i965: Add new SIMD8 VS prog data flag
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #include "main/context.h"
34 #include "main/blend.h"
35 #include "main/mtypes.h"
36 #include "main/samplerobj.h"
37 #include "program/prog_parameter.h"
38
39 #include "intel_mipmap_tree.h"
40 #include "intel_batchbuffer.h"
41 #include "intel_tex.h"
42 #include "intel_fbo.h"
43 #include "intel_buffer_objects.h"
44
45 #include "brw_context.h"
46 #include "brw_state.h"
47 #include "brw_defines.h"
48 #include "brw_wm.h"
49
50 GLuint
51 translate_tex_target(GLenum target)
52 {
53 switch (target) {
54 case GL_TEXTURE_1D:
55 case GL_TEXTURE_1D_ARRAY_EXT:
56 return BRW_SURFACE_1D;
57
58 case GL_TEXTURE_RECTANGLE_NV:
59 return BRW_SURFACE_2D;
60
61 case GL_TEXTURE_2D:
62 case GL_TEXTURE_2D_ARRAY_EXT:
63 case GL_TEXTURE_EXTERNAL_OES:
64 case GL_TEXTURE_2D_MULTISAMPLE:
65 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
66 return BRW_SURFACE_2D;
67
68 case GL_TEXTURE_3D:
69 return BRW_SURFACE_3D;
70
71 case GL_TEXTURE_CUBE_MAP:
72 case GL_TEXTURE_CUBE_MAP_ARRAY:
73 return BRW_SURFACE_CUBE;
74
75 default:
76 unreachable("not reached");
77 }
78 }
79
80 uint32_t
81 brw_get_surface_tiling_bits(uint32_t tiling)
82 {
83 switch (tiling) {
84 case I915_TILING_X:
85 return BRW_SURFACE_TILED;
86 case I915_TILING_Y:
87 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
88 default:
89 return 0;
90 }
91 }
92
93
94 uint32_t
95 brw_get_surface_num_multisamples(unsigned num_samples)
96 {
97 if (num_samples > 1)
98 return BRW_SURFACE_MULTISAMPLECOUNT_4;
99 else
100 return BRW_SURFACE_MULTISAMPLECOUNT_1;
101 }
102
103 void
104 brw_configure_w_tiled(const struct intel_mipmap_tree *mt,
105 bool is_render_target,
106 unsigned *width, unsigned *height,
107 unsigned *pitch, uint32_t *tiling, unsigned *format)
108 {
109 static const unsigned halign_stencil = 8;
110
111 /* In Y-tiling row is twice as wide as in W-tiling, and subsequently
112 * there are half as many rows.
113 * In addition, mip-levels are accessed manually by the program and
114 * therefore the surface is setup to cover all the mip-levels for one slice.
115 * (Hardware is still used to access individual slices).
116 */
117 *tiling = I915_TILING_Y;
118 *pitch = mt->pitch * 2;
119 *width = ALIGN(mt->total_width, halign_stencil) * 2;
120 *height = (mt->total_height / mt->physical_depth0) / 2;
121
122 if (is_render_target) {
123 *format = BRW_SURFACEFORMAT_R8_UINT;
124 }
125 }
126
127
128 /**
129 * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
130 * swizzling.
131 */
132 int
133 brw_get_texture_swizzle(const struct gl_context *ctx,
134 const struct gl_texture_object *t)
135 {
136 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
137
138 int swizzles[SWIZZLE_NIL + 1] = {
139 SWIZZLE_X,
140 SWIZZLE_Y,
141 SWIZZLE_Z,
142 SWIZZLE_W,
143 SWIZZLE_ZERO,
144 SWIZZLE_ONE,
145 SWIZZLE_NIL
146 };
147
148 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
149 img->_BaseFormat == GL_DEPTH_STENCIL) {
150 GLenum depth_mode = t->DepthMode;
151
152 /* In ES 3.0, DEPTH_TEXTURE_MODE is expected to be GL_RED for textures
153 * with depth component data specified with a sized internal format.
154 * Otherwise, it's left at the old default, GL_LUMINANCE.
155 */
156 if (_mesa_is_gles3(ctx) &&
157 img->InternalFormat != GL_DEPTH_COMPONENT &&
158 img->InternalFormat != GL_DEPTH_STENCIL) {
159 depth_mode = GL_RED;
160 }
161
162 switch (depth_mode) {
163 case GL_ALPHA:
164 swizzles[0] = SWIZZLE_ZERO;
165 swizzles[1] = SWIZZLE_ZERO;
166 swizzles[2] = SWIZZLE_ZERO;
167 swizzles[3] = SWIZZLE_X;
168 break;
169 case GL_LUMINANCE:
170 swizzles[0] = SWIZZLE_X;
171 swizzles[1] = SWIZZLE_X;
172 swizzles[2] = SWIZZLE_X;
173 swizzles[3] = SWIZZLE_ONE;
174 break;
175 case GL_INTENSITY:
176 swizzles[0] = SWIZZLE_X;
177 swizzles[1] = SWIZZLE_X;
178 swizzles[2] = SWIZZLE_X;
179 swizzles[3] = SWIZZLE_X;
180 break;
181 case GL_RED:
182 swizzles[0] = SWIZZLE_X;
183 swizzles[1] = SWIZZLE_ZERO;
184 swizzles[2] = SWIZZLE_ZERO;
185 swizzles[3] = SWIZZLE_ONE;
186 break;
187 }
188 }
189
190 /* If the texture's format is alpha-only, force R, G, and B to
191 * 0.0. Similarly, if the texture's format has no alpha channel,
192 * force the alpha value read to 1.0. This allows for the
193 * implementation to use an RGBA texture for any of these formats
194 * without leaking any unexpected values.
195 */
196 switch (img->_BaseFormat) {
197 case GL_ALPHA:
198 swizzles[0] = SWIZZLE_ZERO;
199 swizzles[1] = SWIZZLE_ZERO;
200 swizzles[2] = SWIZZLE_ZERO;
201 break;
202 case GL_RED:
203 case GL_RG:
204 case GL_RGB:
205 if (_mesa_get_format_bits(img->TexFormat, GL_ALPHA_BITS) > 0)
206 swizzles[3] = SWIZZLE_ONE;
207 break;
208 }
209
210 return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
211 swizzles[GET_SWZ(t->_Swizzle, 1)],
212 swizzles[GET_SWZ(t->_Swizzle, 2)],
213 swizzles[GET_SWZ(t->_Swizzle, 3)]);
214 }
215
216 static void
217 gen4_emit_buffer_surface_state(struct brw_context *brw,
218 uint32_t *out_offset,
219 drm_intel_bo *bo,
220 unsigned buffer_offset,
221 unsigned surface_format,
222 unsigned buffer_size,
223 unsigned pitch,
224 unsigned mocs,
225 bool rw)
226 {
227 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
228 6 * 4, 32, out_offset);
229 memset(surf, 0, 6 * 4);
230
231 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
232 surface_format << BRW_SURFACE_FORMAT_SHIFT |
233 (brw->gen >= 6 ? BRW_SURFACE_RC_READ_WRITE : 0);
234 surf[1] = (bo ? bo->offset64 : 0) + buffer_offset; /* reloc */
235 surf[2] = (buffer_size & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
236 ((buffer_size >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT;
237 surf[3] = ((buffer_size >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
238 (pitch - 1) << BRW_SURFACE_PITCH_SHIFT;
239
240 /* Emit relocation to surface contents. The 965 PRM, Volume 4, section
241 * 5.1.2 "Data Cache" says: "the data cache does not exist as a separate
242 * physical cache. It is mapped in hardware to the sampler cache."
243 */
244 if (bo) {
245 drm_intel_bo_emit_reloc(brw->batch.bo, *out_offset + 4,
246 bo, buffer_offset,
247 I915_GEM_DOMAIN_SAMPLER,
248 (rw ? I915_GEM_DOMAIN_SAMPLER : 0));
249 }
250 }
251
252 void
253 brw_update_buffer_texture_surface(struct gl_context *ctx,
254 unsigned unit,
255 uint32_t *surf_offset)
256 {
257 struct brw_context *brw = brw_context(ctx);
258 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
259 struct intel_buffer_object *intel_obj =
260 intel_buffer_object(tObj->BufferObject);
261 uint32_t size = tObj->BufferSize;
262 drm_intel_bo *bo = NULL;
263 mesa_format format = tObj->_BufferObjectFormat;
264 uint32_t brw_format = brw_format_for_mesa_format(format);
265 int texel_size = _mesa_get_format_bytes(format);
266
267 if (intel_obj) {
268 size = MIN2(size, intel_obj->Base.Size);
269 bo = intel_bufferobj_buffer(brw, intel_obj, tObj->BufferOffset, size);
270 }
271
272 if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
273 _mesa_problem(NULL, "bad format %s for texture buffer\n",
274 _mesa_get_format_name(format));
275 }
276
277 brw->vtbl.emit_buffer_surface_state(brw, surf_offset, bo,
278 tObj->BufferOffset,
279 brw_format,
280 size / texel_size,
281 texel_size,
282 0, /* mocs */
283 false /* rw */);
284 }
285
286 static void
287 brw_update_texture_surface(struct gl_context *ctx,
288 unsigned unit,
289 uint32_t *surf_offset,
290 bool for_gather)
291 {
292 struct brw_context *brw = brw_context(ctx);
293 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
294 struct intel_texture_object *intelObj = intel_texture_object(tObj);
295 struct intel_mipmap_tree *mt = intelObj->mt;
296 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
297 uint32_t *surf;
298
299 /* BRW_NEW_TEXTURE_BUFFER */
300 if (tObj->Target == GL_TEXTURE_BUFFER) {
301 brw_update_buffer_texture_surface(ctx, unit, surf_offset);
302 return;
303 }
304
305 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
306 6 * 4, 32, surf_offset);
307
308 uint32_t tex_format = translate_tex_format(brw, mt->format,
309 sampler->sRGBDecode);
310
311 if (for_gather) {
312 /* Sandybridge's gather4 message is broken for integer formats.
313 * To work around this, we pretend the surface is UNORM for
314 * 8 or 16-bit formats, and emit shader instructions to recover
315 * the real INT/UINT value. For 32-bit formats, we pretend
316 * the surface is FLOAT, and simply reinterpret the resulting
317 * bits.
318 */
319 switch (tex_format) {
320 case BRW_SURFACEFORMAT_R8_SINT:
321 case BRW_SURFACEFORMAT_R8_UINT:
322 tex_format = BRW_SURFACEFORMAT_R8_UNORM;
323 break;
324
325 case BRW_SURFACEFORMAT_R16_SINT:
326 case BRW_SURFACEFORMAT_R16_UINT:
327 tex_format = BRW_SURFACEFORMAT_R16_UNORM;
328 break;
329
330 case BRW_SURFACEFORMAT_R32_SINT:
331 case BRW_SURFACEFORMAT_R32_UINT:
332 tex_format = BRW_SURFACEFORMAT_R32_FLOAT;
333 break;
334
335 default:
336 break;
337 }
338 }
339
340 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
341 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
342 BRW_SURFACE_CUBEFACE_ENABLES |
343 tex_format << BRW_SURFACE_FORMAT_SHIFT);
344
345 surf[1] = mt->bo->offset64 + mt->offset; /* reloc */
346
347 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
348 (mt->logical_width0 - 1) << BRW_SURFACE_WIDTH_SHIFT |
349 (mt->logical_height0 - 1) << BRW_SURFACE_HEIGHT_SHIFT);
350
351 surf[3] = (brw_get_surface_tiling_bits(mt->tiling) |
352 (mt->logical_depth0 - 1) << BRW_SURFACE_DEPTH_SHIFT |
353 (mt->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
354
355 surf[4] = (brw_get_surface_num_multisamples(mt->num_samples) |
356 SET_FIELD(tObj->BaseLevel - mt->first_level, BRW_SURFACE_MIN_LOD));
357
358 surf[5] = mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0;
359
360 /* Emit relocation to surface contents */
361 drm_intel_bo_emit_reloc(brw->batch.bo,
362 *surf_offset + 4,
363 mt->bo,
364 surf[1] - mt->bo->offset64,
365 I915_GEM_DOMAIN_SAMPLER, 0);
366 }
367
368 /**
369 * Create the constant buffer surface. Vertex/fragment shader constants will be
370 * read from this buffer with Data Port Read instructions/messages.
371 */
372 void
373 brw_create_constant_surface(struct brw_context *brw,
374 drm_intel_bo *bo,
375 uint32_t offset,
376 uint32_t size,
377 uint32_t *out_offset,
378 bool dword_pitch)
379 {
380 uint32_t stride = dword_pitch ? 4 : 16;
381 uint32_t elements = ALIGN(size, stride) / stride;
382
383 brw->vtbl.emit_buffer_surface_state(brw, out_offset, bo, offset,
384 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
385 elements, stride, 0, false);
386 }
387
388 /**
389 * Set up a binding table entry for use by stream output logic (transform
390 * feedback).
391 *
392 * buffer_size_minus_1 must be less than BRW_MAX_NUM_BUFFER_ENTRIES.
393 */
394 void
395 brw_update_sol_surface(struct brw_context *brw,
396 struct gl_buffer_object *buffer_obj,
397 uint32_t *out_offset, unsigned num_vector_components,
398 unsigned stride_dwords, unsigned offset_dwords)
399 {
400 struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
401 uint32_t offset_bytes = 4 * offset_dwords;
402 drm_intel_bo *bo = intel_bufferobj_buffer(brw, intel_bo,
403 offset_bytes,
404 buffer_obj->Size - offset_bytes);
405 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
406 out_offset);
407 uint32_t pitch_minus_1 = 4*stride_dwords - 1;
408 size_t size_dwords = buffer_obj->Size / 4;
409 uint32_t buffer_size_minus_1, width, height, depth, surface_format;
410
411 /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
412 * too big to map using a single binding table entry?
413 */
414 assert((size_dwords - offset_dwords) / stride_dwords
415 <= BRW_MAX_NUM_BUFFER_ENTRIES);
416
417 if (size_dwords > offset_dwords + num_vector_components) {
418 /* There is room for at least 1 transform feedback output in the buffer.
419 * Compute the number of additional transform feedback outputs the
420 * buffer has room for.
421 */
422 buffer_size_minus_1 =
423 (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
424 } else {
425 /* There isn't even room for a single transform feedback output in the
426 * buffer. We can't configure the binding table entry to prevent output
427 * entirely; we'll have to rely on the geometry shader to detect
428 * overflow. But to minimize the damage in case of a bug, set up the
429 * binding table entry to just allow a single output.
430 */
431 buffer_size_minus_1 = 0;
432 }
433 width = buffer_size_minus_1 & 0x7f;
434 height = (buffer_size_minus_1 & 0xfff80) >> 7;
435 depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
436
437 switch (num_vector_components) {
438 case 1:
439 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
440 break;
441 case 2:
442 surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
443 break;
444 case 3:
445 surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
446 break;
447 case 4:
448 surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
449 break;
450 default:
451 unreachable("Invalid vector size for transform feedback output");
452 }
453
454 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
455 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
456 surface_format << BRW_SURFACE_FORMAT_SHIFT |
457 BRW_SURFACE_RC_READ_WRITE;
458 surf[1] = bo->offset64 + offset_bytes; /* reloc */
459 surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
460 height << BRW_SURFACE_HEIGHT_SHIFT);
461 surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
462 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
463 surf[4] = 0;
464 surf[5] = 0;
465
466 /* Emit relocation to surface contents. */
467 drm_intel_bo_emit_reloc(brw->batch.bo,
468 *out_offset + 4,
469 bo, offset_bytes,
470 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
471 }
472
473 /* Creates a new WM constant buffer reflecting the current fragment program's
474 * constants, if needed by the fragment program.
475 *
476 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
477 * state atom.
478 */
479 static void
480 brw_upload_wm_pull_constants(struct brw_context *brw)
481 {
482 struct brw_stage_state *stage_state = &brw->wm.base;
483 /* BRW_NEW_FRAGMENT_PROGRAM */
484 struct brw_fragment_program *fp =
485 (struct brw_fragment_program *) brw->fragment_program;
486 /* BRW_NEW_FS_PROG_DATA */
487 struct brw_stage_prog_data *prog_data = &brw->wm.prog_data->base;
488
489 /* _NEW_PROGRAM_CONSTANTS */
490 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &fp->program.Base,
491 stage_state, prog_data, true);
492 }
493
494 const struct brw_tracked_state brw_wm_pull_constants = {
495 .dirty = {
496 .mesa = _NEW_PROGRAM_CONSTANTS,
497 .brw = BRW_NEW_BATCH |
498 BRW_NEW_FRAGMENT_PROGRAM |
499 BRW_NEW_FS_PROG_DATA,
500 },
501 .emit = brw_upload_wm_pull_constants,
502 };
503
504 /**
505 * Creates a null renderbuffer surface.
506 *
507 * This is used when the shader doesn't write to any color output. An FB
508 * write to target 0 will still be emitted, because that's how the thread is
509 * terminated (and computed depth is returned), so we need to have the
510 * hardware discard the target 0 color output..
511 */
512 static void
513 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
514 {
515 /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
516 * Notes):
517 *
518 * A null surface will be used in instances where an actual surface is
519 * not bound. When a write message is generated to a null surface, no
520 * actual surface is written to. When a read message (including any
521 * sampling engine message) is generated to a null surface, the result
522 * is all zeros. Note that a null surface type is allowed to be used
523 * with all messages, even if it is not specificially indicated as
524 * supported. All of the remaining fields in surface state are ignored
525 * for null surfaces, with the following exceptions:
526 *
527 * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
528 * depth buffer’s corresponding state for all render target surfaces,
529 * including null.
530 *
531 * - Surface Format must be R8G8B8A8_UNORM.
532 */
533 struct gl_context *ctx = &brw->ctx;
534 uint32_t *surf;
535 unsigned surface_type = BRW_SURFACE_NULL;
536 drm_intel_bo *bo = NULL;
537 unsigned pitch_minus_1 = 0;
538 uint32_t multisampling_state = 0;
539 uint32_t surf_index =
540 brw->wm.prog_data->binding_table.render_target_start + unit;
541
542 /* _NEW_BUFFERS */
543 const struct gl_framebuffer *fb = ctx->DrawBuffer;
544
545 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
546 &brw->wm.base.surf_offset[surf_index]);
547
548 if (fb->Visual.samples > 1) {
549 /* On Gen6, null render targets seem to cause GPU hangs when
550 * multisampling. So work around this problem by rendering into dummy
551 * color buffer.
552 *
553 * To decrease the amount of memory needed by the workaround buffer, we
554 * set its pitch to 128 bytes (the width of a Y tile). This means that
555 * the amount of memory needed for the workaround buffer is
556 * (width_in_tiles + height_in_tiles - 1) tiles.
557 *
558 * Note that since the workaround buffer will be interpreted by the
559 * hardware as an interleaved multisampled buffer, we need to compute
560 * width_in_tiles and height_in_tiles by dividing the width and height
561 * by 16 rather than the normal Y-tile size of 32.
562 */
563 unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
564 unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
565 unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
566 brw_get_scratch_bo(brw, &brw->wm.multisampled_null_render_target_bo,
567 size_needed);
568 bo = brw->wm.multisampled_null_render_target_bo;
569 surface_type = BRW_SURFACE_2D;
570 pitch_minus_1 = 127;
571 multisampling_state =
572 brw_get_surface_num_multisamples(fb->Visual.samples);
573 }
574
575 surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
576 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
577 if (brw->gen < 6) {
578 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
579 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
580 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
581 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
582 }
583 surf[1] = bo ? bo->offset64 : 0;
584 surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
585 (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
586
587 /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
588 * Notes):
589 *
590 * If Surface Type is SURFTYPE_NULL, this field must be TRUE
591 */
592 surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
593 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
594 surf[4] = multisampling_state;
595 surf[5] = 0;
596
597 if (bo) {
598 drm_intel_bo_emit_reloc(brw->batch.bo,
599 brw->wm.base.surf_offset[surf_index] + 4,
600 bo, 0,
601 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
602 }
603 }
604
605 /**
606 * Sets up a surface state structure to point at the given region.
607 * While it is only used for the front/back buffer currently, it should be
608 * usable for further buffers when doing ARB_draw_buffer support.
609 */
610 static void
611 brw_update_renderbuffer_surface(struct brw_context *brw,
612 struct gl_renderbuffer *rb,
613 bool layered,
614 unsigned int unit)
615 {
616 struct gl_context *ctx = &brw->ctx;
617 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
618 struct intel_mipmap_tree *mt = irb->mt;
619 uint32_t *surf;
620 uint32_t tile_x, tile_y;
621 uint32_t format = 0;
622 /* _NEW_BUFFERS */
623 mesa_format rb_format = _mesa_get_render_format(ctx, intel_rb_format(irb));
624 uint32_t surf_index =
625 brw->wm.prog_data->binding_table.render_target_start + unit;
626
627 assert(!layered);
628
629 if (rb->TexImage && !brw->has_surface_tile_offset) {
630 intel_renderbuffer_get_tile_offsets(irb, &tile_x, &tile_y);
631
632 if (tile_x != 0 || tile_y != 0) {
633 /* Original gen4 hardware couldn't draw to a non-tile-aligned
634 * destination in a miptree unless you actually setup your renderbuffer
635 * as a miptree and used the fragile lod/array_index/etc. controls to
636 * select the image. So, instead, we just make a new single-level
637 * miptree and render into that.
638 */
639 intel_renderbuffer_move_to_temp(brw, irb, false);
640 mt = irb->mt;
641 }
642 }
643
644 intel_miptree_used_for_rendering(irb->mt);
645
646 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
647 &brw->wm.base.surf_offset[surf_index]);
648
649 format = brw->render_target_format[rb_format];
650 if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
651 _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
652 __FUNCTION__, _mesa_get_format_name(rb_format));
653 }
654
655 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
656 format << BRW_SURFACE_FORMAT_SHIFT);
657
658 /* reloc */
659 surf[1] = (intel_renderbuffer_get_tile_offsets(irb, &tile_x, &tile_y) +
660 mt->bo->offset64);
661
662 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
663 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
664
665 surf[3] = (brw_get_surface_tiling_bits(mt->tiling) |
666 (mt->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
667
668 surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
669
670 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
671 /* Note that the low bits of these fields are missing, so
672 * there's the possibility of getting in trouble.
673 */
674 assert(tile_x % 4 == 0);
675 assert(tile_y % 2 == 0);
676 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
677 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
678 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
679
680 if (brw->gen < 6) {
681 /* _NEW_COLOR */
682 if (!ctx->Color.ColorLogicOpEnabled &&
683 (ctx->Color.BlendEnabled & (1 << unit)))
684 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
685
686 if (!ctx->Color.ColorMask[unit][0])
687 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
688 if (!ctx->Color.ColorMask[unit][1])
689 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
690 if (!ctx->Color.ColorMask[unit][2])
691 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
692
693 /* As mentioned above, disable writes to the alpha component when the
694 * renderbuffer is XRGB.
695 */
696 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
697 !ctx->Color.ColorMask[unit][3]) {
698 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
699 }
700 }
701
702 drm_intel_bo_emit_reloc(brw->batch.bo,
703 brw->wm.base.surf_offset[surf_index] + 4,
704 mt->bo,
705 surf[1] - mt->bo->offset64,
706 I915_GEM_DOMAIN_RENDER,
707 I915_GEM_DOMAIN_RENDER);
708 }
709
710 /**
711 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
712 */
713 static void
714 brw_update_renderbuffer_surfaces(struct brw_context *brw)
715 {
716 struct gl_context *ctx = &brw->ctx;
717 GLuint i;
718
719 /* _NEW_BUFFERS | _NEW_COLOR */
720 /* Update surfaces for drawing buffers */
721 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
722 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
723 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
724 brw->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i],
725 ctx->DrawBuffer->MaxNumLayers > 0, i);
726 } else {
727 brw->vtbl.update_null_renderbuffer_surface(brw, i);
728 }
729 }
730 } else {
731 brw->vtbl.update_null_renderbuffer_surface(brw, 0);
732 }
733 brw->state.dirty.brw |= BRW_NEW_SURFACES;
734 }
735
736 const struct brw_tracked_state brw_renderbuffer_surfaces = {
737 .dirty = {
738 .mesa = _NEW_BUFFERS |
739 _NEW_COLOR,
740 .brw = BRW_NEW_BATCH,
741 },
742 .emit = brw_update_renderbuffer_surfaces,
743 };
744
745 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
746 .dirty = {
747 .mesa = _NEW_BUFFERS,
748 .brw = BRW_NEW_BATCH,
749 },
750 .emit = brw_update_renderbuffer_surfaces,
751 };
752
753
754 static void
755 update_stage_texture_surfaces(struct brw_context *brw,
756 const struct gl_program *prog,
757 struct brw_stage_state *stage_state,
758 bool for_gather)
759 {
760 if (!prog)
761 return;
762
763 struct gl_context *ctx = &brw->ctx;
764
765 uint32_t *surf_offset = stage_state->surf_offset;
766 if (for_gather)
767 surf_offset += stage_state->prog_data->binding_table.gather_texture_start;
768 else
769 surf_offset += stage_state->prog_data->binding_table.texture_start;
770
771 unsigned num_samplers = _mesa_fls(prog->SamplersUsed);
772 for (unsigned s = 0; s < num_samplers; s++) {
773 surf_offset[s] = 0;
774
775 if (prog->SamplersUsed & (1 << s)) {
776 const unsigned unit = prog->SamplerUnits[s];
777
778 /* _NEW_TEXTURE */
779 if (ctx->Texture.Unit[unit]._Current) {
780 brw->vtbl.update_texture_surface(ctx, unit, surf_offset + s, for_gather);
781 }
782 }
783 }
784 }
785
786
787 /**
788 * Construct SURFACE_STATE objects for enabled textures.
789 */
790 static void
791 brw_update_texture_surfaces(struct brw_context *brw)
792 {
793 /* BRW_NEW_VERTEX_PROGRAM */
794 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
795
796 /* BRW_NEW_GEOMETRY_PROGRAM */
797 struct gl_program *gs = (struct gl_program *) brw->geometry_program;
798
799 /* BRW_NEW_FRAGMENT_PROGRAM */
800 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
801
802 /* _NEW_TEXTURE */
803 update_stage_texture_surfaces(brw, vs, &brw->vs.base, false);
804 update_stage_texture_surfaces(brw, gs, &brw->gs.base, false);
805 update_stage_texture_surfaces(brw, fs, &brw->wm.base, false);
806
807 /* emit alternate set of surface state for gather. this
808 * allows the surface format to be overriden for only the
809 * gather4 messages. */
810 if (brw->gen < 8) {
811 if (vs && vs->UsesGather)
812 update_stage_texture_surfaces(brw, vs, &brw->vs.base, true);
813 if (gs && gs->UsesGather)
814 update_stage_texture_surfaces(brw, gs, &brw->gs.base, true);
815 if (fs && fs->UsesGather)
816 update_stage_texture_surfaces(brw, fs, &brw->wm.base, true);
817 }
818
819 brw->state.dirty.brw |= BRW_NEW_SURFACES;
820 }
821
822 const struct brw_tracked_state brw_texture_surfaces = {
823 .dirty = {
824 .mesa = _NEW_TEXTURE,
825 .brw = BRW_NEW_BATCH |
826 BRW_NEW_FRAGMENT_PROGRAM |
827 BRW_NEW_GEOMETRY_PROGRAM |
828 BRW_NEW_TEXTURE_BUFFER |
829 BRW_NEW_VERTEX_PROGRAM,
830 },
831 .emit = brw_update_texture_surfaces,
832 };
833
834 void
835 brw_upload_ubo_surfaces(struct brw_context *brw,
836 struct gl_shader *shader,
837 struct brw_stage_state *stage_state,
838 struct brw_stage_prog_data *prog_data,
839 bool dword_pitch)
840 {
841 struct gl_context *ctx = &brw->ctx;
842
843 if (!shader)
844 return;
845
846 uint32_t *surf_offsets =
847 &stage_state->surf_offset[prog_data->binding_table.ubo_start];
848
849 for (int i = 0; i < shader->NumUniformBlocks; i++) {
850 struct gl_uniform_buffer_binding *binding;
851 struct intel_buffer_object *intel_bo;
852
853 binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
854 intel_bo = intel_buffer_object(binding->BufferObject);
855 drm_intel_bo *bo =
856 intel_bufferobj_buffer(brw, intel_bo,
857 binding->Offset,
858 binding->BufferObject->Size - binding->Offset);
859
860 /* Because behavior for referencing outside of the binding's size in the
861 * glBindBufferRange case is undefined, we can just bind the whole buffer
862 * glBindBufferBase wants and be a correct implementation.
863 */
864 brw_create_constant_surface(brw, bo, binding->Offset,
865 bo->size - binding->Offset,
866 &surf_offsets[i],
867 dword_pitch);
868 }
869
870 if (shader->NumUniformBlocks)
871 brw->state.dirty.brw |= BRW_NEW_SURFACES;
872 }
873
874 static void
875 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
876 {
877 struct gl_context *ctx = &brw->ctx;
878 /* _NEW_PROGRAM */
879 struct gl_shader_program *prog = ctx->_Shader->_CurrentFragmentProgram;
880
881 if (!prog)
882 return;
883
884 /* BRW_NEW_FS_PROG_DATA */
885 brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
886 &brw->wm.base, &brw->wm.prog_data->base, true);
887 }
888
889 const struct brw_tracked_state brw_wm_ubo_surfaces = {
890 .dirty = {
891 .mesa = _NEW_PROGRAM,
892 .brw = BRW_NEW_BATCH |
893 BRW_NEW_FS_PROG_DATA |
894 BRW_NEW_UNIFORM_BUFFER,
895 },
896 .emit = brw_upload_wm_ubo_surfaces,
897 };
898
899 void
900 brw_upload_abo_surfaces(struct brw_context *brw,
901 struct gl_shader_program *prog,
902 struct brw_stage_state *stage_state,
903 struct brw_stage_prog_data *prog_data)
904 {
905 struct gl_context *ctx = &brw->ctx;
906 uint32_t *surf_offsets =
907 &stage_state->surf_offset[prog_data->binding_table.abo_start];
908
909 for (int i = 0; i < prog->NumAtomicBuffers; i++) {
910 struct gl_atomic_buffer_binding *binding =
911 &ctx->AtomicBufferBindings[prog->AtomicBuffers[i].Binding];
912 struct intel_buffer_object *intel_bo =
913 intel_buffer_object(binding->BufferObject);
914 drm_intel_bo *bo = intel_bufferobj_buffer(
915 brw, intel_bo, binding->Offset, intel_bo->Base.Size - binding->Offset);
916
917 brw->vtbl.create_raw_surface(brw, bo, binding->Offset,
918 bo->size - binding->Offset,
919 &surf_offsets[i], true);
920 }
921
922 if (prog->NumAtomicBuffers)
923 brw->state.dirty.brw |= BRW_NEW_SURFACES;
924 }
925
926 static void
927 brw_upload_wm_abo_surfaces(struct brw_context *brw)
928 {
929 struct gl_context *ctx = &brw->ctx;
930 /* _NEW_PROGRAM */
931 struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
932
933 if (prog) {
934 /* BRW_NEW_FS_PROG_DATA */
935 brw_upload_abo_surfaces(brw, prog, &brw->wm.base,
936 &brw->wm.prog_data->base);
937 }
938 }
939
940 const struct brw_tracked_state brw_wm_abo_surfaces = {
941 .dirty = {
942 .mesa = _NEW_PROGRAM,
943 .brw = BRW_NEW_ATOMIC_BUFFER |
944 BRW_NEW_BATCH |
945 BRW_NEW_FS_PROG_DATA,
946 },
947 .emit = brw_upload_wm_abo_surfaces,
948 };
949
950 void
951 gen4_init_vtable_surface_functions(struct brw_context *brw)
952 {
953 brw->vtbl.update_texture_surface = brw_update_texture_surface;
954 brw->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
955 brw->vtbl.update_null_renderbuffer_surface =
956 brw_update_null_renderbuffer_surface;
957 brw->vtbl.emit_buffer_surface_state = gen4_emit_buffer_surface_state;
958 }