Merge remote branch 'origin/master' into glsl2
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/macros.h"
34 #include "brw_context.h"
35 #include "brw_wm.h"
36
37 static GLboolean can_do_pln(struct intel_context *intel,
38 const struct brw_reg *deltas)
39 {
40 struct brw_context *brw = brw_context(&intel->ctx);
41
42 if (!brw->has_pln)
43 return GL_FALSE;
44
45 if (deltas[1].nr != deltas[0].nr + 1)
46 return GL_FALSE;
47
48 if (intel->gen < 6 && ((deltas[0].nr & 1) != 0))
49 return GL_FALSE;
50
51 return GL_TRUE;
52 }
53
54 /* Not quite sure how correct this is - need to understand horiz
55 * vs. vertical strides a little better.
56 */
57 static INLINE struct brw_reg sechalf( struct brw_reg reg )
58 {
59 if (reg.vstride)
60 reg.nr++;
61 return reg;
62 }
63
64 /* Return the SrcReg index of the channels that can be immediate float operands
65 * instead of usage of PROGRAM_CONSTANT values through push/pull.
66 */
67 GLboolean
68 brw_wm_arg_can_be_immediate(enum prog_opcode opcode, int arg)
69 {
70 int opcode_array[] = {
71 [OPCODE_ADD] = 2,
72 [OPCODE_CMP] = 3,
73 [OPCODE_DP3] = 2,
74 [OPCODE_DP4] = 2,
75 [OPCODE_DPH] = 2,
76 [OPCODE_MAX] = 2,
77 [OPCODE_MIN] = 2,
78 [OPCODE_MOV] = 1,
79 [OPCODE_MUL] = 2,
80 [OPCODE_SEQ] = 2,
81 [OPCODE_SGE] = 2,
82 [OPCODE_SGT] = 2,
83 [OPCODE_SLE] = 2,
84 [OPCODE_SLT] = 2,
85 [OPCODE_SNE] = 2,
86 [OPCODE_XPD] = 2,
87 };
88
89 /* These opcodes get broken down in a way that allow two
90 * args to be immediates.
91 */
92 if (opcode == OPCODE_MAD || opcode == OPCODE_LRP) {
93 if (arg == 1 || arg == 2)
94 return GL_TRUE;
95 }
96
97 if (opcode > ARRAY_SIZE(opcode_array))
98 return GL_FALSE;
99
100 return arg == opcode_array[opcode] - 1;
101 }
102
103 /**
104 * Computes the screen-space x,y position of the pixels.
105 *
106 * This will be used by emit_delta_xy() or emit_wpos_xy() for
107 * interpolation of attributes..
108 *
109 * Payload R0:
110 *
111 * R0.0 -- pixel mask, one bit for each of 4 pixels in 4 tiles,
112 * corresponding to each of the 16 execution channels.
113 * R0.1..8 -- ?
114 * R1.0 -- triangle vertex 0.X
115 * R1.1 -- triangle vertex 0.Y
116 * R1.2 -- tile 0 x,y coords (2 packed uwords)
117 * R1.3 -- tile 1 x,y coords (2 packed uwords)
118 * R1.4 -- tile 2 x,y coords (2 packed uwords)
119 * R1.5 -- tile 3 x,y coords (2 packed uwords)
120 * R1.6 -- ?
121 * R1.7 -- ?
122 * R1.8 -- ?
123 */
124 void emit_pixel_xy(struct brw_wm_compile *c,
125 const struct brw_reg *dst,
126 GLuint mask)
127 {
128 struct brw_compile *p = &c->func;
129 struct brw_reg r1 = brw_vec1_grf(1, 0);
130 struct brw_reg r1_uw = retype(r1, BRW_REGISTER_TYPE_UW);
131 struct brw_reg dst0_uw, dst1_uw;
132
133 brw_push_insn_state(p);
134 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
135
136 if (c->dispatch_width == 16) {
137 dst0_uw = vec16(retype(dst[0], BRW_REGISTER_TYPE_UW));
138 dst1_uw = vec16(retype(dst[1], BRW_REGISTER_TYPE_UW));
139 } else {
140 dst0_uw = vec8(retype(dst[0], BRW_REGISTER_TYPE_UW));
141 dst1_uw = vec8(retype(dst[1], BRW_REGISTER_TYPE_UW));
142 }
143
144 /* Calculate pixel centers by adding 1 or 0 to each of the
145 * micro-tile coordinates passed in r1.
146 */
147 if (mask & WRITEMASK_X) {
148 brw_ADD(p,
149 dst0_uw,
150 stride(suboffset(r1_uw, 4), 2, 4, 0),
151 brw_imm_v(0x10101010));
152 }
153
154 if (mask & WRITEMASK_Y) {
155 brw_ADD(p,
156 dst1_uw,
157 stride(suboffset(r1_uw,5), 2, 4, 0),
158 brw_imm_v(0x11001100));
159 }
160 brw_pop_insn_state(p);
161 }
162
163 /**
164 * Computes the screen-space x,y distance of the pixels from the start
165 * vertex.
166 *
167 * This will be used in linterp or pinterp with the start vertex value
168 * and the Cx, Cy, and C0 coefficients passed in from the setup engine
169 * to produce interpolated attribute values.
170 */
171 void emit_delta_xy(struct brw_compile *p,
172 const struct brw_reg *dst,
173 GLuint mask,
174 const struct brw_reg *arg0)
175 {
176 struct brw_reg r1 = brw_vec1_grf(1, 0);
177
178 if (mask == 0)
179 return;
180
181 assert(mask == WRITEMASK_XY);
182
183 /* Calc delta X,Y by subtracting origin in r1 from the pixel
184 * centers produced by emit_pixel_xy().
185 */
186 brw_ADD(p,
187 dst[0],
188 retype(arg0[0], BRW_REGISTER_TYPE_UW),
189 negate(r1));
190 brw_ADD(p,
191 dst[1],
192 retype(arg0[1], BRW_REGISTER_TYPE_UW),
193 negate(suboffset(r1,1)));
194 }
195
196 /**
197 * Computes the pixel offset from the window origin for gl_FragCoord().
198 */
199 void emit_wpos_xy(struct brw_wm_compile *c,
200 const struct brw_reg *dst,
201 GLuint mask,
202 const struct brw_reg *arg0)
203 {
204 struct brw_compile *p = &c->func;
205
206 if (mask & WRITEMASK_X) {
207 if (c->fp->program.PixelCenterInteger) {
208 /* X' = X */
209 brw_MOV(p,
210 dst[0],
211 retype(arg0[0], BRW_REGISTER_TYPE_W));
212 } else {
213 /* X' = X + 0.5 */
214 brw_ADD(p,
215 dst[0],
216 retype(arg0[0], BRW_REGISTER_TYPE_W),
217 brw_imm_f(0.5));
218 }
219 }
220
221 if (mask & WRITEMASK_Y) {
222 if (c->fp->program.OriginUpperLeft) {
223 if (c->fp->program.PixelCenterInteger) {
224 /* Y' = Y */
225 brw_MOV(p,
226 dst[1],
227 retype(arg0[1], BRW_REGISTER_TYPE_W));
228 } else {
229 /* Y' = Y + 0.5 */
230 brw_ADD(p,
231 dst[1],
232 retype(arg0[1], BRW_REGISTER_TYPE_W),
233 brw_imm_f(0.5));
234 }
235 } else {
236 float center_offset = c->fp->program.PixelCenterInteger ? 0.0 : 0.5;
237
238 /* Y' = (height - 1) - Y + center */
239 brw_ADD(p,
240 dst[1],
241 negate(retype(arg0[1], BRW_REGISTER_TYPE_W)),
242 brw_imm_f(c->key.drawable_height - 1 + center_offset));
243 }
244 }
245 }
246
247
248 void emit_pixel_w(struct brw_wm_compile *c,
249 const struct brw_reg *dst,
250 GLuint mask,
251 const struct brw_reg *arg0,
252 const struct brw_reg *deltas)
253 {
254 struct brw_compile *p = &c->func;
255 struct intel_context *intel = &p->brw->intel;
256
257 /* Don't need this if all you are doing is interpolating color, for
258 * instance.
259 */
260 if (mask & WRITEMASK_W) {
261 struct brw_reg interp3 = brw_vec1_grf(arg0[0].nr+1, 4);
262
263 /* Calc 1/w - just linterp wpos[3] optimized by putting the
264 * result straight into a message reg.
265 */
266 if (can_do_pln(intel, deltas)) {
267 brw_PLN(p, brw_message_reg(2), interp3, deltas[0]);
268 } else {
269 brw_LINE(p, brw_null_reg(), interp3, deltas[0]);
270 brw_MAC(p, brw_message_reg(2), suboffset(interp3, 1), deltas[1]);
271 }
272
273 /* Calc w */
274 if (c->dispatch_width == 16) {
275 brw_math_16(p, dst[3],
276 BRW_MATH_FUNCTION_INV,
277 BRW_MATH_SATURATE_NONE,
278 2, brw_null_reg(),
279 BRW_MATH_PRECISION_FULL);
280 } else {
281 brw_math(p, dst[3],
282 BRW_MATH_FUNCTION_INV,
283 BRW_MATH_SATURATE_NONE,
284 2, brw_null_reg(),
285 BRW_MATH_DATA_VECTOR,
286 BRW_MATH_PRECISION_FULL);
287 }
288 }
289 }
290
291
292 void emit_linterp(struct brw_compile *p,
293 const struct brw_reg *dst,
294 GLuint mask,
295 const struct brw_reg *arg0,
296 const struct brw_reg *deltas)
297 {
298 struct intel_context *intel = &p->brw->intel;
299 struct brw_reg interp[4];
300 GLuint nr = arg0[0].nr;
301 GLuint i;
302
303 interp[0] = brw_vec1_grf(nr, 0);
304 interp[1] = brw_vec1_grf(nr, 4);
305 interp[2] = brw_vec1_grf(nr+1, 0);
306 interp[3] = brw_vec1_grf(nr+1, 4);
307
308 for (i = 0; i < 4; i++) {
309 if (mask & (1<<i)) {
310 if (can_do_pln(intel, deltas)) {
311 brw_PLN(p, dst[i], interp[i], deltas[0]);
312 } else {
313 brw_LINE(p, brw_null_reg(), interp[i], deltas[0]);
314 brw_MAC(p, dst[i], suboffset(interp[i],1), deltas[1]);
315 }
316 }
317 }
318 }
319
320
321 void emit_pinterp(struct brw_compile *p,
322 const struct brw_reg *dst,
323 GLuint mask,
324 const struct brw_reg *arg0,
325 const struct brw_reg *deltas,
326 const struct brw_reg *w)
327 {
328 struct intel_context *intel = &p->brw->intel;
329 struct brw_reg interp[4];
330 GLuint nr = arg0[0].nr;
331 GLuint i;
332
333 interp[0] = brw_vec1_grf(nr, 0);
334 interp[1] = brw_vec1_grf(nr, 4);
335 interp[2] = brw_vec1_grf(nr+1, 0);
336 interp[3] = brw_vec1_grf(nr+1, 4);
337
338 for (i = 0; i < 4; i++) {
339 if (mask & (1<<i)) {
340 if (can_do_pln(intel, deltas)) {
341 brw_PLN(p, dst[i], interp[i], deltas[0]);
342 } else {
343 brw_LINE(p, brw_null_reg(), interp[i], deltas[0]);
344 brw_MAC(p, dst[i], suboffset(interp[i],1), deltas[1]);
345 }
346 }
347 }
348 for (i = 0; i < 4; i++) {
349 if (mask & (1<<i)) {
350 brw_MUL(p, dst[i], dst[i], w[3]);
351 }
352 }
353 }
354
355
356 void emit_cinterp(struct brw_compile *p,
357 const struct brw_reg *dst,
358 GLuint mask,
359 const struct brw_reg *arg0)
360 {
361 struct brw_reg interp[4];
362 GLuint nr = arg0[0].nr;
363 GLuint i;
364
365 interp[0] = brw_vec1_grf(nr, 0);
366 interp[1] = brw_vec1_grf(nr, 4);
367 interp[2] = brw_vec1_grf(nr+1, 0);
368 interp[3] = brw_vec1_grf(nr+1, 4);
369
370 for (i = 0; i < 4; i++) {
371 if (mask & (1<<i)) {
372 brw_MOV(p, dst[i], suboffset(interp[i],3)); /* TODO: optimize away like other moves */
373 }
374 }
375 }
376
377 /* Sets the destination channels to 1.0 or 0.0 according to glFrontFacing. */
378 void emit_frontfacing(struct brw_compile *p,
379 const struct brw_reg *dst,
380 GLuint mask)
381 {
382 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
383 GLuint i;
384
385 if (!(mask & WRITEMASK_XYZW))
386 return;
387
388 for (i = 0; i < 4; i++) {
389 if (mask & (1<<i)) {
390 brw_MOV(p, dst[i], brw_imm_f(0.0));
391 }
392 }
393
394 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
395 * us front face
396 */
397 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, r1_6ud, brw_imm_ud(1 << 31));
398 for (i = 0; i < 4; i++) {
399 if (mask & (1<<i)) {
400 brw_MOV(p, dst[i], brw_imm_f(1.0));
401 }
402 }
403 brw_set_predicate_control_flag_value(p, 0xff);
404 }
405
406 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
407 * looking like:
408 *
409 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
410 *
411 * and we're trying to produce:
412 *
413 * DDX DDY
414 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
415 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
416 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
417 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
418 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
419 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
420 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
421 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
422 *
423 * and add another set of two more subspans if in 16-pixel dispatch mode.
424 *
425 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
426 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
427 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
428 * between each other. We could probably do it like ddx and swizzle the right
429 * order later, but bail for now and just produce
430 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
431 */
432 void emit_ddxy(struct brw_compile *p,
433 const struct brw_reg *dst,
434 GLuint mask,
435 GLboolean is_ddx,
436 const struct brw_reg *arg0)
437 {
438 int i;
439 struct brw_reg src0, src1;
440
441 if (mask & SATURATE)
442 brw_set_saturate(p, 1);
443 for (i = 0; i < 4; i++ ) {
444 if (mask & (1<<i)) {
445 if (is_ddx) {
446 src0 = brw_reg(arg0[i].file, arg0[i].nr, 1,
447 BRW_REGISTER_TYPE_F,
448 BRW_VERTICAL_STRIDE_2,
449 BRW_WIDTH_2,
450 BRW_HORIZONTAL_STRIDE_0,
451 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
452 src1 = brw_reg(arg0[i].file, arg0[i].nr, 0,
453 BRW_REGISTER_TYPE_F,
454 BRW_VERTICAL_STRIDE_2,
455 BRW_WIDTH_2,
456 BRW_HORIZONTAL_STRIDE_0,
457 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
458 } else {
459 src0 = brw_reg(arg0[i].file, arg0[i].nr, 0,
460 BRW_REGISTER_TYPE_F,
461 BRW_VERTICAL_STRIDE_4,
462 BRW_WIDTH_4,
463 BRW_HORIZONTAL_STRIDE_0,
464 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
465 src1 = brw_reg(arg0[i].file, arg0[i].nr, 2,
466 BRW_REGISTER_TYPE_F,
467 BRW_VERTICAL_STRIDE_4,
468 BRW_WIDTH_4,
469 BRW_HORIZONTAL_STRIDE_0,
470 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
471 }
472 brw_ADD(p, dst[i], src0, negate(src1));
473 }
474 }
475 if (mask & SATURATE)
476 brw_set_saturate(p, 0);
477 }
478
479 void emit_alu1(struct brw_compile *p,
480 struct brw_instruction *(*func)(struct brw_compile *,
481 struct brw_reg,
482 struct brw_reg),
483 const struct brw_reg *dst,
484 GLuint mask,
485 const struct brw_reg *arg0)
486 {
487 GLuint i;
488
489 if (mask & SATURATE)
490 brw_set_saturate(p, 1);
491
492 for (i = 0; i < 4; i++) {
493 if (mask & (1<<i)) {
494 func(p, dst[i], arg0[i]);
495 }
496 }
497
498 if (mask & SATURATE)
499 brw_set_saturate(p, 0);
500 }
501
502
503 void emit_alu2(struct brw_compile *p,
504 struct brw_instruction *(*func)(struct brw_compile *,
505 struct brw_reg,
506 struct brw_reg,
507 struct brw_reg),
508 const struct brw_reg *dst,
509 GLuint mask,
510 const struct brw_reg *arg0,
511 const struct brw_reg *arg1)
512 {
513 GLuint i;
514
515 if (mask & SATURATE)
516 brw_set_saturate(p, 1);
517
518 for (i = 0; i < 4; i++) {
519 if (mask & (1<<i)) {
520 func(p, dst[i], arg0[i], arg1[i]);
521 }
522 }
523
524 if (mask & SATURATE)
525 brw_set_saturate(p, 0);
526 }
527
528
529 void emit_mad(struct brw_compile *p,
530 const struct brw_reg *dst,
531 GLuint mask,
532 const struct brw_reg *arg0,
533 const struct brw_reg *arg1,
534 const struct brw_reg *arg2)
535 {
536 GLuint i;
537
538 for (i = 0; i < 4; i++) {
539 if (mask & (1<<i)) {
540 brw_MUL(p, dst[i], arg0[i], arg1[i]);
541
542 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
543 brw_ADD(p, dst[i], dst[i], arg2[i]);
544 brw_set_saturate(p, 0);
545 }
546 }
547 }
548
549 void emit_lrp(struct brw_compile *p,
550 const struct brw_reg *dst,
551 GLuint mask,
552 const struct brw_reg *arg0,
553 const struct brw_reg *arg1,
554 const struct brw_reg *arg2)
555 {
556 GLuint i;
557
558 /* Uses dst as a temporary:
559 */
560 for (i = 0; i < 4; i++) {
561 if (mask & (1<<i)) {
562 /* Can I use the LINE instruction for this?
563 */
564 brw_ADD(p, dst[i], negate(arg0[i]), brw_imm_f(1.0));
565 brw_MUL(p, brw_null_reg(), dst[i], arg2[i]);
566
567 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
568 brw_MAC(p, dst[i], arg0[i], arg1[i]);
569 brw_set_saturate(p, 0);
570 }
571 }
572 }
573
574 void emit_sop(struct brw_compile *p,
575 const struct brw_reg *dst,
576 GLuint mask,
577 GLuint cond,
578 const struct brw_reg *arg0,
579 const struct brw_reg *arg1)
580 {
581 GLuint i;
582
583 for (i = 0; i < 4; i++) {
584 if (mask & (1<<i)) {
585 brw_push_insn_state(p);
586 brw_CMP(p, brw_null_reg(), cond, arg0[i], arg1[i]);
587 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
588 brw_MOV(p, dst[i], brw_imm_f(0));
589 brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
590 brw_MOV(p, dst[i], brw_imm_f(1.0));
591 brw_pop_insn_state(p);
592 }
593 }
594 }
595
596 static void emit_slt( struct brw_compile *p,
597 const struct brw_reg *dst,
598 GLuint mask,
599 const struct brw_reg *arg0,
600 const struct brw_reg *arg1 )
601 {
602 emit_sop(p, dst, mask, BRW_CONDITIONAL_L, arg0, arg1);
603 }
604
605 static void emit_sle( struct brw_compile *p,
606 const struct brw_reg *dst,
607 GLuint mask,
608 const struct brw_reg *arg0,
609 const struct brw_reg *arg1 )
610 {
611 emit_sop(p, dst, mask, BRW_CONDITIONAL_LE, arg0, arg1);
612 }
613
614 static void emit_sgt( struct brw_compile *p,
615 const struct brw_reg *dst,
616 GLuint mask,
617 const struct brw_reg *arg0,
618 const struct brw_reg *arg1 )
619 {
620 emit_sop(p, dst, mask, BRW_CONDITIONAL_G, arg0, arg1);
621 }
622
623 static void emit_sge( struct brw_compile *p,
624 const struct brw_reg *dst,
625 GLuint mask,
626 const struct brw_reg *arg0,
627 const struct brw_reg *arg1 )
628 {
629 emit_sop(p, dst, mask, BRW_CONDITIONAL_GE, arg0, arg1);
630 }
631
632 static void emit_seq( struct brw_compile *p,
633 const struct brw_reg *dst,
634 GLuint mask,
635 const struct brw_reg *arg0,
636 const struct brw_reg *arg1 )
637 {
638 emit_sop(p, dst, mask, BRW_CONDITIONAL_EQ, arg0, arg1);
639 }
640
641 static void emit_sne( struct brw_compile *p,
642 const struct brw_reg *dst,
643 GLuint mask,
644 const struct brw_reg *arg0,
645 const struct brw_reg *arg1 )
646 {
647 emit_sop(p, dst, mask, BRW_CONDITIONAL_NEQ, arg0, arg1);
648 }
649
650 void emit_cmp(struct brw_compile *p,
651 const struct brw_reg *dst,
652 GLuint mask,
653 const struct brw_reg *arg0,
654 const struct brw_reg *arg1,
655 const struct brw_reg *arg2)
656 {
657 GLuint i;
658
659 for (i = 0; i < 4; i++) {
660 if (mask & (1<<i)) {
661 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0[i], brw_imm_f(0));
662
663 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
664 brw_SEL(p, dst[i], arg1[i], arg2[i]);
665 brw_set_saturate(p, 0);
666 brw_set_predicate_control_flag_value(p, 0xff);
667 }
668 }
669 }
670
671 void emit_sign(struct brw_compile *p,
672 const struct brw_reg *dst,
673 GLuint mask,
674 const struct brw_reg *arg0)
675 {
676 GLuint i;
677
678 for (i = 0; i < 4; i++) {
679 if (mask & (1<<i)) {
680 brw_MOV(p, dst[i], brw_imm_f(0.0));
681
682 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0[i], brw_imm_f(0));
683 brw_MOV(p, dst[i], brw_imm_f(-1.0));
684 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
685
686 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_G, arg0[i], brw_imm_f(0));
687 brw_MOV(p, dst[i], brw_imm_f(1.0));
688 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
689 }
690 }
691 }
692
693 void emit_max(struct brw_compile *p,
694 const struct brw_reg *dst,
695 GLuint mask,
696 const struct brw_reg *arg0,
697 const struct brw_reg *arg1)
698 {
699 GLuint i;
700
701 for (i = 0; i < 4; i++) {
702 if (mask & (1<<i)) {
703 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0[i], arg1[i]);
704
705 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
706 brw_SEL(p, dst[i], arg0[i], arg1[i]);
707 brw_set_saturate(p, 0);
708 brw_set_predicate_control_flag_value(p, 0xff);
709 }
710 }
711 }
712
713 void emit_min(struct brw_compile *p,
714 const struct brw_reg *dst,
715 GLuint mask,
716 const struct brw_reg *arg0,
717 const struct brw_reg *arg1)
718 {
719 GLuint i;
720
721 for (i = 0; i < 4; i++) {
722 if (mask & (1<<i)) {
723 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_L, arg0[i], arg1[i]);
724
725 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
726 brw_SEL(p, dst[i], arg0[i], arg1[i]);
727 brw_set_saturate(p, 0);
728 brw_set_predicate_control_flag_value(p, 0xff);
729 }
730 }
731 }
732
733
734 void emit_dp2(struct brw_compile *p,
735 const struct brw_reg *dst,
736 GLuint mask,
737 const struct brw_reg *arg0,
738 const struct brw_reg *arg1)
739 {
740 int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
741
742 if (!(mask & WRITEMASK_XYZW))
743 return; /* Do not emit dead code */
744
745 assert(is_power_of_two(mask & WRITEMASK_XYZW));
746
747 brw_MUL(p, brw_null_reg(), arg0[0], arg1[0]);
748
749 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
750 brw_MAC(p, dst[dst_chan], arg0[1], arg1[1]);
751 brw_set_saturate(p, 0);
752 }
753
754
755 void emit_dp3(struct brw_compile *p,
756 const struct brw_reg *dst,
757 GLuint mask,
758 const struct brw_reg *arg0,
759 const struct brw_reg *arg1)
760 {
761 int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
762
763 if (!(mask & WRITEMASK_XYZW))
764 return; /* Do not emit dead code */
765
766 assert(is_power_of_two(mask & WRITEMASK_XYZW));
767
768 brw_MUL(p, brw_null_reg(), arg0[0], arg1[0]);
769 brw_MAC(p, brw_null_reg(), arg0[1], arg1[1]);
770
771 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
772 brw_MAC(p, dst[dst_chan], arg0[2], arg1[2]);
773 brw_set_saturate(p, 0);
774 }
775
776
777 void emit_dp4(struct brw_compile *p,
778 const struct brw_reg *dst,
779 GLuint mask,
780 const struct brw_reg *arg0,
781 const struct brw_reg *arg1)
782 {
783 int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
784
785 if (!(mask & WRITEMASK_XYZW))
786 return; /* Do not emit dead code */
787
788 assert(is_power_of_two(mask & WRITEMASK_XYZW));
789
790 brw_MUL(p, brw_null_reg(), arg0[0], arg1[0]);
791 brw_MAC(p, brw_null_reg(), arg0[1], arg1[1]);
792 brw_MAC(p, brw_null_reg(), arg0[2], arg1[2]);
793
794 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
795 brw_MAC(p, dst[dst_chan], arg0[3], arg1[3]);
796 brw_set_saturate(p, 0);
797 }
798
799
800 void emit_dph(struct brw_compile *p,
801 const struct brw_reg *dst,
802 GLuint mask,
803 const struct brw_reg *arg0,
804 const struct brw_reg *arg1)
805 {
806 const int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
807
808 if (!(mask & WRITEMASK_XYZW))
809 return; /* Do not emit dead code */
810
811 assert(is_power_of_two(mask & WRITEMASK_XYZW));
812
813 brw_MUL(p, brw_null_reg(), arg0[0], arg1[0]);
814 brw_MAC(p, brw_null_reg(), arg0[1], arg1[1]);
815 brw_MAC(p, dst[dst_chan], arg0[2], arg1[2]);
816
817 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
818 brw_ADD(p, dst[dst_chan], dst[dst_chan], arg1[3]);
819 brw_set_saturate(p, 0);
820 }
821
822
823 void emit_xpd(struct brw_compile *p,
824 const struct brw_reg *dst,
825 GLuint mask,
826 const struct brw_reg *arg0,
827 const struct brw_reg *arg1)
828 {
829 GLuint i;
830
831 assert((mask & WRITEMASK_W) != WRITEMASK_W);
832
833 for (i = 0 ; i < 3; i++) {
834 if (mask & (1<<i)) {
835 GLuint i2 = (i+2)%3;
836 GLuint i1 = (i+1)%3;
837
838 brw_MUL(p, brw_null_reg(), negate(arg0[i2]), arg1[i1]);
839
840 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
841 brw_MAC(p, dst[i], arg0[i1], arg1[i2]);
842 brw_set_saturate(p, 0);
843 }
844 }
845 }
846
847
848 void emit_math1(struct brw_wm_compile *c,
849 GLuint function,
850 const struct brw_reg *dst,
851 GLuint mask,
852 const struct brw_reg *arg0)
853 {
854 struct brw_compile *p = &c->func;
855 int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
856 GLuint saturate = ((mask & SATURATE) ?
857 BRW_MATH_SATURATE_SATURATE :
858 BRW_MATH_SATURATE_NONE);
859
860 if (!(mask & WRITEMASK_XYZW))
861 return; /* Do not emit dead code */
862
863 assert(is_power_of_two(mask & WRITEMASK_XYZW));
864
865 /* If compressed, this will write message reg 2,3 from arg0.x's 16
866 * channels.
867 */
868 brw_MOV(p, brw_message_reg(2), arg0[0]);
869
870 /* Send two messages to perform all 16 operations:
871 */
872 brw_push_insn_state(p);
873 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
874 brw_math(p,
875 dst[dst_chan],
876 function,
877 saturate,
878 2,
879 brw_null_reg(),
880 BRW_MATH_DATA_VECTOR,
881 BRW_MATH_PRECISION_FULL);
882
883 if (c->dispatch_width == 16) {
884 brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
885 brw_math(p,
886 offset(dst[dst_chan],1),
887 function,
888 saturate,
889 3,
890 brw_null_reg(),
891 BRW_MATH_DATA_VECTOR,
892 BRW_MATH_PRECISION_FULL);
893 }
894 brw_pop_insn_state(p);
895 }
896
897
898 void emit_math2(struct brw_wm_compile *c,
899 GLuint function,
900 const struct brw_reg *dst,
901 GLuint mask,
902 const struct brw_reg *arg0,
903 const struct brw_reg *arg1)
904 {
905 struct brw_compile *p = &c->func;
906 int dst_chan = _mesa_ffs(mask & WRITEMASK_XYZW) - 1;
907 GLuint saturate = ((mask & SATURATE) ?
908 BRW_MATH_SATURATE_SATURATE :
909 BRW_MATH_SATURATE_NONE);
910
911 if (!(mask & WRITEMASK_XYZW))
912 return; /* Do not emit dead code */
913
914 assert(is_power_of_two(mask & WRITEMASK_XYZW));
915
916 brw_push_insn_state(p);
917
918 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
919 brw_MOV(p, brw_message_reg(2), arg0[0]);
920 if (c->dispatch_width == 16) {
921 brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
922 brw_MOV(p, brw_message_reg(4), sechalf(arg0[0]));
923 }
924
925 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
926 brw_MOV(p, brw_message_reg(3), arg1[0]);
927 if (c->dispatch_width == 16) {
928 brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
929 brw_MOV(p, brw_message_reg(5), sechalf(arg1[0]));
930 }
931
932 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
933 brw_math(p,
934 dst[dst_chan],
935 function,
936 saturate,
937 2,
938 brw_null_reg(),
939 BRW_MATH_DATA_VECTOR,
940 BRW_MATH_PRECISION_FULL);
941
942 /* Send two messages to perform all 16 operations:
943 */
944 if (c->dispatch_width == 16) {
945 brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
946 brw_math(p,
947 offset(dst[dst_chan],1),
948 function,
949 saturate,
950 4,
951 brw_null_reg(),
952 BRW_MATH_DATA_VECTOR,
953 BRW_MATH_PRECISION_FULL);
954 }
955 brw_pop_insn_state(p);
956 }
957
958
959 void emit_tex(struct brw_wm_compile *c,
960 struct brw_reg *dst,
961 GLuint dst_flags,
962 struct brw_reg *arg,
963 struct brw_reg depth_payload,
964 GLuint tex_idx,
965 GLuint sampler,
966 GLboolean shadow)
967 {
968 struct brw_compile *p = &c->func;
969 struct intel_context *intel = &p->brw->intel;
970 struct brw_reg dst_retyped;
971 GLuint cur_mrf = 2, response_length;
972 GLuint i, nr_texcoords;
973 GLuint emit;
974 GLuint msg_type;
975 GLuint mrf_per_channel;
976 GLuint simd_mode;
977
978 if (c->dispatch_width == 16) {
979 mrf_per_channel = 2;
980 response_length = 8;
981 dst_retyped = retype(vec16(dst[0]), BRW_REGISTER_TYPE_UW);
982 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
983 } else {
984 mrf_per_channel = 1;
985 response_length = 4;
986 dst_retyped = retype(vec8(dst[0]), BRW_REGISTER_TYPE_UW);
987 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
988 }
989
990 /* How many input regs are there?
991 */
992 switch (tex_idx) {
993 case TEXTURE_1D_INDEX:
994 emit = WRITEMASK_X;
995 nr_texcoords = 1;
996 break;
997 case TEXTURE_2D_INDEX:
998 case TEXTURE_RECT_INDEX:
999 emit = WRITEMASK_XY;
1000 nr_texcoords = 2;
1001 break;
1002 case TEXTURE_3D_INDEX:
1003 case TEXTURE_CUBE_INDEX:
1004 emit = WRITEMASK_XYZ;
1005 nr_texcoords = 3;
1006 break;
1007 default:
1008 /* unexpected target */
1009 abort();
1010 }
1011
1012 /* Pre-Ironlake, the 8-wide sampler always took u,v,r. */
1013 if (intel->gen < 5 && c->dispatch_width == 8)
1014 nr_texcoords = 3;
1015
1016 /* For shadow comparisons, we have to supply u,v,r. */
1017 if (shadow)
1018 nr_texcoords = 3;
1019
1020 /* Emit the texcoords. */
1021 for (i = 0; i < nr_texcoords; i++) {
1022 if (emit & (1<<i))
1023 brw_MOV(p, brw_message_reg(cur_mrf), arg[i]);
1024 else
1025 brw_MOV(p, brw_message_reg(cur_mrf), brw_imm_f(0));
1026 cur_mrf += mrf_per_channel;
1027 }
1028
1029 /* Fill in the shadow comparison reference value. */
1030 if (shadow) {
1031 if (intel->gen == 5) {
1032 /* Fill in the cube map array index value. */
1033 brw_MOV(p, brw_message_reg(cur_mrf), brw_imm_f(0));
1034 cur_mrf += mrf_per_channel;
1035 } else if (c->dispatch_width == 8) {
1036 /* Fill in the LOD bias value. */
1037 brw_MOV(p, brw_message_reg(cur_mrf), brw_imm_f(0));
1038 cur_mrf += mrf_per_channel;
1039 }
1040 brw_MOV(p, brw_message_reg(cur_mrf), arg[2]);
1041 cur_mrf += mrf_per_channel;
1042 }
1043
1044 if (intel->gen == 5) {
1045 if (shadow)
1046 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
1047 else
1048 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
1049 } else {
1050 /* Note that G45 and older determines shadow compare and dispatch width
1051 * from message length for most messages.
1052 */
1053 if (c->dispatch_width == 16 && shadow)
1054 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1055 else
1056 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1057 }
1058
1059 brw_SAMPLE(p,
1060 dst_retyped,
1061 1,
1062 retype(depth_payload, BRW_REGISTER_TYPE_UW),
1063 SURF_INDEX_TEXTURE(sampler),
1064 sampler,
1065 dst_flags & WRITEMASK_XYZW,
1066 msg_type,
1067 response_length,
1068 cur_mrf - 1,
1069 0,
1070 1,
1071 simd_mode);
1072 }
1073
1074
1075 void emit_txb(struct brw_wm_compile *c,
1076 struct brw_reg *dst,
1077 GLuint dst_flags,
1078 struct brw_reg *arg,
1079 struct brw_reg depth_payload,
1080 GLuint tex_idx,
1081 GLuint sampler)
1082 {
1083 struct brw_compile *p = &c->func;
1084 struct intel_context *intel = &p->brw->intel;
1085 GLuint msgLength;
1086 GLuint msg_type;
1087 GLuint mrf_per_channel;
1088 GLuint response_length;
1089 struct brw_reg dst_retyped;
1090
1091 /* The G45 and older chipsets don't support 8-wide dispatch for LOD biased
1092 * samples, so we'll use the 16-wide instruction, leave the second halves
1093 * undefined, and trust the execution mask to keep the undefined pixels
1094 * from mattering.
1095 */
1096 if (c->dispatch_width == 16 || intel->gen < 5) {
1097 if (intel->gen == 5)
1098 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
1099 else
1100 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1101 mrf_per_channel = 2;
1102 dst_retyped = retype(vec16(dst[0]), BRW_REGISTER_TYPE_UW);
1103 response_length = 8;
1104 } else {
1105 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
1106 mrf_per_channel = 1;
1107 dst_retyped = retype(vec8(dst[0]), BRW_REGISTER_TYPE_UW);
1108 response_length = 4;
1109 }
1110
1111 /* Shadow ignored for txb. */
1112 switch (tex_idx) {
1113 case TEXTURE_1D_INDEX:
1114 brw_MOV(p, brw_message_reg(2 + 0 * mrf_per_channel), arg[0]);
1115 brw_MOV(p, brw_message_reg(2 + 1 * mrf_per_channel), brw_imm_f(0));
1116 brw_MOV(p, brw_message_reg(2 + 2 * mrf_per_channel), brw_imm_f(0));
1117 break;
1118 case TEXTURE_2D_INDEX:
1119 case TEXTURE_RECT_INDEX:
1120 brw_MOV(p, brw_message_reg(2 + 0 * mrf_per_channel), arg[0]);
1121 brw_MOV(p, brw_message_reg(2 + 1 * mrf_per_channel), arg[1]);
1122 brw_MOV(p, brw_message_reg(2 + 2 * mrf_per_channel), brw_imm_f(0));
1123 break;
1124 case TEXTURE_3D_INDEX:
1125 case TEXTURE_CUBE_INDEX:
1126 brw_MOV(p, brw_message_reg(2 + 0 * mrf_per_channel), arg[0]);
1127 brw_MOV(p, brw_message_reg(2 + 1 * mrf_per_channel), arg[1]);
1128 brw_MOV(p, brw_message_reg(2 + 2 * mrf_per_channel), arg[2]);
1129 break;
1130 default:
1131 /* unexpected target */
1132 abort();
1133 }
1134
1135 brw_MOV(p, brw_message_reg(2 + 3 * mrf_per_channel), arg[3]);
1136 msgLength = 2 + 4 * mrf_per_channel - 1;
1137
1138 brw_SAMPLE(p,
1139 dst_retyped,
1140 1,
1141 retype(depth_payload, BRW_REGISTER_TYPE_UW),
1142 SURF_INDEX_TEXTURE(sampler),
1143 sampler,
1144 dst_flags & WRITEMASK_XYZW,
1145 msg_type,
1146 response_length,
1147 msgLength,
1148 0,
1149 1,
1150 BRW_SAMPLER_SIMD_MODE_SIMD16);
1151 }
1152
1153
1154 static void emit_lit(struct brw_wm_compile *c,
1155 const struct brw_reg *dst,
1156 GLuint mask,
1157 const struct brw_reg *arg0)
1158 {
1159 struct brw_compile *p = &c->func;
1160
1161 assert((mask & WRITEMASK_XW) == 0);
1162
1163 if (mask & WRITEMASK_Y) {
1164 brw_set_saturate(p, (mask & SATURATE) ? 1 : 0);
1165 brw_MOV(p, dst[1], arg0[0]);
1166 brw_set_saturate(p, 0);
1167 }
1168
1169 if (mask & WRITEMASK_Z) {
1170 emit_math2(c, BRW_MATH_FUNCTION_POW,
1171 &dst[2],
1172 WRITEMASK_X | (mask & SATURATE),
1173 &arg0[1],
1174 &arg0[3]);
1175 }
1176
1177 /* Ordinarily you'd use an iff statement to skip or shortcircuit
1178 * some of the POW calculations above, but 16-wide iff statements
1179 * seem to lock c1 hardware, so this is a nasty workaround:
1180 */
1181 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_LE, arg0[0], brw_imm_f(0));
1182 {
1183 if (mask & WRITEMASK_Y)
1184 brw_MOV(p, dst[1], brw_imm_f(0));
1185
1186 if (mask & WRITEMASK_Z)
1187 brw_MOV(p, dst[2], brw_imm_f(0));
1188 }
1189 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
1190 }
1191
1192
1193 /* Kill pixel - set execution mask to zero for those pixels which
1194 * fail.
1195 */
1196 static void emit_kil( struct brw_wm_compile *c,
1197 struct brw_reg *arg0)
1198 {
1199 struct brw_compile *p = &c->func;
1200 struct brw_reg r0uw = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1201 GLuint i, j;
1202
1203 for (i = 0; i < 4; i++) {
1204 /* Check if we've already done the comparison for this reg
1205 * -- common when someone does KIL TEMP.wwww.
1206 */
1207 for (j = 0; j < i; j++) {
1208 if (memcmp(&arg0[j], &arg0[i], sizeof(arg0[0])) == 0)
1209 break;
1210 }
1211 if (j != i)
1212 continue;
1213
1214 brw_push_insn_state(p);
1215 brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0[i], brw_imm_f(0));
1216 brw_set_predicate_control_flag_value(p, 0xff);
1217 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1218 brw_AND(p, r0uw, brw_flag_reg(), r0uw);
1219 brw_pop_insn_state(p);
1220 }
1221 }
1222
1223 /* KIL_NV kills the pixels that are currently executing, not based on a test
1224 * of the arguments.
1225 */
1226 static void emit_kil_nv( struct brw_wm_compile *c )
1227 {
1228 struct brw_compile *p = &c->func;
1229 struct brw_reg r0uw = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1230
1231 brw_push_insn_state(p);
1232 brw_set_mask_control(p, BRW_MASK_DISABLE);
1233 brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */
1234 brw_AND(p, r0uw, c->emit_mask_reg, r0uw);
1235 brw_pop_insn_state(p);
1236 }
1237
1238 static void fire_fb_write( struct brw_wm_compile *c,
1239 GLuint base_reg,
1240 GLuint nr,
1241 GLuint target,
1242 GLuint eot )
1243 {
1244 struct brw_compile *p = &c->func;
1245 struct brw_reg dst;
1246
1247 if (c->dispatch_width == 16)
1248 dst = retype(vec16(brw_null_reg()), BRW_REGISTER_TYPE_UW);
1249 else
1250 dst = retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW);
1251
1252 /* Pass through control information:
1253 */
1254 /* mov (8) m1.0<1>:ud r1.0<8;8,1>:ud { Align1 NoMask } */
1255 {
1256 brw_push_insn_state(p);
1257 brw_set_mask_control(p, BRW_MASK_DISABLE); /* ? */
1258 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1259 brw_MOV(p,
1260 brw_message_reg(base_reg + 1),
1261 brw_vec8_grf(1, 0));
1262 brw_pop_insn_state(p);
1263 }
1264
1265 /* Send framebuffer write message: */
1266 /* send (16) null.0<1>:uw m0 r0.0<8;8,1>:uw 0x85a04000:ud { Align1 EOT } */
1267 brw_fb_WRITE(p,
1268 dst,
1269 base_reg,
1270 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1271 target,
1272 nr,
1273 0,
1274 eot);
1275 }
1276
1277
1278 static void emit_aa( struct brw_wm_compile *c,
1279 struct brw_reg *arg1,
1280 GLuint reg )
1281 {
1282 struct brw_compile *p = &c->func;
1283 GLuint comp = c->key.aa_dest_stencil_reg / 2;
1284 GLuint off = c->key.aa_dest_stencil_reg % 2;
1285 struct brw_reg aa = offset(arg1[comp], off);
1286
1287 brw_push_insn_state(p);
1288 brw_set_compression_control(p, BRW_COMPRESSION_NONE); /* ?? */
1289 brw_MOV(p, brw_message_reg(reg), aa);
1290 brw_pop_insn_state(p);
1291 }
1292
1293
1294 /* Post-fragment-program processing. Send the results to the
1295 * framebuffer.
1296 * \param arg0 the fragment color
1297 * \param arg1 the pass-through depth value
1298 * \param arg2 the shader-computed depth value
1299 */
1300 void emit_fb_write(struct brw_wm_compile *c,
1301 struct brw_reg *arg0,
1302 struct brw_reg *arg1,
1303 struct brw_reg *arg2,
1304 GLuint target,
1305 GLuint eot)
1306 {
1307 struct brw_compile *p = &c->func;
1308 struct brw_context *brw = p->brw;
1309 GLuint nr = 2;
1310 GLuint channel;
1311
1312 /* Reserve a space for AA - may not be needed:
1313 */
1314 if (c->key.aa_dest_stencil_reg)
1315 nr += 1;
1316
1317 /* I don't really understand how this achieves the color interleave
1318 * (ie RGBARGBA) in the result: [Do the saturation here]
1319 */
1320 brw_push_insn_state(p);
1321
1322 for (channel = 0; channel < 4; channel++) {
1323 if (c->dispatch_width == 16 && brw->has_compr4) {
1324 /* By setting the high bit of the MRF register number, we indicate
1325 * that we want COMPR4 mode - instead of doing the usual destination
1326 * + 1 for the second half we get destination + 4.
1327 */
1328 brw_MOV(p,
1329 brw_message_reg(nr + channel + BRW_MRF_COMPR4),
1330 arg0[channel]);
1331 } else {
1332 /* mov (8) m2.0<1>:ud r28.0<8;8,1>:ud { Align1 } */
1333 /* mov (8) m6.0<1>:ud r29.0<8;8,1>:ud { Align1 SecHalf } */
1334 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1335 brw_MOV(p,
1336 brw_message_reg(nr + channel),
1337 arg0[channel]);
1338
1339 if (c->dispatch_width == 16) {
1340 brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
1341 brw_MOV(p,
1342 brw_message_reg(nr + channel + 4),
1343 sechalf(arg0[channel]));
1344 }
1345 }
1346 }
1347 /* skip over the regs populated above:
1348 */
1349 nr += 8;
1350 brw_pop_insn_state(p);
1351
1352 if (c->key.source_depth_to_render_target)
1353 {
1354 if (c->key.computes_depth)
1355 brw_MOV(p, brw_message_reg(nr), arg2[2]);
1356 else
1357 brw_MOV(p, brw_message_reg(nr), arg1[1]); /* ? */
1358
1359 nr += 2;
1360 }
1361
1362 if (c->key.dest_depth_reg)
1363 {
1364 GLuint comp = c->key.dest_depth_reg / 2;
1365 GLuint off = c->key.dest_depth_reg % 2;
1366
1367 if (off != 0) {
1368 brw_push_insn_state(p);
1369 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1370
1371 brw_MOV(p, brw_message_reg(nr), offset(arg1[comp],1));
1372 /* 2nd half? */
1373 brw_MOV(p, brw_message_reg(nr+1), arg1[comp+1]);
1374 brw_pop_insn_state(p);
1375 }
1376 else {
1377 brw_MOV(p, brw_message_reg(nr), arg1[comp]);
1378 }
1379 nr += 2;
1380 }
1381
1382 if (!c->key.runtime_check_aads_emit) {
1383 if (c->key.aa_dest_stencil_reg)
1384 emit_aa(c, arg1, 2);
1385
1386 fire_fb_write(c, 0, nr, target, eot);
1387 }
1388 else {
1389 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
1390 struct brw_reg ip = brw_ip_reg();
1391 struct brw_instruction *jmp;
1392
1393 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1394 brw_set_conditionalmod(p, BRW_CONDITIONAL_Z);
1395 brw_AND(p,
1396 v1_null_ud,
1397 get_element_ud(brw_vec8_grf(1,0), 6),
1398 brw_imm_ud(1<<26));
1399
1400 jmp = brw_JMPI(p, ip, ip, brw_imm_w(0));
1401 {
1402 emit_aa(c, arg1, 2);
1403 fire_fb_write(c, 0, nr, target, eot);
1404 /* note - thread killed in subroutine */
1405 }
1406 brw_land_fwd_jump(p, jmp);
1407
1408 /* ELSE: Shuffle up one register to fill in the hole left for AA:
1409 */
1410 fire_fb_write(c, 1, nr-1, target, eot);
1411 }
1412 }
1413
1414 /**
1415 * Move a GPR to scratch memory.
1416 */
1417 static void emit_spill( struct brw_wm_compile *c,
1418 struct brw_reg reg,
1419 GLuint slot )
1420 {
1421 struct brw_compile *p = &c->func;
1422
1423 /*
1424 mov (16) m2.0<1>:ud r2.0<8;8,1>:ud { Align1 Compr }
1425 */
1426 brw_MOV(p, brw_message_reg(2), reg);
1427
1428 /*
1429 mov (1) r0.2<1>:d 0x00000080:d { Align1 NoMask }
1430 send (16) null.0<1>:uw m1 r0.0<8;8,1>:uw 0x053003ff:ud { Align1 }
1431 */
1432 brw_dp_WRITE_16(p,
1433 retype(vec16(brw_vec8_grf(0, 0)), BRW_REGISTER_TYPE_UW),
1434 slot);
1435 }
1436
1437
1438 /**
1439 * Load a GPR from scratch memory.
1440 */
1441 static void emit_unspill( struct brw_wm_compile *c,
1442 struct brw_reg reg,
1443 GLuint slot )
1444 {
1445 struct brw_compile *p = &c->func;
1446
1447 /* Slot 0 is the undef value.
1448 */
1449 if (slot == 0) {
1450 brw_MOV(p, reg, brw_imm_f(0));
1451 return;
1452 }
1453
1454 /*
1455 mov (1) r0.2<1>:d 0x000000c0:d { Align1 NoMask }
1456 send (16) r110.0<1>:uw m1 r0.0<8;8,1>:uw 0x041243ff:ud { Align1 }
1457 */
1458
1459 brw_dp_READ_16(p,
1460 retype(vec16(reg), BRW_REGISTER_TYPE_UW),
1461 slot);
1462 }
1463
1464
1465 /**
1466 * Retrieve up to 4 GEN4 register pairs for the given wm reg:
1467 * Args with unspill_reg != 0 will be loaded from scratch memory.
1468 */
1469 static void get_argument_regs( struct brw_wm_compile *c,
1470 struct brw_wm_ref *arg[],
1471 struct brw_reg *regs )
1472 {
1473 GLuint i;
1474
1475 for (i = 0; i < 4; i++) {
1476 if (arg[i]) {
1477 if (arg[i]->unspill_reg)
1478 emit_unspill(c,
1479 brw_vec8_grf(arg[i]->unspill_reg, 0),
1480 arg[i]->value->spill_slot);
1481
1482 regs[i] = arg[i]->hw_reg;
1483 }
1484 else {
1485 regs[i] = brw_null_reg();
1486 }
1487 }
1488 }
1489
1490
1491 /**
1492 * For values that have a spill_slot!=0, write those regs to scratch memory.
1493 */
1494 static void spill_values( struct brw_wm_compile *c,
1495 struct brw_wm_value *values,
1496 GLuint nr )
1497 {
1498 GLuint i;
1499
1500 for (i = 0; i < nr; i++)
1501 if (values[i].spill_slot)
1502 emit_spill(c, values[i].hw_reg, values[i].spill_slot);
1503 }
1504
1505
1506 /* Emit the fragment program instructions here.
1507 */
1508 void brw_wm_emit( struct brw_wm_compile *c )
1509 {
1510 struct brw_compile *p = &c->func;
1511 GLuint insn;
1512
1513 brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1514
1515 /* Check if any of the payload regs need to be spilled:
1516 */
1517 spill_values(c, c->payload.depth, 4);
1518 spill_values(c, c->creg, c->nr_creg);
1519 spill_values(c, c->payload.input_interp, FRAG_ATTRIB_MAX);
1520
1521
1522 for (insn = 0; insn < c->nr_insns; insn++) {
1523
1524 struct brw_wm_instruction *inst = &c->instruction[insn];
1525 struct brw_reg args[3][4], dst[4];
1526 GLuint i, dst_flags;
1527
1528 /* Get argument regs:
1529 */
1530 for (i = 0; i < 3; i++)
1531 get_argument_regs(c, inst->src[i], args[i]);
1532
1533 /* Get dest regs:
1534 */
1535 for (i = 0; i < 4; i++)
1536 if (inst->dst[i])
1537 dst[i] = inst->dst[i]->hw_reg;
1538 else
1539 dst[i] = brw_null_reg();
1540
1541 /* Flags
1542 */
1543 dst_flags = inst->writemask;
1544 if (inst->saturate)
1545 dst_flags |= SATURATE;
1546
1547 switch (inst->opcode) {
1548 /* Generated instructions for calculating triangle interpolants:
1549 */
1550 case WM_PIXELXY:
1551 emit_pixel_xy(c, dst, dst_flags);
1552 break;
1553
1554 case WM_DELTAXY:
1555 emit_delta_xy(p, dst, dst_flags, args[0]);
1556 break;
1557
1558 case WM_WPOSXY:
1559 emit_wpos_xy(c, dst, dst_flags, args[0]);
1560 break;
1561
1562 case WM_PIXELW:
1563 emit_pixel_w(c, dst, dst_flags, args[0], args[1]);
1564 break;
1565
1566 case WM_LINTERP:
1567 emit_linterp(p, dst, dst_flags, args[0], args[1]);
1568 break;
1569
1570 case WM_PINTERP:
1571 emit_pinterp(p, dst, dst_flags, args[0], args[1], args[2]);
1572 break;
1573
1574 case WM_CINTERP:
1575 emit_cinterp(p, dst, dst_flags, args[0]);
1576 break;
1577
1578 case WM_FB_WRITE:
1579 emit_fb_write(c, args[0], args[1], args[2], inst->target, inst->eot);
1580 break;
1581
1582 case WM_FRONTFACING:
1583 emit_frontfacing(p, dst, dst_flags);
1584 break;
1585
1586 /* Straightforward arithmetic:
1587 */
1588 case OPCODE_ADD:
1589 emit_alu2(p, brw_ADD, dst, dst_flags, args[0], args[1]);
1590 break;
1591
1592 case OPCODE_FRC:
1593 emit_alu1(p, brw_FRC, dst, dst_flags, args[0]);
1594 break;
1595
1596 case OPCODE_FLR:
1597 emit_alu1(p, brw_RNDD, dst, dst_flags, args[0]);
1598 break;
1599
1600 case OPCODE_DDX:
1601 emit_ddxy(p, dst, dst_flags, GL_TRUE, args[0]);
1602 break;
1603
1604 case OPCODE_DDY:
1605 emit_ddxy(p, dst, dst_flags, GL_FALSE, args[0]);
1606 break;
1607
1608 case OPCODE_DP2:
1609 emit_dp2(p, dst, dst_flags, args[0], args[1]);
1610 break;
1611
1612 case OPCODE_DP3:
1613 emit_dp3(p, dst, dst_flags, args[0], args[1]);
1614 break;
1615
1616 case OPCODE_DP4:
1617 emit_dp4(p, dst, dst_flags, args[0], args[1]);
1618 break;
1619
1620 case OPCODE_DPH:
1621 emit_dph(p, dst, dst_flags, args[0], args[1]);
1622 break;
1623
1624 case OPCODE_TRUNC:
1625 emit_alu1(p, brw_RNDZ, dst, dst_flags, args[0]);
1626 break;
1627
1628 case OPCODE_LRP:
1629 emit_lrp(p, dst, dst_flags, args[0], args[1], args[2]);
1630 break;
1631
1632 case OPCODE_MAD:
1633 emit_mad(p, dst, dst_flags, args[0], args[1], args[2]);
1634 break;
1635
1636 case OPCODE_MOV:
1637 case OPCODE_SWZ:
1638 emit_alu1(p, brw_MOV, dst, dst_flags, args[0]);
1639 break;
1640
1641 case OPCODE_MUL:
1642 emit_alu2(p, brw_MUL, dst, dst_flags, args[0], args[1]);
1643 break;
1644
1645 case OPCODE_XPD:
1646 emit_xpd(p, dst, dst_flags, args[0], args[1]);
1647 break;
1648
1649 /* Higher math functions:
1650 */
1651 case OPCODE_RCP:
1652 emit_math1(c, BRW_MATH_FUNCTION_INV, dst, dst_flags, args[0]);
1653 break;
1654
1655 case OPCODE_RSQ:
1656 emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, dst_flags, args[0]);
1657 break;
1658
1659 case OPCODE_SIN:
1660 emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, dst_flags, args[0]);
1661 break;
1662
1663 case OPCODE_COS:
1664 emit_math1(c, BRW_MATH_FUNCTION_COS, dst, dst_flags, args[0]);
1665 break;
1666
1667 case OPCODE_EX2:
1668 emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, dst_flags, args[0]);
1669 break;
1670
1671 case OPCODE_LG2:
1672 emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, dst_flags, args[0]);
1673 break;
1674
1675 case OPCODE_SCS:
1676 /* There is an scs math function, but it would need some
1677 * fixup for 16-element execution.
1678 */
1679 if (dst_flags & WRITEMASK_X)
1680 emit_math1(c, BRW_MATH_FUNCTION_COS, dst, (dst_flags&SATURATE)|WRITEMASK_X, args[0]);
1681 if (dst_flags & WRITEMASK_Y)
1682 emit_math1(c, BRW_MATH_FUNCTION_SIN, dst+1, (dst_flags&SATURATE)|WRITEMASK_X, args[0]);
1683 break;
1684
1685 case OPCODE_POW:
1686 emit_math2(c, BRW_MATH_FUNCTION_POW, dst, dst_flags, args[0], args[1]);
1687 break;
1688
1689 /* Comparisons:
1690 */
1691 case OPCODE_CMP:
1692 emit_cmp(p, dst, dst_flags, args[0], args[1], args[2]);
1693 break;
1694
1695 case OPCODE_MAX:
1696 emit_max(p, dst, dst_flags, args[0], args[1]);
1697 break;
1698
1699 case OPCODE_MIN:
1700 emit_min(p, dst, dst_flags, args[0], args[1]);
1701 break;
1702
1703 case OPCODE_SLT:
1704 emit_slt(p, dst, dst_flags, args[0], args[1]);
1705 break;
1706
1707 case OPCODE_SLE:
1708 emit_sle(p, dst, dst_flags, args[0], args[1]);
1709 break;
1710 case OPCODE_SGT:
1711 emit_sgt(p, dst, dst_flags, args[0], args[1]);
1712 break;
1713 case OPCODE_SGE:
1714 emit_sge(p, dst, dst_flags, args[0], args[1]);
1715 break;
1716 case OPCODE_SEQ:
1717 emit_seq(p, dst, dst_flags, args[0], args[1]);
1718 break;
1719 case OPCODE_SNE:
1720 emit_sne(p, dst, dst_flags, args[0], args[1]);
1721 break;
1722
1723 case OPCODE_SSG:
1724 emit_sign(p, dst, dst_flags, args[0]);
1725 break;
1726
1727 case OPCODE_LIT:
1728 emit_lit(c, dst, dst_flags, args[0]);
1729 break;
1730
1731 /* Texturing operations:
1732 */
1733 case OPCODE_TEX:
1734 emit_tex(c, dst, dst_flags, args[0], c->payload.depth[0].hw_reg,
1735 inst->tex_idx, inst->tex_unit,
1736 inst->tex_shadow);
1737 break;
1738
1739 case OPCODE_TXB:
1740 emit_txb(c, dst, dst_flags, args[0], c->payload.depth[0].hw_reg,
1741 inst->tex_idx, inst->tex_unit);
1742 break;
1743
1744 case OPCODE_KIL:
1745 emit_kil(c, args[0]);
1746 break;
1747
1748 case OPCODE_KIL_NV:
1749 emit_kil_nv(c);
1750 break;
1751
1752 default:
1753 printf("Unsupported opcode %i (%s) in fragment shader\n",
1754 inst->opcode, inst->opcode < MAX_OPCODE ?
1755 _mesa_opcode_string(inst->opcode) :
1756 "unknown");
1757 }
1758
1759 for (i = 0; i < 4; i++)
1760 if (inst->dst[i] && inst->dst[i]->spill_slot)
1761 emit_spill(c,
1762 inst->dst[i]->hw_reg,
1763 inst->dst[i]->spill_slot);
1764 }
1765
1766 /* Only properly tested on ILK */
1767 if (p->brw->intel.gen == 5) {
1768 brw_remove_duplicate_mrf_moves(p);
1769 if (c->dispatch_width == 16)
1770 brw_remove_grf_to_mrf_moves(p);
1771 }
1772
1773 if (INTEL_DEBUG & DEBUG_WM) {
1774 int i;
1775
1776 printf("wm-native:\n");
1777 for (i = 0; i < p->nr_insn; i++)
1778 brw_disasm(stderr, &p->store[i], p->brw->intel.gen);
1779 printf("\n");
1780 }
1781 }
1782