i965: Use new vtable entries for surface state updating functions.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/mtypes.h"
34 #include "main/samplerobj.h"
35 #include "program/prog_parameter.h"
36
37 #include "intel_mipmap_tree.h"
38 #include "intel_batchbuffer.h"
39 #include "intel_tex.h"
40 #include "intel_fbo.h"
41
42 #include "brw_context.h"
43 #include "brw_state.h"
44 #include "brw_defines.h"
45 #include "brw_wm.h"
46
47 GLuint
48 translate_tex_target(GLenum target)
49 {
50 switch (target) {
51 case GL_TEXTURE_1D:
52 case GL_TEXTURE_1D_ARRAY_EXT:
53 return BRW_SURFACE_1D;
54
55 case GL_TEXTURE_RECTANGLE_NV:
56 return BRW_SURFACE_2D;
57
58 case GL_TEXTURE_2D:
59 case GL_TEXTURE_2D_ARRAY_EXT:
60 return BRW_SURFACE_2D;
61
62 case GL_TEXTURE_3D:
63 return BRW_SURFACE_3D;
64
65 case GL_TEXTURE_CUBE_MAP:
66 return BRW_SURFACE_CUBE;
67
68 default:
69 assert(0);
70 return 0;
71 }
72 }
73
74 uint32_t
75 brw_format_for_mesa_format(gl_format mesa_format)
76 {
77 static const uint32_t table[MESA_FORMAT_COUNT] =
78 {
79 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
80 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
81 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
82 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
83 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
84 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
85 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
86 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
87 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
88 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
89 [MESA_FORMAT_RG88] = BRW_SURFACEFORMAT_R8G8_UNORM,
90 [MESA_FORMAT_RG1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
91 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
92 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
93 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
94 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
95 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
96 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
97 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
98 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
99 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
100 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
101 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
102 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
103 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
104 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
105 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
106 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
107 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
108 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
109 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
110 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
111 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
112 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
113 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
114 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
115 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
116 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
117 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
118 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
119 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
120 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
121 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
122 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
123 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
124 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
125 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
126 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
127 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
128 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
129 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
130
131 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
132 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
133 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
134 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
135
136 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
137 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
138 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
139 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
140
141 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
142 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
143 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
144 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
145 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
146 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
147
148 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
149 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
150 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
151 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
152 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
153 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
154 };
155 assert(mesa_format < MESA_FORMAT_COUNT);
156 return table[mesa_format];
157 }
158
159 bool
160 brw_render_target_supported(gl_format format)
161 {
162 /* These are not color render targets like the table holds, but we
163 * ask the question for FBO completeness.
164 */
165 if (format == MESA_FORMAT_S8_Z24 ||
166 format == MESA_FORMAT_X8_Z24 ||
167 format == MESA_FORMAT_S8 ||
168 format == MESA_FORMAT_Z16) {
169 return true;
170 }
171
172 /* The value of this BRW_SURFACEFORMAT is 0, so hardcode it.
173 */
174 if (format == MESA_FORMAT_RGBA_FLOAT32)
175 return true;
176
177 /* While we can texture from these formats, they're not actually supported
178 * for rendering.
179 */
180 if (format == MESA_FORMAT_RGB_UINT32 ||
181 format == MESA_FORMAT_RGB_INT32)
182 return false;
183
184 /* Not exactly true, as some of those formats are not renderable.
185 * But at least we know how to translate them.
186 */
187 return brw_format_for_mesa_format(format) != 0;
188 }
189
190 GLuint
191 translate_tex_format(gl_format mesa_format,
192 GLenum internal_format,
193 GLenum depth_mode,
194 GLenum srgb_decode)
195 {
196 switch( mesa_format ) {
197
198 case MESA_FORMAT_Z16:
199 if (depth_mode == GL_INTENSITY)
200 return BRW_SURFACEFORMAT_I16_UNORM;
201 else if (depth_mode == GL_ALPHA)
202 return BRW_SURFACEFORMAT_A16_UNORM;
203 else if (depth_mode == GL_RED)
204 return BRW_SURFACEFORMAT_R16_UNORM;
205 else
206 return BRW_SURFACEFORMAT_L16_UNORM;
207
208 case MESA_FORMAT_S8_Z24:
209 case MESA_FORMAT_X8_Z24:
210 /* XXX: these different surface formats don't seem to
211 * make any difference for shadow sampler/compares.
212 */
213 if (depth_mode == GL_INTENSITY)
214 return BRW_SURFACEFORMAT_I24X8_UNORM;
215 else if (depth_mode == GL_ALPHA)
216 return BRW_SURFACEFORMAT_A24X8_UNORM;
217 else if (depth_mode == GL_RED)
218 return BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS;
219 else
220 return BRW_SURFACEFORMAT_L24X8_UNORM;
221
222 case MESA_FORMAT_SARGB8:
223 case MESA_FORMAT_SLA8:
224 case MESA_FORMAT_SL8:
225 if (srgb_decode == GL_DECODE_EXT)
226 return brw_format_for_mesa_format(mesa_format);
227 else if (srgb_decode == GL_SKIP_DECODE_EXT)
228 return brw_format_for_mesa_format(_mesa_get_srgb_format_linear(mesa_format));
229
230 case MESA_FORMAT_RGBA8888_REV:
231 /* This format is not renderable? */
232 return BRW_SURFACEFORMAT_R8G8B8A8_UNORM;
233
234 case MESA_FORMAT_RGBA_FLOAT32:
235 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
236 * assertion below.
237 */
238 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
239
240 default:
241 assert(brw_format_for_mesa_format(mesa_format) != 0);
242 return brw_format_for_mesa_format(mesa_format);
243 }
244 }
245
246 static uint32_t
247 brw_get_surface_tiling_bits(uint32_t tiling)
248 {
249 switch (tiling) {
250 case I915_TILING_X:
251 return BRW_SURFACE_TILED;
252 case I915_TILING_Y:
253 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
254 default:
255 return 0;
256 }
257 }
258
259 static void
260 brw_update_texture_surface( struct gl_context *ctx, GLuint unit )
261 {
262 struct brw_context *brw = brw_context(ctx);
263 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
264 struct intel_texture_object *intelObj = intel_texture_object(tObj);
265 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
266 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
267 const GLuint surf_index = SURF_INDEX_TEXTURE(unit);
268 uint32_t *surf;
269 int width, height, depth;
270
271 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
272
273 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
274 6 * 4, 32, &brw->wm.surf_offset[surf_index]);
275
276 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
277 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
278 BRW_SURFACE_CUBEFACE_ENABLES |
279 (translate_tex_format(firstImage->TexFormat,
280 firstImage->InternalFormat,
281 sampler->DepthMode,
282 sampler->sRGBDecode) <<
283 BRW_SURFACE_FORMAT_SHIFT));
284
285 surf[1] = intelObj->mt->region->bo->offset; /* reloc */
286
287 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
288 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
289 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
290
291 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
292 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
293 ((intelObj->mt->region->pitch * intelObj->mt->cpp) - 1) <<
294 BRW_SURFACE_PITCH_SHIFT);
295
296 surf[4] = 0;
297 surf[5] = 0;
298
299 /* Emit relocation to surface contents */
300 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
301 brw->wm.surf_offset[surf_index] + 4,
302 intelObj->mt->region->bo, 0,
303 I915_GEM_DOMAIN_SAMPLER, 0);
304 }
305
306 /**
307 * Create the constant buffer surface. Vertex/fragment shader constants will be
308 * read from this buffer with Data Port Read instructions/messages.
309 */
310 void
311 brw_create_constant_surface(struct brw_context *brw,
312 drm_intel_bo *bo,
313 int width,
314 uint32_t *out_offset)
315 {
316 struct intel_context *intel = &brw->intel;
317 const GLint w = width - 1;
318 uint32_t *surf;
319
320 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
321 6 * 4, 32, out_offset);
322
323 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
324 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
325 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
326
327 if (intel->gen >= 6)
328 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
329
330 surf[1] = bo->offset; /* reloc */
331
332 surf[2] = (((w & 0x7f) - 1) << BRW_SURFACE_WIDTH_SHIFT |
333 (((w >> 7) & 0x1fff) - 1) << BRW_SURFACE_HEIGHT_SHIFT);
334
335 surf[3] = ((((w >> 20) & 0x7f) - 1) << BRW_SURFACE_DEPTH_SHIFT |
336 (width * 16 - 1) << BRW_SURFACE_PITCH_SHIFT);
337
338 surf[4] = 0;
339 surf[5] = 0;
340
341 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
342 * bspec ("Data Cache") says that the data cache does not exist as
343 * a separate cache and is just the sampler cache.
344 */
345 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
346 *out_offset + 4,
347 bo, 0,
348 I915_GEM_DOMAIN_SAMPLER, 0);
349 }
350
351 /* Creates a new WM constant buffer reflecting the current fragment program's
352 * constants, if needed by the fragment program.
353 *
354 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
355 * state atom.
356 */
357 static void
358 brw_upload_wm_pull_constants(struct brw_context *brw)
359 {
360 struct gl_context *ctx = &brw->intel.ctx;
361 struct intel_context *intel = &brw->intel;
362 struct brw_fragment_program *fp =
363 (struct brw_fragment_program *) brw->fragment_program;
364 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
365 float *constants;
366 unsigned int i;
367
368 _mesa_load_state_parameters(ctx, fp->program.Base.Parameters);
369
370 /* BRW_NEW_FRAGMENT_PROGRAM */
371 if (brw->wm.prog_data->nr_pull_params == 0) {
372 if (brw->wm.const_bo) {
373 drm_intel_bo_unreference(brw->wm.const_bo);
374 brw->wm.const_bo = NULL;
375 brw->state.dirty.brw |= BRW_NEW_WM_CONSTBUF;
376 }
377 return;
378 }
379
380 drm_intel_bo_unreference(brw->wm.const_bo);
381 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
382 size, 64);
383
384 /* _NEW_PROGRAM_CONSTANTS */
385 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
386 constants = brw->wm.const_bo->virtual;
387 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
388 constants[i] = convert_param(brw->wm.prog_data->pull_param_convert[i],
389 brw->wm.prog_data->pull_param[i]);
390 }
391 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
392
393 brw->state.dirty.brw |= BRW_NEW_WM_CONSTBUF;
394 }
395
396 const struct brw_tracked_state brw_wm_constants = {
397 .dirty = {
398 .mesa = (_NEW_PROGRAM_CONSTANTS),
399 .brw = (BRW_NEW_FRAGMENT_PROGRAM),
400 .cache = 0
401 },
402 .emit = brw_upload_wm_pull_constants,
403 };
404
405 /**
406 * Updates surface / buffer for fragment shader constant buffer, if
407 * one is required.
408 *
409 * This consumes the state updates for the constant buffer, and produces
410 * BRW_NEW_WM_SURFACES to get picked up by brw_prepare_wm_surfaces for
411 * inclusion in the binding table.
412 */
413 static void upload_wm_constant_surface(struct brw_context *brw )
414 {
415 GLuint surf = SURF_INDEX_FRAG_CONST_BUFFER;
416 struct brw_fragment_program *fp =
417 (struct brw_fragment_program *) brw->fragment_program;
418 const struct gl_program_parameter_list *params =
419 fp->program.Base.Parameters;
420
421 /* If there's no constant buffer, then no surface BO is needed to point at
422 * it.
423 */
424 if (brw->wm.const_bo == 0) {
425 if (brw->wm.surf_offset[surf]) {
426 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
427 brw->wm.surf_offset[surf] = 0;
428 }
429 return;
430 }
431
432 brw->intel.vtbl.create_constant_surface(brw, brw->wm.const_bo,
433 params->NumParameters,
434 &brw->wm.surf_offset[surf]);
435 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
436 }
437
438 const struct brw_tracked_state brw_wm_constant_surface = {
439 .dirty = {
440 .mesa = 0,
441 .brw = (BRW_NEW_WM_CONSTBUF |
442 BRW_NEW_BATCH),
443 .cache = 0
444 },
445 .emit = upload_wm_constant_surface,
446 };
447
448 static void
449 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
450 {
451 struct intel_context *intel = &brw->intel;
452 uint32_t *surf;
453
454 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
455 6 * 4, 32, &brw->wm.surf_offset[unit]);
456
457 surf[0] = (BRW_SURFACE_NULL << BRW_SURFACE_TYPE_SHIFT |
458 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
459 if (intel->gen < 6) {
460 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
461 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
462 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
463 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
464 }
465 surf[1] = 0;
466 surf[2] = 0;
467 surf[3] = 0;
468 surf[4] = 0;
469 surf[5] = 0;
470 }
471
472 /**
473 * Sets up a surface state structure to point at the given region.
474 * While it is only used for the front/back buffer currently, it should be
475 * usable for further buffers when doing ARB_draw_buffer support.
476 */
477 static void
478 brw_update_renderbuffer_surface(struct brw_context *brw,
479 struct gl_renderbuffer *rb,
480 unsigned int unit)
481 {
482 struct intel_context *intel = &brw->intel;
483 struct gl_context *ctx = &intel->ctx;
484 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
485 struct intel_region *region = irb->region;
486 uint32_t *surf;
487 uint32_t tile_x, tile_y;
488 uint32_t format = 0;
489
490 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
491 6 * 4, 32, &brw->wm.surf_offset[unit]);
492
493 switch (irb->Base.Format) {
494 case MESA_FORMAT_XRGB8888:
495 /* XRGB is handled as ARGB because the chips in this family
496 * cannot render to XRGB targets. This means that we have to
497 * mask writes to alpha (ala glColorMask) and reconfigure the
498 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
499 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
500 * used.
501 */
502 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
503 break;
504 case MESA_FORMAT_INTENSITY_FLOAT32:
505 case MESA_FORMAT_LUMINANCE_FLOAT32:
506 /* For these formats, we just need to read/write the first
507 * channel into R, which is to say that we just treat them as
508 * GL_RED.
509 */
510 format = BRW_SURFACEFORMAT_R32_FLOAT;
511 break;
512 case MESA_FORMAT_SARGB8:
513 /* without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB
514 surfaces to the blend/update as sRGB */
515 if (ctx->Color.sRGBEnabled)
516 format = brw_format_for_mesa_format(irb->Base.Format);
517 else
518 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
519 break;
520 default:
521 assert(brw_render_target_supported(irb->Base.Format));
522 format = brw_format_for_mesa_format(irb->Base.Format);
523 }
524
525 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
526 format << BRW_SURFACE_FORMAT_SHIFT);
527
528 /* reloc */
529 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
530 region->bo->offset);
531
532 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
533 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
534
535 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
536 ((region->pitch * region->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT);
537
538 surf[4] = 0;
539
540 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
541 /* Note that the low bits of these fields are missing, so
542 * there's the possibility of getting in trouble.
543 */
544 assert(tile_x % 4 == 0);
545 assert(tile_y % 2 == 0);
546 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
547 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT);
548
549 if (intel->gen < 6) {
550 /* _NEW_COLOR */
551 if (!ctx->Color.ColorLogicOpEnabled &&
552 (ctx->Color.BlendEnabled & (1 << unit)))
553 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
554
555 if (!ctx->Color.ColorMask[unit][0])
556 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
557 if (!ctx->Color.ColorMask[unit][1])
558 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
559 if (!ctx->Color.ColorMask[unit][2])
560 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
561
562 /* As mentioned above, disable writes to the alpha component when the
563 * renderbuffer is XRGB.
564 */
565 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
566 !ctx->Color.ColorMask[unit][3]) {
567 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
568 }
569 }
570
571 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
572 brw->wm.surf_offset[unit] + 4,
573 region->bo,
574 surf[1] - region->bo->offset,
575 I915_GEM_DOMAIN_RENDER,
576 I915_GEM_DOMAIN_RENDER);
577 }
578
579 /**
580 * Constructs the set of surface state objects pointed to by the
581 * binding table.
582 */
583 static void
584 brw_upload_wm_surfaces(struct brw_context *brw)
585 {
586 struct intel_context *intel = &brw->intel;
587 struct gl_context *ctx = &brw->intel.ctx;
588 GLuint i;
589 int nr_surfaces = 0;
590
591 /* _NEW_BUFFERS | _NEW_COLOR */
592 /* Update surfaces for drawing buffers */
593 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
594 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
595 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
596 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
597 } else {
598 intel->vtbl.update_null_renderbuffer_surface(brw, i);
599 }
600 }
601 nr_surfaces = SURF_INDEX_DRAW(ctx->DrawBuffer->_NumColorDrawBuffers);
602 } else {
603 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
604 nr_surfaces = SURF_INDEX_DRAW(0) + 1;
605 }
606
607 /* BRW_NEW_WM_CONSTBUF */
608 if (brw->wm.const_bo) {
609 nr_surfaces = SURF_INDEX_FRAG_CONST_BUFFER + 1;
610 }
611
612 /* Update surfaces for textures */
613 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
614 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
615 const GLuint surf = SURF_INDEX_TEXTURE(i);
616
617 /* _NEW_TEXTURE */
618 if (texUnit->_ReallyEnabled) {
619 intel->vtbl.update_texture_surface(ctx, i);
620 nr_surfaces = SURF_INDEX_TEXTURE(i) + 1;
621 } else {
622 brw->wm.surf_offset[surf] = 0;
623 }
624 }
625
626 if (brw->wm.nr_surfaces != nr_surfaces) {
627 brw->wm.nr_surfaces = nr_surfaces;
628 brw->state.dirty.brw |= BRW_NEW_NR_WM_SURFACES;
629 }
630
631 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
632 }
633
634 const struct brw_tracked_state brw_wm_surfaces = {
635 .dirty = {
636 .mesa = (_NEW_COLOR |
637 _NEW_TEXTURE |
638 _NEW_BUFFERS),
639 .brw = (BRW_NEW_BATCH |
640 BRW_NEW_WM_CONSTBUF),
641 .cache = 0
642 },
643 .emit = brw_upload_wm_surfaces,
644 };
645
646 /**
647 * Constructs the binding table for the WM surface state, which maps unit
648 * numbers to surface state objects.
649 */
650 static void
651 brw_wm_upload_binding_table(struct brw_context *brw)
652 {
653 uint32_t *bind;
654 int i;
655
656 /* Might want to calculate nr_surfaces first, to avoid taking up so much
657 * space for the binding table.
658 */
659 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
660 sizeof(uint32_t) * BRW_WM_MAX_SURF,
661 32, &brw->wm.bind_bo_offset);
662
663 for (i = 0; i < BRW_WM_MAX_SURF; i++) {
664 /* BRW_NEW_WM_SURFACES */
665 bind[i] = brw->wm.surf_offset[i];
666 }
667
668 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
669 }
670
671 const struct brw_tracked_state brw_wm_binding_table = {
672 .dirty = {
673 .mesa = 0,
674 .brw = (BRW_NEW_BATCH |
675 BRW_NEW_WM_SURFACES),
676 .cache = 0
677 },
678 .emit = brw_wm_upload_binding_table,
679 };
680
681 void
682 gen4_init_vtable_surface_functions(struct brw_context *brw)
683 {
684 struct intel_context *intel = &brw->intel;
685
686 intel->vtbl.update_texture_surface = brw_update_texture_surface;
687 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
688 intel->vtbl.update_null_renderbuffer_surface =
689 brw_update_null_renderbuffer_surface;
690 intel->vtbl.create_constant_surface = brw_create_constant_surface;
691 }