Merge branch 'mesa_7_6_branch' into mesa_7_7_branch
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_util.h"
34 #include "brw_wm.h"
35 #include "brw_state.h"
36
37
38 /** Return number of src args for given instruction */
39 GLuint brw_wm_nr_args( GLuint opcode )
40 {
41 switch (opcode) {
42 case WM_FRONTFACING:
43 case WM_PIXELXY:
44 return 0;
45 case WM_CINTERP:
46 case WM_WPOSXY:
47 case WM_DELTAXY:
48 return 1;
49 case WM_LINTERP:
50 case WM_PIXELW:
51 return 2;
52 case WM_FB_WRITE:
53 case WM_PINTERP:
54 return 3;
55 default:
56 assert(opcode < MAX_OPCODE);
57 return _mesa_num_inst_src_regs(opcode);
58 }
59 }
60
61
62 GLuint brw_wm_is_scalar_result( GLuint opcode )
63 {
64 switch (opcode) {
65 case OPCODE_COS:
66 case OPCODE_EX2:
67 case OPCODE_LG2:
68 case OPCODE_POW:
69 case OPCODE_RCP:
70 case OPCODE_RSQ:
71 case OPCODE_SIN:
72 case OPCODE_DP3:
73 case OPCODE_DP4:
74 case OPCODE_DPH:
75 case OPCODE_DST:
76 return 1;
77
78 default:
79 return 0;
80 }
81 }
82
83
84 /**
85 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
86 * no flow control instructions so we can more readily do SSA-style
87 * optimizations.
88 */
89 static void
90 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
91 {
92 /* Augment fragment program. Add instructions for pre- and
93 * post-fragment-program tasks such as interpolation and fogging.
94 */
95 brw_wm_pass_fp(c);
96
97 /* Translate to intermediate representation. Build register usage
98 * chains.
99 */
100 brw_wm_pass0(c);
101
102 /* Dead code removal.
103 */
104 brw_wm_pass1(c);
105
106 /* Register allocation.
107 * Divide by two because we operate on 16 pixels at a time and require
108 * two GRF entries for each logical shader register.
109 */
110 c->grf_limit = BRW_WM_MAX_GRF / 2;
111
112 brw_wm_pass2(c);
113
114 /* how many general-purpose registers are used */
115 c->prog_data.total_grf = c->max_wm_grf;
116
117 /* Scratch space is used for register spilling */
118 if (c->last_scratch) {
119 c->prog_data.total_scratch = c->last_scratch + 0x40;
120 }
121 else {
122 c->prog_data.total_scratch = 0;
123 }
124
125 /* Emit GEN4 code.
126 */
127 brw_wm_emit(c);
128 }
129
130
131 /**
132 * All Mesa program -> GPU code generation goes through this function.
133 * Depending on the instructions used (i.e. flow control instructions)
134 * we'll use one of two code generators.
135 */
136 static void do_wm_prog( struct brw_context *brw,
137 struct brw_fragment_program *fp,
138 struct brw_wm_prog_key *key)
139 {
140 struct brw_wm_compile *c;
141 const GLuint *program;
142 GLuint program_size;
143
144 c = brw->wm.compile_data;
145 if (c == NULL) {
146 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
147 c = brw->wm.compile_data;
148 if (c == NULL) {
149 /* Ouch - big out of memory problem. Can't continue
150 * without triggering a segfault, no way to signal,
151 * so just return.
152 */
153 return;
154 }
155 c->instruction = _mesa_calloc(BRW_WM_MAX_INSN * sizeof(*c->instruction));
156 c->prog_instructions = _mesa_calloc(BRW_WM_MAX_INSN *
157 sizeof(*c->prog_instructions));
158 c->vreg = _mesa_calloc(BRW_WM_MAX_VREG * sizeof(*c->vreg));
159 c->refs = _mesa_calloc(BRW_WM_MAX_REF * sizeof(*c->refs));
160 } else {
161 void *instruction = c->instruction;
162 void *prog_instructions = c->prog_instructions;
163 void *vreg = c->vreg;
164 void *refs = c->refs;
165 memset(c, 0, sizeof(*brw->wm.compile_data));
166 c->instruction = instruction;
167 c->prog_instructions = prog_instructions;
168 c->vreg = vreg;
169 c->refs = refs;
170 }
171 memcpy(&c->key, key, sizeof(*key));
172
173 c->fp = fp;
174 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
175
176 brw_init_compile(brw, &c->func);
177
178 /* temporary sanity check assertion */
179 ASSERT(fp->isGLSL == brw_wm_is_glsl(&c->fp->program));
180
181 /*
182 * Shader which use GLSL features such as flow control are handled
183 * differently from "simple" shaders.
184 */
185 if (fp->isGLSL) {
186 c->dispatch_width = 8;
187 brw_wm_glsl_emit(brw, c);
188 }
189 else {
190 c->dispatch_width = 16;
191 brw_wm_non_glsl_emit(brw, c);
192 }
193
194 if (INTEL_DEBUG & DEBUG_WM)
195 fprintf(stderr, "\n");
196
197 /* get the program
198 */
199 program = brw_get_program(&c->func, &program_size);
200
201 dri_bo_unreference(brw->wm.prog_bo);
202 brw->wm.prog_bo = brw_upload_cache( &brw->cache, BRW_WM_PROG,
203 &c->key, sizeof(c->key),
204 NULL, 0,
205 program, program_size,
206 &c->prog_data,
207 &brw->wm.prog_data );
208 }
209
210
211
212 static void brw_wm_populate_key( struct brw_context *brw,
213 struct brw_wm_prog_key *key )
214 {
215 GLcontext *ctx = &brw->intel.ctx;
216 /* BRW_NEW_FRAGMENT_PROGRAM */
217 const struct brw_fragment_program *fp =
218 (struct brw_fragment_program *)brw->fragment_program;
219 GLboolean uses_depth = (fp->program.Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) != 0;
220 GLuint lookup = 0;
221 GLuint line_aa;
222 GLuint i;
223
224 memset(key, 0, sizeof(*key));
225
226 /* Build the index for table lookup
227 */
228 /* _NEW_COLOR */
229 if (fp->program.UsesKill ||
230 ctx->Color.AlphaEnabled)
231 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
232
233 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
234 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
235
236 /* _NEW_DEPTH */
237 if (ctx->Depth.Test)
238 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
239
240 if (ctx->Depth.Test &&
241 ctx->Depth.Mask) /* ?? */
242 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
243
244 /* _NEW_STENCIL */
245 if (ctx->Stencil._Enabled) {
246 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
247
248 if (ctx->Stencil.WriteMask[0] ||
249 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
250 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
251 }
252
253 line_aa = AA_NEVER;
254
255 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
256 if (ctx->Line.SmoothFlag) {
257 if (brw->intel.reduced_primitive == GL_LINES) {
258 line_aa = AA_ALWAYS;
259 }
260 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
261 if (ctx->Polygon.FrontMode == GL_LINE) {
262 line_aa = AA_SOMETIMES;
263
264 if (ctx->Polygon.BackMode == GL_LINE ||
265 (ctx->Polygon.CullFlag &&
266 ctx->Polygon.CullFaceMode == GL_BACK))
267 line_aa = AA_ALWAYS;
268 }
269 else if (ctx->Polygon.BackMode == GL_LINE) {
270 line_aa = AA_SOMETIMES;
271
272 if ((ctx->Polygon.CullFlag &&
273 ctx->Polygon.CullFaceMode == GL_FRONT))
274 line_aa = AA_ALWAYS;
275 }
276 }
277 }
278
279 brw_wm_lookup_iz(line_aa,
280 lookup,
281 uses_depth,
282 key);
283
284
285 /* BRW_NEW_WM_INPUT_DIMENSIONS */
286 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
287
288 /* _NEW_LIGHT */
289 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
290
291 /* _NEW_HINT */
292 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
293
294 /* _NEW_TEXTURE */
295 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
296 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
297
298 if (unit->_ReallyEnabled) {
299 const struct gl_texture_object *t = unit->_Current;
300 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
301 if (img->InternalFormat == GL_YCBCR_MESA) {
302 key->yuvtex_mask |= 1 << i;
303 if (img->TexFormat == MESA_FORMAT_YCBCR)
304 key->yuvtex_swap_mask |= 1 << i;
305 }
306
307 key->tex_swizzles[i] = t->_Swizzle;
308 }
309 else {
310 key->tex_swizzles[i] = SWIZZLE_NOOP;
311 }
312 }
313
314 /* Shadow */
315 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
316
317 /* _NEW_BUFFERS */
318 /*
319 * Include the draw buffer origin and height so that we can calculate
320 * fragment position values relative to the bottom left of the drawable,
321 * from the incoming screen origin relative position we get as part of our
322 * payload.
323 *
324 * This is only needed for the WM_WPOSXY opcode when the fragment program
325 * uses the gl_FragCoord input.
326 *
327 * We could avoid recompiling by including this as a constant referenced by
328 * our program, but if we were to do that it would also be nice to handle
329 * getting that constant updated at batchbuffer submit time (when we
330 * hold the lock and know where the buffer really is) rather than at emit
331 * time when we don't hold the lock and are just guessing. We could also
332 * just avoid using this as key data if the program doesn't use
333 * fragment.position.
334 *
335 * For DRI2 the origin_x/y will always be (0,0) but we still need the
336 * drawable height in order to invert the Y axis.
337 */
338 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
339 if (brw->intel.driDrawable != NULL) {
340 key->origin_x = brw->intel.driDrawable->x;
341 key->origin_y = brw->intel.driDrawable->y;
342 key->drawable_height = brw->intel.driDrawable->h;
343 }
344 }
345
346 key->nr_color_regions = brw->state.nr_color_regions;
347
348 /* CACHE_NEW_VS_PROG */
349 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
350
351 /* The unique fragment program ID */
352 key->program_string_id = fp->id;
353 }
354
355
356 static void brw_prepare_wm_prog(struct brw_context *brw)
357 {
358 struct brw_wm_prog_key key;
359 struct brw_fragment_program *fp = (struct brw_fragment_program *)
360 brw->fragment_program;
361
362 brw_wm_populate_key(brw, &key);
363
364 /* Make an early check for the key.
365 */
366 dri_bo_unreference(brw->wm.prog_bo);
367 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
368 &key, sizeof(key),
369 NULL, 0,
370 &brw->wm.prog_data);
371 if (brw->wm.prog_bo == NULL)
372 do_wm_prog(brw, fp, &key);
373 }
374
375
376 const struct brw_tracked_state brw_wm_prog = {
377 .dirty = {
378 .mesa = (_NEW_COLOR |
379 _NEW_DEPTH |
380 _NEW_HINT |
381 _NEW_STENCIL |
382 _NEW_POLYGON |
383 _NEW_LINE |
384 _NEW_LIGHT |
385 _NEW_BUFFERS |
386 _NEW_TEXTURE),
387 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
388 BRW_NEW_WM_INPUT_DIMENSIONS |
389 BRW_NEW_REDUCED_PRIMITIVE),
390 .cache = CACHE_NEW_VS_PROG,
391 },
392 .prepare = brw_prepare_wm_prog
393 };
394