i965/gen6/gs: Fix binding table clash between TF surfaces and textures.
[mesa.git] / src / mesa / drivers / dri / i965 / gen6_gs_visitor.cpp
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * This code is based on original work by Ilia Mirkin.
24 */
25
26 /**
27 * \file gen6_gs_visitor.cpp
28 *
29 * Gen6 geometry shader implementation
30 */
31
32 #include "gen6_gs_visitor.h"
33
34 const unsigned MAX_GS_INPUT_VERTICES = 6;
35
36 namespace brw {
37
38 void
39 gen6_gs_visitor::assign_binding_table_offsets()
40 {
41 /* In gen6 we reserve the first BRW_MAX_SOL_BINDINGS entries for transform
42 * feedback surfaces.
43 */
44 assign_common_binding_table_offsets(BRW_MAX_SOL_BINDINGS);
45 }
46
47 void
48 gen6_gs_visitor::emit_prolog()
49 {
50 vec4_gs_visitor::emit_prolog();
51
52 /* Gen6 geometry shaders require to allocate an initial VUE handle via
53 * FF_SYNC message, however the documentation remarks that only one thread
54 * can write to the URB simultaneously and the FF_SYNC message provides the
55 * synchronization mechanism for this, so using this message effectively
56 * stalls the thread until it is its turn to write to the URB. Because of
57 * this, the best way to implement geometry shader algorithms in gen6 is to
58 * execute the algorithm before the FF_SYNC message to maximize parallelism.
59 *
60 * To achieve this we buffer the geometry shader outputs for each emitted
61 * vertex in vertex_output during operation. Then, when we have processed
62 * the last vertex (that is, at thread end time), we send the FF_SYNC
63 * message to allocate the initial VUE handle and write all buffered vertex
64 * data to the URB in one go.
65 *
66 * For each emitted vertex, vertex_output will hold vue_map.num_slots
67 * data items plus one additional item to hold required flags
68 * (PrimType, PrimStart, PrimEnd, as expected by the URB_WRITE message)
69 * which come right after the data items for that vertex. Vertex data and
70 * flags for the next vertex come right after the data items and flags for
71 * the previous vertex.
72 */
73 this->current_annotation = "gen6 prolog";
74 this->vertex_output = src_reg(this,
75 glsl_type::uint_type,
76 (prog_data->vue_map.num_slots + 1) *
77 c->gp->program.VerticesOut);
78 this->vertex_output_offset = src_reg(this, glsl_type::uint_type);
79 emit(MOV(dst_reg(this->vertex_output_offset), src_reg(0u)));
80
81 /* MRF 1 will be the header for all messages (FF_SYNC and URB_WRITES),
82 * so initialize it once to R0.
83 */
84 vec4_instruction *inst = emit(MOV(dst_reg(MRF, 1),
85 retype(brw_vec8_grf(0, 0),
86 BRW_REGISTER_TYPE_UD)));
87 inst->force_writemask_all = true;
88
89 /* This will be used as a temporary to store writeback data of FF_SYNC
90 * and URB_WRITE messages.
91 */
92 this->temp = src_reg(this, glsl_type::uint_type);
93
94 /* This will be used to know when we are processing the first vertex of
95 * a primitive. We will set this to URB_WRITE_PRIM_START only when we know
96 * that we are processing the first vertex in the primitive and to zero
97 * otherwise. This way we can use its value directly in the URB write
98 * headers.
99 */
100 this->first_vertex = src_reg(this, glsl_type::uint_type);
101 emit(MOV(dst_reg(this->first_vertex), URB_WRITE_PRIM_START));
102
103 /* The FF_SYNC message requires to know the number of primitives generated,
104 * so keep a counter for this.
105 */
106 this->prim_count = src_reg(this, glsl_type::uint_type);
107 emit(MOV(dst_reg(this->prim_count), 0u));
108
109 if (c->prog_data.gen6_xfb_enabled) {
110 /* Create a virtual register to hold destination indices in SOL */
111 this->destination_indices = src_reg(this, glsl_type::uvec4_type);
112 /* Create a virtual register to hold number of written primitives */
113 this->sol_prim_written = src_reg(this, glsl_type::uint_type);
114 /* Create a virtual register to hold Streamed Vertex Buffer Indices */
115 this->svbi = src_reg(this, glsl_type::uvec4_type);
116 /* Create a virtual register to hold max values of SVBI */
117 this->max_svbi = src_reg(this, glsl_type::uvec4_type);
118 emit(MOV(dst_reg(this->max_svbi),
119 src_reg(retype(brw_vec1_grf(1, 4), BRW_REGISTER_TYPE_UD))));
120
121 xfb_setup();
122 }
123
124 /* PrimitveID is delivered in r0.1 of the thread payload. If the program
125 * needs it we have to move it to a separate register where we can map
126 * the atttribute.
127 *
128 * Notice that we cannot use a virtual register for this, because we need to
129 * map all input attributes to hardware registers in setup_payload(),
130 * which happens before virtual registers are mapped to hardware registers.
131 * We could work around that issue if we were able to compute the first
132 * non-payload register here and move the PrimitiveID information to that
133 * register, but we can't because at this point we don't know the final
134 * number uniforms that will be included in the payload.
135 *
136 * So, what we do is to place PrimitiveID information in r1, which is always
137 * delivered as part of the payload, but its only populated with data
138 * relevant for transform feedback when we set GEN6_GS_SVBI_PAYLOAD_ENABLE
139 * in the 3DSTATE_GS state packet. That information can be obtained by other
140 * means though, so we can safely use r1 for this purpose.
141 */
142 if (c->prog_data.include_primitive_id) {
143 this->primitive_id =
144 src_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 emit(GS_OPCODE_SET_PRIMITIVE_ID, dst_reg(this->primitive_id));
146 }
147 }
148
149 void
150 gen6_gs_visitor::visit(ir_emit_vertex *)
151 {
152 this->current_annotation = "gen6 emit vertex";
153 /* Honor max_vertex layout indication in geometry shader by ignoring any
154 * vertices coming after c->gp->program.VerticesOut.
155 */
156 unsigned num_output_vertices = c->gp->program.VerticesOut;
157 emit(CMP(dst_null_d(), this->vertex_count, src_reg(num_output_vertices),
158 BRW_CONDITIONAL_L));
159 emit(IF(BRW_PREDICATE_NORMAL));
160 {
161 /* Buffer all output slots for this vertex in vertex_output */
162 for (int slot = 0; slot < prog_data->vue_map.num_slots; ++slot) {
163 int varying = prog_data->vue_map.slot_to_varying[slot];
164 if (varying != VARYING_SLOT_PSIZ) {
165 dst_reg dst(this->vertex_output);
166 dst.reladdr = ralloc(mem_ctx, src_reg);
167 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
168 emit_urb_slot(dst, varying);
169 } else {
170 /* The PSIZ slot can pack multiple varyings in different channels
171 * and emit_urb_slot() will produce a MOV instruction for each of
172 * them. Since we are writing to an array, that will translate to
173 * possibly multiple MOV instructions with an array destination and
174 * each will generate a scratch write with the same offset into
175 * scratch space (thus, each one overwriting the previous). This is
176 * not what we want. What we will do instead is emit PSIZ to a
177 * a regular temporary register, then move that resgister into the
178 * array. This way we only have one instruction with an array
179 * destination and we only produce a single scratch write.
180 */
181 dst_reg tmp = dst_reg(src_reg(this, glsl_type::uvec4_type));
182 emit_urb_slot(tmp, varying);
183 dst_reg dst(this->vertex_output);
184 dst.reladdr = ralloc(mem_ctx, src_reg);
185 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
186 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp)));
187 inst->force_writemask_all = true;
188 }
189
190 emit(ADD(dst_reg(this->vertex_output_offset),
191 this->vertex_output_offset, 1u));
192 }
193
194 /* Now buffer flags for this vertex */
195 dst_reg dst(this->vertex_output);
196 dst.reladdr = ralloc(mem_ctx, src_reg);
197 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
198 if (c->gp->program.OutputType == GL_POINTS) {
199 /* If we are outputting points, then every vertex has PrimStart and
200 * PrimEnd set.
201 */
202 emit(MOV(dst, (_3DPRIM_POINTLIST << URB_WRITE_PRIM_TYPE_SHIFT) |
203 URB_WRITE_PRIM_START | URB_WRITE_PRIM_END));
204 emit(ADD(dst_reg(this->prim_count), this->prim_count, 1u));
205 } else {
206 /* Otherwise, we can only set the PrimStart flag, which we have stored
207 * in the first_vertex register. We will have to wait until we execute
208 * EndPrimitive() or we end the thread to set the PrimEnd flag on a
209 * vertex.
210 */
211 emit(OR(dst, this->first_vertex,
212 (c->prog_data.output_topology << URB_WRITE_PRIM_TYPE_SHIFT)));
213 emit(MOV(dst_reg(this->first_vertex), 0u));
214 }
215 emit(ADD(dst_reg(this->vertex_output_offset),
216 this->vertex_output_offset, 1u));
217
218 /* Update vertex count */
219 emit(ADD(dst_reg(this->vertex_count), this->vertex_count, 1u));
220 }
221 emit(BRW_OPCODE_ENDIF);
222 }
223
224 void
225 gen6_gs_visitor::visit(ir_end_primitive *)
226 {
227 this->current_annotation = "gen6 end primitive";
228 /* Calling EndPrimitive() is optional for point output. In this case we set
229 * the PrimEnd flag when we process EmitVertex().
230 */
231 if (c->gp->program.OutputType == GL_POINTS)
232 return;
233
234 /* Otherwise we know that the last vertex we have processed was the last
235 * vertex in the primitive and we need to set its PrimEnd flag, so do this
236 * unless we haven't emitted that vertex at all (vertex_count != 0).
237 *
238 * Notice that we have already incremented vertex_count when we processed
239 * the last emit_vertex, so we need to take that into account in the
240 * comparison below (hence the num_output_vertices + 1 in the comparison
241 * below).
242 */
243 unsigned num_output_vertices = c->gp->program.VerticesOut;
244 emit(CMP(dst_null_d(), this->vertex_count, src_reg(num_output_vertices + 1),
245 BRW_CONDITIONAL_L));
246 vec4_instruction *inst = emit(CMP(dst_null_d(),
247 this->vertex_count, 0u,
248 BRW_CONDITIONAL_NEQ));
249 inst->predicate = BRW_PREDICATE_NORMAL;
250 emit(IF(BRW_PREDICATE_NORMAL));
251 {
252 /* vertex_output_offset is already pointing at the first entry of the
253 * next vertex. So subtract 1 to modify the flags for the previous
254 * vertex.
255 */
256 src_reg offset(this, glsl_type::uint_type);
257 emit(ADD(dst_reg(offset), this->vertex_output_offset, brw_imm_d(-1)));
258
259 src_reg dst(this->vertex_output);
260 dst.reladdr = ralloc(mem_ctx, src_reg);
261 memcpy(dst.reladdr, &offset, sizeof(src_reg));
262
263 emit(OR(dst_reg(dst), dst, URB_WRITE_PRIM_END));
264 emit(ADD(dst_reg(this->prim_count), this->prim_count, 1u));
265
266 /* Set the first vertex flag to indicate that the next vertex will start
267 * a primitive.
268 */
269 emit(MOV(dst_reg(this->first_vertex), URB_WRITE_PRIM_START));
270 }
271 emit(BRW_OPCODE_ENDIF);
272 }
273
274 void
275 gen6_gs_visitor::emit_urb_write_header(int mrf)
276 {
277 this->current_annotation = "gen6 urb header";
278 /* Compute offset of the flags for the current vertex in vertex_output and
279 * write them in dw2 of the message header.
280 *
281 * Notice that by the time that emit_thread_end() calls here
282 * vertex_output_offset should point to the first data item of the current
283 * vertex in vertex_output, thus we only need to add the number of output
284 * slots per vertex to that offset to obtain the flags data offset.
285 */
286 src_reg flags_offset(this, glsl_type::uint_type);
287 emit(ADD(dst_reg(flags_offset),
288 this->vertex_output_offset, src_reg(prog_data->vue_map.num_slots)));
289
290 src_reg flags_data(this->vertex_output);
291 flags_data.reladdr = ralloc(mem_ctx, src_reg);
292 memcpy(flags_data.reladdr, &flags_offset, sizeof(src_reg));
293
294 emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, mrf), flags_data);
295 }
296
297 void
298 gen6_gs_visitor::emit_urb_write_opcode(bool complete, int base_mrf,
299 int last_mrf, int urb_offset)
300 {
301 vec4_instruction *inst = NULL;
302
303 if (!complete) {
304 /* If the vertex is not complete we don't have to do anything special */
305 inst = emit(GS_OPCODE_URB_WRITE);
306 inst->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
307 } else {
308 /* Otherwise we always request to allocate a new VUE handle. If this is
309 * the last write before the EOT message and the new handle never gets
310 * used it will be dereferenced when we send the EOT message. This is
311 * necessary to avoid different setups for the EOT message (one for the
312 * case when there is no output and another for the case when there is)
313 * which would require to end the program with an IF/ELSE/ENDIF block,
314 * something we do not want.
315 */
316 inst = emit(GS_OPCODE_URB_WRITE_ALLOCATE);
317 inst->urb_write_flags = BRW_URB_WRITE_COMPLETE;
318 inst->dst = dst_reg(MRF, base_mrf);
319 inst->src[0] = this->temp;
320 }
321
322 inst->base_mrf = base_mrf;
323 /* URB data written (does not include the message header reg) must
324 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
325 * section 5.4.3.2.2: URB_INTERLEAVED.
326 */
327 int mlen = last_mrf - base_mrf;
328 if ((mlen % 2) != 1)
329 mlen++;
330 inst->mlen = mlen;
331 inst->offset = urb_offset;
332 }
333
334 void
335 gen6_gs_visitor::emit_thread_end()
336 {
337 /* Make sure the current primitive is ended: we know it is not ended when
338 * first_vertex is not zero. This is only relevant for outputs other than
339 * points because in the point case we set PrimEnd on all vertices.
340 */
341 if (c->gp->program.OutputType != GL_POINTS) {
342 emit(CMP(dst_null_d(), this->first_vertex, 0u, BRW_CONDITIONAL_Z));
343 emit(IF(BRW_PREDICATE_NORMAL));
344 {
345 visit((ir_end_primitive *) NULL);
346 }
347 emit(BRW_OPCODE_ENDIF);
348 }
349
350 /* Here we have to:
351 * 1) Emit an FF_SYNC messsage to obtain an initial VUE handle.
352 * 2) Loop over all buffered vertex data and write it to corresponding
353 * URB entries.
354 * 3) Allocate new VUE handles for all vertices other than the first.
355 * 4) Send a final EOT message.
356 */
357
358 /* MRF 0 is reserved for the debugger, so start with message header
359 * in MRF 1.
360 */
361 int base_mrf = 1;
362
363 /* In the process of generating our URB write message contents, we
364 * may need to unspill a register or load from an array. Those
365 * reads would use MRFs 14-15.
366 */
367 int max_usable_mrf = 13;
368
369 /* Issue the FF_SYNC message and obtain the initial VUE handle. */
370 emit(CMP(dst_null_d(), this->vertex_count, 0u, BRW_CONDITIONAL_G));
371 emit(IF(BRW_PREDICATE_NORMAL));
372 {
373 this->current_annotation = "gen6 thread end: ff_sync";
374
375 vec4_instruction *inst;
376 if (c->prog_data.gen6_xfb_enabled) {
377 src_reg sol_temp(this, glsl_type::uvec4_type);
378 emit(GS_OPCODE_FF_SYNC_SET_PRIMITIVES,
379 dst_reg(this->svbi),
380 this->vertex_count,
381 this->prim_count,
382 sol_temp);
383 inst = emit(GS_OPCODE_FF_SYNC,
384 dst_reg(this->temp), this->prim_count, this->svbi);
385 } else {
386 inst = emit(GS_OPCODE_FF_SYNC,
387 dst_reg(this->temp), this->prim_count, brw_imm_ud(0u));
388 }
389 inst->base_mrf = base_mrf;
390
391 /* Loop over all buffered vertices and emit URB write messages */
392 this->current_annotation = "gen6 thread end: urb writes init";
393 src_reg vertex(this, glsl_type::uint_type);
394 emit(MOV(dst_reg(vertex), 0u));
395 emit(MOV(dst_reg(this->vertex_output_offset), 0u));
396
397 this->current_annotation = "gen6 thread end: urb writes";
398 emit(BRW_OPCODE_DO);
399 {
400 emit(CMP(dst_null_d(), vertex, this->vertex_count, BRW_CONDITIONAL_GE));
401 inst = emit(BRW_OPCODE_BREAK);
402 inst->predicate = BRW_PREDICATE_NORMAL;
403
404 /* First we prepare the message header */
405 emit_urb_write_header(base_mrf);
406
407 /* Then add vertex data to the message in interleaved fashion */
408 int slot = 0;
409 bool complete = false;
410 do {
411 int mrf = base_mrf + 1;
412
413 /* URB offset is in URB row increments, and each of our MRFs is half
414 * of one of those, since we're doing interleaved writes.
415 */
416 int urb_offset = slot / 2;
417
418 for (; slot < prog_data->vue_map.num_slots; ++slot) {
419 int varying = prog_data->vue_map.slot_to_varying[slot];
420 current_annotation = output_reg_annotation[varying];
421
422 /* Compute offset of this slot for the current vertex
423 * in vertex_output
424 */
425 src_reg data(this->vertex_output);
426 data.reladdr = ralloc(mem_ctx, src_reg);
427 memcpy(data.reladdr, &this->vertex_output_offset,
428 sizeof(src_reg));
429
430 /* Copy this slot to the appropriate message register */
431 dst_reg reg = dst_reg(MRF, mrf);
432 reg.type = output_reg[varying].type;
433 data.type = reg.type;
434 vec4_instruction *inst = emit(MOV(reg, data));
435 inst->force_writemask_all = true;
436
437 mrf++;
438 emit(ADD(dst_reg(this->vertex_output_offset),
439 this->vertex_output_offset, 1u));
440
441 /* If this was max_usable_mrf, we can't fit anything more into
442 * this URB WRITE.
443 */
444 if (mrf > max_usable_mrf) {
445 slot++;
446 break;
447 }
448 }
449
450 complete = slot >= prog_data->vue_map.num_slots;
451 emit_urb_write_opcode(complete, base_mrf, mrf, urb_offset);
452 } while (!complete);
453
454 /* Skip over the flags data item so that vertex_output_offset points
455 * to the first data item of the next vertex, so that we can start
456 * writing the next vertex.
457 */
458 emit(ADD(dst_reg(this->vertex_output_offset),
459 this->vertex_output_offset, 1u));
460
461 emit(ADD(dst_reg(vertex), vertex, 1u));
462 }
463 emit(BRW_OPCODE_WHILE);
464
465 if (c->prog_data.gen6_xfb_enabled)
466 xfb_write();
467 }
468 emit(BRW_OPCODE_ENDIF);
469
470 /* Finally, emit EOT message.
471 *
472 * In gen6 we need to end the thread differently depending on whether we have
473 * emitted at least one vertex or not. In case we did, the EOT message must
474 * always include the COMPLETE flag or else the GPU hangs. If we have not
475 * produced any output we can't use the COMPLETE flag.
476 *
477 * However, this would lead us to end the program with an ENDIF opcode,
478 * which we want to avoid, so what we do is that we always request a new
479 * VUE handle every time we do a URB WRITE, even for the last vertex we emit.
480 * With this we make sure that whether we have emitted at least one vertex
481 * or none at all, we have to finish the thread without writing to the URB,
482 * which works for both cases by setting the COMPLETE and UNUSED flags in
483 * the EOT message.
484 */
485 this->current_annotation = "gen6 thread end: EOT";
486
487 if (c->prog_data.gen6_xfb_enabled) {
488 /* When emitting EOT, set SONumPrimsWritten Increment Value. */
489 src_reg data(this, glsl_type::uint_type);
490 emit(AND(dst_reg(data), this->sol_prim_written, brw_imm_ud(0xffffu)));
491 emit(SHL(dst_reg(data), data, brw_imm_ud(16u)));
492 emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, base_mrf), data);
493 }
494
495 vec4_instruction *inst = emit(GS_OPCODE_THREAD_END);
496 inst->urb_write_flags = BRW_URB_WRITE_COMPLETE | BRW_URB_WRITE_UNUSED;
497 inst->base_mrf = base_mrf;
498 inst->mlen = 1;
499 }
500
501 void
502 gen6_gs_visitor::setup_payload()
503 {
504 int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
505
506 /* Attributes are going to be interleaved, so one register contains two
507 * attribute slots.
508 */
509 int attributes_per_reg = 2;
510
511 /* If a geometry shader tries to read from an input that wasn't written by
512 * the vertex shader, that produces undefined results, but it shouldn't
513 * crash anything. So initialize attribute_map to zeros--that ensures that
514 * these undefined results are read from r0.
515 */
516 memset(attribute_map, 0, sizeof(attribute_map));
517
518 int reg = 0;
519
520 /* The payload always contains important data in r0. */
521 reg++;
522
523 /* r1 is always part of the payload and it holds information relevant
524 * for transform feedback when we set the GEN6_GS_SVBI_PAYLOAD_ENABLE bit in
525 * the 3DSTATE_GS packet. We will overwrite it with the PrimitiveID
526 * information (and move the original value to a virtual register if
527 * necessary).
528 */
529 if (c->prog_data.include_primitive_id)
530 attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg;
531 reg++;
532
533 reg = setup_uniforms(reg);
534
535 reg = setup_varying_inputs(reg, attribute_map, attributes_per_reg);
536
537 lower_attributes_to_hw_regs(attribute_map, true);
538
539 this->first_non_payload_grf = reg;
540 }
541
542 void
543 gen6_gs_visitor::xfb_setup()
544 {
545 static const unsigned swizzle_for_offset[4] = {
546 BRW_SWIZZLE4(0, 1, 2, 3),
547 BRW_SWIZZLE4(1, 2, 3, 3),
548 BRW_SWIZZLE4(2, 3, 3, 3),
549 BRW_SWIZZLE4(3, 3, 3, 3)
550 };
551
552 struct brw_gs_prog_data *prog_data =
553 (struct brw_gs_prog_data *) &c->prog_data;
554
555 const struct gl_transform_feedback_info *linked_xfb_info =
556 &this->shader_prog->LinkedTransformFeedback;
557 int i;
558
559 /* Make sure that the VUE slots won't overflow the unsigned chars in
560 * prog_data->transform_feedback_bindings[].
561 */
562 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 256);
563
564 /* Make sure that we don't need more binding table entries than we've
565 * set aside for use in transform feedback. (We shouldn't, since we
566 * set aside enough binding table entries to have one per component).
567 */
568 assert(linked_xfb_info->NumOutputs <= BRW_MAX_SOL_BINDINGS);
569
570 prog_data->num_transform_feedback_bindings = linked_xfb_info->NumOutputs;
571 for (i = 0; i < prog_data->num_transform_feedback_bindings; i++) {
572 prog_data->transform_feedback_bindings[i] =
573 linked_xfb_info->Outputs[i].OutputRegister;
574 prog_data->transform_feedback_swizzles[i] =
575 swizzle_for_offset[linked_xfb_info->Outputs[i].ComponentOffset];
576 }
577 }
578
579 void
580 gen6_gs_visitor::xfb_write()
581 {
582 unsigned num_verts;
583 struct brw_gs_prog_data *prog_data =
584 (struct brw_gs_prog_data *) &c->prog_data;
585
586 if (!prog_data->num_transform_feedback_bindings)
587 return;
588
589 switch (c->prog_data.output_topology) {
590 case _3DPRIM_POINTLIST:
591 num_verts = 1;
592 break;
593 case _3DPRIM_LINELIST:
594 case _3DPRIM_LINESTRIP:
595 case _3DPRIM_LINELOOP:
596 num_verts = 2;
597 break;
598 case _3DPRIM_TRILIST:
599 case _3DPRIM_TRIFAN:
600 case _3DPRIM_TRISTRIP:
601 case _3DPRIM_RECTLIST:
602 num_verts = 3;
603 break;
604 case _3DPRIM_QUADLIST:
605 case _3DPRIM_QUADSTRIP:
606 case _3DPRIM_POLYGON:
607 num_verts = 3;
608 break;
609 default:
610 unreachable("Unexpected primitive type in Gen6 SOL program.");
611 }
612
613 this->current_annotation = "gen6 thread end: svb writes init";
614
615 emit(MOV(dst_reg(this->vertex_output_offset), 0u));
616 emit(MOV(dst_reg(this->sol_prim_written), 0u));
617
618 /* Check that at least one primitive can be written
619 *
620 * Note: since we use the binding table to keep track of buffer offsets
621 * and stride, the GS doesn't need to keep track of a separate pointer
622 * into each buffer; it uses a single pointer which increments by 1 for
623 * each vertex. So we use SVBI0 for this pointer, regardless of whether
624 * transform feedback is in interleaved or separate attribs mode.
625 */
626 src_reg sol_temp(this, glsl_type::uvec4_type);
627 emit(ADD(dst_reg(sol_temp), this->svbi, brw_imm_ud(num_verts)));
628
629 /* Compare SVBI calculated number with the maximum value, which is
630 * in R1.4 (previously saved in this->max_svbi) for gen6.
631 */
632 emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
633 emit(IF(BRW_PREDICATE_NORMAL));
634 {
635 struct src_reg destination_indices_uw =
636 retype(destination_indices, BRW_REGISTER_TYPE_UW);
637
638 vec4_instruction *inst = emit(MOV(dst_reg(destination_indices_uw),
639 brw_imm_v(0x00020100))); /* (0, 1, 2) */
640 inst->force_writemask_all = true;
641
642 emit(ADD(dst_reg(this->destination_indices),
643 this->destination_indices,
644 this->svbi));
645 }
646 emit(BRW_OPCODE_ENDIF);
647
648 /* Write transform feedback data for all processed vertices. */
649 for (int i = 0; i < c->gp->program.VerticesOut; i++) {
650 emit(MOV(dst_reg(sol_temp), i));
651 emit(CMP(dst_null_d(), sol_temp, this->vertex_count,
652 BRW_CONDITIONAL_L));
653 emit(IF(BRW_PREDICATE_NORMAL));
654 {
655 xfb_program(i, num_verts);
656 }
657 emit(BRW_OPCODE_ENDIF);
658 }
659 }
660
661 void
662 gen6_gs_visitor::xfb_program(unsigned vertex, unsigned num_verts)
663 {
664 struct brw_gs_prog_data *prog_data =
665 (struct brw_gs_prog_data *) &c->prog_data;
666 unsigned binding;
667 unsigned num_bindings = prog_data->num_transform_feedback_bindings;
668 src_reg sol_temp(this, glsl_type::uvec4_type);
669
670 /* Check for buffer overflow: we need room to write the complete primitive
671 * (all vertices). Otherwise, avoid writing any vertices for it
672 */
673 emit(ADD(dst_reg(sol_temp), this->sol_prim_written, 1u));
674 emit(MUL(dst_reg(sol_temp), sol_temp, brw_imm_ud(num_verts)));
675 emit(ADD(dst_reg(sol_temp), sol_temp, this->svbi));
676 emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
677 emit(IF(BRW_PREDICATE_NORMAL));
678 {
679 /* Avoid overwriting MRF 1 as it is used as URB write message header */
680 dst_reg mrf_reg(MRF, 2);
681
682 this->current_annotation = "gen6: emit SOL vertex data";
683 /* For each vertex, generate code to output each varying using the
684 * appropriate binding table entry.
685 */
686 for (binding = 0; binding < num_bindings; ++binding) {
687 unsigned char varying =
688 prog_data->transform_feedback_bindings[binding];
689
690 /* Set up the correct destination index for this vertex */
691 vec4_instruction *inst = emit(GS_OPCODE_SVB_SET_DST_INDEX,
692 mrf_reg,
693 this->destination_indices);
694 inst->sol_vertex = vertex % num_verts;
695
696 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
697 *
698 * "Prior to End of Thread with a URB_WRITE, the kernel must
699 * ensure that all writes are complete by sending the final
700 * write as a committed write."
701 */
702 bool final_write = binding == (unsigned) num_bindings - 1 &&
703 inst->sol_vertex == num_verts - 1;
704
705 /* Compute offset of this varying for the current vertex
706 * in vertex_output
707 */
708 this->current_annotation = output_reg_annotation[varying];
709 src_reg data(this->vertex_output);
710 data.reladdr = ralloc(mem_ctx, src_reg);
711 int offset = get_vertex_output_offset_for_varying(vertex, varying);
712 emit(MOV(dst_reg(this->vertex_output_offset), offset));
713 memcpy(data.reladdr, &this->vertex_output_offset, sizeof(src_reg));
714 data.type = output_reg[varying].type;
715
716 /* PSIZ, LAYER and VIEWPORT are packed in different channels of the
717 * same slot, so make sure we write the appropriate channel
718 */
719 if (varying == VARYING_SLOT_PSIZ)
720 data.swizzle = BRW_SWIZZLE_WWWW;
721 else if (varying == VARYING_SLOT_LAYER)
722 data.swizzle = BRW_SWIZZLE_YYYY;
723 else if (varying == VARYING_SLOT_VIEWPORT)
724 data.swizzle = BRW_SWIZZLE_ZZZZ;
725 else
726 data.swizzle = prog_data->transform_feedback_swizzles[binding];
727
728 /* Write data */
729 inst = emit(GS_OPCODE_SVB_WRITE, mrf_reg, data, sol_temp);
730 inst->sol_binding = binding;
731 inst->sol_final_write = final_write;
732
733 if (final_write) {
734 /* This is the last vertex of the primitive, then increment
735 * SO num primitive counter and destination indices.
736 */
737 emit(ADD(dst_reg(this->destination_indices),
738 this->destination_indices,
739 brw_imm_ud(num_verts)));
740 emit(ADD(dst_reg(this->sol_prim_written),
741 this->sol_prim_written, 1u));
742 }
743
744 }
745 this->current_annotation = NULL;
746 }
747 emit(BRW_OPCODE_ENDIF);
748 }
749
750 int
751 gen6_gs_visitor::get_vertex_output_offset_for_varying(int vertex, int varying)
752 {
753 /* Find the output slot assigned to this varying.
754 *
755 * VARYING_SLOT_LAYER and VARYING_SLOT_VIEWPORT are packed in the same slot
756 * as VARYING_SLOT_PSIZ.
757 */
758 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT)
759 varying = VARYING_SLOT_PSIZ;
760 int slot = prog_data->vue_map.varying_to_slot[varying];
761
762 if (slot < 0) {
763 /* This varying does not exist in the VUE so we are not writing to it
764 * and its value is undefined. We still want to return a valid offset
765 * into vertex_output though, to prevent any out-of-bound accesses into
766 * the vertex_output array. Since the value for this varying is undefined
767 * we don't really care for the value we assign to it, so any offset
768 * within the limits of vertex_output will do.
769 */
770 slot = 0;
771 }
772
773 return vertex * (prog_data->vue_map.num_slots + 1) + slot;
774 }
775
776 } /* namespace brw */