i965: Make the fragment shader pull constants index by dwords, not vec4s.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/context.h"
34 #include "main/mtypes.h"
35 #include "main/samplerobj.h"
36 #include "program/prog_parameter.h"
37
38 #include "intel_mipmap_tree.h"
39 #include "intel_batchbuffer.h"
40 #include "intel_tex.h"
41 #include "intel_fbo.h"
42 #include "intel_buffer_objects.h"
43
44 #include "brw_context.h"
45 #include "brw_state.h"
46 #include "brw_defines.h"
47 #include "brw_wm.h"
48
49 GLuint
50 translate_tex_target(GLenum target)
51 {
52 switch (target) {
53 case GL_TEXTURE_1D:
54 case GL_TEXTURE_1D_ARRAY_EXT:
55 return BRW_SURFACE_1D;
56
57 case GL_TEXTURE_RECTANGLE_NV:
58 return BRW_SURFACE_2D;
59
60 case GL_TEXTURE_2D:
61 case GL_TEXTURE_2D_ARRAY_EXT:
62 case GL_TEXTURE_EXTERNAL_OES:
63 case GL_TEXTURE_2D_MULTISAMPLE:
64 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
65 return BRW_SURFACE_2D;
66
67 case GL_TEXTURE_3D:
68 return BRW_SURFACE_3D;
69
70 case GL_TEXTURE_CUBE_MAP:
71 case GL_TEXTURE_CUBE_MAP_ARRAY:
72 return BRW_SURFACE_CUBE;
73
74 default:
75 assert(0);
76 return 0;
77 }
78 }
79
80 struct surface_format_info {
81 bool exists;
82 int sampling;
83 int filtering;
84 int shadow_compare;
85 int chroma_key;
86 int render_target;
87 int alpha_blend;
88 int input_vb;
89 int streamed_output_vb;
90 int color_processing;
91 };
92
93 /* This macro allows us to write the table almost as it appears in the PRM,
94 * while restructuring it to turn it into the C code we want.
95 */
96 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
97 [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
98
99 #define Y 0
100 #define x 999
101 /**
102 * This is the table of support for surface (texture, renderbuffer, and vertex
103 * buffer, but not depthbuffer) formats across the various hardware generations.
104 *
105 * The table is formatted to match the documentation, except that the docs have
106 * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever". To put
107 * it in our table, here's the mapping:
108 *
109 * Y*: 45
110 * Y+: 45 (g45/gm45)
111 * Y~: 50 (gen5)
112 * Y^: 60 (gen6)
113 * Y#: 70 (gen7)
114 *
115 * The abbreviations in the header below are:
116 * smpl - Sampling Engine
117 * filt - Sampling Engine Filtering
118 * shad - Sampling Engine Shadow Map
119 * CK - Sampling Engine Chroma Key
120 * RT - Render Target
121 * AB - Alpha Blend Render Target
122 * VB - Input Vertex Buffer
123 * SO - Steamed Output Vertex Buffers (transform feedback)
124 * color - Color Processing
125 *
126 * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
127 */
128 const struct surface_format_info surface_formats[] = {
129 /* smpl filt shad CK RT AB VB SO color */
130 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
131 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
132 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
133 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
134 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
135 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64_FLOAT)
136 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
137 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
138 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
139 SF( Y, 50, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
140 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_SINT)
141 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_UINT)
142 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
143 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
144 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
145 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
146 SF( Y, Y, x, x, Y, 45, Y, x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
147 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
148 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
149 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
150 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
151 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32_FLOAT)
152 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_SINT)
153 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_UINT)
154 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
155 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
156 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32A32_FLOAT)
157 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_UNORM)
158 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SNORM)
159 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64_FLOAT)
160 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
161 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
162 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32X32_FLOAT)
163 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32X32_FLOAT)
164 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32X32_FLOAT)
165 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
166 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
167 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SSCALED)
168 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_USCALED)
169 SF( Y, Y, x, Y, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
170 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
171 /* smpl filt shad CK RT AB VB SO color */
172 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
173 SF( Y, Y, x, x, x, x, x, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
174 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
175 SF( Y, Y, x, x, x, Y, Y, x, x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
176 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
177 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
178 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
179 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
180 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
181 SF( Y, Y, x, x, Y, 45, Y, x, x, BRW_SURFACEFORMAT_R16G16_UNORM)
182 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16_SNORM)
183 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SINT)
184 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_UINT)
185 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16_FLOAT)
186 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
187 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
188 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
189 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_SINT)
190 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_UINT)
191 SF( Y, 50, Y, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32_FLOAT)
192 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
193 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
194 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_UNORM)
195 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I24X8_UNORM)
196 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L24X8_UNORM)
197 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A24X8_UNORM)
198 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32_FLOAT)
199 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32_FLOAT)
200 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32_FLOAT)
201 SF( Y, Y, x, Y, x, x, x, x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
202 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
203 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
204 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
205 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
206 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
207 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_FLOAT)
208 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_UNORM)
209 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SNORM)
210 /* smpl filt shad CK RT AB VB SO color */
211 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
212 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
213 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
214 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SSCALED)
215 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_USCALED)
216 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SSCALED)
217 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_USCALED)
218 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
219 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
220 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
221 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
222 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
223 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
224 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8G8_UNORM)
225 SF( Y, Y, x, Y, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8_SNORM)
226 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SINT)
227 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_UINT)
228 SF( Y, Y, Y, x, Y, 45, Y, x, 70, BRW_SURFACEFORMAT_R16_UNORM)
229 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16_SNORM)
230 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_SINT)
231 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_UINT)
232 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16_FLOAT)
233 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_UNORM)
234 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_UNORM)
235 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_UNORM)
236 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM)
237 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_FLOAT)
238 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_FLOAT)
239 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_FLOAT)
240 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
241 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
242 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
243 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
244 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SSCALED)
245 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_USCALED)
246 /* smpl filt shad CK RT AB VB SO color */
247 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_SSCALED)
248 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_USCALED)
249 SF( Y, Y, x, 45, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8_UNORM)
250 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8_SNORM)
251 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_SINT)
252 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_UINT)
253 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_A8_UNORM)
254 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I8_UNORM)
255 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM)
256 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_P4A4_UNORM)
257 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A4P4_UNORM)
258 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_SSCALED)
259 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_USCALED)
260 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
261 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
262 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R1_UINT)
263 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
264 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
265 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM)
266 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM)
267 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM)
268 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_UNORM)
269 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_UNORM)
270 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
271 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
272 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
273 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_MONO8)
274 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
275 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
276 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB)
277 /* smpl filt shad CK RT AB VB SO color */
278 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_FXT1)
279 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
280 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
281 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
282 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
283 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
284 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
285 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_SNORM)
286 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_SNORM)
287 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
288 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
289 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
290 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
291 };
292 #undef x
293 #undef Y
294
295 uint32_t
296 brw_format_for_mesa_format(gl_format mesa_format)
297 {
298 /* This table is ordered according to the enum ordering in formats.h. We do
299 * expect that enum to be extended without our explicit initialization
300 * staying in sync, so we initialize to 0 even though
301 * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
302 */
303 static const uint32_t table[MESA_FORMAT_COUNT] =
304 {
305 [MESA_FORMAT_RGBA8888] = 0,
306 [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
307 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
308 [MESA_FORMAT_ARGB8888_REV] = 0,
309 [MESA_FORMAT_RGBX8888] = 0,
310 [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
311 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
312 [MESA_FORMAT_XRGB8888_REV] = 0,
313 [MESA_FORMAT_RGB888] = 0,
314 [MESA_FORMAT_BGR888] = 0,
315 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
316 [MESA_FORMAT_RGB565_REV] = 0,
317 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
318 [MESA_FORMAT_ARGB4444_REV] = 0,
319 [MESA_FORMAT_RGBA5551] = 0,
320 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
321 [MESA_FORMAT_ARGB1555_REV] = 0,
322 [MESA_FORMAT_AL44] = 0,
323 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
324 [MESA_FORMAT_AL88_REV] = 0,
325 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
326 [MESA_FORMAT_AL1616_REV] = 0,
327 [MESA_FORMAT_RGB332] = 0,
328 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
329 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
330 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
331 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
332 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
333 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
334 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
335 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
336 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
337 [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
338 [MESA_FORMAT_RG88] = 0,
339 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
340 [MESA_FORMAT_GR1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
341 [MESA_FORMAT_RG1616] = 0,
342 [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
343 [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT,
344 [MESA_FORMAT_Z24_S8] = 0,
345 [MESA_FORMAT_S8_Z24] = 0,
346 [MESA_FORMAT_Z16] = 0,
347 [MESA_FORMAT_X8_Z24] = 0,
348 [MESA_FORMAT_Z24_X8] = 0,
349 [MESA_FORMAT_Z32] = 0,
350 [MESA_FORMAT_S8] = 0,
351
352 [MESA_FORMAT_SRGB8] = 0,
353 [MESA_FORMAT_SRGBA8] = 0,
354 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
355 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
356 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
357 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
358 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
359 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
360 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
361
362 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
363 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
364 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
365 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
366 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
367 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
368
369 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
370 [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
371 [MESA_FORMAT_RGB_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32_FLOAT,
372 [MESA_FORMAT_RGB_FLOAT16] = 0,
373 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
374 [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
375 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
376 [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
377 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
378 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
379 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
380 [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
381 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
382 [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
383 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
384 [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
385
386 [MESA_FORMAT_ALPHA_UINT8] = 0,
387 [MESA_FORMAT_ALPHA_UINT16] = 0,
388 [MESA_FORMAT_ALPHA_UINT32] = 0,
389 [MESA_FORMAT_ALPHA_INT8] = 0,
390 [MESA_FORMAT_ALPHA_INT16] = 0,
391 [MESA_FORMAT_ALPHA_INT32] = 0,
392
393 [MESA_FORMAT_INTENSITY_UINT8] = 0,
394 [MESA_FORMAT_INTENSITY_UINT16] = 0,
395 [MESA_FORMAT_INTENSITY_UINT32] = 0,
396 [MESA_FORMAT_INTENSITY_INT8] = 0,
397 [MESA_FORMAT_INTENSITY_INT16] = 0,
398 [MESA_FORMAT_INTENSITY_INT32] = 0,
399
400 [MESA_FORMAT_LUMINANCE_UINT8] = 0,
401 [MESA_FORMAT_LUMINANCE_UINT16] = 0,
402 [MESA_FORMAT_LUMINANCE_UINT32] = 0,
403 [MESA_FORMAT_LUMINANCE_INT8] = 0,
404 [MESA_FORMAT_LUMINANCE_INT16] = 0,
405 [MESA_FORMAT_LUMINANCE_INT32] = 0,
406
407 [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
408 [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
409 [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
410 [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
411 [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
412 [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
413
414 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
415 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
416 [MESA_FORMAT_RGB_INT8] = 0,
417 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
418 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
419 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
420 [MESA_FORMAT_RGB_INT16] = 0,
421 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
422 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
423 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
424 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
425 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
426
427 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
428 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
429 [MESA_FORMAT_RGB_UINT8] = 0,
430 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
431 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
432 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
433 [MESA_FORMAT_RGB_UINT16] = 0,
434 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
435 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
436 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
437 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
438 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
439
440 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
441 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
442 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
443 [MESA_FORMAT_SIGNED_RGBX8888] = 0,
444 [MESA_FORMAT_SIGNED_RGBA8888] = 0,
445 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
446 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
447 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
448 [MESA_FORMAT_SIGNED_RGB_16] = 0,
449 [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
450 [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
451
452 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
453 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
454 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
455 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
456
457 [MESA_FORMAT_L_LATC1] = 0,
458 [MESA_FORMAT_SIGNED_L_LATC1] = 0,
459 [MESA_FORMAT_LA_LATC2] = 0,
460 [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
461
462 [MESA_FORMAT_SIGNED_A8] = 0,
463 [MESA_FORMAT_SIGNED_L8] = 0,
464 [MESA_FORMAT_SIGNED_AL88] = 0,
465 [MESA_FORMAT_SIGNED_I8] = 0,
466 [MESA_FORMAT_SIGNED_A16] = 0,
467 [MESA_FORMAT_SIGNED_L16] = 0,
468 [MESA_FORMAT_SIGNED_AL1616] = 0,
469 [MESA_FORMAT_SIGNED_I16] = 0,
470
471 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
472 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
473
474 [MESA_FORMAT_Z32_FLOAT] = 0,
475 [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
476 };
477 assert(mesa_format < MESA_FORMAT_COUNT);
478 return table[mesa_format];
479 }
480
481 void
482 brw_init_surface_formats(struct brw_context *brw)
483 {
484 struct intel_context *intel = &brw->intel;
485 struct gl_context *ctx = &intel->ctx;
486 int gen;
487 gl_format format;
488
489 gen = intel->gen * 10;
490 if (intel->is_g4x)
491 gen += 5;
492
493 for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
494 uint32_t texture, render;
495 const struct surface_format_info *rinfo, *tinfo;
496 bool is_integer = _mesa_is_format_integer_color(format);
497
498 render = texture = brw_format_for_mesa_format(format);
499 tinfo = &surface_formats[texture];
500
501 /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
502 * it.
503 */
504 if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
505 continue;
506
507 if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
508 ctx->TextureFormatSupported[format] = true;
509
510 /* Re-map some render target formats to make them supported when they
511 * wouldn't be using their format for texturing.
512 */
513 switch (render) {
514 /* For these formats, we just need to read/write the first
515 * channel into R, which is to say that we just treat them as
516 * GL_RED.
517 */
518 case BRW_SURFACEFORMAT_I32_FLOAT:
519 case BRW_SURFACEFORMAT_L32_FLOAT:
520 render = BRW_SURFACEFORMAT_R32_FLOAT;
521 break;
522 case BRW_SURFACEFORMAT_I16_FLOAT:
523 case BRW_SURFACEFORMAT_L16_FLOAT:
524 render = BRW_SURFACEFORMAT_R16_FLOAT;
525 break;
526 case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
527 /* XRGB is handled as ARGB because the chips in this family
528 * cannot render to XRGB targets. This means that we have to
529 * mask writes to alpha (ala glColorMask) and reconfigure the
530 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
531 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
532 * used.
533 */
534 render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
535 break;
536 }
537
538 rinfo = &surface_formats[render];
539
540 /* Note that GL_EXT_texture_integer says that blending doesn't occur for
541 * integer, so we don't need hardware support for blending on it. Other
542 * than that, GL in general requires alpha blending for render targets,
543 * even though we don't support it for some formats.
544 */
545 if (gen >= rinfo->render_target &&
546 (gen >= rinfo->alpha_blend || is_integer)) {
547 brw->render_target_format[format] = render;
548 brw->format_supported_as_render_target[format] = true;
549 }
550 }
551
552 /* We will check this table for FBO completeness, but the surface format
553 * table above only covered color rendering.
554 */
555 brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
556 brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
557 brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
558 brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
559 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
560 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
561
562 /* We remap depth formats to a supported texturing format in
563 * translate_tex_format().
564 */
565 ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
566 ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
567 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
568 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
569 ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
570
571 /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
572 * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
573 */
574 ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
575
576 /* On hardware that lacks support for ETC2, we map ETC2 to a suitable
577 * MESA_FORMAT during glCompressedTexImage2D().
578 * See intel_mipmap_tree::wraps_etc2.
579 */
580 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true;
581 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true;
582 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true;
583 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true;
584 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true;
585 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true;
586 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true;
587 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true;
588 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true;
589 ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true;
590 }
591
592 bool
593 brw_render_target_supported(struct intel_context *intel,
594 struct gl_renderbuffer *rb)
595 {
596 struct brw_context *brw = brw_context(&intel->ctx);
597 gl_format format = rb->Format;
598
599 /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
600 * we would consider them renderable even though we don't have surface
601 * support for their alpha behavior and don't have the blending unit
602 * available to fake it like we do for XRGB8888. Force them to being
603 * unsupported.
604 */
605 if ((rb->_BaseFormat != GL_RGBA &&
606 rb->_BaseFormat != GL_RG &&
607 rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
608 return false;
609
610 /* Under some conditions, MSAA is not supported for formats whose width is
611 * more than 64 bits.
612 */
613 if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
614 /* Gen6: MSAA on >64 bit formats is unsupported. */
615 if (intel->gen <= 6)
616 return false;
617
618 /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
619 if (rb->NumSamples >= 8)
620 return false;
621 }
622
623 return brw->format_supported_as_render_target[format];
624 }
625
626 GLuint
627 translate_tex_format(struct intel_context *intel,
628 gl_format mesa_format,
629 GLenum internal_format,
630 GLenum depth_mode,
631 GLenum srgb_decode)
632 {
633 struct gl_context *ctx = &intel->ctx;
634 if (srgb_decode == GL_SKIP_DECODE_EXT)
635 mesa_format = _mesa_get_srgb_format_linear(mesa_format);
636
637 switch( mesa_format ) {
638
639 case MESA_FORMAT_Z16:
640 return BRW_SURFACEFORMAT_I16_UNORM;
641
642 case MESA_FORMAT_S8_Z24:
643 case MESA_FORMAT_X8_Z24:
644 return BRW_SURFACEFORMAT_I24X8_UNORM;
645
646 case MESA_FORMAT_Z32_FLOAT:
647 return BRW_SURFACEFORMAT_I32_FLOAT;
648
649 case MESA_FORMAT_Z32_FLOAT_X24S8:
650 return BRW_SURFACEFORMAT_R32G32_FLOAT;
651
652 case MESA_FORMAT_RGBA_FLOAT32:
653 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
654 * assertion below.
655 */
656 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
657
658 case MESA_FORMAT_SRGB_DXT1:
659 if (intel->gen == 4 && !intel->is_g4x) {
660 /* Work around missing SRGB DXT1 support on original gen4 by just
661 * skipping SRGB decode. It's not worth not supporting sRGB in
662 * general to prevent this.
663 */
664 WARN_ONCE(true, "Demoting sRGB DXT1 texture to non-sRGB\n");
665 mesa_format = MESA_FORMAT_RGB_DXT1;
666 }
667 return brw_format_for_mesa_format(mesa_format);
668
669 default:
670 assert(brw_format_for_mesa_format(mesa_format) != 0);
671 return brw_format_for_mesa_format(mesa_format);
672 }
673 }
674
675 uint32_t
676 brw_get_surface_tiling_bits(uint32_t tiling)
677 {
678 switch (tiling) {
679 case I915_TILING_X:
680 return BRW_SURFACE_TILED;
681 case I915_TILING_Y:
682 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
683 default:
684 return 0;
685 }
686 }
687
688
689 uint32_t
690 brw_get_surface_num_multisamples(unsigned num_samples)
691 {
692 if (num_samples > 1)
693 return BRW_SURFACE_MULTISAMPLECOUNT_4;
694 else
695 return BRW_SURFACE_MULTISAMPLECOUNT_1;
696 }
697
698
699 /**
700 * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
701 * swizzling.
702 */
703 int
704 brw_get_texture_swizzle(const struct gl_context *ctx,
705 const struct gl_texture_object *t)
706 {
707 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
708
709 int swizzles[SWIZZLE_NIL + 1] = {
710 SWIZZLE_X,
711 SWIZZLE_Y,
712 SWIZZLE_Z,
713 SWIZZLE_W,
714 SWIZZLE_ZERO,
715 SWIZZLE_ONE,
716 SWIZZLE_NIL
717 };
718
719 if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
720 img->_BaseFormat == GL_DEPTH_STENCIL) {
721 GLenum depth_mode = t->DepthMode;
722
723 /* In ES 3.0, DEPTH_TEXTURE_MODE is expected to be GL_RED for textures
724 * with depth component data specified with a sized internal format.
725 * Otherwise, it's left at the old default, GL_LUMINANCE.
726 */
727 if (_mesa_is_gles3(ctx) &&
728 img->InternalFormat != GL_DEPTH_COMPONENT &&
729 img->InternalFormat != GL_DEPTH_STENCIL) {
730 depth_mode = GL_RED;
731 }
732
733 switch (depth_mode) {
734 case GL_ALPHA:
735 swizzles[0] = SWIZZLE_ZERO;
736 swizzles[1] = SWIZZLE_ZERO;
737 swizzles[2] = SWIZZLE_ZERO;
738 swizzles[3] = SWIZZLE_X;
739 break;
740 case GL_LUMINANCE:
741 swizzles[0] = SWIZZLE_X;
742 swizzles[1] = SWIZZLE_X;
743 swizzles[2] = SWIZZLE_X;
744 swizzles[3] = SWIZZLE_ONE;
745 break;
746 case GL_INTENSITY:
747 swizzles[0] = SWIZZLE_X;
748 swizzles[1] = SWIZZLE_X;
749 swizzles[2] = SWIZZLE_X;
750 swizzles[3] = SWIZZLE_X;
751 break;
752 case GL_RED:
753 swizzles[0] = SWIZZLE_X;
754 swizzles[1] = SWIZZLE_ZERO;
755 swizzles[2] = SWIZZLE_ZERO;
756 swizzles[3] = SWIZZLE_ONE;
757 break;
758 }
759 }
760
761 /* If the texture's format is alpha-only, force R, G, and B to
762 * 0.0. Similarly, if the texture's format has no alpha channel,
763 * force the alpha value read to 1.0. This allows for the
764 * implementation to use an RGBA texture for any of these formats
765 * without leaking any unexpected values.
766 */
767 switch (img->_BaseFormat) {
768 case GL_ALPHA:
769 swizzles[0] = SWIZZLE_ZERO;
770 swizzles[1] = SWIZZLE_ZERO;
771 swizzles[2] = SWIZZLE_ZERO;
772 break;
773 case GL_RED:
774 case GL_RG:
775 case GL_RGB:
776 if (_mesa_get_format_bits(img->TexFormat, GL_ALPHA_BITS) > 0)
777 swizzles[3] = SWIZZLE_ONE;
778 break;
779 }
780
781 return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
782 swizzles[GET_SWZ(t->_Swizzle, 1)],
783 swizzles[GET_SWZ(t->_Swizzle, 2)],
784 swizzles[GET_SWZ(t->_Swizzle, 3)]);
785 }
786
787
788 static void
789 brw_update_buffer_texture_surface(struct gl_context *ctx,
790 unsigned unit,
791 uint32_t *binding_table,
792 unsigned surf_index)
793 {
794 struct brw_context *brw = brw_context(ctx);
795 struct intel_context *intel = &brw->intel;
796 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
797 uint32_t *surf;
798 struct intel_buffer_object *intel_obj =
799 intel_buffer_object(tObj->BufferObject);
800 drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
801 gl_format format = tObj->_BufferObjectFormat;
802 uint32_t brw_format = brw_format_for_mesa_format(format);
803 int texel_size = _mesa_get_format_bytes(format);
804
805 if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
806 _mesa_problem(NULL, "bad format %s for texture buffer\n",
807 _mesa_get_format_name(format));
808 }
809
810 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
811 6 * 4, 32, &binding_table[surf_index]);
812
813 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
814 (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
815
816 if (intel->gen >= 6)
817 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
818
819 if (bo) {
820 surf[1] = bo->offset; /* reloc */
821
822 /* Emit relocation to surface contents. */
823 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
824 binding_table[surf_index] + 4,
825 bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
826
827 int w = intel_obj->Base.Size / texel_size;
828 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
829 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
830 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
831 (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
832 } else {
833 surf[1] = 0;
834 surf[2] = 0;
835 surf[3] = 0;
836 }
837
838 surf[4] = 0;
839 surf[5] = 0;
840 }
841
842 static void
843 brw_update_texture_surface(struct gl_context *ctx,
844 unsigned unit,
845 uint32_t *binding_table,
846 unsigned surf_index)
847 {
848 struct intel_context *intel = intel_context(ctx);
849 struct brw_context *brw = brw_context(ctx);
850 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
851 struct intel_texture_object *intelObj = intel_texture_object(tObj);
852 struct intel_mipmap_tree *mt = intelObj->mt;
853 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
854 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
855 uint32_t *surf;
856 int width, height, depth;
857 uint32_t tile_x, tile_y;
858
859 if (tObj->Target == GL_TEXTURE_BUFFER) {
860 brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index);
861 return;
862 }
863
864 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
865
866 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
867 6 * 4, 32, &binding_table[surf_index]);
868
869 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
870 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
871 BRW_SURFACE_CUBEFACE_ENABLES |
872 (translate_tex_format(intel,
873 mt->format,
874 firstImage->InternalFormat,
875 tObj->DepthMode,
876 sampler->sRGBDecode) <<
877 BRW_SURFACE_FORMAT_SHIFT));
878
879 surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
880
881 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
882 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
883 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
884
885 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
886 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
887 (intelObj->mt->region->pitch - 1) <<
888 BRW_SURFACE_PITCH_SHIFT);
889
890 surf[4] = brw_get_surface_num_multisamples(intelObj->mt->num_samples);
891
892 intel_miptree_get_tile_offsets(intelObj->mt, firstImage->Level, 0,
893 &tile_x, &tile_y);
894 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
895 /* Note that the low bits of these fields are missing, so
896 * there's the possibility of getting in trouble.
897 */
898 assert(tile_x % 4 == 0);
899 assert(tile_y % 2 == 0);
900 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
901 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
902 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
903
904 /* Emit relocation to surface contents */
905 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
906 binding_table[surf_index] + 4,
907 intelObj->mt->region->bo,
908 intelObj->mt->offset,
909 I915_GEM_DOMAIN_SAMPLER, 0);
910 }
911
912 /**
913 * Create the constant buffer surface. Vertex/fragment shader constants will be
914 * read from this buffer with Data Port Read instructions/messages.
915 */
916 static void
917 brw_create_constant_surface(struct brw_context *brw,
918 drm_intel_bo *bo,
919 uint32_t offset,
920 uint32_t size,
921 uint32_t *out_offset,
922 bool dword_pitch)
923 {
924 struct intel_context *intel = &brw->intel;
925 uint32_t stride = dword_pitch ? 4 : 16;
926 uint32_t elements = ALIGN(size, stride) / stride;
927 const GLint w = elements - 1;
928 uint32_t *surf;
929
930 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
931 6 * 4, 32, out_offset);
932
933 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
934 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
935 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
936
937 if (intel->gen >= 6)
938 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
939
940 surf[1] = bo->offset + offset; /* reloc */
941
942 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
943 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
944
945 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
946 (stride - 1) << BRW_SURFACE_PITCH_SHIFT);
947
948 surf[4] = 0;
949 surf[5] = 0;
950
951 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
952 * bspec ("Data Cache") says that the data cache does not exist as
953 * a separate cache and is just the sampler cache.
954 */
955 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
956 *out_offset + 4,
957 bo, offset,
958 I915_GEM_DOMAIN_SAMPLER, 0);
959 }
960
961 /**
962 * Set up a binding table entry for use by stream output logic (transform
963 * feedback).
964 *
965 * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
966 */
967 void
968 brw_update_sol_surface(struct brw_context *brw,
969 struct gl_buffer_object *buffer_obj,
970 uint32_t *out_offset, unsigned num_vector_components,
971 unsigned stride_dwords, unsigned offset_dwords)
972 {
973 struct intel_context *intel = &brw->intel;
974 struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
975 drm_intel_bo *bo =
976 intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
977 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
978 out_offset);
979 uint32_t pitch_minus_1 = 4*stride_dwords - 1;
980 uint32_t offset_bytes = 4 * offset_dwords;
981 size_t size_dwords = buffer_obj->Size / 4;
982 uint32_t buffer_size_minus_1, width, height, depth, surface_format;
983
984 /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
985 * too big to map using a single binding table entry?
986 */
987 assert((size_dwords - offset_dwords) / stride_dwords
988 <= BRW_MAX_NUM_BUFFER_ENTRIES);
989
990 if (size_dwords > offset_dwords + num_vector_components) {
991 /* There is room for at least 1 transform feedback output in the buffer.
992 * Compute the number of additional transform feedback outputs the
993 * buffer has room for.
994 */
995 buffer_size_minus_1 =
996 (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
997 } else {
998 /* There isn't even room for a single transform feedback output in the
999 * buffer. We can't configure the binding table entry to prevent output
1000 * entirely; we'll have to rely on the geometry shader to detect
1001 * overflow. But to minimize the damage in case of a bug, set up the
1002 * binding table entry to just allow a single output.
1003 */
1004 buffer_size_minus_1 = 0;
1005 }
1006 width = buffer_size_minus_1 & 0x7f;
1007 height = (buffer_size_minus_1 & 0xfff80) >> 7;
1008 depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
1009
1010 switch (num_vector_components) {
1011 case 1:
1012 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1013 break;
1014 case 2:
1015 surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
1016 break;
1017 case 3:
1018 surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
1019 break;
1020 case 4:
1021 surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
1022 break;
1023 default:
1024 assert(!"Invalid vector size for transform feedback output");
1025 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1026 break;
1027 }
1028
1029 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
1030 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
1031 surface_format << BRW_SURFACE_FORMAT_SHIFT |
1032 BRW_SURFACE_RC_READ_WRITE;
1033 surf[1] = bo->offset + offset_bytes; /* reloc */
1034 surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
1035 height << BRW_SURFACE_HEIGHT_SHIFT);
1036 surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
1037 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1038 surf[4] = 0;
1039 surf[5] = 0;
1040
1041 /* Emit relocation to surface contents. */
1042 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1043 *out_offset + 4,
1044 bo, offset_bytes,
1045 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1046 }
1047
1048 /* Creates a new WM constant buffer reflecting the current fragment program's
1049 * constants, if needed by the fragment program.
1050 *
1051 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
1052 * state atom.
1053 */
1054 static void
1055 brw_upload_wm_pull_constants(struct brw_context *brw)
1056 {
1057 struct gl_context *ctx = &brw->intel.ctx;
1058 struct intel_context *intel = &brw->intel;
1059 /* BRW_NEW_FRAGMENT_PROGRAM */
1060 struct brw_fragment_program *fp =
1061 (struct brw_fragment_program *) brw->fragment_program;
1062 struct gl_program_parameter_list *params = fp->program.Base.Parameters;
1063 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
1064 const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
1065 float *constants;
1066 unsigned int i;
1067
1068 _mesa_load_state_parameters(ctx, params);
1069
1070 /* CACHE_NEW_WM_PROG */
1071 if (brw->wm.prog_data->nr_pull_params == 0) {
1072 if (brw->wm.const_bo) {
1073 drm_intel_bo_unreference(brw->wm.const_bo);
1074 brw->wm.const_bo = NULL;
1075 brw->wm.surf_offset[surf_index] = 0;
1076 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1077 }
1078 return;
1079 }
1080
1081 drm_intel_bo_unreference(brw->wm.const_bo);
1082 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
1083 size, 64);
1084
1085 /* _NEW_PROGRAM_CONSTANTS */
1086 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
1087 constants = brw->wm.const_bo->virtual;
1088 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
1089 constants[i] = *brw->wm.prog_data->pull_param[i];
1090 }
1091 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
1092
1093 intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0, size,
1094 &brw->wm.surf_offset[surf_index],
1095 true);
1096
1097 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1098 }
1099
1100 const struct brw_tracked_state brw_wm_pull_constants = {
1101 .dirty = {
1102 .mesa = (_NEW_PROGRAM_CONSTANTS),
1103 .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
1104 .cache = CACHE_NEW_WM_PROG,
1105 },
1106 .emit = brw_upload_wm_pull_constants,
1107 };
1108
1109 static void
1110 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
1111 {
1112 /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
1113 * Notes):
1114 *
1115 * A null surface will be used in instances where an actual surface is
1116 * not bound. When a write message is generated to a null surface, no
1117 * actual surface is written to. When a read message (including any
1118 * sampling engine message) is generated to a null surface, the result
1119 * is all zeros. Note that a null surface type is allowed to be used
1120 * with all messages, even if it is not specificially indicated as
1121 * supported. All of the remaining fields in surface state are ignored
1122 * for null surfaces, with the following exceptions:
1123 *
1124 * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1125 * depth buffer’s corresponding state for all render target surfaces,
1126 * including null.
1127 *
1128 * - Surface Format must be R8G8B8A8_UNORM.
1129 */
1130 struct intel_context *intel = &brw->intel;
1131 struct gl_context *ctx = &intel->ctx;
1132 uint32_t *surf;
1133 unsigned surface_type = BRW_SURFACE_NULL;
1134 drm_intel_bo *bo = NULL;
1135 unsigned pitch_minus_1 = 0;
1136 uint32_t multisampling_state = 0;
1137
1138 /* _NEW_BUFFERS */
1139 const struct gl_framebuffer *fb = ctx->DrawBuffer;
1140
1141 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1142 6 * 4, 32, &brw->wm.surf_offset[unit]);
1143
1144 if (fb->Visual.samples > 1) {
1145 /* On Gen6, null render targets seem to cause GPU hangs when
1146 * multisampling. So work around this problem by rendering into dummy
1147 * color buffer.
1148 *
1149 * To decrease the amount of memory needed by the workaround buffer, we
1150 * set its pitch to 128 bytes (the width of a Y tile). This means that
1151 * the amount of memory needed for the workaround buffer is
1152 * (width_in_tiles + height_in_tiles - 1) tiles.
1153 *
1154 * Note that since the workaround buffer will be interpreted by the
1155 * hardware as an interleaved multisampled buffer, we need to compute
1156 * width_in_tiles and height_in_tiles by dividing the width and height
1157 * by 16 rather than the normal Y-tile size of 32.
1158 */
1159 unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1160 unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1161 unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1162 brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1163 size_needed);
1164 bo = brw->wm.multisampled_null_render_target_bo;
1165 surface_type = BRW_SURFACE_2D;
1166 pitch_minus_1 = 127;
1167 multisampling_state =
1168 brw_get_surface_num_multisamples(fb->Visual.samples);
1169 }
1170
1171 surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1172 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1173 if (intel->gen < 6) {
1174 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1175 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1176 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1177 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1178 }
1179 surf[1] = bo ? bo->offset : 0;
1180 surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1181 (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1182
1183 /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1184 * Notes):
1185 *
1186 * If Surface Type is SURFTYPE_NULL, this field must be TRUE
1187 */
1188 surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1189 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1190 surf[4] = multisampling_state;
1191 surf[5] = 0;
1192
1193 if (bo) {
1194 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1195 brw->wm.surf_offset[unit] + 4,
1196 bo, 0,
1197 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1198 }
1199 }
1200
1201 /**
1202 * Sets up a surface state structure to point at the given region.
1203 * While it is only used for the front/back buffer currently, it should be
1204 * usable for further buffers when doing ARB_draw_buffer support.
1205 */
1206 static void
1207 brw_update_renderbuffer_surface(struct brw_context *brw,
1208 struct gl_renderbuffer *rb,
1209 unsigned int unit)
1210 {
1211 struct intel_context *intel = &brw->intel;
1212 struct gl_context *ctx = &intel->ctx;
1213 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1214 struct intel_mipmap_tree *mt = irb->mt;
1215 struct intel_region *region;
1216 uint32_t *surf;
1217 uint32_t tile_x, tile_y;
1218 uint32_t format = 0;
1219 gl_format rb_format = intel_rb_format(irb);
1220
1221 if (irb->tex_image && !brw->has_surface_tile_offset) {
1222 intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1223
1224 if (tile_x != 0 || tile_y != 0) {
1225 /* Original gen4 hardware couldn't draw to a non-tile-aligned
1226 * destination in a miptree unless you actually setup your renderbuffer
1227 * as a miptree and used the fragile lod/array_index/etc. controls to
1228 * select the image. So, instead, we just make a new single-level
1229 * miptree and render into that.
1230 */
1231 intel_renderbuffer_move_to_temp(intel, irb, false);
1232 mt = irb->mt;
1233 }
1234 }
1235
1236 region = irb->mt->region;
1237
1238 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1239 6 * 4, 32, &brw->wm.surf_offset[unit]);
1240
1241 switch (rb_format) {
1242 case MESA_FORMAT_SARGB8:
1243 /* _NEW_BUFFERS
1244 *
1245 * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1246 * blend/update as sRGB.
1247 */
1248 if (ctx->Color.sRGBEnabled)
1249 format = brw_format_for_mesa_format(rb_format);
1250 else
1251 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1252 break;
1253 default:
1254 format = brw->render_target_format[rb_format];
1255 if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1256 _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1257 __FUNCTION__, _mesa_get_format_name(rb_format));
1258 }
1259 break;
1260 }
1261
1262 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1263 format << BRW_SURFACE_FORMAT_SHIFT);
1264
1265 /* reloc */
1266 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1267 region->bo->offset);
1268
1269 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1270 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1271
1272 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1273 (region->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
1274
1275 surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1276
1277 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1278 /* Note that the low bits of these fields are missing, so
1279 * there's the possibility of getting in trouble.
1280 */
1281 assert(tile_x % 4 == 0);
1282 assert(tile_y % 2 == 0);
1283 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1284 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1285 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1286
1287 if (intel->gen < 6) {
1288 /* _NEW_COLOR */
1289 if (!ctx->Color.ColorLogicOpEnabled &&
1290 (ctx->Color.BlendEnabled & (1 << unit)))
1291 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1292
1293 if (!ctx->Color.ColorMask[unit][0])
1294 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1295 if (!ctx->Color.ColorMask[unit][1])
1296 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1297 if (!ctx->Color.ColorMask[unit][2])
1298 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1299
1300 /* As mentioned above, disable writes to the alpha component when the
1301 * renderbuffer is XRGB.
1302 */
1303 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1304 !ctx->Color.ColorMask[unit][3]) {
1305 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1306 }
1307 }
1308
1309 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1310 brw->wm.surf_offset[unit] + 4,
1311 region->bo,
1312 surf[1] - region->bo->offset,
1313 I915_GEM_DOMAIN_RENDER,
1314 I915_GEM_DOMAIN_RENDER);
1315 }
1316
1317 /**
1318 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1319 */
1320 static void
1321 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1322 {
1323 struct intel_context *intel = &brw->intel;
1324 struct gl_context *ctx = &brw->intel.ctx;
1325 GLuint i;
1326
1327 /* _NEW_BUFFERS | _NEW_COLOR */
1328 /* Update surfaces for drawing buffers */
1329 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1330 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1331 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1332 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1333 } else {
1334 intel->vtbl.update_null_renderbuffer_surface(brw, i);
1335 }
1336 }
1337 } else {
1338 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1339 }
1340 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1341 }
1342
1343 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1344 .dirty = {
1345 .mesa = (_NEW_COLOR |
1346 _NEW_BUFFERS),
1347 .brw = BRW_NEW_BATCH,
1348 .cache = 0
1349 },
1350 .emit = brw_update_renderbuffer_surfaces,
1351 };
1352
1353 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1354 .dirty = {
1355 .mesa = _NEW_BUFFERS,
1356 .brw = BRW_NEW_BATCH,
1357 .cache = 0
1358 },
1359 .emit = brw_update_renderbuffer_surfaces,
1360 };
1361
1362 /**
1363 * Construct SURFACE_STATE objects for enabled textures.
1364 */
1365 static void
1366 brw_update_texture_surfaces(struct brw_context *brw)
1367 {
1368 struct intel_context *intel = &brw->intel;
1369 struct gl_context *ctx = &intel->ctx;
1370
1371 /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM:
1372 * Unfortunately, we're stuck using the gl_program structs until the
1373 * ARB_fragment_program front-end gets converted to GLSL IR. These
1374 * have the downside that SamplerUnits is split and only contains the
1375 * mappings for samplers active in that stage.
1376 */
1377 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
1378 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
1379
1380 unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed);
1381
1382 for (unsigned s = 0; s < num_samplers; s++) {
1383 brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0;
1384 brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0;
1385
1386 if (vs->SamplersUsed & (1 << s)) {
1387 const unsigned unit = vs->SamplerUnits[s];
1388
1389 /* _NEW_TEXTURE */
1390 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1391 intel->vtbl.update_texture_surface(ctx, unit,
1392 brw->vs.surf_offset,
1393 SURF_INDEX_VS_TEXTURE(s));
1394 }
1395 }
1396
1397 if (fs->SamplersUsed & (1 << s)) {
1398 const unsigned unit = fs->SamplerUnits[s];
1399
1400 /* _NEW_TEXTURE */
1401 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1402 intel->vtbl.update_texture_surface(ctx, unit,
1403 brw->wm.surf_offset,
1404 SURF_INDEX_TEXTURE(s));
1405 }
1406 }
1407 }
1408
1409 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1410 }
1411
1412 const struct brw_tracked_state brw_texture_surfaces = {
1413 .dirty = {
1414 .mesa = _NEW_TEXTURE,
1415 .brw = BRW_NEW_BATCH |
1416 BRW_NEW_VERTEX_PROGRAM |
1417 BRW_NEW_FRAGMENT_PROGRAM,
1418 .cache = 0
1419 },
1420 .emit = brw_update_texture_surfaces,
1421 };
1422
1423 void
1424 brw_upload_ubo_surfaces(struct brw_context *brw,
1425 struct gl_shader *shader,
1426 uint32_t *surf_offsets)
1427 {
1428 struct gl_context *ctx = &brw->intel.ctx;
1429 struct intel_context *intel = &brw->intel;
1430
1431 if (!shader)
1432 return;
1433
1434 for (int i = 0; i < shader->NumUniformBlocks; i++) {
1435 struct gl_uniform_buffer_binding *binding;
1436 struct intel_buffer_object *intel_bo;
1437
1438 binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
1439 intel_bo = intel_buffer_object(binding->BufferObject);
1440 drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ);
1441
1442 /* Because behavior for referencing outside of the binding's size in the
1443 * glBindBufferRange case is undefined, we can just bind the whole buffer
1444 * glBindBufferBase wants and be a correct implementation.
1445 */
1446 intel->vtbl.create_constant_surface(brw, bo, binding->Offset,
1447 bo->size - binding->Offset,
1448 &surf_offsets[i],
1449 shader->Type == GL_FRAGMENT_SHADER);
1450 }
1451
1452 if (shader->NumUniformBlocks)
1453 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1454 }
1455
1456 static void
1457 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
1458 {
1459 struct gl_context *ctx = &brw->intel.ctx;
1460 /* _NEW_PROGRAM */
1461 struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
1462
1463 if (!prog)
1464 return;
1465
1466 brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1467 &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]);
1468 }
1469
1470 const struct brw_tracked_state brw_wm_ubo_surfaces = {
1471 .dirty = {
1472 .mesa = (_NEW_PROGRAM |
1473 _NEW_BUFFER_OBJECT),
1474 .brw = BRW_NEW_BATCH,
1475 .cache = 0,
1476 },
1477 .emit = brw_upload_wm_ubo_surfaces,
1478 };
1479
1480 /**
1481 * Constructs the binding table for the WM surface state, which maps unit
1482 * numbers to surface state objects.
1483 */
1484 static void
1485 brw_upload_wm_binding_table(struct brw_context *brw)
1486 {
1487 uint32_t *bind;
1488 int i;
1489
1490 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1491 gen7_create_shader_time_surface(brw, &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]);
1492 }
1493
1494 /* Might want to calculate nr_surfaces first, to avoid taking up so much
1495 * space for the binding table.
1496 */
1497 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1498 sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1499 32, &brw->wm.bind_bo_offset);
1500
1501 /* BRW_NEW_SURFACES */
1502 for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1503 bind[i] = brw->wm.surf_offset[i];
1504 }
1505
1506 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1507 }
1508
1509 const struct brw_tracked_state brw_wm_binding_table = {
1510 .dirty = {
1511 .mesa = 0,
1512 .brw = (BRW_NEW_BATCH |
1513 BRW_NEW_SURFACES),
1514 .cache = 0
1515 },
1516 .emit = brw_upload_wm_binding_table,
1517 };
1518
1519 void
1520 gen4_init_vtable_surface_functions(struct brw_context *brw)
1521 {
1522 struct intel_context *intel = &brw->intel;
1523
1524 intel->vtbl.update_texture_surface = brw_update_texture_surface;
1525 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1526 intel->vtbl.update_null_renderbuffer_surface =
1527 brw_update_null_renderbuffer_surface;
1528 intel->vtbl.create_constant_surface = brw_create_constant_surface;
1529 }