40
41 /** Return number of src args for given instruction */
42 GLuint brw_wm_nr_args( GLuint opcode )
43 {
44 switch (opcode) {
45 case WM_FRONTFACING:
46 case WM_PIXELXY:
47 return 0;
48 case WM_CINTERP:
49 case WM_WPOSXY:
50 case WM_DELTAXY:
51 return 1;
52 case WM_LINTERP:
53 case WM_PIXELW:
54 return 2;
55 case WM_FB_WRITE:
56 case WM_PINTERP:
57 return 3;
58 default:
59 assert(opcode < MAX_OPCODE);
60 return _mesa_num_inst_src_regs(opcode);
61 }
62 }
63
64
65 GLuint brw_wm_is_scalar_result( GLuint opcode )
66 {
67 switch (opcode) {
68 case OPCODE_COS:
69 case OPCODE_EX2:
70 case OPCODE_LG2:
71 case OPCODE_POW:
72 case OPCODE_RCP:
73 case OPCODE_RSQ:
74 case OPCODE_SIN:
75 case OPCODE_DP2:
76 case OPCODE_DP3:
77 case OPCODE_DP4:
78 case OPCODE_DPH:
79 case OPCODE_DST:
80 return 1;
81
82 default:
83 return 0;
84 }
85 }
86
87
88 /**
89 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
90 * no flow control instructions so we can more readily do SSA-style
91 * optimizations.
92 */
93 static void
94 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
95 {
96 /* Augment fragment program. Add instructions for pre- and
97 * post-fragment-program tasks such as interpolation and fogging.
98 */
99 brw_wm_pass_fp(c);
100
101 /* Translate to intermediate representation. Build register usage
102 * chains.
103 */
104 brw_wm_pass0(c);
105
106 /* Dead code removal.
107 */
108 brw_wm_pass1(c);
109
110 /* Register allocation.
111 * Divide by two because we operate on 16 pixels at a time and require
112 * two GRF entries for each logical shader register.
113 */
114 c->grf_limit = BRW_WM_MAX_GRF / 2;
115
116 brw_wm_pass2(c);
117
118 /* how many general-purpose registers are used */
119 c->prog_data.reg_blocks = brw_register_blocks(c->max_wm_grf);
120
121 /* Emit GEN4 code.
122 */
123 brw_wm_emit(c);
124 }
125
126
127 /**
128 * Return a bitfield where bit n is set if barycentric interpolation mode n
129 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
130 */
131 unsigned
132 brw_compute_barycentric_interp_modes(bool shade_model_flat,
133 const struct gl_fragment_program *fprog)
134 {
135 unsigned barycentric_interp_modes = 0;
136 int attr;
137
138 /* Loop through all fragment shader inputs to figure out what interpolation
139 * modes are in use, and set the appropriate bits in
140 * barycentric_interp_modes.
141 */
142 for (attr = 0; attr < FRAG_ATTRIB_MAX; ++attr) {
143 enum glsl_interp_qualifier interp_qualifier =
144 fprog->InterpQualifier[attr];
145 bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;
146
147 /* Ignore unused inputs. */
148 if (!(fprog->Base.InputsRead & BITFIELD64_BIT(attr)))
149 continue;
150
151 /* Ignore WPOS and FACE, because they don't require interpolation. */
152 if (attr == FRAG_ATTRIB_WPOS || attr == FRAG_ATTRIB_FACE)
153 continue;
154
155 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
156 barycentric_interp_modes |=
157 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
158 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
159 (!(shade_model_flat && is_gl_Color) &&
160 interp_qualifier == INTERP_QUALIFIER_NONE)) {
161 barycentric_interp_modes |=
162 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
163 }
164 }
165
166 return barycentric_interp_modes;
167 }
168
169
170 void
171 brw_wm_payload_setup(struct brw_context *brw,
172 struct brw_wm_compile *c)
173 {
174 struct intel_context *intel = &brw->intel;
175 bool uses_depth = (c->fp->program.Base.InputsRead &
176 (1 << FRAG_ATTRIB_WPOS)) != 0;
177 unsigned barycentric_interp_modes =
178 brw_compute_barycentric_interp_modes(c->key.flat_shade,
179 &c->fp->program);
180 int i;
181
182 if (intel->gen >= 6) {
183 /* R0-1: masks, pixel X/Y coordinates. */
184 c->nr_payload_regs = 2;
185 /* R2: only for 32-pixel dispatch.*/
186
187 /* R3-26: barycentric interpolation coordinates. These appear in the
188 * same order that they appear in the brw_wm_barycentric_interp_mode
189 * enum. Each set of coordinates occupies 2 registers if dispatch width
190 * == 8 and 4 registers if dispatch width == 16. Coordinates only
191 * appear if they were enabled using the "Barycentric Interpolation
192 * Mode" bits in WM_STATE.
193 */
194 for (i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
195 if (barycentric_interp_modes & (1 << i)) {
196 c->barycentric_coord_reg[i] = c->nr_payload_regs;
197 c->nr_payload_regs += 2;
198 if (c->dispatch_width == 16) {
199 c->nr_payload_regs += 2;
200 }
201 }
202 }
203
204 /* R27: interpolated depth if uses source depth */
205 if (uses_depth) {
206 c->source_depth_reg = c->nr_payload_regs;
207 c->nr_payload_regs++;
208 if (c->dispatch_width == 16) {
209 /* R28: interpolated depth if not 8-wide. */
210 c->nr_payload_regs++;
211 }
212 }
213 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W.
214 */
215 if (uses_depth) {
216 c->source_w_reg = c->nr_payload_regs;
217 c->nr_payload_regs++;
218 if (c->dispatch_width == 16) {
219 /* R30: interpolated W if not 8-wide. */
220 c->nr_payload_regs++;
221 }
222 }
223 /* R31: MSAA position offsets. */
224 /* R32-: bary for 32-pixel. */
225 /* R58-59: interp W for 32-pixel. */
226
227 if (c->fp->program.Base.OutputsWritten &
228 BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
229 c->source_depth_to_render_target = true;
230 c->computes_depth = true;
231 }
232 } else {
233 brw_wm_lookup_iz(intel, c);
234 }
235 }
236
237 /**
238 * All Mesa program -> GPU code generation goes through this function.
239 * Depending on the instructions used (i.e. flow control instructions)
240 * we'll use one of two code generators.
241 */
242 bool do_wm_prog(struct brw_context *brw,
243 struct gl_shader_program *prog,
244 struct brw_fragment_program *fp,
245 struct brw_wm_prog_key *key)
246 {
247 struct intel_context *intel = &brw->intel;
248 struct brw_wm_compile *c;
249 const GLuint *program;
250 GLuint program_size;
251
252 c = brw->wm.compile_data;
253 if (c == NULL) {
254 brw->wm.compile_data = rzalloc(NULL, struct brw_wm_compile);
255 c = brw->wm.compile_data;
256 if (c == NULL) {
257 /* Ouch - big out of memory problem. Can't continue
258 * without triggering a segfault, no way to signal,
259 * so just return.
260 */
261 return false;
262 }
263 } else {
264 void *instruction = c->instruction;
265 void *prog_instructions = c->prog_instructions;
266 void *vreg = c->vreg;
267 void *refs = c->refs;
268 memset(c, 0, sizeof(*brw->wm.compile_data));
269 c->instruction = instruction;
270 c->prog_instructions = prog_instructions;
271 c->vreg = vreg;
272 c->refs = refs;
273 }
274 memcpy(&c->key, key, sizeof(*key));
275
276 c->fp = fp;
277 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
278
279 brw_init_compile(brw, &c->func, c);
280
281 if (prog && prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) {
282 if (!brw_wm_fs_emit(brw, c, prog))
283 return false;
284 } else {
285 if (!c->instruction) {
286 c->instruction = rzalloc_array(c, struct brw_wm_instruction, BRW_WM_MAX_INSN);
287 c->prog_instructions = rzalloc_array(c, struct prog_instruction, BRW_WM_MAX_INSN);
288 c->vreg = rzalloc_array(c, struct brw_wm_value, BRW_WM_MAX_VREG);
289 c->refs = rzalloc_array(c, struct brw_wm_ref, BRW_WM_MAX_REF);
290 }
291
292 /* Fallback for fixed function and ARB_fp shaders. */
293 c->dispatch_width = 16;
294 brw_wm_payload_setup(brw, c);
295 brw_wm_non_glsl_emit(brw, c);
296 c->prog_data.dispatch_width = 16;
297 }
298
299 /* Scratch space is used for register spilling */
300 if (c->last_scratch) {
301 c->prog_data.total_scratch = brw_get_scratch_size(c->last_scratch);
302
303 brw_get_scratch_bo(intel, &brw->wm.scratch_bo,
304 c->prog_data.total_scratch * brw->max_wm_threads);
305 }
306
307 if (unlikely(INTEL_DEBUG & DEBUG_WM))
308 fprintf(stderr, "\n");
309
310 /* get the program
311 */
312 program = brw_get_program(&c->func, &program_size);
313
314 brw_upload_cache(&brw->cache, BRW_WM_PROG,
315 &c->key, sizeof(c->key),
316 program, program_size,
317 &c->prog_data, sizeof(c->prog_data),
318 &brw->wm.prog_offset, &brw->wm.prog_data);
319
320 return true;
321 }
322
323 void
324 brw_populate_sampler_prog_key_data(struct gl_context *ctx,
325 struct brw_sampler_prog_key_data *key,
326 int i)
327 {
328 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
329
330 if (unit->_ReallyEnabled) {
331 const struct gl_texture_object *t = unit->_Current;
332 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
333 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
334 int swizzles[SWIZZLE_NIL + 1] = {
335 SWIZZLE_X,
336 SWIZZLE_Y,
337 SWIZZLE_Z,
338 SWIZZLE_W,
339 SWIZZLE_ZERO,
340 SWIZZLE_ONE,
341 SWIZZLE_NIL
342 };
343
344 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
345 img->_BaseFormat == GL_DEPTH_STENCIL) {
346 if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB)
347 key->compare_funcs[i] = sampler->CompareFunc;
348
349 /* We handle GL_DEPTH_TEXTURE_MODE here instead of as surface format
350 * overrides because shadow comparison always returns the result of
351 * the comparison in all channels anyway.
352 */
353 switch (sampler->DepthMode) {
354 case GL_ALPHA:
355 swizzles[0] = SWIZZLE_ZERO;
356 swizzles[1] = SWIZZLE_ZERO;
357 swizzles[2] = SWIZZLE_ZERO;
358 swizzles[3] = SWIZZLE_X;
359 break;
360 case GL_LUMINANCE:
361 swizzles[0] = SWIZZLE_X;
362 swizzles[1] = SWIZZLE_X;
363 swizzles[2] = SWIZZLE_X;
364 swizzles[3] = SWIZZLE_ONE;
365 break;
366 case GL_INTENSITY:
367 swizzles[0] = SWIZZLE_X;
368 swizzles[1] = SWIZZLE_X;
369 swizzles[2] = SWIZZLE_X;
370 swizzles[3] = SWIZZLE_X;
371 break;
372 case GL_RED:
373 swizzles[0] = SWIZZLE_X;
374 swizzles[1] = SWIZZLE_ZERO;
375 swizzles[2] = SWIZZLE_ZERO;
376 swizzles[3] = SWIZZLE_ONE;
377 break;
378 }
379 }
380
381 if (img->InternalFormat == GL_YCBCR_MESA) {
382 key->yuvtex_mask |= 1 << i;
383 if (img->TexFormat == MESA_FORMAT_YCBCR)
384 key->yuvtex_swap_mask |= 1 << i;
385 }
386
387 key->swizzles[i] =
388 MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
389 swizzles[GET_SWZ(t->_Swizzle, 1)],
390 swizzles[GET_SWZ(t->_Swizzle, 2)],
391 swizzles[GET_SWZ(t->_Swizzle, 3)]);
392
393 if (sampler->MinFilter != GL_NEAREST &&
394 sampler->MagFilter != GL_NEAREST) {
395 if (sampler->WrapS == GL_CLAMP)
396 key->gl_clamp_mask[0] |= 1 << i;
397 if (sampler->WrapT == GL_CLAMP)
398 key->gl_clamp_mask[1] |= 1 << i;
399 if (sampler->WrapR == GL_CLAMP)
400 key->gl_clamp_mask[2] |= 1 << i;
401 }
402 }
403 else {
404 key->swizzles[i] = SWIZZLE_NOOP;
405 }
406 }
407
408 static void brw_wm_populate_key( struct brw_context *brw,
409 struct brw_wm_prog_key *key )
410 {
411 struct gl_context *ctx = &brw->intel.ctx;
412 /* BRW_NEW_FRAGMENT_PROGRAM */
413 const struct brw_fragment_program *fp =
414 (struct brw_fragment_program *)brw->fragment_program;
415 const struct gl_program *prog = (struct gl_program *) brw->fragment_program;
416 GLuint lookup = 0;
417 GLuint line_aa;
418 GLuint i;
419
420 memset(key, 0, sizeof(*key));
421
422 /* Build the index for table lookup
423 */
424 /* _NEW_COLOR */
425 key->alpha_test = ctx->Color.AlphaEnabled;
426 if (fp->program.UsesKill ||
427 ctx->Color.AlphaEnabled)
428 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
429
430 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
431 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
432
433 /* _NEW_DEPTH */
434 if (ctx->Depth.Test)
435 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
436
437 if (ctx->Depth.Test &&
438 ctx->Depth.Mask) /* ?? */
439 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
440
441 /* _NEW_STENCIL */
442 if (ctx->Stencil._Enabled) {
443 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
444
445 if (ctx->Stencil.WriteMask[0] ||
446 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
447 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
448 }
449
450 line_aa = AA_NEVER;
451
452 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
453 if (ctx->Line.SmoothFlag) {
454 if (brw->intel.reduced_primitive == GL_LINES) {
455 line_aa = AA_ALWAYS;
456 }
457 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
458 if (ctx->Polygon.FrontMode == GL_LINE) {
459 line_aa = AA_SOMETIMES;
460
461 if (ctx->Polygon.BackMode == GL_LINE ||
462 (ctx->Polygon.CullFlag &&
463 ctx->Polygon.CullFaceMode == GL_BACK))
464 line_aa = AA_ALWAYS;
465 }
466 else if (ctx->Polygon.BackMode == GL_LINE) {
467 line_aa = AA_SOMETIMES;
468
469 if ((ctx->Polygon.CullFlag &&
470 ctx->Polygon.CullFaceMode == GL_FRONT))
471 line_aa = AA_ALWAYS;
472 }
473 }
474 }
475
476 key->iz_lookup = lookup;
477 key->line_aa = line_aa;
478 key->stats_wm = brw->intel.stats_wm;
479
480 /* BRW_NEW_WM_INPUT_DIMENSIONS */
481 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
482
483 /* _NEW_LIGHT */
484 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
485
486 /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
487 key->clamp_fragment_color = ctx->Color._ClampFragmentColor;
488
489 /* _NEW_TEXTURE */
490 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
491 if (prog->TexturesUsed[i])
492 brw_populate_sampler_prog_key_data(ctx, &key->tex, i);
493 }
494
495 /* _NEW_BUFFERS */
496 /*
497 * Include the draw buffer origin and height so that we can calculate
498 * fragment position values relative to the bottom left of the drawable,
499 * from the incoming screen origin relative position we get as part of our
500 * payload.
501 *
502 * This is only needed for the WM_WPOSXY opcode when the fragment program
503 * uses the gl_FragCoord input.
504 *
505 * We could avoid recompiling by including this as a constant referenced by
506 * our program, but if we were to do that it would also be nice to handle
507 * getting that constant updated at batchbuffer submit time (when we
508 * hold the lock and know where the buffer really is) rather than at emit
509 * time when we don't hold the lock and are just guessing. We could also
510 * just avoid using this as key data if the program doesn't use
511 * fragment.position.
512 *
513 * For DRI2 the origin_x/y will always be (0,0) but we still need the
514 * drawable height in order to invert the Y axis.
515 */
516 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
517 key->drawable_height = ctx->DrawBuffer->Height;
518 key->render_to_fbo = ctx->DrawBuffer->Name != 0;
519 }
520
521 /* _NEW_BUFFERS */
522 key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;
523
524 /* CACHE_NEW_VS_PROG */
525 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
526
527 /* The unique fragment program ID */
528 key->program_string_id = fp->id;
529 }
530
531
532 static void
533 brw_upload_wm_prog(struct brw_context *brw)
534 {
535 struct intel_context *intel = &brw->intel;
536 struct gl_context *ctx = &intel->ctx;
537 struct brw_wm_prog_key key;
538 struct brw_fragment_program *fp = (struct brw_fragment_program *)
539 brw->fragment_program;
540
541 brw_wm_populate_key(brw, &key);
542
543 if (!brw_search_cache(&brw->cache, BRW_WM_PROG,
544 &key, sizeof(key),
545 &brw->wm.prog_offset, &brw->wm.prog_data)) {
546 bool success = do_wm_prog(brw, ctx->Shader._CurrentFragmentProgram, fp,
547 &key);
548 (void) success;
549 assert(success);
550 }
551 }
552
553
554 const struct brw_tracked_state brw_wm_prog = {
555 .dirty = {
556 .mesa = (_NEW_COLOR |
557 _NEW_DEPTH |
558 _NEW_STENCIL |
559 _NEW_POLYGON |
560 _NEW_LINE |
561 _NEW_LIGHT |
562 _NEW_FRAG_CLAMP |
563 _NEW_BUFFERS |
564 _NEW_TEXTURE),
565 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
566 BRW_NEW_WM_INPUT_DIMENSIONS |
567 BRW_NEW_REDUCED_PRIMITIVE),
568 .cache = CACHE_NEW_VS_PROG,
569 },
570 .emit = brw_upload_wm_prog
571 };
572