i965: Add various plumbing for cubemap arrays
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/mtypes.h"
34 #include "main/samplerobj.h"
35 #include "program/prog_parameter.h"
36
37 #include "intel_mipmap_tree.h"
38 #include "intel_batchbuffer.h"
39 #include "intel_tex.h"
40 #include "intel_fbo.h"
41 #include "intel_buffer_objects.h"
42
43 #include "brw_context.h"
44 #include "brw_state.h"
45 #include "brw_defines.h"
46 #include "brw_wm.h"
47
48 GLuint
49 translate_tex_target(GLenum target)
50 {
51 switch (target) {
52 case GL_TEXTURE_1D:
53 case GL_TEXTURE_1D_ARRAY_EXT:
54 return BRW_SURFACE_1D;
55
56 case GL_TEXTURE_RECTANGLE_NV:
57 return BRW_SURFACE_2D;
58
59 case GL_TEXTURE_2D:
60 case GL_TEXTURE_2D_ARRAY_EXT:
61 case GL_TEXTURE_EXTERNAL_OES:
62 return BRW_SURFACE_2D;
63
64 case GL_TEXTURE_3D:
65 return BRW_SURFACE_3D;
66
67 case GL_TEXTURE_CUBE_MAP:
68 case GL_TEXTURE_CUBE_MAP_ARRAY:
69 return BRW_SURFACE_CUBE;
70
71 default:
72 assert(0);
73 return 0;
74 }
75 }
76
77 struct surface_format_info {
78 bool exists;
79 int sampling;
80 int filtering;
81 int shadow_compare;
82 int chroma_key;
83 int render_target;
84 int alpha_blend;
85 int input_vb;
86 int streamed_output_vb;
87 int color_processing;
88 };
89
90 /* This macro allows us to write the table almost as it appears in the PRM,
91 * while restructuring it to turn it into the C code we want.
92 */
93 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
94 [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
95
96 #define Y 0
97 #define x 999
98 /**
99 * This is the table of support for surface (texture, renderbuffer, and vertex
100 * buffer, but not depthbuffer) formats across the various hardware generations.
101 *
102 * The table is formatted to match the documentation, except that the docs have
103 * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever". To put
104 * it in our table, here's the mapping:
105 *
106 * Y*: 45
107 * Y+: 45 (g45/gm45)
108 * Y~: 50 (gen5)
109 * Y^: 60 (gen6)
110 * Y#: 70 (gen7)
111 *
112 * The abbreviations in the header below are:
113 * smpl - Sampling Engine
114 * filt - Sampling Engine Filtering
115 * shad - Sampling Engine Shadow Map
116 * CK - Sampling Engine Chroma Key
117 * RT - Render Target
118 * AB - Alpha Blend Render Target
119 * VB - Input Vertex Buffer
120 * SO - Steamed Output Vertex Buffers (transform feedback)
121 * color - Color Processing
122 *
123 * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
124 */
125 const struct surface_format_info surface_formats[] = {
126 /* smpl filt shad CK RT AB VB SO color */
127 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
128 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
129 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
130 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
131 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
132 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64_FLOAT)
133 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
134 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
135 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
136 SF( Y, 50, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
137 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_SINT)
138 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_UINT)
139 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
140 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
141 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
142 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
143 SF( Y, Y, x, x, Y, 45, Y, x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
144 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
145 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
146 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
147 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
148 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32_FLOAT)
149 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_SINT)
150 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_UINT)
151 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
152 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
153 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32A32_FLOAT)
154 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_UNORM)
155 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SNORM)
156 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64_FLOAT)
157 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
158 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
159 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32X32_FLOAT)
160 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32X32_FLOAT)
161 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32X32_FLOAT)
162 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
163 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
164 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SSCALED)
165 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_USCALED)
166 SF( Y, Y, x, Y, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
167 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
168 /* smpl filt shad CK RT AB VB SO color */
169 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
170 SF( Y, Y, x, x, x, x, x, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
171 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
172 SF( Y, Y, x, x, x, Y, Y, x, x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
173 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
174 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
175 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
176 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
177 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
178 SF( Y, Y, x, x, Y, 45, Y, x, x, BRW_SURFACEFORMAT_R16G16_UNORM)
179 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16_SNORM)
180 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SINT)
181 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_UINT)
182 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16_FLOAT)
183 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
184 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
185 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
186 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_SINT)
187 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_UINT)
188 SF( Y, 50, Y, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32_FLOAT)
189 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
190 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
191 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_UNORM)
192 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I24X8_UNORM)
193 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L24X8_UNORM)
194 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A24X8_UNORM)
195 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32_FLOAT)
196 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32_FLOAT)
197 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32_FLOAT)
198 SF( Y, Y, x, Y, x, x, x, x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
199 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
200 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
201 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
202 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
203 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
204 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_FLOAT)
205 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_UNORM)
206 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SNORM)
207 /* smpl filt shad CK RT AB VB SO color */
208 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
209 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
210 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
211 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SSCALED)
212 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_USCALED)
213 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SSCALED)
214 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_USCALED)
215 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
216 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
217 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
218 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
219 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
220 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
221 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8G8_UNORM)
222 SF( Y, Y, x, Y, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8_SNORM)
223 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SINT)
224 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_UINT)
225 SF( Y, Y, Y, x, Y, 45, Y, x, 70, BRW_SURFACEFORMAT_R16_UNORM)
226 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16_SNORM)
227 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_SINT)
228 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_UINT)
229 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16_FLOAT)
230 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_UNORM)
231 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_UNORM)
232 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_UNORM)
233 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM)
234 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_FLOAT)
235 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_FLOAT)
236 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_FLOAT)
237 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
238 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
239 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
240 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
241 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SSCALED)
242 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_USCALED)
243 /* smpl filt shad CK RT AB VB SO color */
244 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_SSCALED)
245 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_USCALED)
246 SF( Y, Y, x, 45, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8_UNORM)
247 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8_SNORM)
248 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_SINT)
249 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_UINT)
250 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_A8_UNORM)
251 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I8_UNORM)
252 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM)
253 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_P4A4_UNORM)
254 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A4P4_UNORM)
255 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_SSCALED)
256 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_USCALED)
257 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
258 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
259 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R1_UINT)
260 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
261 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
262 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM)
263 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM)
264 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM)
265 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_UNORM)
266 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_UNORM)
267 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
268 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
269 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
270 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_MONO8)
271 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
272 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
273 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB)
274 /* smpl filt shad CK RT AB VB SO color */
275 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_FXT1)
276 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
277 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
278 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
279 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
280 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
281 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
282 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_SNORM)
283 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_SNORM)
284 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
285 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
286 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
287 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
288 };
289 #undef x
290 #undef Y
291
292 uint32_t
293 brw_format_for_mesa_format(gl_format mesa_format)
294 {
295 /* This table is ordered according to the enum ordering in formats.h. We do
296 * expect that enum to be extended without our explicit initialization
297 * staying in sync, so we initialize to 0 even though
298 * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
299 */
300 static const uint32_t table[MESA_FORMAT_COUNT] =
301 {
302 [MESA_FORMAT_RGBA8888] = 0,
303 [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
304 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
305 [MESA_FORMAT_ARGB8888_REV] = 0,
306 [MESA_FORMAT_RGBX8888] = 0,
307 [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
308 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
309 [MESA_FORMAT_XRGB8888_REV] = 0,
310 [MESA_FORMAT_RGB888] = 0,
311 [MESA_FORMAT_BGR888] = 0,
312 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
313 [MESA_FORMAT_RGB565_REV] = 0,
314 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
315 [MESA_FORMAT_ARGB4444_REV] = 0,
316 [MESA_FORMAT_RGBA5551] = 0,
317 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
318 [MESA_FORMAT_ARGB1555_REV] = 0,
319 [MESA_FORMAT_AL44] = 0,
320 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
321 [MESA_FORMAT_AL88_REV] = 0,
322 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
323 [MESA_FORMAT_AL1616_REV] = 0,
324 [MESA_FORMAT_RGB332] = 0,
325 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
326 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
327 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
328 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
329 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
330 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
331 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
332 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
333 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
334 [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
335 [MESA_FORMAT_RG88] = 0,
336 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
337 [MESA_FORMAT_RG1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
338 [MESA_FORMAT_RG1616_REV] = 0,
339 [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
340 [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT,
341 [MESA_FORMAT_Z24_S8] = 0,
342 [MESA_FORMAT_S8_Z24] = 0,
343 [MESA_FORMAT_Z16] = 0,
344 [MESA_FORMAT_X8_Z24] = 0,
345 [MESA_FORMAT_Z24_X8] = 0,
346 [MESA_FORMAT_Z32] = 0,
347 [MESA_FORMAT_S8] = 0,
348
349 [MESA_FORMAT_SRGB8] = 0,
350 [MESA_FORMAT_SRGBA8] = 0,
351 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
352 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
353 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
354 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
355 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
356 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
357 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
358
359 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
360 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
361 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
362 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
363 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
364 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
365
366 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
367 [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
368 [MESA_FORMAT_RGB_FLOAT32] = 0,
369 [MESA_FORMAT_RGB_FLOAT16] = 0,
370 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
371 [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
372 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
373 [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
374 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
375 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
376 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
377 [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
378 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
379 [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
380 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
381 [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
382
383 [MESA_FORMAT_ALPHA_UINT8] = 0,
384 [MESA_FORMAT_ALPHA_UINT16] = 0,
385 [MESA_FORMAT_ALPHA_UINT32] = 0,
386 [MESA_FORMAT_ALPHA_INT8] = 0,
387 [MESA_FORMAT_ALPHA_INT16] = 0,
388 [MESA_FORMAT_ALPHA_INT32] = 0,
389
390 [MESA_FORMAT_INTENSITY_UINT8] = 0,
391 [MESA_FORMAT_INTENSITY_UINT16] = 0,
392 [MESA_FORMAT_INTENSITY_UINT32] = 0,
393 [MESA_FORMAT_INTENSITY_INT8] = 0,
394 [MESA_FORMAT_INTENSITY_INT16] = 0,
395 [MESA_FORMAT_INTENSITY_INT32] = 0,
396
397 [MESA_FORMAT_LUMINANCE_UINT8] = 0,
398 [MESA_FORMAT_LUMINANCE_UINT16] = 0,
399 [MESA_FORMAT_LUMINANCE_UINT32] = 0,
400 [MESA_FORMAT_LUMINANCE_INT8] = 0,
401 [MESA_FORMAT_LUMINANCE_INT16] = 0,
402 [MESA_FORMAT_LUMINANCE_INT32] = 0,
403
404 [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
405 [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
406 [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
407 [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
408 [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
409 [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
410
411 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
412 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
413 [MESA_FORMAT_RGB_INT8] = 0,
414 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
415 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
416 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
417 [MESA_FORMAT_RGB_INT16] = 0,
418 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
419 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
420 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
421 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
422 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
423
424 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
425 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
426 [MESA_FORMAT_RGB_UINT8] = 0,
427 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
428 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
429 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
430 [MESA_FORMAT_RGB_UINT16] = 0,
431 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
432 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
433 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
434 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
435 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
436
437 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
438 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
439 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
440 [MESA_FORMAT_SIGNED_RGBX8888] = 0,
441 [MESA_FORMAT_SIGNED_RGBA8888] = 0,
442 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
443 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
444 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
445 [MESA_FORMAT_SIGNED_RGB_16] = 0,
446 [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
447 [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
448
449 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
450 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
451 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
452 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
453
454 [MESA_FORMAT_L_LATC1] = 0,
455 [MESA_FORMAT_SIGNED_L_LATC1] = 0,
456 [MESA_FORMAT_LA_LATC2] = 0,
457 [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
458
459 [MESA_FORMAT_SIGNED_A8] = 0,
460 [MESA_FORMAT_SIGNED_L8] = 0,
461 [MESA_FORMAT_SIGNED_AL88] = 0,
462 [MESA_FORMAT_SIGNED_I8] = 0,
463 [MESA_FORMAT_SIGNED_A16] = 0,
464 [MESA_FORMAT_SIGNED_L16] = 0,
465 [MESA_FORMAT_SIGNED_AL1616] = 0,
466 [MESA_FORMAT_SIGNED_I16] = 0,
467
468 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
469 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
470
471 [MESA_FORMAT_Z32_FLOAT] = 0,
472 [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
473 };
474 assert(mesa_format < MESA_FORMAT_COUNT);
475 return table[mesa_format];
476 }
477
478 void
479 brw_init_surface_formats(struct brw_context *brw)
480 {
481 struct intel_context *intel = &brw->intel;
482 struct gl_context *ctx = &intel->ctx;
483 int gen;
484 gl_format format;
485
486 gen = intel->gen * 10;
487 if (intel->is_g4x)
488 gen += 5;
489
490 for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
491 uint32_t texture, render;
492 const struct surface_format_info *rinfo, *tinfo;
493 bool is_integer = _mesa_is_format_integer_color(format);
494
495 render = texture = brw_format_for_mesa_format(format);
496 tinfo = &surface_formats[texture];
497
498 /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
499 * it.
500 */
501 if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
502 continue;
503
504 if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
505 ctx->TextureFormatSupported[format] = true;
506
507 /* Re-map some render target formats to make them supported when they
508 * wouldn't be using their format for texturing.
509 */
510 switch (render) {
511 /* For these formats, we just need to read/write the first
512 * channel into R, which is to say that we just treat them as
513 * GL_RED.
514 */
515 case BRW_SURFACEFORMAT_I32_FLOAT:
516 case BRW_SURFACEFORMAT_L32_FLOAT:
517 render = BRW_SURFACEFORMAT_R32_FLOAT;
518 break;
519 case BRW_SURFACEFORMAT_I16_FLOAT:
520 case BRW_SURFACEFORMAT_L16_FLOAT:
521 render = BRW_SURFACEFORMAT_R16_FLOAT;
522 break;
523 case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
524 /* XRGB is handled as ARGB because the chips in this family
525 * cannot render to XRGB targets. This means that we have to
526 * mask writes to alpha (ala glColorMask) and reconfigure the
527 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
528 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
529 * used.
530 */
531 render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
532 break;
533 }
534
535 rinfo = &surface_formats[render];
536
537 /* Note that GL_EXT_texture_integer says that blending doesn't occur for
538 * integer, so we don't need hardware support for blending on it. Other
539 * than that, GL in general requires alpha blending for render targets,
540 * even though we don't support it for some formats.
541 */
542 if (gen >= rinfo->render_target &&
543 (gen >= rinfo->alpha_blend || is_integer)) {
544 brw->render_target_format[format] = render;
545 brw->format_supported_as_render_target[format] = true;
546 }
547 }
548
549 /* We will check this table for FBO completeness, but the surface format
550 * table above only covered color rendering.
551 */
552 brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
553 brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
554 brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
555 brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
556 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
557 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
558
559 /* We remap depth formats to a supported texturing format in
560 * translate_tex_format().
561 */
562 ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
563 ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
564 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
565 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
566 ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
567
568 /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
569 * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
570 */
571 ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
572
573 /* On hardware that lacks support for ETC2, we map ETC2 to a suitable
574 * MESA_FORMAT during glCompressedTexImage2D().
575 * See intel_mipmap_tree::wraps_etc2.
576 */
577 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true;
578 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true;
579 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true;
580 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true;
581 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true;
582 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true;
583 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true;
584 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true;
585 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true;
586 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true;
587 }
588
589 bool
590 brw_render_target_supported(struct intel_context *intel,
591 struct gl_renderbuffer *rb)
592 {
593 struct brw_context *brw = brw_context(&intel->ctx);
594 gl_format format = rb->Format;
595
596 /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
597 * we would consider them renderable even though we don't have surface
598 * support for their alpha behavior and don't have the blending unit
599 * available to fake it like we do for XRGB8888. Force them to being
600 * unsupported.
601 */
602 if ((rb->_BaseFormat != GL_RGBA &&
603 rb->_BaseFormat != GL_RG &&
604 rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
605 return false;
606
607 /* Under some conditions, MSAA is not supported for formats whose width is
608 * more than 64 bits.
609 */
610 if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
611 /* Gen6: MSAA on >64 bit formats is unsupported. */
612 if (intel->gen <= 6)
613 return false;
614
615 /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
616 if (rb->NumSamples >= 8)
617 return false;
618 }
619
620 return brw->format_supported_as_render_target[format];
621 }
622
623 GLuint
624 translate_tex_format(gl_format mesa_format,
625 GLenum internal_format,
626 GLenum depth_mode,
627 GLenum srgb_decode)
628 {
629 if (srgb_decode == GL_SKIP_DECODE_EXT)
630 mesa_format = _mesa_get_srgb_format_linear(mesa_format);
631
632 switch( mesa_format ) {
633
634 case MESA_FORMAT_Z16:
635 return BRW_SURFACEFORMAT_I16_UNORM;
636
637 case MESA_FORMAT_S8_Z24:
638 case MESA_FORMAT_X8_Z24:
639 return BRW_SURFACEFORMAT_I24X8_UNORM;
640
641 case MESA_FORMAT_Z32_FLOAT:
642 return BRW_SURFACEFORMAT_I32_FLOAT;
643
644 case MESA_FORMAT_Z32_FLOAT_X24S8:
645 return BRW_SURFACEFORMAT_R32G32_FLOAT;
646
647 case MESA_FORMAT_RGBA_FLOAT32:
648 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
649 * assertion below.
650 */
651 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
652
653 default:
654 assert(brw_format_for_mesa_format(mesa_format) != 0);
655 return brw_format_for_mesa_format(mesa_format);
656 }
657 }
658
659 uint32_t
660 brw_get_surface_tiling_bits(uint32_t tiling)
661 {
662 switch (tiling) {
663 case I915_TILING_X:
664 return BRW_SURFACE_TILED;
665 case I915_TILING_Y:
666 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
667 default:
668 return 0;
669 }
670 }
671
672
673 uint32_t
674 brw_get_surface_num_multisamples(unsigned num_samples)
675 {
676 if (num_samples > 1)
677 return BRW_SURFACE_MULTISAMPLECOUNT_4;
678 else
679 return BRW_SURFACE_MULTISAMPLECOUNT_1;
680 }
681
682
683 /**
684 * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
685 * swizzling.
686 */
687 int
688 brw_get_texture_swizzle(const struct gl_texture_object *t)
689 {
690 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
691
692 int swizzles[SWIZZLE_NIL + 1] = {
693 SWIZZLE_X,
694 SWIZZLE_Y,
695 SWIZZLE_Z,
696 SWIZZLE_W,
697 SWIZZLE_ZERO,
698 SWIZZLE_ONE,
699 SWIZZLE_NIL
700 };
701
702 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
703 img->_BaseFormat == GL_DEPTH_STENCIL) {
704 switch (t->DepthMode) {
705 case GL_ALPHA:
706 swizzles[0] = SWIZZLE_ZERO;
707 swizzles[1] = SWIZZLE_ZERO;
708 swizzles[2] = SWIZZLE_ZERO;
709 swizzles[3] = SWIZZLE_X;
710 break;
711 case GL_LUMINANCE:
712 swizzles[0] = SWIZZLE_X;
713 swizzles[1] = SWIZZLE_X;
714 swizzles[2] = SWIZZLE_X;
715 swizzles[3] = SWIZZLE_ONE;
716 break;
717 case GL_INTENSITY:
718 swizzles[0] = SWIZZLE_X;
719 swizzles[1] = SWIZZLE_X;
720 swizzles[2] = SWIZZLE_X;
721 swizzles[3] = SWIZZLE_X;
722 break;
723 case GL_RED:
724 swizzles[0] = SWIZZLE_X;
725 swizzles[1] = SWIZZLE_ZERO;
726 swizzles[2] = SWIZZLE_ZERO;
727 swizzles[3] = SWIZZLE_ONE;
728 break;
729 }
730 }
731
732 return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
733 swizzles[GET_SWZ(t->_Swizzle, 1)],
734 swizzles[GET_SWZ(t->_Swizzle, 2)],
735 swizzles[GET_SWZ(t->_Swizzle, 3)]);
736 }
737
738
739 static void
740 brw_update_buffer_texture_surface(struct gl_context *ctx,
741 unsigned unit,
742 uint32_t *binding_table,
743 unsigned surf_index)
744 {
745 struct brw_context *brw = brw_context(ctx);
746 struct intel_context *intel = &brw->intel;
747 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
748 uint32_t *surf;
749 struct intel_buffer_object *intel_obj =
750 intel_buffer_object(tObj->BufferObject);
751 drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
752 gl_format format = tObj->_BufferObjectFormat;
753 uint32_t brw_format = brw_format_for_mesa_format(format);
754 int texel_size = _mesa_get_format_bytes(format);
755
756 if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
757 _mesa_problem(NULL, "bad format %s for texture buffer\n",
758 _mesa_get_format_name(format));
759 }
760
761 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
762 6 * 4, 32, &binding_table[surf_index]);
763
764 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
765 (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
766
767 if (intel->gen >= 6)
768 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
769
770 if (bo) {
771 surf[1] = bo->offset; /* reloc */
772
773 /* Emit relocation to surface contents. */
774 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
775 binding_table[surf_index] + 4,
776 bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
777
778 int w = intel_obj->Base.Size / texel_size;
779 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
780 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
781 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
782 (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
783 } else {
784 surf[1] = 0;
785 surf[2] = 0;
786 surf[3] = 0;
787 }
788
789 surf[4] = 0;
790 surf[5] = 0;
791 }
792
793 static void
794 brw_update_texture_surface(struct gl_context *ctx,
795 unsigned unit,
796 uint32_t *binding_table,
797 unsigned surf_index)
798 {
799 struct brw_context *brw = brw_context(ctx);
800 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
801 struct intel_texture_object *intelObj = intel_texture_object(tObj);
802 struct intel_mipmap_tree *mt = intelObj->mt;
803 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
804 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
805 uint32_t *surf;
806 int width, height, depth;
807
808 if (tObj->Target == GL_TEXTURE_BUFFER) {
809 brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index);
810 return;
811 }
812
813 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
814
815 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
816 6 * 4, 32, &binding_table[surf_index]);
817
818 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
819 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
820 BRW_SURFACE_CUBEFACE_ENABLES |
821 (translate_tex_format(mt->format,
822 firstImage->InternalFormat,
823 tObj->DepthMode,
824 sampler->sRGBDecode) <<
825 BRW_SURFACE_FORMAT_SHIFT));
826
827 surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
828
829 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
830 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
831 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
832
833 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
834 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
835 ((intelObj->mt->region->pitch * intelObj->mt->cpp) - 1) <<
836 BRW_SURFACE_PITCH_SHIFT);
837
838 surf[4] = 0;
839
840 surf[5] = (mt->align_h == 4) ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0;
841
842 /* Emit relocation to surface contents */
843 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
844 binding_table[surf_index] + 4,
845 intelObj->mt->region->bo,
846 intelObj->mt->offset,
847 I915_GEM_DOMAIN_SAMPLER, 0);
848 }
849
850 /**
851 * Create the constant buffer surface. Vertex/fragment shader constants will be
852 * read from this buffer with Data Port Read instructions/messages.
853 */
854 void
855 brw_create_constant_surface(struct brw_context *brw,
856 drm_intel_bo *bo,
857 uint32_t offset,
858 int width,
859 uint32_t *out_offset)
860 {
861 struct intel_context *intel = &brw->intel;
862 const GLint w = width - 1;
863 uint32_t *surf;
864
865 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
866 6 * 4, 32, out_offset);
867
868 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
869 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
870 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
871
872 if (intel->gen >= 6)
873 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
874
875 surf[1] = bo->offset + offset; /* reloc */
876
877 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
878 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
879
880 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
881 (16 - 1) << BRW_SURFACE_PITCH_SHIFT); /* ignored */
882
883 surf[4] = 0;
884 surf[5] = 0;
885
886 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
887 * bspec ("Data Cache") says that the data cache does not exist as
888 * a separate cache and is just the sampler cache.
889 */
890 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
891 *out_offset + 4,
892 bo, offset,
893 I915_GEM_DOMAIN_SAMPLER, 0);
894 }
895
896 /**
897 * Set up a binding table entry for use by stream output logic (transform
898 * feedback).
899 *
900 * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
901 */
902 void
903 brw_update_sol_surface(struct brw_context *brw,
904 struct gl_buffer_object *buffer_obj,
905 uint32_t *out_offset, unsigned num_vector_components,
906 unsigned stride_dwords, unsigned offset_dwords)
907 {
908 struct intel_context *intel = &brw->intel;
909 struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
910 drm_intel_bo *bo =
911 intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
912 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
913 out_offset);
914 uint32_t pitch_minus_1 = 4*stride_dwords - 1;
915 uint32_t offset_bytes = 4 * offset_dwords;
916 size_t size_dwords = buffer_obj->Size / 4;
917 uint32_t buffer_size_minus_1, width, height, depth, surface_format;
918
919 /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
920 * too big to map using a single binding table entry?
921 */
922 assert((size_dwords - offset_dwords) / stride_dwords
923 <= BRW_MAX_NUM_BUFFER_ENTRIES);
924
925 if (size_dwords > offset_dwords + num_vector_components) {
926 /* There is room for at least 1 transform feedback output in the buffer.
927 * Compute the number of additional transform feedback outputs the
928 * buffer has room for.
929 */
930 buffer_size_minus_1 =
931 (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
932 } else {
933 /* There isn't even room for a single transform feedback output in the
934 * buffer. We can't configure the binding table entry to prevent output
935 * entirely; we'll have to rely on the geometry shader to detect
936 * overflow. But to minimize the damage in case of a bug, set up the
937 * binding table entry to just allow a single output.
938 */
939 buffer_size_minus_1 = 0;
940 }
941 width = buffer_size_minus_1 & 0x7f;
942 height = (buffer_size_minus_1 & 0xfff80) >> 7;
943 depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
944
945 switch (num_vector_components) {
946 case 1:
947 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
948 break;
949 case 2:
950 surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
951 break;
952 case 3:
953 surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
954 break;
955 case 4:
956 surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
957 break;
958 default:
959 assert(!"Invalid vector size for transform feedback output");
960 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
961 break;
962 }
963
964 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
965 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
966 surface_format << BRW_SURFACE_FORMAT_SHIFT |
967 BRW_SURFACE_RC_READ_WRITE;
968 surf[1] = bo->offset + offset_bytes; /* reloc */
969 surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
970 height << BRW_SURFACE_HEIGHT_SHIFT);
971 surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
972 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
973 surf[4] = 0;
974 surf[5] = 0;
975
976 /* Emit relocation to surface contents. */
977 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
978 *out_offset + 4,
979 bo, offset_bytes,
980 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
981 }
982
983 /* Creates a new WM constant buffer reflecting the current fragment program's
984 * constants, if needed by the fragment program.
985 *
986 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
987 * state atom.
988 */
989 static void
990 brw_upload_wm_pull_constants(struct brw_context *brw)
991 {
992 struct gl_context *ctx = &brw->intel.ctx;
993 struct intel_context *intel = &brw->intel;
994 /* BRW_NEW_FRAGMENT_PROGRAM */
995 struct brw_fragment_program *fp =
996 (struct brw_fragment_program *) brw->fragment_program;
997 struct gl_program_parameter_list *params = fp->program.Base.Parameters;
998 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
999 const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
1000 float *constants;
1001 unsigned int i;
1002
1003 _mesa_load_state_parameters(ctx, params);
1004
1005 /* CACHE_NEW_WM_PROG */
1006 if (brw->wm.prog_data->nr_pull_params == 0) {
1007 if (brw->wm.const_bo) {
1008 drm_intel_bo_unreference(brw->wm.const_bo);
1009 brw->wm.const_bo = NULL;
1010 brw->wm.surf_offset[surf_index] = 0;
1011 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1012 }
1013 return;
1014 }
1015
1016 drm_intel_bo_unreference(brw->wm.const_bo);
1017 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
1018 size, 64);
1019
1020 /* _NEW_PROGRAM_CONSTANTS */
1021 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
1022 constants = brw->wm.const_bo->virtual;
1023 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
1024 constants[i] = *brw->wm.prog_data->pull_param[i];
1025 }
1026 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
1027
1028 intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0,
1029 params->NumParameters,
1030 &brw->wm.surf_offset[surf_index]);
1031
1032 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1033 }
1034
1035 const struct brw_tracked_state brw_wm_pull_constants = {
1036 .dirty = {
1037 .mesa = (_NEW_PROGRAM_CONSTANTS),
1038 .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
1039 .cache = CACHE_NEW_WM_PROG,
1040 },
1041 .emit = brw_upload_wm_pull_constants,
1042 };
1043
1044 static void
1045 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
1046 {
1047 /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
1048 * Notes):
1049 *
1050 * A null surface will be used in instances where an actual surface is
1051 * not bound. When a write message is generated to a null surface, no
1052 * actual surface is written to. When a read message (including any
1053 * sampling engine message) is generated to a null surface, the result
1054 * is all zeros. Note that a null surface type is allowed to be used
1055 * with all messages, even if it is not specificially indicated as
1056 * supported. All of the remaining fields in surface state are ignored
1057 * for null surfaces, with the following exceptions:
1058 *
1059 * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1060 * depth buffer’s corresponding state for all render target surfaces,
1061 * including null.
1062 *
1063 * - Surface Format must be R8G8B8A8_UNORM.
1064 */
1065 struct intel_context *intel = &brw->intel;
1066 struct gl_context *ctx = &intel->ctx;
1067 uint32_t *surf;
1068 unsigned surface_type = BRW_SURFACE_NULL;
1069 drm_intel_bo *bo = NULL;
1070 unsigned pitch_minus_1 = 0;
1071 uint32_t multisampling_state = 0;
1072
1073 /* _NEW_BUFFERS */
1074 const struct gl_framebuffer *fb = ctx->DrawBuffer;
1075
1076 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1077 6 * 4, 32, &brw->wm.surf_offset[unit]);
1078
1079 if (fb->Visual.samples > 1) {
1080 /* On Gen6, null render targets seem to cause GPU hangs when
1081 * multisampling. So work around this problem by rendering into dummy
1082 * color buffer.
1083 *
1084 * To decrease the amount of memory needed by the workaround buffer, we
1085 * set its pitch to 128 bytes (the width of a Y tile). This means that
1086 * the amount of memory needed for the workaround buffer is
1087 * (width_in_tiles + height_in_tiles - 1) tiles.
1088 *
1089 * Note that since the workaround buffer will be interpreted by the
1090 * hardware as an interleaved multisampled buffer, we need to compute
1091 * width_in_tiles and height_in_tiles by dividing the width and height
1092 * by 16 rather than the normal Y-tile size of 32.
1093 */
1094 unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1095 unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1096 unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1097 brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1098 size_needed);
1099 bo = brw->wm.multisampled_null_render_target_bo;
1100 surface_type = BRW_SURFACE_2D;
1101 pitch_minus_1 = 127;
1102 multisampling_state =
1103 brw_get_surface_num_multisamples(fb->Visual.samples);
1104 }
1105
1106 surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1107 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1108 if (intel->gen < 6) {
1109 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1110 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1111 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1112 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1113 }
1114 surf[1] = bo ? bo->offset : 0;
1115 surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1116 (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1117
1118 /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1119 * Notes):
1120 *
1121 * If Surface Type is SURFTYPE_NULL, this field must be TRUE
1122 */
1123 surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1124 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1125 surf[4] = multisampling_state;
1126 surf[5] = 0;
1127
1128 if (bo) {
1129 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1130 brw->wm.surf_offset[unit] + 4,
1131 bo, 0,
1132 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1133 }
1134 }
1135
1136 /**
1137 * Sets up a surface state structure to point at the given region.
1138 * While it is only used for the front/back buffer currently, it should be
1139 * usable for further buffers when doing ARB_draw_buffer support.
1140 */
1141 static void
1142 brw_update_renderbuffer_surface(struct brw_context *brw,
1143 struct gl_renderbuffer *rb,
1144 unsigned int unit)
1145 {
1146 struct intel_context *intel = &brw->intel;
1147 struct gl_context *ctx = &intel->ctx;
1148 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1149 struct intel_mipmap_tree *mt = irb->mt;
1150 struct intel_region *region;
1151 uint32_t *surf;
1152 uint32_t tile_x, tile_y;
1153 uint32_t format = 0;
1154 gl_format rb_format = intel_rb_format(irb);
1155
1156 if (irb->tex_image && !brw->has_surface_tile_offset) {
1157 intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1158
1159 if (tile_x != 0 || tile_y != 0) {
1160 /* Original gen4 hardware couldn't draw to a non-tile-aligned
1161 * destination in a miptree unless you actually setup your renderbuffer
1162 * as a miptree and used the fragile lod/array_index/etc. controls to
1163 * select the image. So, instead, we just make a new single-level
1164 * miptree and render into that.
1165 */
1166 intel_renderbuffer_move_to_temp(intel, irb);
1167 mt = irb->mt;
1168 }
1169 }
1170
1171 region = irb->mt->region;
1172
1173 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1174 6 * 4, 32, &brw->wm.surf_offset[unit]);
1175
1176 switch (rb_format) {
1177 case MESA_FORMAT_SARGB8:
1178 /* _NEW_BUFFERS
1179 *
1180 * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1181 * blend/update as sRGB.
1182 */
1183 if (ctx->Color.sRGBEnabled)
1184 format = brw_format_for_mesa_format(rb_format);
1185 else
1186 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1187 break;
1188 default:
1189 format = brw->render_target_format[rb_format];
1190 if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1191 _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1192 __FUNCTION__, _mesa_get_format_name(rb_format));
1193 }
1194 break;
1195 }
1196
1197 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1198 format << BRW_SURFACE_FORMAT_SHIFT);
1199
1200 /* reloc */
1201 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1202 region->bo->offset);
1203
1204 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1205 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1206
1207 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1208 ((region->pitch * region->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT);
1209
1210 surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1211
1212 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1213 /* Note that the low bits of these fields are missing, so
1214 * there's the possibility of getting in trouble.
1215 */
1216 assert(tile_x % 4 == 0);
1217 assert(tile_y % 2 == 0);
1218 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1219 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1220 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1221
1222 if (intel->gen < 6) {
1223 /* _NEW_COLOR */
1224 if (!ctx->Color.ColorLogicOpEnabled &&
1225 (ctx->Color.BlendEnabled & (1 << unit)))
1226 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1227
1228 if (!ctx->Color.ColorMask[unit][0])
1229 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1230 if (!ctx->Color.ColorMask[unit][1])
1231 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1232 if (!ctx->Color.ColorMask[unit][2])
1233 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1234
1235 /* As mentioned above, disable writes to the alpha component when the
1236 * renderbuffer is XRGB.
1237 */
1238 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1239 !ctx->Color.ColorMask[unit][3]) {
1240 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1241 }
1242 }
1243
1244 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1245 brw->wm.surf_offset[unit] + 4,
1246 region->bo,
1247 surf[1] - region->bo->offset,
1248 I915_GEM_DOMAIN_RENDER,
1249 I915_GEM_DOMAIN_RENDER);
1250 }
1251
1252 /**
1253 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1254 */
1255 static void
1256 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1257 {
1258 struct intel_context *intel = &brw->intel;
1259 struct gl_context *ctx = &brw->intel.ctx;
1260 GLuint i;
1261
1262 /* _NEW_BUFFERS | _NEW_COLOR */
1263 /* Update surfaces for drawing buffers */
1264 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1265 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1266 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1267 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1268 } else {
1269 intel->vtbl.update_null_renderbuffer_surface(brw, i);
1270 }
1271 }
1272 } else {
1273 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1274 }
1275 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1276 }
1277
1278 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1279 .dirty = {
1280 .mesa = (_NEW_COLOR |
1281 _NEW_BUFFERS),
1282 .brw = BRW_NEW_BATCH,
1283 .cache = 0
1284 },
1285 .emit = brw_update_renderbuffer_surfaces,
1286 };
1287
1288 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1289 .dirty = {
1290 .mesa = _NEW_BUFFERS,
1291 .brw = BRW_NEW_BATCH,
1292 .cache = 0
1293 },
1294 .emit = brw_update_renderbuffer_surfaces,
1295 };
1296
1297 /**
1298 * Construct SURFACE_STATE objects for enabled textures.
1299 */
1300 static void
1301 brw_update_texture_surfaces(struct brw_context *brw)
1302 {
1303 struct intel_context *intel = &brw->intel;
1304 struct gl_context *ctx = &intel->ctx;
1305
1306 /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM:
1307 * Unfortunately, we're stuck using the gl_program structs until the
1308 * ARB_fragment_program front-end gets converted to GLSL IR. These
1309 * have the downside that SamplerUnits is split and only contains the
1310 * mappings for samplers active in that stage.
1311 */
1312 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
1313 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
1314
1315 unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed);
1316
1317 for (unsigned s = 0; s < num_samplers; s++) {
1318 brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0;
1319 brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0;
1320
1321 if (vs->SamplersUsed & (1 << s)) {
1322 const unsigned unit = vs->SamplerUnits[s];
1323
1324 /* _NEW_TEXTURE */
1325 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1326 intel->vtbl.update_texture_surface(ctx, unit,
1327 brw->vs.surf_offset,
1328 SURF_INDEX_VS_TEXTURE(s));
1329 }
1330 }
1331
1332 if (fs->SamplersUsed & (1 << s)) {
1333 const unsigned unit = fs->SamplerUnits[s];
1334
1335 /* _NEW_TEXTURE */
1336 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1337 intel->vtbl.update_texture_surface(ctx, unit,
1338 brw->wm.surf_offset,
1339 SURF_INDEX_TEXTURE(s));
1340 }
1341 }
1342 }
1343
1344 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1345 }
1346
1347 const struct brw_tracked_state brw_texture_surfaces = {
1348 .dirty = {
1349 .mesa = _NEW_TEXTURE,
1350 .brw = BRW_NEW_BATCH |
1351 BRW_NEW_VERTEX_PROGRAM |
1352 BRW_NEW_FRAGMENT_PROGRAM,
1353 .cache = 0
1354 },
1355 .emit = brw_update_texture_surfaces,
1356 };
1357
1358 void
1359 brw_upload_ubo_surfaces(struct brw_context *brw,
1360 struct gl_shader *shader,
1361 uint32_t *surf_offsets)
1362 {
1363 struct gl_context *ctx = &brw->intel.ctx;
1364 struct intel_context *intel = &brw->intel;
1365
1366 if (!shader)
1367 return;
1368
1369 for (int i = 0; i < shader->NumUniformBlocks; i++) {
1370 struct gl_uniform_buffer_binding *binding;
1371 struct intel_buffer_object *intel_bo;
1372
1373 binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
1374 intel_bo = intel_buffer_object(binding->BufferObject);
1375 drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ);
1376
1377 /* Because behavior for referencing outside of the binding's size in the
1378 * glBindBufferRange case is undefined, we can just bind the whole buffer
1379 * glBindBufferBase wants and be a correct implementation.
1380 */
1381 int size = bo->size - binding->Offset;
1382 size = ALIGN(size, 16) / 16; /* The interface takes a number of vec4s */
1383
1384 intel->vtbl.create_constant_surface(brw, bo, binding->Offset,
1385 size,
1386 &surf_offsets[i]);
1387 }
1388
1389 if (shader->NumUniformBlocks)
1390 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1391 }
1392
1393 static void
1394 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
1395 {
1396 struct gl_context *ctx = &brw->intel.ctx;
1397 /* _NEW_PROGRAM */
1398 struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
1399
1400 if (!prog)
1401 return;
1402
1403 brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1404 &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]);
1405 }
1406
1407 const struct brw_tracked_state brw_wm_ubo_surfaces = {
1408 .dirty = {
1409 .mesa = (_NEW_PROGRAM |
1410 _NEW_BUFFER_OBJECT),
1411 .brw = BRW_NEW_BATCH,
1412 .cache = 0,
1413 },
1414 .emit = brw_upload_wm_ubo_surfaces,
1415 };
1416
1417 /**
1418 * Constructs the binding table for the WM surface state, which maps unit
1419 * numbers to surface state objects.
1420 */
1421 static void
1422 brw_upload_wm_binding_table(struct brw_context *brw)
1423 {
1424 struct intel_context *intel = &brw->intel;
1425 uint32_t *bind;
1426 int i;
1427
1428 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1429 intel->vtbl.create_constant_surface(brw, brw->shader_time.bo, 0,
1430 brw->shader_time.bo->size,
1431 &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]);
1432 }
1433
1434 /* Might want to calculate nr_surfaces first, to avoid taking up so much
1435 * space for the binding table.
1436 */
1437 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1438 sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1439 32, &brw->wm.bind_bo_offset);
1440
1441 /* BRW_NEW_SURFACES */
1442 for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1443 bind[i] = brw->wm.surf_offset[i];
1444 }
1445
1446 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1447 }
1448
1449 const struct brw_tracked_state brw_wm_binding_table = {
1450 .dirty = {
1451 .mesa = 0,
1452 .brw = (BRW_NEW_BATCH |
1453 BRW_NEW_SURFACES),
1454 .cache = 0
1455 },
1456 .emit = brw_upload_wm_binding_table,
1457 };
1458
1459 void
1460 gen4_init_vtable_surface_functions(struct brw_context *brw)
1461 {
1462 struct intel_context *intel = &brw->intel;
1463
1464 intel->vtbl.update_texture_surface = brw_update_texture_surface;
1465 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1466 intel->vtbl.update_null_renderbuffer_surface =
1467 brw_update_null_renderbuffer_surface;
1468 intel->vtbl.create_constant_surface = brw_create_constant_surface;
1469 }