i965/gen6: Set vertical alignment in SURFACE_STATE batch
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/mtypes.h"
34 #include "main/samplerobj.h"
35 #include "program/prog_parameter.h"
36
37 #include "intel_mipmap_tree.h"
38 #include "intel_batchbuffer.h"
39 #include "intel_tex.h"
40 #include "intel_fbo.h"
41
42 #include "brw_context.h"
43 #include "brw_state.h"
44 #include "brw_defines.h"
45 #include "brw_wm.h"
46
47 GLuint
48 translate_tex_target(GLenum target)
49 {
50 switch (target) {
51 case GL_TEXTURE_1D:
52 case GL_TEXTURE_1D_ARRAY_EXT:
53 return BRW_SURFACE_1D;
54
55 case GL_TEXTURE_RECTANGLE_NV:
56 return BRW_SURFACE_2D;
57
58 case GL_TEXTURE_2D:
59 case GL_TEXTURE_2D_ARRAY_EXT:
60 return BRW_SURFACE_2D;
61
62 case GL_TEXTURE_3D:
63 return BRW_SURFACE_3D;
64
65 case GL_TEXTURE_CUBE_MAP:
66 return BRW_SURFACE_CUBE;
67
68 default:
69 assert(0);
70 return 0;
71 }
72 }
73
74 uint32_t
75 brw_format_for_mesa_format(gl_format mesa_format)
76 {
77 static const uint32_t table[MESA_FORMAT_COUNT] =
78 {
79 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
80 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
81 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
82 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
83 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
84 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
85 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
86 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
87 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
88 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
89 [MESA_FORMAT_RG88] = BRW_SURFACEFORMAT_R8G8_UNORM,
90 [MESA_FORMAT_RG1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
91 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
92 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
93 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
94 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
95 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
96 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
97 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
98 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
99 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
100 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
101 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
102 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
103 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
104 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
105 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
106 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
107 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
108 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
109 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
110 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
111 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
112 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
113 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
114 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
115 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
116 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
117 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
118 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
119 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
120 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
121 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
122 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
123 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
124 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
125 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
126 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
127 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
128 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
129 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
130
131 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
132 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
133 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
134 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
135
136 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
137 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
138 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
139 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
140
141 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
142 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
143 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
144 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
145 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
146 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
147
148 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
149 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
150 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
151 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
152 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
153 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
154 };
155 assert(mesa_format < MESA_FORMAT_COUNT);
156 return table[mesa_format];
157 }
158
159 bool
160 brw_render_target_supported(gl_format format)
161 {
162 /* These are not color render targets like the table holds, but we
163 * ask the question for FBO completeness.
164 */
165 if (format == MESA_FORMAT_S8_Z24 ||
166 format == MESA_FORMAT_X8_Z24 ||
167 format == MESA_FORMAT_S8 ||
168 format == MESA_FORMAT_Z16) {
169 return true;
170 }
171
172 /* The value of this BRW_SURFACEFORMAT is 0, so hardcode it.
173 */
174 if (format == MESA_FORMAT_RGBA_FLOAT32)
175 return true;
176
177 /* While we can texture from these formats, they're not actually supported
178 * for rendering.
179 */
180 if (format == MESA_FORMAT_RGB_UINT32 ||
181 format == MESA_FORMAT_RGB_INT32)
182 return false;
183
184 /* Not exactly true, as some of those formats are not renderable.
185 * But at least we know how to translate them.
186 */
187 return brw_format_for_mesa_format(format) != 0;
188 }
189
190 GLuint
191 translate_tex_format(gl_format mesa_format,
192 GLenum internal_format,
193 GLenum depth_mode,
194 GLenum srgb_decode)
195 {
196 switch( mesa_format ) {
197
198 case MESA_FORMAT_Z16:
199 if (depth_mode == GL_INTENSITY)
200 return BRW_SURFACEFORMAT_I16_UNORM;
201 else if (depth_mode == GL_ALPHA)
202 return BRW_SURFACEFORMAT_A16_UNORM;
203 else if (depth_mode == GL_RED)
204 return BRW_SURFACEFORMAT_R16_UNORM;
205 else
206 return BRW_SURFACEFORMAT_L16_UNORM;
207
208 case MESA_FORMAT_S8_Z24:
209 case MESA_FORMAT_X8_Z24:
210 /* XXX: these different surface formats don't seem to
211 * make any difference for shadow sampler/compares.
212 */
213 if (depth_mode == GL_INTENSITY)
214 return BRW_SURFACEFORMAT_I24X8_UNORM;
215 else if (depth_mode == GL_ALPHA)
216 return BRW_SURFACEFORMAT_A24X8_UNORM;
217 else if (depth_mode == GL_RED)
218 return BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS;
219 else
220 return BRW_SURFACEFORMAT_L24X8_UNORM;
221
222 case MESA_FORMAT_SARGB8:
223 case MESA_FORMAT_SLA8:
224 case MESA_FORMAT_SL8:
225 if (srgb_decode == GL_DECODE_EXT)
226 return brw_format_for_mesa_format(mesa_format);
227 else if (srgb_decode == GL_SKIP_DECODE_EXT)
228 return brw_format_for_mesa_format(_mesa_get_srgb_format_linear(mesa_format));
229
230 case MESA_FORMAT_RGBA8888_REV:
231 /* This format is not renderable? */
232 return BRW_SURFACEFORMAT_R8G8B8A8_UNORM;
233
234 case MESA_FORMAT_RGBA_FLOAT32:
235 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
236 * assertion below.
237 */
238 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
239
240 default:
241 assert(brw_format_for_mesa_format(mesa_format) != 0);
242 return brw_format_for_mesa_format(mesa_format);
243 }
244 }
245
246 static uint32_t
247 brw_get_surface_tiling_bits(uint32_t tiling)
248 {
249 switch (tiling) {
250 case I915_TILING_X:
251 return BRW_SURFACE_TILED;
252 case I915_TILING_Y:
253 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
254 default:
255 return 0;
256 }
257 }
258
259 static void
260 brw_update_texture_surface( struct gl_context *ctx, GLuint unit )
261 {
262 struct brw_context *brw = brw_context(ctx);
263 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
264 struct intel_texture_object *intelObj = intel_texture_object(tObj);
265 struct intel_mipmap_tree *mt = intelObj->mt;
266 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
267 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
268 const GLuint surf_index = SURF_INDEX_TEXTURE(unit);
269 uint32_t *surf;
270 int width, height, depth;
271
272 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
273
274 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
275 6 * 4, 32, &brw->bind.surf_offset[surf_index]);
276
277 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
278 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
279 BRW_SURFACE_CUBEFACE_ENABLES |
280 (translate_tex_format(firstImage->TexFormat,
281 firstImage->InternalFormat,
282 sampler->DepthMode,
283 sampler->sRGBDecode) <<
284 BRW_SURFACE_FORMAT_SHIFT));
285
286 surf[1] = intelObj->mt->region->bo->offset; /* reloc */
287
288 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
289 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
290 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
291
292 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
293 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
294 ((intelObj->mt->region->pitch * intelObj->mt->cpp) - 1) <<
295 BRW_SURFACE_PITCH_SHIFT);
296
297 surf[4] = 0;
298
299 surf[5] = (mt->align_h == 4) ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0;
300
301 /* Emit relocation to surface contents */
302 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
303 brw->bind.surf_offset[surf_index] + 4,
304 intelObj->mt->region->bo, 0,
305 I915_GEM_DOMAIN_SAMPLER, 0);
306 }
307
308 /**
309 * Create the constant buffer surface. Vertex/fragment shader constants will be
310 * read from this buffer with Data Port Read instructions/messages.
311 */
312 void
313 brw_create_constant_surface(struct brw_context *brw,
314 drm_intel_bo *bo,
315 int width,
316 uint32_t *out_offset)
317 {
318 struct intel_context *intel = &brw->intel;
319 const GLint w = width - 1;
320 uint32_t *surf;
321
322 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
323 6 * 4, 32, out_offset);
324
325 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
326 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
327 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
328
329 if (intel->gen >= 6)
330 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
331
332 surf[1] = bo->offset; /* reloc */
333
334 surf[2] = (((w & 0x7f) - 1) << BRW_SURFACE_WIDTH_SHIFT |
335 (((w >> 7) & 0x1fff) - 1) << BRW_SURFACE_HEIGHT_SHIFT);
336
337 surf[3] = ((((w >> 20) & 0x7f) - 1) << BRW_SURFACE_DEPTH_SHIFT |
338 (width * 16 - 1) << BRW_SURFACE_PITCH_SHIFT);
339
340 surf[4] = 0;
341 surf[5] = 0;
342
343 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
344 * bspec ("Data Cache") says that the data cache does not exist as
345 * a separate cache and is just the sampler cache.
346 */
347 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
348 *out_offset + 4,
349 bo, 0,
350 I915_GEM_DOMAIN_SAMPLER, 0);
351 }
352
353 /* Creates a new WM constant buffer reflecting the current fragment program's
354 * constants, if needed by the fragment program.
355 *
356 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
357 * state atom.
358 */
359 static void
360 brw_upload_wm_pull_constants(struct brw_context *brw)
361 {
362 struct gl_context *ctx = &brw->intel.ctx;
363 struct intel_context *intel = &brw->intel;
364 /* BRW_NEW_FRAGMENT_PROGRAM */
365 struct brw_fragment_program *fp =
366 (struct brw_fragment_program *) brw->fragment_program;
367 struct gl_program_parameter_list *params = fp->program.Base.Parameters;
368 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
369 const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
370 float *constants;
371 unsigned int i;
372
373 _mesa_load_state_parameters(ctx, params);
374
375 /* CACHE_NEW_WM_PROG */
376 if (brw->wm.prog_data->nr_pull_params == 0) {
377 if (brw->wm.const_bo) {
378 drm_intel_bo_unreference(brw->wm.const_bo);
379 brw->wm.const_bo = NULL;
380 brw->bind.surf_offset[surf_index] = 0;
381 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
382 }
383 return;
384 }
385
386 drm_intel_bo_unreference(brw->wm.const_bo);
387 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
388 size, 64);
389
390 /* _NEW_PROGRAM_CONSTANTS */
391 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
392 constants = brw->wm.const_bo->virtual;
393 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
394 constants[i] = convert_param(brw->wm.prog_data->pull_param_convert[i],
395 brw->wm.prog_data->pull_param[i]);
396 }
397 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
398
399 intel->vtbl.create_constant_surface(brw, brw->wm.const_bo,
400 params->NumParameters,
401 &brw->bind.surf_offset[surf_index]);
402
403 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
404 }
405
406 const struct brw_tracked_state brw_wm_pull_constants = {
407 .dirty = {
408 .mesa = (_NEW_PROGRAM_CONSTANTS),
409 .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
410 .cache = CACHE_NEW_WM_PROG,
411 },
412 .emit = brw_upload_wm_pull_constants,
413 };
414
415 static void
416 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
417 {
418 struct intel_context *intel = &brw->intel;
419 uint32_t *surf;
420
421 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
422 6 * 4, 32, &brw->bind.surf_offset[unit]);
423
424 surf[0] = (BRW_SURFACE_NULL << BRW_SURFACE_TYPE_SHIFT |
425 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
426 if (intel->gen < 6) {
427 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
428 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
429 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
430 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
431 }
432 surf[1] = 0;
433 surf[2] = 0;
434 surf[3] = 0;
435 surf[4] = 0;
436 surf[5] = 0;
437 }
438
439 /**
440 * Sets up a surface state structure to point at the given region.
441 * While it is only used for the front/back buffer currently, it should be
442 * usable for further buffers when doing ARB_draw_buffer support.
443 */
444 static void
445 brw_update_renderbuffer_surface(struct brw_context *brw,
446 struct gl_renderbuffer *rb,
447 unsigned int unit)
448 {
449 struct intel_context *intel = &brw->intel;
450 struct gl_context *ctx = &intel->ctx;
451 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
452 struct intel_mipmap_tree *mt = irb->mt;
453 struct intel_region *region = irb->mt->region;
454 uint32_t *surf;
455 uint32_t tile_x, tile_y;
456 uint32_t format = 0;
457
458 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
459 6 * 4, 32, &brw->bind.surf_offset[unit]);
460
461 switch (irb->Base.Format) {
462 case MESA_FORMAT_XRGB8888:
463 /* XRGB is handled as ARGB because the chips in this family
464 * cannot render to XRGB targets. This means that we have to
465 * mask writes to alpha (ala glColorMask) and reconfigure the
466 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
467 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
468 * used.
469 */
470 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
471 break;
472 case MESA_FORMAT_INTENSITY_FLOAT32:
473 case MESA_FORMAT_LUMINANCE_FLOAT32:
474 /* For these formats, we just need to read/write the first
475 * channel into R, which is to say that we just treat them as
476 * GL_RED.
477 */
478 format = BRW_SURFACEFORMAT_R32_FLOAT;
479 break;
480 case MESA_FORMAT_SARGB8:
481 /* without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB
482 surfaces to the blend/update as sRGB */
483 if (ctx->Color.sRGBEnabled)
484 format = brw_format_for_mesa_format(irb->Base.Format);
485 else
486 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
487 break;
488 default:
489 assert(brw_render_target_supported(irb->Base.Format));
490 format = brw_format_for_mesa_format(irb->Base.Format);
491 }
492
493 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
494 format << BRW_SURFACE_FORMAT_SHIFT);
495
496 /* reloc */
497 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
498 region->bo->offset);
499
500 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
501 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
502
503 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
504 ((region->pitch * region->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT);
505
506 surf[4] = 0;
507
508 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
509 /* Note that the low bits of these fields are missing, so
510 * there's the possibility of getting in trouble.
511 */
512 assert(tile_x % 4 == 0);
513 assert(tile_y % 2 == 0);
514 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
515 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
516 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
517
518 if (intel->gen < 6) {
519 /* _NEW_COLOR */
520 if (!ctx->Color.ColorLogicOpEnabled &&
521 (ctx->Color.BlendEnabled & (1 << unit)))
522 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
523
524 if (!ctx->Color.ColorMask[unit][0])
525 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
526 if (!ctx->Color.ColorMask[unit][1])
527 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
528 if (!ctx->Color.ColorMask[unit][2])
529 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
530
531 /* As mentioned above, disable writes to the alpha component when the
532 * renderbuffer is XRGB.
533 */
534 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
535 !ctx->Color.ColorMask[unit][3]) {
536 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
537 }
538 }
539
540 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
541 brw->bind.surf_offset[unit] + 4,
542 region->bo,
543 surf[1] - region->bo->offset,
544 I915_GEM_DOMAIN_RENDER,
545 I915_GEM_DOMAIN_RENDER);
546 }
547
548 /**
549 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
550 */
551 static void
552 brw_update_renderbuffer_surfaces(struct brw_context *brw)
553 {
554 struct intel_context *intel = &brw->intel;
555 struct gl_context *ctx = &brw->intel.ctx;
556 GLuint i;
557
558 /* _NEW_BUFFERS | _NEW_COLOR */
559 /* Update surfaces for drawing buffers */
560 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
561 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
562 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
563 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
564 } else {
565 intel->vtbl.update_null_renderbuffer_surface(brw, i);
566 }
567 }
568 } else {
569 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
570 }
571 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
572 }
573
574 const struct brw_tracked_state brw_renderbuffer_surfaces = {
575 .dirty = {
576 .mesa = (_NEW_COLOR |
577 _NEW_BUFFERS),
578 .brw = BRW_NEW_BATCH,
579 .cache = 0
580 },
581 .emit = brw_update_renderbuffer_surfaces,
582 };
583
584 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
585 .dirty = {
586 .mesa = _NEW_BUFFERS,
587 .brw = BRW_NEW_BATCH,
588 .cache = 0
589 },
590 .emit = brw_update_renderbuffer_surfaces,
591 };
592
593 /**
594 * Construct SURFACE_STATE objects for enabled textures.
595 */
596 static void
597 brw_update_texture_surfaces(struct brw_context *brw)
598 {
599 struct gl_context *ctx = &brw->intel.ctx;
600
601 for (unsigned i = 0; i < BRW_MAX_TEX_UNIT; i++) {
602 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
603 const GLuint surf = SURF_INDEX_TEXTURE(i);
604
605 /* _NEW_TEXTURE */
606 if (texUnit->_ReallyEnabled) {
607 brw->intel.vtbl.update_texture_surface(ctx, i);
608 } else {
609 brw->bind.surf_offset[surf] = 0;
610 }
611 }
612
613 brw->state.dirty.brw |= BRW_NEW_WM_SURFACES;
614 }
615
616 const struct brw_tracked_state brw_texture_surfaces = {
617 .dirty = {
618 .mesa = _NEW_TEXTURE,
619 .brw = BRW_NEW_BATCH,
620 .cache = 0
621 },
622 .emit = brw_update_texture_surfaces,
623 };
624
625 /**
626 * Constructs the binding table for the WM surface state, which maps unit
627 * numbers to surface state objects.
628 */
629 static void
630 brw_upload_binding_table(struct brw_context *brw)
631 {
632 uint32_t *bind;
633 int i;
634
635 /* Might want to calculate nr_surfaces first, to avoid taking up so much
636 * space for the binding table.
637 */
638 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
639 sizeof(uint32_t) * BRW_MAX_SURFACES,
640 32, &brw->bind.bo_offset);
641
642 /* BRW_NEW_WM_SURFACES and BRW_NEW_VS_CONSTBUF */
643 for (i = 0; i < BRW_MAX_SURFACES; i++) {
644 bind[i] = brw->bind.surf_offset[i];
645 }
646
647 brw->state.dirty.brw |= BRW_NEW_VS_BINDING_TABLE;
648 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
649 }
650
651 const struct brw_tracked_state brw_binding_table = {
652 .dirty = {
653 .mesa = 0,
654 .brw = (BRW_NEW_BATCH |
655 BRW_NEW_VS_CONSTBUF |
656 BRW_NEW_WM_SURFACES),
657 .cache = 0
658 },
659 .emit = brw_upload_binding_table,
660 };
661
662 void
663 gen4_init_vtable_surface_functions(struct brw_context *brw)
664 {
665 struct intel_context *intel = &brw->intel;
666
667 intel->vtbl.update_texture_surface = brw_update_texture_surface;
668 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
669 intel->vtbl.update_null_renderbuffer_surface =
670 brw_update_null_renderbuffer_surface;
671 intel->vtbl.create_constant_surface = brw_create_constant_surface;
672 }