i965: Support multisampling in surface_state for textures
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/context.h"
34 #include "main/mtypes.h"
35 #include "main/samplerobj.h"
36 #include "program/prog_parameter.h"
37
38 #include "intel_mipmap_tree.h"
39 #include "intel_batchbuffer.h"
40 #include "intel_tex.h"
41 #include "intel_fbo.h"
42 #include "intel_buffer_objects.h"
43
44 #include "brw_context.h"
45 #include "brw_state.h"
46 #include "brw_defines.h"
47 #include "brw_wm.h"
48
49 GLuint
50 translate_tex_target(GLenum target)
51 {
52 switch (target) {
53 case GL_TEXTURE_1D:
54 case GL_TEXTURE_1D_ARRAY_EXT:
55 return BRW_SURFACE_1D;
56
57 case GL_TEXTURE_RECTANGLE_NV:
58 return BRW_SURFACE_2D;
59
60 case GL_TEXTURE_2D:
61 case GL_TEXTURE_2D_ARRAY_EXT:
62 case GL_TEXTURE_EXTERNAL_OES:
63 case GL_TEXTURE_2D_MULTISAMPLE:
64 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
65 return BRW_SURFACE_2D;
66
67 case GL_TEXTURE_3D:
68 return BRW_SURFACE_3D;
69
70 case GL_TEXTURE_CUBE_MAP:
71 case GL_TEXTURE_CUBE_MAP_ARRAY:
72 return BRW_SURFACE_CUBE;
73
74 default:
75 assert(0);
76 return 0;
77 }
78 }
79
80 struct surface_format_info {
81 bool exists;
82 int sampling;
83 int filtering;
84 int shadow_compare;
85 int chroma_key;
86 int render_target;
87 int alpha_blend;
88 int input_vb;
89 int streamed_output_vb;
90 int color_processing;
91 };
92
93 /* This macro allows us to write the table almost as it appears in the PRM,
94 * while restructuring it to turn it into the C code we want.
95 */
96 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
97 [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
98
99 #define Y 0
100 #define x 999
101 /**
102 * This is the table of support for surface (texture, renderbuffer, and vertex
103 * buffer, but not depthbuffer) formats across the various hardware generations.
104 *
105 * The table is formatted to match the documentation, except that the docs have
106 * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever". To put
107 * it in our table, here's the mapping:
108 *
109 * Y*: 45
110 * Y+: 45 (g45/gm45)
111 * Y~: 50 (gen5)
112 * Y^: 60 (gen6)
113 * Y#: 70 (gen7)
114 *
115 * The abbreviations in the header below are:
116 * smpl - Sampling Engine
117 * filt - Sampling Engine Filtering
118 * shad - Sampling Engine Shadow Map
119 * CK - Sampling Engine Chroma Key
120 * RT - Render Target
121 * AB - Alpha Blend Render Target
122 * VB - Input Vertex Buffer
123 * SO - Steamed Output Vertex Buffers (transform feedback)
124 * color - Color Processing
125 *
126 * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
127 */
128 const struct surface_format_info surface_formats[] = {
129 /* smpl filt shad CK RT AB VB SO color */
130 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
131 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
132 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
133 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
134 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
135 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64_FLOAT)
136 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
137 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
138 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
139 SF( Y, 50, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
140 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_SINT)
141 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_UINT)
142 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
143 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
144 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
145 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
146 SF( Y, Y, x, x, Y, 45, Y, x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
147 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
148 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
149 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
150 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
151 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32_FLOAT)
152 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_SINT)
153 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_UINT)
154 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
155 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
156 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32A32_FLOAT)
157 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_UNORM)
158 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SNORM)
159 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64_FLOAT)
160 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
161 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
162 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32X32_FLOAT)
163 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32X32_FLOAT)
164 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32X32_FLOAT)
165 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
166 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
167 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SSCALED)
168 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_USCALED)
169 SF( Y, Y, x, Y, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
170 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
171 /* smpl filt shad CK RT AB VB SO color */
172 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
173 SF( Y, Y, x, x, x, x, x, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
174 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
175 SF( Y, Y, x, x, x, Y, Y, x, x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
176 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
177 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
178 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
179 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
180 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
181 SF( Y, Y, x, x, Y, 45, Y, x, x, BRW_SURFACEFORMAT_R16G16_UNORM)
182 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16_SNORM)
183 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SINT)
184 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_UINT)
185 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16_FLOAT)
186 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
187 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
188 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
189 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_SINT)
190 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_UINT)
191 SF( Y, 50, Y, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32_FLOAT)
192 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
193 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
194 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_UNORM)
195 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I24X8_UNORM)
196 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L24X8_UNORM)
197 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A24X8_UNORM)
198 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32_FLOAT)
199 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32_FLOAT)
200 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32_FLOAT)
201 SF( Y, Y, x, Y, x, x, x, x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
202 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
203 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
204 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
205 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
206 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
207 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_FLOAT)
208 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_UNORM)
209 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SNORM)
210 /* smpl filt shad CK RT AB VB SO color */
211 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
212 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
213 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
214 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SSCALED)
215 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_USCALED)
216 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SSCALED)
217 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_USCALED)
218 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
219 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
220 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
221 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
222 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
223 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
224 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8G8_UNORM)
225 SF( Y, Y, x, Y, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8_SNORM)
226 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SINT)
227 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_UINT)
228 SF( Y, Y, Y, x, Y, 45, Y, x, 70, BRW_SURFACEFORMAT_R16_UNORM)
229 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16_SNORM)
230 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_SINT)
231 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_UINT)
232 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16_FLOAT)
233 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_UNORM)
234 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_UNORM)
235 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_UNORM)
236 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM)
237 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_FLOAT)
238 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_FLOAT)
239 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_FLOAT)
240 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
241 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
242 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
243 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
244 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SSCALED)
245 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_USCALED)
246 /* smpl filt shad CK RT AB VB SO color */
247 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_SSCALED)
248 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_USCALED)
249 SF( Y, Y, x, 45, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8_UNORM)
250 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8_SNORM)
251 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_SINT)
252 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_UINT)
253 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_A8_UNORM)
254 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I8_UNORM)
255 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM)
256 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_P4A4_UNORM)
257 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A4P4_UNORM)
258 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_SSCALED)
259 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_USCALED)
260 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
261 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
262 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R1_UINT)
263 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
264 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
265 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM)
266 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM)
267 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM)
268 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_UNORM)
269 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_UNORM)
270 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
271 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
272 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
273 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_MONO8)
274 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
275 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
276 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB)
277 /* smpl filt shad CK RT AB VB SO color */
278 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_FXT1)
279 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
280 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
281 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
282 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
283 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
284 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
285 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_SNORM)
286 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_SNORM)
287 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
288 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
289 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
290 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
291 };
292 #undef x
293 #undef Y
294
295 uint32_t
296 brw_format_for_mesa_format(gl_format mesa_format)
297 {
298 /* This table is ordered according to the enum ordering in formats.h. We do
299 * expect that enum to be extended without our explicit initialization
300 * staying in sync, so we initialize to 0 even though
301 * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
302 */
303 static const uint32_t table[MESA_FORMAT_COUNT] =
304 {
305 [MESA_FORMAT_RGBA8888] = 0,
306 [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
307 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
308 [MESA_FORMAT_ARGB8888_REV] = 0,
309 [MESA_FORMAT_RGBX8888] = 0,
310 [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
311 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
312 [MESA_FORMAT_XRGB8888_REV] = 0,
313 [MESA_FORMAT_RGB888] = 0,
314 [MESA_FORMAT_BGR888] = 0,
315 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
316 [MESA_FORMAT_RGB565_REV] = 0,
317 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
318 [MESA_FORMAT_ARGB4444_REV] = 0,
319 [MESA_FORMAT_RGBA5551] = 0,
320 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
321 [MESA_FORMAT_ARGB1555_REV] = 0,
322 [MESA_FORMAT_AL44] = 0,
323 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
324 [MESA_FORMAT_AL88_REV] = 0,
325 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
326 [MESA_FORMAT_AL1616_REV] = 0,
327 [MESA_FORMAT_RGB332] = 0,
328 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
329 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
330 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
331 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
332 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
333 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
334 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
335 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
336 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
337 [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
338 [MESA_FORMAT_RG88] = 0,
339 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
340 [MESA_FORMAT_GR1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
341 [MESA_FORMAT_RG1616] = 0,
342 [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
343 [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT,
344 [MESA_FORMAT_Z24_S8] = 0,
345 [MESA_FORMAT_S8_Z24] = 0,
346 [MESA_FORMAT_Z16] = 0,
347 [MESA_FORMAT_X8_Z24] = 0,
348 [MESA_FORMAT_Z24_X8] = 0,
349 [MESA_FORMAT_Z32] = 0,
350 [MESA_FORMAT_S8] = 0,
351
352 [MESA_FORMAT_SRGB8] = 0,
353 [MESA_FORMAT_SRGBA8] = 0,
354 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
355 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
356 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
357 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
358 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
359 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
360 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
361
362 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
363 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
364 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
365 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
366 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
367 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
368
369 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
370 [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
371 [MESA_FORMAT_RGB_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32_FLOAT,
372 [MESA_FORMAT_RGB_FLOAT16] = 0,
373 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
374 [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
375 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
376 [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
377 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
378 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
379 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
380 [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
381 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
382 [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
383 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
384 [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
385
386 [MESA_FORMAT_ALPHA_UINT8] = 0,
387 [MESA_FORMAT_ALPHA_UINT16] = 0,
388 [MESA_FORMAT_ALPHA_UINT32] = 0,
389 [MESA_FORMAT_ALPHA_INT8] = 0,
390 [MESA_FORMAT_ALPHA_INT16] = 0,
391 [MESA_FORMAT_ALPHA_INT32] = 0,
392
393 [MESA_FORMAT_INTENSITY_UINT8] = 0,
394 [MESA_FORMAT_INTENSITY_UINT16] = 0,
395 [MESA_FORMAT_INTENSITY_UINT32] = 0,
396 [MESA_FORMAT_INTENSITY_INT8] = 0,
397 [MESA_FORMAT_INTENSITY_INT16] = 0,
398 [MESA_FORMAT_INTENSITY_INT32] = 0,
399
400 [MESA_FORMAT_LUMINANCE_UINT8] = 0,
401 [MESA_FORMAT_LUMINANCE_UINT16] = 0,
402 [MESA_FORMAT_LUMINANCE_UINT32] = 0,
403 [MESA_FORMAT_LUMINANCE_INT8] = 0,
404 [MESA_FORMAT_LUMINANCE_INT16] = 0,
405 [MESA_FORMAT_LUMINANCE_INT32] = 0,
406
407 [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
408 [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
409 [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
410 [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
411 [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
412 [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
413
414 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
415 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
416 [MESA_FORMAT_RGB_INT8] = 0,
417 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
418 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
419 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
420 [MESA_FORMAT_RGB_INT16] = 0,
421 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
422 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
423 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
424 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
425 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
426
427 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
428 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
429 [MESA_FORMAT_RGB_UINT8] = 0,
430 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
431 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
432 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
433 [MESA_FORMAT_RGB_UINT16] = 0,
434 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
435 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
436 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
437 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
438 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
439
440 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
441 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
442 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
443 [MESA_FORMAT_SIGNED_RGBX8888] = 0,
444 [MESA_FORMAT_SIGNED_RGBA8888] = 0,
445 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
446 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
447 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
448 [MESA_FORMAT_SIGNED_RGB_16] = 0,
449 [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
450 [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
451
452 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
453 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
454 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
455 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
456
457 [MESA_FORMAT_L_LATC1] = 0,
458 [MESA_FORMAT_SIGNED_L_LATC1] = 0,
459 [MESA_FORMAT_LA_LATC2] = 0,
460 [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
461
462 [MESA_FORMAT_SIGNED_A8] = 0,
463 [MESA_FORMAT_SIGNED_L8] = 0,
464 [MESA_FORMAT_SIGNED_AL88] = 0,
465 [MESA_FORMAT_SIGNED_I8] = 0,
466 [MESA_FORMAT_SIGNED_A16] = 0,
467 [MESA_FORMAT_SIGNED_L16] = 0,
468 [MESA_FORMAT_SIGNED_AL1616] = 0,
469 [MESA_FORMAT_SIGNED_I16] = 0,
470
471 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
472 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
473
474 [MESA_FORMAT_Z32_FLOAT] = 0,
475 [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
476 };
477 assert(mesa_format < MESA_FORMAT_COUNT);
478 return table[mesa_format];
479 }
480
481 void
482 brw_init_surface_formats(struct brw_context *brw)
483 {
484 struct intel_context *intel = &brw->intel;
485 struct gl_context *ctx = &intel->ctx;
486 int gen;
487 gl_format format;
488
489 gen = intel->gen * 10;
490 if (intel->is_g4x)
491 gen += 5;
492
493 for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
494 uint32_t texture, render;
495 const struct surface_format_info *rinfo, *tinfo;
496 bool is_integer = _mesa_is_format_integer_color(format);
497
498 render = texture = brw_format_for_mesa_format(format);
499 tinfo = &surface_formats[texture];
500
501 /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
502 * it.
503 */
504 if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
505 continue;
506
507 if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
508 ctx->TextureFormatSupported[format] = true;
509
510 /* Re-map some render target formats to make them supported when they
511 * wouldn't be using their format for texturing.
512 */
513 switch (render) {
514 /* For these formats, we just need to read/write the first
515 * channel into R, which is to say that we just treat them as
516 * GL_RED.
517 */
518 case BRW_SURFACEFORMAT_I32_FLOAT:
519 case BRW_SURFACEFORMAT_L32_FLOAT:
520 render = BRW_SURFACEFORMAT_R32_FLOAT;
521 break;
522 case BRW_SURFACEFORMAT_I16_FLOAT:
523 case BRW_SURFACEFORMAT_L16_FLOAT:
524 render = BRW_SURFACEFORMAT_R16_FLOAT;
525 break;
526 case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
527 /* XRGB is handled as ARGB because the chips in this family
528 * cannot render to XRGB targets. This means that we have to
529 * mask writes to alpha (ala glColorMask) and reconfigure the
530 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
531 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
532 * used.
533 */
534 render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
535 break;
536 }
537
538 rinfo = &surface_formats[render];
539
540 /* Note that GL_EXT_texture_integer says that blending doesn't occur for
541 * integer, so we don't need hardware support for blending on it. Other
542 * than that, GL in general requires alpha blending for render targets,
543 * even though we don't support it for some formats.
544 */
545 if (gen >= rinfo->render_target &&
546 (gen >= rinfo->alpha_blend || is_integer)) {
547 brw->render_target_format[format] = render;
548 brw->format_supported_as_render_target[format] = true;
549 }
550 }
551
552 /* We will check this table for FBO completeness, but the surface format
553 * table above only covered color rendering.
554 */
555 brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
556 brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
557 brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
558 brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
559 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
560 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
561
562 /* We remap depth formats to a supported texturing format in
563 * translate_tex_format().
564 */
565 ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
566 ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
567 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
568 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
569 ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
570
571 /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
572 * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
573 */
574 ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
575
576 /* On hardware that lacks support for ETC2, we map ETC2 to a suitable
577 * MESA_FORMAT during glCompressedTexImage2D().
578 * See intel_mipmap_tree::wraps_etc2.
579 */
580 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true;
581 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true;
582 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true;
583 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true;
584 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true;
585 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true;
586 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true;
587 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true;
588 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true;
589 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true;
590 }
591
592 bool
593 brw_render_target_supported(struct intel_context *intel,
594 struct gl_renderbuffer *rb)
595 {
596 struct brw_context *brw = brw_context(&intel->ctx);
597 gl_format format = rb->Format;
598
599 /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
600 * we would consider them renderable even though we don't have surface
601 * support for their alpha behavior and don't have the blending unit
602 * available to fake it like we do for XRGB8888. Force them to being
603 * unsupported.
604 */
605 if ((rb->_BaseFormat != GL_RGBA &&
606 rb->_BaseFormat != GL_RG &&
607 rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
608 return false;
609
610 /* Under some conditions, MSAA is not supported for formats whose width is
611 * more than 64 bits.
612 */
613 if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
614 /* Gen6: MSAA on >64 bit formats is unsupported. */
615 if (intel->gen <= 6)
616 return false;
617
618 /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
619 if (rb->NumSamples >= 8)
620 return false;
621 }
622
623 return brw->format_supported_as_render_target[format];
624 }
625
626 GLuint
627 translate_tex_format(struct intel_context *intel,
628 gl_format mesa_format,
629 GLenum internal_format,
630 GLenum depth_mode,
631 GLenum srgb_decode)
632 {
633 if (srgb_decode == GL_SKIP_DECODE_EXT)
634 mesa_format = _mesa_get_srgb_format_linear(mesa_format);
635
636 switch( mesa_format ) {
637
638 case MESA_FORMAT_Z16:
639 return BRW_SURFACEFORMAT_I16_UNORM;
640
641 case MESA_FORMAT_S8_Z24:
642 case MESA_FORMAT_X8_Z24:
643 return BRW_SURFACEFORMAT_I24X8_UNORM;
644
645 case MESA_FORMAT_Z32_FLOAT:
646 return BRW_SURFACEFORMAT_I32_FLOAT;
647
648 case MESA_FORMAT_Z32_FLOAT_X24S8:
649 return BRW_SURFACEFORMAT_R32G32_FLOAT;
650
651 case MESA_FORMAT_RGBA_FLOAT32:
652 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
653 * assertion below.
654 */
655 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
656
657 case MESA_FORMAT_SRGB_DXT1:
658 if (intel->gen == 4 && !intel->is_g4x) {
659 /* Work around missing SRGB DXT1 support on original gen4 by just
660 * skipping SRGB decode. It's not worth not supporting sRGB in
661 * general to prevent this.
662 */
663 WARN_ONCE(true, "Demoting sRGB DXT1 texture to non-sRGB\n");
664 mesa_format = MESA_FORMAT_RGB_DXT1;
665 }
666 return brw_format_for_mesa_format(mesa_format);
667
668 default:
669 assert(brw_format_for_mesa_format(mesa_format) != 0);
670 return brw_format_for_mesa_format(mesa_format);
671 }
672 }
673
674 uint32_t
675 brw_get_surface_tiling_bits(uint32_t tiling)
676 {
677 switch (tiling) {
678 case I915_TILING_X:
679 return BRW_SURFACE_TILED;
680 case I915_TILING_Y:
681 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
682 default:
683 return 0;
684 }
685 }
686
687
688 uint32_t
689 brw_get_surface_num_multisamples(unsigned num_samples)
690 {
691 if (num_samples > 1)
692 return BRW_SURFACE_MULTISAMPLECOUNT_4;
693 else
694 return BRW_SURFACE_MULTISAMPLECOUNT_1;
695 }
696
697
698 /**
699 * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
700 * swizzling.
701 */
702 int
703 brw_get_texture_swizzle(const struct gl_context *ctx,
704 const struct gl_texture_object *t)
705 {
706 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
707
708 int swizzles[SWIZZLE_NIL + 1] = {
709 SWIZZLE_X,
710 SWIZZLE_Y,
711 SWIZZLE_Z,
712 SWIZZLE_W,
713 SWIZZLE_ZERO,
714 SWIZZLE_ONE,
715 SWIZZLE_NIL
716 };
717
718 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
719 img->_BaseFormat == GL_DEPTH_STENCIL) {
720 GLenum depth_mode = t->DepthMode;
721
722 /* In ES 3.0, DEPTH_TEXTURE_MODE is expected to be GL_RED for textures
723 * with depth component data specified with a sized internal format.
724 * Otherwise, it's left at the old default, GL_LUMINANCE.
725 */
726 if (_mesa_is_gles3(ctx) &&
727 img->InternalFormat != GL_DEPTH_COMPONENT &&
728 img->InternalFormat != GL_DEPTH_STENCIL) {
729 depth_mode = GL_RED;
730 }
731
732 switch (depth_mode) {
733 case GL_ALPHA:
734 swizzles[0] = SWIZZLE_ZERO;
735 swizzles[1] = SWIZZLE_ZERO;
736 swizzles[2] = SWIZZLE_ZERO;
737 swizzles[3] = SWIZZLE_X;
738 break;
739 case GL_LUMINANCE:
740 swizzles[0] = SWIZZLE_X;
741 swizzles[1] = SWIZZLE_X;
742 swizzles[2] = SWIZZLE_X;
743 swizzles[3] = SWIZZLE_ONE;
744 break;
745 case GL_INTENSITY:
746 swizzles[0] = SWIZZLE_X;
747 swizzles[1] = SWIZZLE_X;
748 swizzles[2] = SWIZZLE_X;
749 swizzles[3] = SWIZZLE_X;
750 break;
751 case GL_RED:
752 swizzles[0] = SWIZZLE_X;
753 swizzles[1] = SWIZZLE_ZERO;
754 swizzles[2] = SWIZZLE_ZERO;
755 swizzles[3] = SWIZZLE_ONE;
756 break;
757 }
758 }
759
760 /* If the texture's format is alpha-only, force R, G, and B to
761 * 0.0. Similarly, if the texture's format has no alpha channel,
762 * force the alpha value read to 1.0. This allows for the
763 * implementation to use an RGBA texture for any of these formats
764 * without leaking any unexpected values.
765 */
766 switch (img->_BaseFormat) {
767 case GL_ALPHA:
768 swizzles[0] = SWIZZLE_ZERO;
769 swizzles[1] = SWIZZLE_ZERO;
770 swizzles[2] = SWIZZLE_ZERO;
771 break;
772 case GL_RED:
773 case GL_RG:
774 case GL_RGB:
775 swizzles[3] = SWIZZLE_ONE;
776 break;
777 }
778
779 return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
780 swizzles[GET_SWZ(t->_Swizzle, 1)],
781 swizzles[GET_SWZ(t->_Swizzle, 2)],
782 swizzles[GET_SWZ(t->_Swizzle, 3)]);
783 }
784
785
786 static void
787 brw_update_buffer_texture_surface(struct gl_context *ctx,
788 unsigned unit,
789 uint32_t *binding_table,
790 unsigned surf_index)
791 {
792 struct brw_context *brw = brw_context(ctx);
793 struct intel_context *intel = &brw->intel;
794 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
795 uint32_t *surf;
796 struct intel_buffer_object *intel_obj =
797 intel_buffer_object(tObj->BufferObject);
798 drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
799 gl_format format = tObj->_BufferObjectFormat;
800 uint32_t brw_format = brw_format_for_mesa_format(format);
801 int texel_size = _mesa_get_format_bytes(format);
802
803 if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
804 _mesa_problem(NULL, "bad format %s for texture buffer\n",
805 _mesa_get_format_name(format));
806 }
807
808 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
809 6 * 4, 32, &binding_table[surf_index]);
810
811 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
812 (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
813
814 if (intel->gen >= 6)
815 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
816
817 if (bo) {
818 surf[1] = bo->offset; /* reloc */
819
820 /* Emit relocation to surface contents. */
821 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
822 binding_table[surf_index] + 4,
823 bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
824
825 int w = intel_obj->Base.Size / texel_size;
826 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
827 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
828 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
829 (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
830 } else {
831 surf[1] = 0;
832 surf[2] = 0;
833 surf[3] = 0;
834 }
835
836 surf[4] = 0;
837 surf[5] = 0;
838 }
839
840 static void
841 brw_update_texture_surface(struct gl_context *ctx,
842 unsigned unit,
843 uint32_t *binding_table,
844 unsigned surf_index)
845 {
846 struct intel_context *intel = intel_context(ctx);
847 struct brw_context *brw = brw_context(ctx);
848 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
849 struct intel_texture_object *intelObj = intel_texture_object(tObj);
850 struct intel_mipmap_tree *mt = intelObj->mt;
851 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
852 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
853 uint32_t *surf;
854 int width, height, depth;
855 uint32_t tile_x, tile_y;
856
857 if (tObj->Target == GL_TEXTURE_BUFFER) {
858 brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index);
859 return;
860 }
861
862 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
863
864 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
865 6 * 4, 32, &binding_table[surf_index]);
866
867 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
868 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
869 BRW_SURFACE_CUBEFACE_ENABLES |
870 (translate_tex_format(intel,
871 mt->format,
872 firstImage->InternalFormat,
873 tObj->DepthMode,
874 sampler->sRGBDecode) <<
875 BRW_SURFACE_FORMAT_SHIFT));
876
877 surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
878
879 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
880 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
881 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
882
883 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
884 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
885 (intelObj->mt->region->pitch - 1) <<
886 BRW_SURFACE_PITCH_SHIFT);
887
888 surf[4] = brw_get_surface_num_multisamples(intelObj->mt->num_samples);
889
890 intel_miptree_get_tile_offsets(intelObj->mt, firstImage->Level, 0,
891 &tile_x, &tile_y);
892 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
893 /* Note that the low bits of these fields are missing, so
894 * there's the possibility of getting in trouble.
895 */
896 assert(tile_x % 4 == 0);
897 assert(tile_y % 2 == 0);
898 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
899 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
900 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
901
902 /* Emit relocation to surface contents */
903 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
904 binding_table[surf_index] + 4,
905 intelObj->mt->region->bo,
906 intelObj->mt->offset,
907 I915_GEM_DOMAIN_SAMPLER, 0);
908 }
909
910 /**
911 * Create the constant buffer surface. Vertex/fragment shader constants will be
912 * read from this buffer with Data Port Read instructions/messages.
913 */
914 void
915 brw_create_constant_surface(struct brw_context *brw,
916 drm_intel_bo *bo,
917 uint32_t offset,
918 int width,
919 uint32_t *out_offset)
920 {
921 struct intel_context *intel = &brw->intel;
922 const GLint w = width - 1;
923 uint32_t *surf;
924
925 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
926 6 * 4, 32, out_offset);
927
928 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
929 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
930 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
931
932 if (intel->gen >= 6)
933 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
934
935 surf[1] = bo->offset + offset; /* reloc */
936
937 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
938 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
939
940 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
941 (16 - 1) << BRW_SURFACE_PITCH_SHIFT); /* ignored */
942
943 surf[4] = 0;
944 surf[5] = 0;
945
946 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
947 * bspec ("Data Cache") says that the data cache does not exist as
948 * a separate cache and is just the sampler cache.
949 */
950 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
951 *out_offset + 4,
952 bo, offset,
953 I915_GEM_DOMAIN_SAMPLER, 0);
954 }
955
956 /**
957 * Set up a binding table entry for use by stream output logic (transform
958 * feedback).
959 *
960 * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
961 */
962 void
963 brw_update_sol_surface(struct brw_context *brw,
964 struct gl_buffer_object *buffer_obj,
965 uint32_t *out_offset, unsigned num_vector_components,
966 unsigned stride_dwords, unsigned offset_dwords)
967 {
968 struct intel_context *intel = &brw->intel;
969 struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
970 drm_intel_bo *bo =
971 intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
972 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
973 out_offset);
974 uint32_t pitch_minus_1 = 4*stride_dwords - 1;
975 uint32_t offset_bytes = 4 * offset_dwords;
976 size_t size_dwords = buffer_obj->Size / 4;
977 uint32_t buffer_size_minus_1, width, height, depth, surface_format;
978
979 /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
980 * too big to map using a single binding table entry?
981 */
982 assert((size_dwords - offset_dwords) / stride_dwords
983 <= BRW_MAX_NUM_BUFFER_ENTRIES);
984
985 if (size_dwords > offset_dwords + num_vector_components) {
986 /* There is room for at least 1 transform feedback output in the buffer.
987 * Compute the number of additional transform feedback outputs the
988 * buffer has room for.
989 */
990 buffer_size_minus_1 =
991 (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
992 } else {
993 /* There isn't even room for a single transform feedback output in the
994 * buffer. We can't configure the binding table entry to prevent output
995 * entirely; we'll have to rely on the geometry shader to detect
996 * overflow. But to minimize the damage in case of a bug, set up the
997 * binding table entry to just allow a single output.
998 */
999 buffer_size_minus_1 = 0;
1000 }
1001 width = buffer_size_minus_1 & 0x7f;
1002 height = (buffer_size_minus_1 & 0xfff80) >> 7;
1003 depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
1004
1005 switch (num_vector_components) {
1006 case 1:
1007 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1008 break;
1009 case 2:
1010 surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
1011 break;
1012 case 3:
1013 surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
1014 break;
1015 case 4:
1016 surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
1017 break;
1018 default:
1019 assert(!"Invalid vector size for transform feedback output");
1020 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1021 break;
1022 }
1023
1024 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
1025 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
1026 surface_format << BRW_SURFACE_FORMAT_SHIFT |
1027 BRW_SURFACE_RC_READ_WRITE;
1028 surf[1] = bo->offset + offset_bytes; /* reloc */
1029 surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
1030 height << BRW_SURFACE_HEIGHT_SHIFT);
1031 surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
1032 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1033 surf[4] = 0;
1034 surf[5] = 0;
1035
1036 /* Emit relocation to surface contents. */
1037 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1038 *out_offset + 4,
1039 bo, offset_bytes,
1040 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1041 }
1042
1043 /* Creates a new WM constant buffer reflecting the current fragment program's
1044 * constants, if needed by the fragment program.
1045 *
1046 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
1047 * state atom.
1048 */
1049 static void
1050 brw_upload_wm_pull_constants(struct brw_context *brw)
1051 {
1052 struct gl_context *ctx = &brw->intel.ctx;
1053 struct intel_context *intel = &brw->intel;
1054 /* BRW_NEW_FRAGMENT_PROGRAM */
1055 struct brw_fragment_program *fp =
1056 (struct brw_fragment_program *) brw->fragment_program;
1057 struct gl_program_parameter_list *params = fp->program.Base.Parameters;
1058 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
1059 const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
1060 float *constants;
1061 unsigned int i;
1062
1063 _mesa_load_state_parameters(ctx, params);
1064
1065 /* CACHE_NEW_WM_PROG */
1066 if (brw->wm.prog_data->nr_pull_params == 0) {
1067 if (brw->wm.const_bo) {
1068 drm_intel_bo_unreference(brw->wm.const_bo);
1069 brw->wm.const_bo = NULL;
1070 brw->wm.surf_offset[surf_index] = 0;
1071 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1072 }
1073 return;
1074 }
1075
1076 drm_intel_bo_unreference(brw->wm.const_bo);
1077 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
1078 size, 64);
1079
1080 /* _NEW_PROGRAM_CONSTANTS */
1081 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
1082 constants = brw->wm.const_bo->virtual;
1083 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
1084 constants[i] = *brw->wm.prog_data->pull_param[i];
1085 }
1086 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
1087
1088 intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0,
1089 ALIGN(brw->wm.prog_data->nr_pull_params, 4) / 4,
1090 &brw->wm.surf_offset[surf_index]);
1091
1092 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1093 }
1094
1095 const struct brw_tracked_state brw_wm_pull_constants = {
1096 .dirty = {
1097 .mesa = (_NEW_PROGRAM_CONSTANTS),
1098 .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
1099 .cache = CACHE_NEW_WM_PROG,
1100 },
1101 .emit = brw_upload_wm_pull_constants,
1102 };
1103
1104 static void
1105 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
1106 {
1107 /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
1108 * Notes):
1109 *
1110 * A null surface will be used in instances where an actual surface is
1111 * not bound. When a write message is generated to a null surface, no
1112 * actual surface is written to. When a read message (including any
1113 * sampling engine message) is generated to a null surface, the result
1114 * is all zeros. Note that a null surface type is allowed to be used
1115 * with all messages, even if it is not specificially indicated as
1116 * supported. All of the remaining fields in surface state are ignored
1117 * for null surfaces, with the following exceptions:
1118 *
1119 * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1120 * depth buffer’s corresponding state for all render target surfaces,
1121 * including null.
1122 *
1123 * - Surface Format must be R8G8B8A8_UNORM.
1124 */
1125 struct intel_context *intel = &brw->intel;
1126 struct gl_context *ctx = &intel->ctx;
1127 uint32_t *surf;
1128 unsigned surface_type = BRW_SURFACE_NULL;
1129 drm_intel_bo *bo = NULL;
1130 unsigned pitch_minus_1 = 0;
1131 uint32_t multisampling_state = 0;
1132
1133 /* _NEW_BUFFERS */
1134 const struct gl_framebuffer *fb = ctx->DrawBuffer;
1135
1136 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1137 6 * 4, 32, &brw->wm.surf_offset[unit]);
1138
1139 if (fb->Visual.samples > 1) {
1140 /* On Gen6, null render targets seem to cause GPU hangs when
1141 * multisampling. So work around this problem by rendering into dummy
1142 * color buffer.
1143 *
1144 * To decrease the amount of memory needed by the workaround buffer, we
1145 * set its pitch to 128 bytes (the width of a Y tile). This means that
1146 * the amount of memory needed for the workaround buffer is
1147 * (width_in_tiles + height_in_tiles - 1) tiles.
1148 *
1149 * Note that since the workaround buffer will be interpreted by the
1150 * hardware as an interleaved multisampled buffer, we need to compute
1151 * width_in_tiles and height_in_tiles by dividing the width and height
1152 * by 16 rather than the normal Y-tile size of 32.
1153 */
1154 unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1155 unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1156 unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1157 brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1158 size_needed);
1159 bo = brw->wm.multisampled_null_render_target_bo;
1160 surface_type = BRW_SURFACE_2D;
1161 pitch_minus_1 = 127;
1162 multisampling_state =
1163 brw_get_surface_num_multisamples(fb->Visual.samples);
1164 }
1165
1166 surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1167 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1168 if (intel->gen < 6) {
1169 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1170 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1171 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1172 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1173 }
1174 surf[1] = bo ? bo->offset : 0;
1175 surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1176 (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1177
1178 /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1179 * Notes):
1180 *
1181 * If Surface Type is SURFTYPE_NULL, this field must be TRUE
1182 */
1183 surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1184 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1185 surf[4] = multisampling_state;
1186 surf[5] = 0;
1187
1188 if (bo) {
1189 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1190 brw->wm.surf_offset[unit] + 4,
1191 bo, 0,
1192 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1193 }
1194 }
1195
1196 /**
1197 * Sets up a surface state structure to point at the given region.
1198 * While it is only used for the front/back buffer currently, it should be
1199 * usable for further buffers when doing ARB_draw_buffer support.
1200 */
1201 static void
1202 brw_update_renderbuffer_surface(struct brw_context *brw,
1203 struct gl_renderbuffer *rb,
1204 unsigned int unit)
1205 {
1206 struct intel_context *intel = &brw->intel;
1207 struct gl_context *ctx = &intel->ctx;
1208 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1209 struct intel_mipmap_tree *mt = irb->mt;
1210 struct intel_region *region;
1211 uint32_t *surf;
1212 uint32_t tile_x, tile_y;
1213 uint32_t format = 0;
1214 gl_format rb_format = intel_rb_format(irb);
1215
1216 if (irb->tex_image && !brw->has_surface_tile_offset) {
1217 intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1218
1219 if (tile_x != 0 || tile_y != 0) {
1220 /* Original gen4 hardware couldn't draw to a non-tile-aligned
1221 * destination in a miptree unless you actually setup your renderbuffer
1222 * as a miptree and used the fragile lod/array_index/etc. controls to
1223 * select the image. So, instead, we just make a new single-level
1224 * miptree and render into that.
1225 */
1226 intel_renderbuffer_move_to_temp(intel, irb);
1227 mt = irb->mt;
1228 }
1229 }
1230
1231 region = irb->mt->region;
1232
1233 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1234 6 * 4, 32, &brw->wm.surf_offset[unit]);
1235
1236 switch (rb_format) {
1237 case MESA_FORMAT_SARGB8:
1238 /* _NEW_BUFFERS
1239 *
1240 * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1241 * blend/update as sRGB.
1242 */
1243 if (ctx->Color.sRGBEnabled)
1244 format = brw_format_for_mesa_format(rb_format);
1245 else
1246 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1247 break;
1248 default:
1249 format = brw->render_target_format[rb_format];
1250 if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1251 _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1252 __FUNCTION__, _mesa_get_format_name(rb_format));
1253 }
1254 break;
1255 }
1256
1257 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1258 format << BRW_SURFACE_FORMAT_SHIFT);
1259
1260 /* reloc */
1261 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1262 region->bo->offset);
1263
1264 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1265 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1266
1267 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1268 (region->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
1269
1270 surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1271
1272 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1273 /* Note that the low bits of these fields are missing, so
1274 * there's the possibility of getting in trouble.
1275 */
1276 assert(tile_x % 4 == 0);
1277 assert(tile_y % 2 == 0);
1278 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1279 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1280 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1281
1282 if (intel->gen < 6) {
1283 /* _NEW_COLOR */
1284 if (!ctx->Color.ColorLogicOpEnabled &&
1285 (ctx->Color.BlendEnabled & (1 << unit)))
1286 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1287
1288 if (!ctx->Color.ColorMask[unit][0])
1289 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1290 if (!ctx->Color.ColorMask[unit][1])
1291 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1292 if (!ctx->Color.ColorMask[unit][2])
1293 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1294
1295 /* As mentioned above, disable writes to the alpha component when the
1296 * renderbuffer is XRGB.
1297 */
1298 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1299 !ctx->Color.ColorMask[unit][3]) {
1300 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1301 }
1302 }
1303
1304 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1305 brw->wm.surf_offset[unit] + 4,
1306 region->bo,
1307 surf[1] - region->bo->offset,
1308 I915_GEM_DOMAIN_RENDER,
1309 I915_GEM_DOMAIN_RENDER);
1310 }
1311
1312 /**
1313 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1314 */
1315 static void
1316 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1317 {
1318 struct intel_context *intel = &brw->intel;
1319 struct gl_context *ctx = &brw->intel.ctx;
1320 GLuint i;
1321
1322 /* _NEW_BUFFERS | _NEW_COLOR */
1323 /* Update surfaces for drawing buffers */
1324 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1325 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1326 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1327 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1328 } else {
1329 intel->vtbl.update_null_renderbuffer_surface(brw, i);
1330 }
1331 }
1332 } else {
1333 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1334 }
1335 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1336 }
1337
1338 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1339 .dirty = {
1340 .mesa = (_NEW_COLOR |
1341 _NEW_BUFFERS),
1342 .brw = BRW_NEW_BATCH,
1343 .cache = 0
1344 },
1345 .emit = brw_update_renderbuffer_surfaces,
1346 };
1347
1348 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1349 .dirty = {
1350 .mesa = _NEW_BUFFERS,
1351 .brw = BRW_NEW_BATCH,
1352 .cache = 0
1353 },
1354 .emit = brw_update_renderbuffer_surfaces,
1355 };
1356
1357 /**
1358 * Construct SURFACE_STATE objects for enabled textures.
1359 */
1360 static void
1361 brw_update_texture_surfaces(struct brw_context *brw)
1362 {
1363 struct intel_context *intel = &brw->intel;
1364 struct gl_context *ctx = &intel->ctx;
1365
1366 /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM:
1367 * Unfortunately, we're stuck using the gl_program structs until the
1368 * ARB_fragment_program front-end gets converted to GLSL IR. These
1369 * have the downside that SamplerUnits is split and only contains the
1370 * mappings for samplers active in that stage.
1371 */
1372 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
1373 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
1374
1375 unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed);
1376
1377 for (unsigned s = 0; s < num_samplers; s++) {
1378 brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0;
1379 brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0;
1380
1381 if (vs->SamplersUsed & (1 << s)) {
1382 const unsigned unit = vs->SamplerUnits[s];
1383
1384 /* _NEW_TEXTURE */
1385 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1386 intel->vtbl.update_texture_surface(ctx, unit,
1387 brw->vs.surf_offset,
1388 SURF_INDEX_VS_TEXTURE(s));
1389 }
1390 }
1391
1392 if (fs->SamplersUsed & (1 << s)) {
1393 const unsigned unit = fs->SamplerUnits[s];
1394
1395 /* _NEW_TEXTURE */
1396 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1397 intel->vtbl.update_texture_surface(ctx, unit,
1398 brw->wm.surf_offset,
1399 SURF_INDEX_TEXTURE(s));
1400 }
1401 }
1402 }
1403
1404 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1405 }
1406
1407 const struct brw_tracked_state brw_texture_surfaces = {
1408 .dirty = {
1409 .mesa = _NEW_TEXTURE,
1410 .brw = BRW_NEW_BATCH |
1411 BRW_NEW_VERTEX_PROGRAM |
1412 BRW_NEW_FRAGMENT_PROGRAM,
1413 .cache = 0
1414 },
1415 .emit = brw_update_texture_surfaces,
1416 };
1417
1418 void
1419 brw_upload_ubo_surfaces(struct brw_context *brw,
1420 struct gl_shader *shader,
1421 uint32_t *surf_offsets)
1422 {
1423 struct gl_context *ctx = &brw->intel.ctx;
1424 struct intel_context *intel = &brw->intel;
1425
1426 if (!shader)
1427 return;
1428
1429 for (int i = 0; i < shader->NumUniformBlocks; i++) {
1430 struct gl_uniform_buffer_binding *binding;
1431 struct intel_buffer_object *intel_bo;
1432
1433 binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
1434 intel_bo = intel_buffer_object(binding->BufferObject);
1435 drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ);
1436
1437 /* Because behavior for referencing outside of the binding's size in the
1438 * glBindBufferRange case is undefined, we can just bind the whole buffer
1439 * glBindBufferBase wants and be a correct implementation.
1440 */
1441 int size = bo->size - binding->Offset;
1442 size = ALIGN(size, 16) / 16; /* The interface takes a number of vec4s */
1443
1444 intel->vtbl.create_constant_surface(brw, bo, binding->Offset,
1445 size,
1446 &surf_offsets[i]);
1447 }
1448
1449 if (shader->NumUniformBlocks)
1450 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1451 }
1452
1453 static void
1454 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
1455 {
1456 struct gl_context *ctx = &brw->intel.ctx;
1457 /* _NEW_PROGRAM */
1458 struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
1459
1460 if (!prog)
1461 return;
1462
1463 brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1464 &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]);
1465 }
1466
1467 const struct brw_tracked_state brw_wm_ubo_surfaces = {
1468 .dirty = {
1469 .mesa = (_NEW_PROGRAM |
1470 _NEW_BUFFER_OBJECT),
1471 .brw = BRW_NEW_BATCH,
1472 .cache = 0,
1473 },
1474 .emit = brw_upload_wm_ubo_surfaces,
1475 };
1476
1477 /**
1478 * Constructs the binding table for the WM surface state, which maps unit
1479 * numbers to surface state objects.
1480 */
1481 static void
1482 brw_upload_wm_binding_table(struct brw_context *brw)
1483 {
1484 struct intel_context *intel = &brw->intel;
1485 uint32_t *bind;
1486 int i;
1487
1488 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1489 intel->vtbl.create_constant_surface(brw, brw->shader_time.bo, 0,
1490 brw->shader_time.bo->size,
1491 &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]);
1492 }
1493
1494 /* Might want to calculate nr_surfaces first, to avoid taking up so much
1495 * space for the binding table.
1496 */
1497 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1498 sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1499 32, &brw->wm.bind_bo_offset);
1500
1501 /* BRW_NEW_SURFACES */
1502 for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1503 bind[i] = brw->wm.surf_offset[i];
1504 }
1505
1506 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1507 }
1508
1509 const struct brw_tracked_state brw_wm_binding_table = {
1510 .dirty = {
1511 .mesa = 0,
1512 .brw = (BRW_NEW_BATCH |
1513 BRW_NEW_SURFACES),
1514 .cache = 0
1515 },
1516 .emit = brw_upload_wm_binding_table,
1517 };
1518
1519 void
1520 gen4_init_vtable_surface_functions(struct brw_context *brw)
1521 {
1522 struct intel_context *intel = &brw->intel;
1523
1524 intel->vtbl.update_texture_surface = brw_update_texture_surface;
1525 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1526 intel->vtbl.update_null_renderbuffer_surface =
1527 brw_update_null_renderbuffer_surface;
1528 intel->vtbl.create_constant_surface = brw_create_constant_surface;
1529 }