i965: Support MESA_FORMAT_SIGNED_RGBA_16.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/mtypes.h"
34 #include "main/samplerobj.h"
35 #include "program/prog_parameter.h"
36
37 #include "intel_mipmap_tree.h"
38 #include "intel_batchbuffer.h"
39 #include "intel_tex.h"
40 #include "intel_fbo.h"
41 #include "intel_buffer_objects.h"
42
43 #include "brw_context.h"
44 #include "brw_state.h"
45 #include "brw_defines.h"
46 #include "brw_wm.h"
47
48 GLuint
49 translate_tex_target(GLenum target)
50 {
51 switch (target) {
52 case GL_TEXTURE_1D:
53 case GL_TEXTURE_1D_ARRAY_EXT:
54 return BRW_SURFACE_1D;
55
56 case GL_TEXTURE_RECTANGLE_NV:
57 return BRW_SURFACE_2D;
58
59 case GL_TEXTURE_2D:
60 case GL_TEXTURE_2D_ARRAY_EXT:
61 case GL_TEXTURE_EXTERNAL_OES:
62 return BRW_SURFACE_2D;
63
64 case GL_TEXTURE_3D:
65 return BRW_SURFACE_3D;
66
67 case GL_TEXTURE_CUBE_MAP:
68 return BRW_SURFACE_CUBE;
69
70 default:
71 assert(0);
72 return 0;
73 }
74 }
75
76 struct surface_format_info {
77 bool exists;
78 int sampling;
79 int filtering;
80 int shadow_compare;
81 int chroma_key;
82 int render_target;
83 int alpha_blend;
84 int input_vb;
85 int streamed_output_vb;
86 int color_processing;
87 };
88
89 /* This macro allows us to write the table almost as it appears in the PRM,
90 * while restructuring it to turn it into the C code we want.
91 */
92 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
93 [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
94
95 #define Y 0
96 #define x 999
97 /**
98 * This is the table of support for surface (texture, renderbuffer, and vertex
99 * buffer, but not depthbuffer) formats across the various hardware generations.
100 *
101 * The table is formatted to match the documentation, except that the docs have
102 * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever". To put
103 * it in our table, here's the mapping:
104 *
105 * Y*: 45
106 * Y+: 45 (g45/gm45)
107 * Y~: 50 (gen5)
108 * Y^: 60 (gen6)
109 * Y#: 70 (gen7)
110 *
111 * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
112 */
113 const struct surface_format_info surface_formats[] = {
114 /* smpl filt shad CK RT AB VB SO color */
115 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
116 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
117 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
118 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
119 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
120 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64_FLOAT)
121 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
122 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
123 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
124 SF( Y, 50, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
125 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_SINT)
126 SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_UINT)
127 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
128 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
129 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
130 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
131 SF( Y, Y, x, x, Y, 45, Y, x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
132 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
133 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
134 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
135 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
136 SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32_FLOAT)
137 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_SINT)
138 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_UINT)
139 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
140 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
141 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32A32_FLOAT)
142 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_UNORM)
143 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SNORM)
144 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64_FLOAT)
145 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
146 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
147 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32X32_FLOAT)
148 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32X32_FLOAT)
149 SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32X32_FLOAT)
150 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
151 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
152 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SSCALED)
153 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_USCALED)
154 SF( Y, Y, x, Y, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
155 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
156 /* smpl filt shad CK RT AB VB SO color */
157 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
158 SF( Y, Y, x, x, x, x, x, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
159 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
160 SF( Y, Y, x, x, x, Y, Y, x, x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
161 SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
162 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
163 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
164 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
165 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
166 SF( Y, Y, x, x, Y, 45, Y, x, x, BRW_SURFACEFORMAT_R16G16_UNORM)
167 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16_SNORM)
168 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SINT)
169 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_UINT)
170 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16_FLOAT)
171 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
172 SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
173 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
174 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_SINT)
175 SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_UINT)
176 SF( Y, 50, Y, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32_FLOAT)
177 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
178 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
179 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_UNORM)
180 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I24X8_UNORM)
181 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L24X8_UNORM)
182 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A24X8_UNORM)
183 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32_FLOAT)
184 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32_FLOAT)
185 SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32_FLOAT)
186 SF( Y, Y, x, Y, x, x, x, x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
187 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
188 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
189 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
190 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
191 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
192 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_FLOAT)
193 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_UNORM)
194 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SNORM)
195 /* smpl filt shad CK RT AB VB SO color */
196 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
197 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
198 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
199 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SSCALED)
200 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_USCALED)
201 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SSCALED)
202 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_USCALED)
203 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
204 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
205 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
206 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
207 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
208 SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
209 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8G8_UNORM)
210 SF( Y, Y, x, Y, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8_SNORM)
211 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SINT)
212 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_UINT)
213 SF( Y, Y, Y, x, Y, 45, Y, x, 70, BRW_SURFACEFORMAT_R16_UNORM)
214 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16_SNORM)
215 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_SINT)
216 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_UINT)
217 SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16_FLOAT)
218 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_UNORM)
219 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_UNORM)
220 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_UNORM)
221 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM)
222 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_FLOAT)
223 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_FLOAT)
224 SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_FLOAT)
225 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
226 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
227 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
228 SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
229 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SSCALED)
230 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_USCALED)
231 /* smpl filt shad CK RT AB VB SO color */
232 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_SSCALED)
233 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_USCALED)
234 SF( Y, Y, x, 45, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8_UNORM)
235 SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8_SNORM)
236 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_SINT)
237 SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_UINT)
238 SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_A8_UNORM)
239 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I8_UNORM)
240 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM)
241 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_P4A4_UNORM)
242 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A4P4_UNORM)
243 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_SSCALED)
244 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_USCALED)
245 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
246 SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
247 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R1_UINT)
248 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
249 SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
250 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM)
251 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM)
252 SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM)
253 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_UNORM)
254 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_UNORM)
255 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
256 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
257 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
258 SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_MONO8)
259 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
260 SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
261 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB)
262 /* smpl filt shad CK RT AB VB SO color */
263 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_FXT1)
264 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
265 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
266 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
267 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
268 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
269 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
270 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_SNORM)
271 SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_SNORM)
272 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
273 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
274 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
275 SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
276 };
277 #undef x
278 #undef Y
279
280 uint32_t
281 brw_format_for_mesa_format(gl_format mesa_format)
282 {
283 /* This table is ordered according to the enum ordering in formats.h. We do
284 * expect that enum to be extended without our explicit initialization
285 * staying in sync, so we initialize to 0 even though
286 * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
287 */
288 static const uint32_t table[MESA_FORMAT_COUNT] =
289 {
290 [MESA_FORMAT_RGBA8888] = 0,
291 [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
292 [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
293 [MESA_FORMAT_ARGB8888_REV] = 0,
294 [MESA_FORMAT_RGBX8888] = 0,
295 [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
296 [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
297 [MESA_FORMAT_XRGB8888_REV] = 0,
298 [MESA_FORMAT_RGB888] = 0,
299 [MESA_FORMAT_BGR888] = 0,
300 [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
301 [MESA_FORMAT_RGB565_REV] = 0,
302 [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
303 [MESA_FORMAT_ARGB4444_REV] = 0,
304 [MESA_FORMAT_RGBA5551] = 0,
305 [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
306 [MESA_FORMAT_ARGB1555_REV] = 0,
307 [MESA_FORMAT_AL44] = 0,
308 [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
309 [MESA_FORMAT_AL88_REV] = 0,
310 [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
311 [MESA_FORMAT_AL1616_REV] = 0,
312 [MESA_FORMAT_RGB332] = 0,
313 [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
314 [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
315 [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
316 [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
317 [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
318 [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
319 [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
320 [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
321 [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
322 [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
323 [MESA_FORMAT_RG88] = 0,
324 [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
325 [MESA_FORMAT_RG1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
326 [MESA_FORMAT_RG1616_REV] = 0,
327 [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
328 [MESA_FORMAT_Z24_S8] = 0,
329 [MESA_FORMAT_S8_Z24] = 0,
330 [MESA_FORMAT_Z16] = 0,
331 [MESA_FORMAT_X8_Z24] = 0,
332 [MESA_FORMAT_Z24_X8] = 0,
333 [MESA_FORMAT_Z32] = 0,
334 [MESA_FORMAT_S8] = 0,
335
336 [MESA_FORMAT_SRGB8] = 0,
337 [MESA_FORMAT_SRGBA8] = 0,
338 [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
339 [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
340 [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
341 [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
342 [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
343 [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
344 [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
345
346 [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
347 [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
348 [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
349 [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
350 [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
351 [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
352
353 [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
354 [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
355 [MESA_FORMAT_RGB_FLOAT32] = 0,
356 [MESA_FORMAT_RGB_FLOAT16] = 0,
357 [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
358 [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
359 [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
360 [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
361 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
362 [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
363 [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
364 [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
365 [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
366 [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
367 [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
368 [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
369
370 [MESA_FORMAT_ALPHA_UINT8] = 0,
371 [MESA_FORMAT_ALPHA_UINT16] = 0,
372 [MESA_FORMAT_ALPHA_UINT32] = 0,
373 [MESA_FORMAT_ALPHA_INT8] = 0,
374 [MESA_FORMAT_ALPHA_INT16] = 0,
375 [MESA_FORMAT_ALPHA_INT32] = 0,
376
377 [MESA_FORMAT_INTENSITY_UINT8] = 0,
378 [MESA_FORMAT_INTENSITY_UINT16] = 0,
379 [MESA_FORMAT_INTENSITY_UINT32] = 0,
380 [MESA_FORMAT_INTENSITY_INT8] = 0,
381 [MESA_FORMAT_INTENSITY_INT16] = 0,
382 [MESA_FORMAT_INTENSITY_INT32] = 0,
383
384 [MESA_FORMAT_LUMINANCE_UINT8] = 0,
385 [MESA_FORMAT_LUMINANCE_UINT16] = 0,
386 [MESA_FORMAT_LUMINANCE_UINT32] = 0,
387 [MESA_FORMAT_LUMINANCE_INT8] = 0,
388 [MESA_FORMAT_LUMINANCE_INT16] = 0,
389 [MESA_FORMAT_LUMINANCE_INT32] = 0,
390
391 [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
392 [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
393 [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
394 [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
395 [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
396 [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
397
398 [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
399 [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
400 [MESA_FORMAT_RGB_INT8] = 0,
401 [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
402 [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
403 [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
404 [MESA_FORMAT_RGB_INT16] = 0,
405 [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
406 [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
407 [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
408 [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
409 [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
410
411 [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
412 [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
413 [MESA_FORMAT_RGB_UINT8] = 0,
414 [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
415 [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
416 [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
417 [MESA_FORMAT_RGB_UINT16] = 0,
418 [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
419 [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
420 [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
421 [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
422 [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
423
424 [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
425 [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
426 [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
427 [MESA_FORMAT_SIGNED_RGBX8888] = 0,
428 [MESA_FORMAT_SIGNED_RGBA8888] = 0,
429 [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
430 [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
431 [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
432 [MESA_FORMAT_SIGNED_RGB_16] = 0,
433 [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
434 [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
435
436 [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
437 [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
438 [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
439 [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
440
441 [MESA_FORMAT_L_LATC1] = 0,
442 [MESA_FORMAT_SIGNED_L_LATC1] = 0,
443 [MESA_FORMAT_LA_LATC2] = 0,
444 [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
445
446 [MESA_FORMAT_SIGNED_A8] = 0,
447 [MESA_FORMAT_SIGNED_L8] = 0,
448 [MESA_FORMAT_SIGNED_AL88] = 0,
449 [MESA_FORMAT_SIGNED_I8] = 0,
450 [MESA_FORMAT_SIGNED_A16] = 0,
451 [MESA_FORMAT_SIGNED_L16] = 0,
452 [MESA_FORMAT_SIGNED_AL1616] = 0,
453 [MESA_FORMAT_SIGNED_I16] = 0,
454
455 [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
456 [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
457
458 [MESA_FORMAT_Z32_FLOAT] = 0,
459 [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
460 };
461 assert(mesa_format < MESA_FORMAT_COUNT);
462 return table[mesa_format];
463 }
464
465 void
466 brw_init_surface_formats(struct brw_context *brw)
467 {
468 struct intel_context *intel = &brw->intel;
469 struct gl_context *ctx = &intel->ctx;
470 int gen;
471 gl_format format;
472
473 gen = intel->gen * 10;
474 if (intel->is_g4x)
475 gen += 5;
476
477 for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
478 uint32_t texture, render;
479 const struct surface_format_info *rinfo, *tinfo;
480 bool is_integer = _mesa_is_format_integer_color(format);
481
482 render = texture = brw_format_for_mesa_format(format);
483 tinfo = &surface_formats[texture];
484
485 /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
486 * it.
487 */
488 if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
489 continue;
490
491 if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
492 ctx->TextureFormatSupported[format] = true;
493
494 /* Re-map some render target formats to make them supported when they
495 * wouldn't be using their format for texturing.
496 */
497 switch (render) {
498 /* For these formats, we just need to read/write the first
499 * channel into R, which is to say that we just treat them as
500 * GL_RED.
501 */
502 case BRW_SURFACEFORMAT_I32_FLOAT:
503 case BRW_SURFACEFORMAT_L32_FLOAT:
504 render = BRW_SURFACEFORMAT_R32_FLOAT;
505 break;
506 case BRW_SURFACEFORMAT_I16_FLOAT:
507 case BRW_SURFACEFORMAT_L16_FLOAT:
508 render = BRW_SURFACEFORMAT_R16_FLOAT;
509 break;
510 case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
511 /* XRGB is handled as ARGB because the chips in this family
512 * cannot render to XRGB targets. This means that we have to
513 * mask writes to alpha (ala glColorMask) and reconfigure the
514 * alpha blending hardware to use GL_ONE (or GL_ZERO) for
515 * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
516 * used.
517 */
518 render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
519 break;
520 }
521
522 rinfo = &surface_formats[render];
523
524 /* Note that GL_EXT_texture_integer says that blending doesn't occur for
525 * integer, so we don't need hardware support for blending on it. Other
526 * than that, GL in general requires alpha blending for render targets,
527 * even though we don't support it for some formats.
528 */
529 if (gen >= rinfo->render_target &&
530 (gen >= rinfo->alpha_blend || is_integer)) {
531 brw->render_target_format[format] = render;
532 brw->format_supported_as_render_target[format] = true;
533 }
534 }
535
536 /* We will check this table for FBO completeness, but the surface format
537 * table above only covered color rendering.
538 */
539 brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
540 brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
541 brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
542 brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
543 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
544 brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
545
546 /* We remap depth formats to a supported texturing format in
547 * translate_tex_format().
548 */
549 ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
550 ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
551 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
552 ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
553 ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
554
555 /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
556 * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
557 */
558 ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
559 }
560
561 bool
562 brw_render_target_supported(struct intel_context *intel,
563 struct gl_renderbuffer *rb)
564 {
565 struct brw_context *brw = brw_context(&intel->ctx);
566 gl_format format = rb->Format;
567
568 /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
569 * we would consider them renderable even though we don't have surface
570 * support for their alpha behavior and don't have the blending unit
571 * available to fake it like we do for XRGB8888. Force them to being
572 * unsupported.
573 */
574 if ((rb->_BaseFormat != GL_RGBA &&
575 rb->_BaseFormat != GL_RG &&
576 rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
577 return false;
578
579 /* Under some conditions, MSAA is not supported for formats whose width is
580 * more than 64 bits.
581 */
582 if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
583 /* Gen6: MSAA on >64 bit formats is unsupported. */
584 if (intel->gen <= 6)
585 return false;
586
587 /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
588 if (rb->NumSamples >= 8)
589 return false;
590 }
591
592 return brw->format_supported_as_render_target[format];
593 }
594
595 GLuint
596 translate_tex_format(gl_format mesa_format,
597 GLenum internal_format,
598 GLenum depth_mode,
599 GLenum srgb_decode)
600 {
601 switch( mesa_format ) {
602
603 case MESA_FORMAT_Z16:
604 return BRW_SURFACEFORMAT_I16_UNORM;
605
606 case MESA_FORMAT_S8_Z24:
607 case MESA_FORMAT_X8_Z24:
608 return BRW_SURFACEFORMAT_I24X8_UNORM;
609
610 case MESA_FORMAT_Z32_FLOAT:
611 return BRW_SURFACEFORMAT_I32_FLOAT;
612
613 case MESA_FORMAT_Z32_FLOAT_X24S8:
614 return BRW_SURFACEFORMAT_R32G32_FLOAT;
615
616 case MESA_FORMAT_SARGB8:
617 case MESA_FORMAT_SLA8:
618 case MESA_FORMAT_SL8:
619 if (srgb_decode == GL_DECODE_EXT)
620 return brw_format_for_mesa_format(mesa_format);
621 else if (srgb_decode == GL_SKIP_DECODE_EXT)
622 return brw_format_for_mesa_format(_mesa_get_srgb_format_linear(mesa_format));
623
624 case MESA_FORMAT_RGBA_FLOAT32:
625 /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
626 * assertion below.
627 */
628 return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
629
630 default:
631 assert(brw_format_for_mesa_format(mesa_format) != 0);
632 return brw_format_for_mesa_format(mesa_format);
633 }
634 }
635
636 uint32_t
637 brw_get_surface_tiling_bits(uint32_t tiling)
638 {
639 switch (tiling) {
640 case I915_TILING_X:
641 return BRW_SURFACE_TILED;
642 case I915_TILING_Y:
643 return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
644 default:
645 return 0;
646 }
647 }
648
649
650 uint32_t
651 brw_get_surface_num_multisamples(unsigned num_samples)
652 {
653 if (num_samples > 0)
654 return BRW_SURFACE_MULTISAMPLECOUNT_4;
655 else
656 return BRW_SURFACE_MULTISAMPLECOUNT_1;
657 }
658
659
660 static void
661 brw_update_buffer_texture_surface(struct gl_context *ctx, GLuint unit)
662 {
663 struct brw_context *brw = brw_context(ctx);
664 struct intel_context *intel = &brw->intel;
665 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
666 const GLuint surf_index = SURF_INDEX_TEXTURE(unit);
667 uint32_t *surf;
668 struct intel_buffer_object *intel_obj =
669 intel_buffer_object(tObj->BufferObject);
670 drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
671 gl_format format = tObj->_BufferObjectFormat;
672 uint32_t brw_format = brw_format_for_mesa_format(format);
673 int texel_size = _mesa_get_format_bytes(format);
674
675 if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
676 _mesa_problem(NULL, "bad format %s for texture buffer\n",
677 _mesa_get_format_name(format));
678 }
679
680 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
681 6 * 4, 32, &brw->wm.surf_offset[surf_index]);
682
683 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
684 (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
685
686 if (intel->gen >= 6)
687 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
688
689 if (bo) {
690 surf[1] = bo->offset; /* reloc */
691
692 /* Emit relocation to surface contents. */
693 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
694 brw->wm.surf_offset[surf_index] + 4,
695 bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
696
697 int w = intel_obj->Base.Size / texel_size;
698 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
699 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
700 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
701 (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
702 } else {
703 surf[1] = 0;
704 surf[2] = 0;
705 surf[3] = 0;
706 }
707
708 surf[4] = 0;
709 surf[5] = 0;
710 }
711
712 static void
713 brw_update_texture_surface( struct gl_context *ctx, GLuint unit )
714 {
715 struct brw_context *brw = brw_context(ctx);
716 struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
717 struct intel_texture_object *intelObj = intel_texture_object(tObj);
718 struct intel_mipmap_tree *mt = intelObj->mt;
719 struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
720 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
721 const GLuint surf_index = SURF_INDEX_TEXTURE(unit);
722 uint32_t *surf;
723 int width, height, depth;
724
725 if (tObj->Target == GL_TEXTURE_BUFFER) {
726 brw_update_buffer_texture_surface(ctx, unit);
727 return;
728 }
729
730 intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
731
732 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
733 6 * 4, 32, &brw->wm.surf_offset[surf_index]);
734
735 surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
736 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
737 BRW_SURFACE_CUBEFACE_ENABLES |
738 (translate_tex_format(mt->format,
739 firstImage->InternalFormat,
740 sampler->DepthMode,
741 sampler->sRGBDecode) <<
742 BRW_SURFACE_FORMAT_SHIFT));
743
744 surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
745
746 surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
747 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
748 (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
749
750 surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
751 (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
752 ((intelObj->mt->region->pitch * intelObj->mt->cpp) - 1) <<
753 BRW_SURFACE_PITCH_SHIFT);
754
755 surf[4] = 0;
756
757 surf[5] = (mt->align_h == 4) ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0;
758
759 /* Emit relocation to surface contents */
760 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
761 brw->wm.surf_offset[surf_index] + 4,
762 intelObj->mt->region->bo,
763 intelObj->mt->offset,
764 I915_GEM_DOMAIN_SAMPLER, 0);
765 }
766
767 /**
768 * Create the constant buffer surface. Vertex/fragment shader constants will be
769 * read from this buffer with Data Port Read instructions/messages.
770 */
771 void
772 brw_create_constant_surface(struct brw_context *brw,
773 drm_intel_bo *bo,
774 int width,
775 uint32_t *out_offset)
776 {
777 struct intel_context *intel = &brw->intel;
778 const GLint w = width - 1;
779 uint32_t *surf;
780
781 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
782 6 * 4, 32, out_offset);
783
784 surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
785 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
786 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
787
788 if (intel->gen >= 6)
789 surf[0] |= BRW_SURFACE_RC_READ_WRITE;
790
791 surf[1] = bo->offset; /* reloc */
792
793 surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
794 ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
795
796 surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
797 (16 - 1) << BRW_SURFACE_PITCH_SHIFT); /* ignored */
798
799 surf[4] = 0;
800 surf[5] = 0;
801
802 /* Emit relocation to surface contents. Section 5.1.1 of the gen4
803 * bspec ("Data Cache") says that the data cache does not exist as
804 * a separate cache and is just the sampler cache.
805 */
806 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
807 *out_offset + 4,
808 bo, 0,
809 I915_GEM_DOMAIN_SAMPLER, 0);
810 }
811
812 /**
813 * Set up a binding table entry for use by stream output logic (transform
814 * feedback).
815 *
816 * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
817 */
818 void
819 brw_update_sol_surface(struct brw_context *brw,
820 struct gl_buffer_object *buffer_obj,
821 uint32_t *out_offset, unsigned num_vector_components,
822 unsigned stride_dwords, unsigned offset_dwords)
823 {
824 struct intel_context *intel = &brw->intel;
825 struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
826 drm_intel_bo *bo =
827 intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
828 uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
829 out_offset);
830 uint32_t pitch_minus_1 = 4*stride_dwords - 1;
831 uint32_t offset_bytes = 4 * offset_dwords;
832 size_t size_dwords = buffer_obj->Size / 4;
833 uint32_t buffer_size_minus_1, width, height, depth, surface_format;
834
835 /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
836 * too big to map using a single binding table entry?
837 */
838 assert((size_dwords - offset_dwords) / stride_dwords
839 <= BRW_MAX_NUM_BUFFER_ENTRIES);
840
841 if (size_dwords > offset_dwords + num_vector_components) {
842 /* There is room for at least 1 transform feedback output in the buffer.
843 * Compute the number of additional transform feedback outputs the
844 * buffer has room for.
845 */
846 buffer_size_minus_1 =
847 (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
848 } else {
849 /* There isn't even room for a single transform feedback output in the
850 * buffer. We can't configure the binding table entry to prevent output
851 * entirely; we'll have to rely on the geometry shader to detect
852 * overflow. But to minimize the damage in case of a bug, set up the
853 * binding table entry to just allow a single output.
854 */
855 buffer_size_minus_1 = 0;
856 }
857 width = buffer_size_minus_1 & 0x7f;
858 height = (buffer_size_minus_1 & 0xfff80) >> 7;
859 depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
860
861 switch (num_vector_components) {
862 case 1:
863 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
864 break;
865 case 2:
866 surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
867 break;
868 case 3:
869 surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
870 break;
871 case 4:
872 surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
873 break;
874 default:
875 assert(!"Invalid vector size for transform feedback output");
876 surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
877 break;
878 }
879
880 surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
881 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
882 surface_format << BRW_SURFACE_FORMAT_SHIFT |
883 BRW_SURFACE_RC_READ_WRITE;
884 surf[1] = bo->offset + offset_bytes; /* reloc */
885 surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
886 height << BRW_SURFACE_HEIGHT_SHIFT);
887 surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
888 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
889 surf[4] = 0;
890 surf[5] = 0;
891
892 /* Emit relocation to surface contents. */
893 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
894 *out_offset + 4,
895 bo, offset_bytes,
896 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
897 }
898
899 /* Creates a new WM constant buffer reflecting the current fragment program's
900 * constants, if needed by the fragment program.
901 *
902 * Otherwise, constants go through the CURBEs using the brw_constant_buffer
903 * state atom.
904 */
905 static void
906 brw_upload_wm_pull_constants(struct brw_context *brw)
907 {
908 struct gl_context *ctx = &brw->intel.ctx;
909 struct intel_context *intel = &brw->intel;
910 /* BRW_NEW_FRAGMENT_PROGRAM */
911 struct brw_fragment_program *fp =
912 (struct brw_fragment_program *) brw->fragment_program;
913 struct gl_program_parameter_list *params = fp->program.Base.Parameters;
914 const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
915 const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
916 float *constants;
917 unsigned int i;
918
919 _mesa_load_state_parameters(ctx, params);
920
921 /* CACHE_NEW_WM_PROG */
922 if (brw->wm.prog_data->nr_pull_params == 0) {
923 if (brw->wm.const_bo) {
924 drm_intel_bo_unreference(brw->wm.const_bo);
925 brw->wm.const_bo = NULL;
926 brw->wm.surf_offset[surf_index] = 0;
927 brw->state.dirty.brw |= BRW_NEW_SURFACES;
928 }
929 return;
930 }
931
932 drm_intel_bo_unreference(brw->wm.const_bo);
933 brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
934 size, 64);
935
936 /* _NEW_PROGRAM_CONSTANTS */
937 drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
938 constants = brw->wm.const_bo->virtual;
939 for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
940 constants[i] = *brw->wm.prog_data->pull_param[i];
941 }
942 drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
943
944 intel->vtbl.create_constant_surface(brw, brw->wm.const_bo,
945 params->NumParameters,
946 &brw->wm.surf_offset[surf_index]);
947
948 brw->state.dirty.brw |= BRW_NEW_SURFACES;
949 }
950
951 const struct brw_tracked_state brw_wm_pull_constants = {
952 .dirty = {
953 .mesa = (_NEW_PROGRAM_CONSTANTS),
954 .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
955 .cache = CACHE_NEW_WM_PROG,
956 },
957 .emit = brw_upload_wm_pull_constants,
958 };
959
960 static void
961 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
962 {
963 /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
964 * Notes):
965 *
966 * A null surface will be used in instances where an actual surface is
967 * not bound. When a write message is generated to a null surface, no
968 * actual surface is written to. When a read message (including any
969 * sampling engine message) is generated to a null surface, the result
970 * is all zeros. Note that a null surface type is allowed to be used
971 * with all messages, even if it is not specificially indicated as
972 * supported. All of the remaining fields in surface state are ignored
973 * for null surfaces, with the following exceptions:
974 *
975 * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
976 * depth buffer’s corresponding state for all render target surfaces,
977 * including null.
978 *
979 * - Surface Format must be R8G8B8A8_UNORM.
980 */
981 struct intel_context *intel = &brw->intel;
982 struct gl_context *ctx = &intel->ctx;
983 uint32_t *surf;
984 unsigned surface_type = BRW_SURFACE_NULL;
985 drm_intel_bo *bo = NULL;
986 unsigned pitch_minus_1 = 0;
987 uint32_t multisampling_state = 0;
988
989 /* _NEW_BUFFERS */
990 const struct gl_framebuffer *fb = ctx->DrawBuffer;
991
992 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
993 6 * 4, 32, &brw->wm.surf_offset[unit]);
994
995 if (fb->Visual.samples > 0) {
996 /* On Gen6, null render targets seem to cause GPU hangs when
997 * multisampling. So work around this problem by rendering into dummy
998 * color buffer.
999 *
1000 * To decrease the amount of memory needed by the workaround buffer, we
1001 * set its pitch to 128 bytes (the width of a Y tile). This means that
1002 * the amount of memory needed for the workaround buffer is
1003 * (width_in_tiles + height_in_tiles - 1) tiles.
1004 *
1005 * Note that since the workaround buffer will be interpreted by the
1006 * hardware as an interleaved multisampled buffer, we need to compute
1007 * width_in_tiles and height_in_tiles by dividing the width and height
1008 * by 16 rather than the normal Y-tile size of 32.
1009 */
1010 unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1011 unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1012 unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1013 brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1014 size_needed);
1015 bo = brw->wm.multisampled_null_render_target_bo;
1016 surface_type = BRW_SURFACE_2D;
1017 pitch_minus_1 = 127;
1018 multisampling_state =
1019 brw_get_surface_num_multisamples(fb->Visual.samples);
1020 }
1021
1022 surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1023 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1024 if (intel->gen < 6) {
1025 surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1026 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1027 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1028 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1029 }
1030 surf[1] = bo ? bo->offset : 0;
1031 surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1032 (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1033
1034 /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1035 * Notes):
1036 *
1037 * If Surface Type is SURFTYPE_NULL, this field must be TRUE
1038 */
1039 surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1040 pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1041 surf[4] = multisampling_state;
1042 surf[5] = 0;
1043
1044 if (bo) {
1045 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1046 brw->wm.surf_offset[unit] + 4,
1047 bo, 0,
1048 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1049 }
1050 }
1051
1052 /**
1053 * Sets up a surface state structure to point at the given region.
1054 * While it is only used for the front/back buffer currently, it should be
1055 * usable for further buffers when doing ARB_draw_buffer support.
1056 */
1057 static void
1058 brw_update_renderbuffer_surface(struct brw_context *brw,
1059 struct gl_renderbuffer *rb,
1060 unsigned int unit)
1061 {
1062 struct intel_context *intel = &brw->intel;
1063 struct gl_context *ctx = &intel->ctx;
1064 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1065 struct intel_mipmap_tree *mt = irb->mt;
1066 struct intel_region *region;
1067 uint32_t *surf;
1068 uint32_t tile_x, tile_y;
1069 uint32_t format = 0;
1070 gl_format rb_format = intel_rb_format(irb);
1071
1072 if (irb->tex_image && !brw->has_surface_tile_offset) {
1073 intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1074
1075 if (tile_x != 0 || tile_y != 0) {
1076 /* Original gen4 hardware couldn't draw to a non-tile-aligned
1077 * destination in a miptree unless you actually setup your renderbuffer
1078 * as a miptree and used the fragile lod/array_index/etc. controls to
1079 * select the image. So, instead, we just make a new single-level
1080 * miptree and render into that.
1081 */
1082 struct intel_context *intel = intel_context(ctx);
1083 struct intel_texture_image *intel_image =
1084 intel_texture_image(irb->tex_image);
1085 struct intel_mipmap_tree *new_mt;
1086 int width, height, depth;
1087
1088 intel_miptree_get_dimensions_for_image(irb->tex_image, &width, &height, &depth);
1089
1090 new_mt = intel_miptree_create(intel, irb->tex_image->TexObject->Target,
1091 intel_image->base.Base.TexFormat,
1092 intel_image->base.Base.Level,
1093 intel_image->base.Base.Level,
1094 width, height, depth,
1095 true,
1096 0 /* num_samples */,
1097 INTEL_MSAA_LAYOUT_NONE);
1098
1099 intel_miptree_copy_teximage(intel, intel_image, new_mt);
1100 intel_miptree_reference(&irb->mt, intel_image->mt);
1101 intel_renderbuffer_set_draw_offset(irb);
1102 intel_miptree_release(&new_mt);
1103
1104 mt = irb->mt;
1105 }
1106 }
1107
1108 region = irb->mt->region;
1109
1110 surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1111 6 * 4, 32, &brw->wm.surf_offset[unit]);
1112
1113 switch (rb_format) {
1114 case MESA_FORMAT_SARGB8:
1115 /* _NEW_BUFFERS
1116 *
1117 * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1118 * blend/update as sRGB.
1119 */
1120 if (ctx->Color.sRGBEnabled)
1121 format = brw_format_for_mesa_format(rb_format);
1122 else
1123 format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1124 break;
1125 default:
1126 format = brw->render_target_format[rb_format];
1127 if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1128 _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1129 __FUNCTION__, _mesa_get_format_name(rb_format));
1130 }
1131 break;
1132 }
1133
1134 surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1135 format << BRW_SURFACE_FORMAT_SHIFT);
1136
1137 /* reloc */
1138 surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1139 region->bo->offset);
1140
1141 surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1142 (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1143
1144 surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1145 ((region->pitch * region->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT);
1146
1147 surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1148
1149 assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1150 /* Note that the low bits of these fields are missing, so
1151 * there's the possibility of getting in trouble.
1152 */
1153 assert(tile_x % 4 == 0);
1154 assert(tile_y % 2 == 0);
1155 surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1156 (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1157 (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1158
1159 if (intel->gen < 6) {
1160 /* _NEW_COLOR */
1161 if (!ctx->Color.ColorLogicOpEnabled &&
1162 (ctx->Color.BlendEnabled & (1 << unit)))
1163 surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1164
1165 if (!ctx->Color.ColorMask[unit][0])
1166 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1167 if (!ctx->Color.ColorMask[unit][1])
1168 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1169 if (!ctx->Color.ColorMask[unit][2])
1170 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1171
1172 /* As mentioned above, disable writes to the alpha component when the
1173 * renderbuffer is XRGB.
1174 */
1175 if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1176 !ctx->Color.ColorMask[unit][3]) {
1177 surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1178 }
1179 }
1180
1181 drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1182 brw->wm.surf_offset[unit] + 4,
1183 region->bo,
1184 surf[1] - region->bo->offset,
1185 I915_GEM_DOMAIN_RENDER,
1186 I915_GEM_DOMAIN_RENDER);
1187 }
1188
1189 /**
1190 * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1191 */
1192 static void
1193 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1194 {
1195 struct intel_context *intel = &brw->intel;
1196 struct gl_context *ctx = &brw->intel.ctx;
1197 GLuint i;
1198
1199 /* _NEW_BUFFERS | _NEW_COLOR */
1200 /* Update surfaces for drawing buffers */
1201 if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1202 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1203 if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1204 intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1205 } else {
1206 intel->vtbl.update_null_renderbuffer_surface(brw, i);
1207 }
1208 }
1209 } else {
1210 intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1211 }
1212 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1213 }
1214
1215 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1216 .dirty = {
1217 .mesa = (_NEW_COLOR |
1218 _NEW_BUFFERS),
1219 .brw = BRW_NEW_BATCH,
1220 .cache = 0
1221 },
1222 .emit = brw_update_renderbuffer_surfaces,
1223 };
1224
1225 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1226 .dirty = {
1227 .mesa = _NEW_BUFFERS,
1228 .brw = BRW_NEW_BATCH,
1229 .cache = 0
1230 },
1231 .emit = brw_update_renderbuffer_surfaces,
1232 };
1233
1234 /**
1235 * Construct SURFACE_STATE objects for enabled textures.
1236 */
1237 static void
1238 brw_update_texture_surfaces(struct brw_context *brw)
1239 {
1240 struct gl_context *ctx = &brw->intel.ctx;
1241
1242 for (unsigned i = 0; i < BRW_MAX_TEX_UNIT; i++) {
1243 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
1244 const GLuint surf = SURF_INDEX_TEXTURE(i);
1245
1246 /* _NEW_TEXTURE */
1247 if (texUnit->_ReallyEnabled) {
1248 brw->intel.vtbl.update_texture_surface(ctx, i);
1249 } else {
1250 brw->wm.surf_offset[surf] = 0;
1251 }
1252
1253 /* For now, just mirror the texture setup to the VS slots. */
1254 brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(i)] =
1255 brw->wm.surf_offset[surf];
1256 }
1257
1258 brw->state.dirty.brw |= BRW_NEW_SURFACES;
1259 }
1260
1261 const struct brw_tracked_state brw_texture_surfaces = {
1262 .dirty = {
1263 .mesa = _NEW_TEXTURE,
1264 .brw = BRW_NEW_BATCH,
1265 .cache = 0
1266 },
1267 .emit = brw_update_texture_surfaces,
1268 };
1269
1270 /**
1271 * Constructs the binding table for the WM surface state, which maps unit
1272 * numbers to surface state objects.
1273 */
1274 static void
1275 brw_upload_wm_binding_table(struct brw_context *brw)
1276 {
1277 uint32_t *bind;
1278 int i;
1279
1280 /* Might want to calculate nr_surfaces first, to avoid taking up so much
1281 * space for the binding table.
1282 */
1283 bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1284 sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1285 32, &brw->wm.bind_bo_offset);
1286
1287 /* BRW_NEW_SURFACES */
1288 for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1289 bind[i] = brw->wm.surf_offset[i];
1290 }
1291
1292 brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1293 }
1294
1295 const struct brw_tracked_state brw_wm_binding_table = {
1296 .dirty = {
1297 .mesa = 0,
1298 .brw = (BRW_NEW_BATCH |
1299 BRW_NEW_SURFACES),
1300 .cache = 0
1301 },
1302 .emit = brw_upload_wm_binding_table,
1303 };
1304
1305 void
1306 gen4_init_vtable_surface_functions(struct brw_context *brw)
1307 {
1308 struct intel_context *intel = &brw->intel;
1309
1310 intel->vtbl.update_texture_surface = brw_update_texture_surface;
1311 intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1312 intel->vtbl.update_null_renderbuffer_surface =
1313 brw_update_null_renderbuffer_surface;
1314 intel->vtbl.create_constant_surface = brw_create_constant_surface;
1315 }