Merge branch 'wip/nir-vtn' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / gen6_queryobj.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Kenneth Graunke <kenneth@whitecape.org>
26 */
27
28 /** @file gen6_queryobj.c
29 *
30 * Support for query objects (GL_ARB_occlusion_query, GL_ARB_timer_query,
31 * GL_EXT_transform_feedback, and friends) on platforms that support
32 * hardware contexts (Gen6+).
33 */
34 #include "main/imports.h"
35
36 #include "brw_context.h"
37 #include "brw_defines.h"
38 #include "brw_state.h"
39 #include "intel_batchbuffer.h"
40 #include "intel_reg.h"
41
42 /*
43 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
44 *
45 * Only TIMESTAMP and PS_DEPTH_COUNT have special PIPE_CONTROL support; other
46 * counters have to be read via the generic MI_STORE_REGISTER_MEM.
47 *
48 * Callers must explicitly flush the pipeline to ensure the desired value is
49 * available.
50 */
51 void
52 brw_store_register_mem64(struct brw_context *brw,
53 drm_intel_bo *bo, uint32_t reg, int idx)
54 {
55 assert(brw->gen >= 6);
56
57 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
58 * read a full 64-bit register, we need to do two of them.
59 */
60 if (brw->gen >= 8) {
61 BEGIN_BATCH(8);
62 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
63 OUT_BATCH(reg);
64 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
65 idx * sizeof(uint64_t));
66 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
67 OUT_BATCH(reg + sizeof(uint32_t));
68 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
69 sizeof(uint32_t) + idx * sizeof(uint64_t));
70 ADVANCE_BATCH();
71 } else {
72 BEGIN_BATCH(6);
73 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
74 OUT_BATCH(reg);
75 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
76 idx * sizeof(uint64_t));
77 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
78 OUT_BATCH(reg + sizeof(uint32_t));
79 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
80 sizeof(uint32_t) + idx * sizeof(uint64_t));
81 ADVANCE_BATCH();
82 }
83 }
84
85 static void
86 write_primitives_generated(struct brw_context *brw,
87 drm_intel_bo *query_bo, int stream, int idx)
88 {
89 intel_batchbuffer_emit_mi_flush(brw);
90
91 if (brw->gen >= 7 && stream > 0) {
92 brw_store_register_mem64(brw, query_bo,
93 GEN7_SO_PRIM_STORAGE_NEEDED(stream), idx);
94 } else {
95 brw_store_register_mem64(brw, query_bo, CL_INVOCATION_COUNT, idx);
96 }
97 }
98
99 static void
100 write_xfb_primitives_written(struct brw_context *brw,
101 drm_intel_bo *bo, int stream, int idx)
102 {
103 intel_batchbuffer_emit_mi_flush(brw);
104
105 if (brw->gen >= 7) {
106 brw_store_register_mem64(brw, bo, GEN7_SO_NUM_PRIMS_WRITTEN(stream), idx);
107 } else {
108 brw_store_register_mem64(brw, bo, GEN6_SO_NUM_PRIMS_WRITTEN, idx);
109 }
110 }
111
112 static inline const int
113 pipeline_target_to_index(int target)
114 {
115 if (target == GL_GEOMETRY_SHADER_INVOCATIONS)
116 return MAX_PIPELINE_STATISTICS - 1;
117 else
118 return target - GL_VERTICES_SUBMITTED_ARB;
119 }
120
121 static void
122 emit_pipeline_stat(struct brw_context *brw, drm_intel_bo *bo,
123 int stream, int target, int idx)
124 {
125 /* One source of confusion is the tessellation shader statistics. The
126 * hardware has no statistics specific to the TE unit. Ideally we could have
127 * the HS primitives for TESS_CONTROL_SHADER_PATCHES_ARB, and the DS
128 * invocations as the register for TESS_CONTROL_SHADER_PATCHES_ARB.
129 * Unfortunately we don't have HS primitives, we only have HS invocations.
130 */
131
132 /* Everything except GEOMETRY_SHADER_INVOCATIONS can be kept in a simple
133 * lookup table
134 */
135 static const uint32_t target_to_register[] = {
136 IA_VERTICES_COUNT, /* VERTICES_SUBMITTED */
137 IA_PRIMITIVES_COUNT, /* PRIMITIVES_SUBMITTED */
138 VS_INVOCATION_COUNT, /* VERTEX_SHADER_INVOCATIONS */
139 0, /* HS_INVOCATION_COUNT,*/ /* TESS_CONTROL_SHADER_PATCHES */
140 0, /* DS_INVOCATION_COUNT,*/ /* TESS_EVALUATION_SHADER_INVOCATIONS */
141 GS_PRIMITIVES_COUNT, /* GEOMETRY_SHADER_PRIMITIVES_EMITTED */
142 PS_INVOCATION_COUNT, /* FRAGMENT_SHADER_INVOCATIONS */
143 CS_INVOCATION_COUNT, /* COMPUTE_SHADER_INVOCATIONS */
144 CL_INVOCATION_COUNT, /* CLIPPING_INPUT_PRIMITIVES */
145 CL_PRIMITIVES_COUNT, /* CLIPPING_OUTPUT_PRIMITIVES */
146 GS_INVOCATION_COUNT /* This one is special... */
147 };
148 STATIC_ASSERT(ARRAY_SIZE(target_to_register) == MAX_PIPELINE_STATISTICS);
149 uint32_t reg = target_to_register[pipeline_target_to_index(target)];
150 /* Gen6 GS code counts full primitives, that is, it won't count individual
151 * triangles in a triangle strip. Use CL_INVOCATION_COUNT for that.
152 */
153 if (brw->gen == 6 && target == GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB)
154 reg = CL_INVOCATION_COUNT;
155 assert(reg != 0);
156
157 /* Emit a flush to make sure various parts of the pipeline are complete and
158 * we get an accurate value
159 */
160 intel_batchbuffer_emit_mi_flush(brw);
161
162 brw_store_register_mem64(brw, bo, reg, idx);
163 }
164
165
166 /**
167 * Wait on the query object's BO and calculate the final result.
168 */
169 static void
170 gen6_queryobj_get_results(struct gl_context *ctx,
171 struct brw_query_object *query)
172 {
173 struct brw_context *brw = brw_context(ctx);
174
175 if (query->bo == NULL)
176 return;
177
178 brw_bo_map(brw, query->bo, false, "query object");
179 uint64_t *results = query->bo->virtual;
180 switch (query->Base.Target) {
181 case GL_TIME_ELAPSED:
182 /* The query BO contains the starting and ending timestamps.
183 * Subtract the two and convert to nanoseconds.
184 */
185 query->Base.Result += 80 * (results[1] - results[0]);
186 break;
187
188 case GL_TIMESTAMP:
189 /* Our timer is a clock that increments every 80ns (regardless of
190 * other clock scaling in the system). The timestamp register we can
191 * read for glGetTimestamp() masks out the top 32 bits, so we do that
192 * here too to let the two counters be compared against each other.
193 *
194 * If we just multiplied that 32 bits of data by 80, it would roll
195 * over at a non-power-of-two, so an application couldn't use
196 * GL_QUERY_COUNTER_BITS to handle rollover correctly. Instead, we
197 * report 36 bits and truncate at that (rolling over 5 times as often
198 * as the HW counter), and when the 32-bit counter rolls over, it
199 * happens to also be at a rollover in the reported value from near
200 * (1<<36) to 0.
201 *
202 * The low 32 bits rolls over in ~343 seconds. Our 36-bit result
203 * rolls over every ~69 seconds.
204 *
205 * The query BO contains a single timestamp value in results[0].
206 */
207 query->Base.Result = 80 * (results[0] & 0xffffffff);
208 query->Base.Result &= (1ull << 36) - 1;
209 break;
210
211 case GL_SAMPLES_PASSED_ARB:
212 /* We need to use += rather than = here since some BLT-based operations
213 * may have added additional samples to our occlusion query value.
214 */
215 query->Base.Result += results[1] - results[0];
216 break;
217
218 case GL_ANY_SAMPLES_PASSED:
219 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
220 if (results[0] != results[1])
221 query->Base.Result = true;
222 break;
223
224 case GL_PRIMITIVES_GENERATED:
225 case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
226 case GL_VERTICES_SUBMITTED_ARB:
227 case GL_PRIMITIVES_SUBMITTED_ARB:
228 case GL_VERTEX_SHADER_INVOCATIONS_ARB:
229 case GL_GEOMETRY_SHADER_INVOCATIONS:
230 case GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB:
231 case GL_CLIPPING_INPUT_PRIMITIVES_ARB:
232 case GL_CLIPPING_OUTPUT_PRIMITIVES_ARB:
233 case GL_COMPUTE_SHADER_INVOCATIONS_ARB:
234 query->Base.Result = results[1] - results[0];
235 break;
236
237 case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
238 query->Base.Result = (results[1] - results[0]);
239 /* Implement the "WaDividePSInvocationCountBy4:HSW,BDW" workaround:
240 * "Invocation counter is 4 times actual. WA: SW to divide HW reported
241 * PS Invocations value by 4."
242 *
243 * Prior to Haswell, invocation count was counted by the WM, and it
244 * buggily counted invocations in units of subspans (2x2 unit). To get the
245 * correct value, the CS multiplied this by 4. With HSW the logic moved,
246 * and correctly emitted the number of pixel shader invocations, but,
247 * whomever forgot to undo the multiply by 4.
248 */
249 if (brw->gen == 8 || brw->is_haswell)
250 query->Base.Result /= 4;
251 break;
252
253 case GL_TESS_CONTROL_SHADER_PATCHES_ARB:
254 case GL_TESS_EVALUATION_SHADER_INVOCATIONS_ARB:
255 default:
256 unreachable("Unrecognized query target in brw_queryobj_get_results()");
257 }
258 drm_intel_bo_unmap(query->bo);
259
260 /* Now that we've processed the data stored in the query's buffer object,
261 * we can release it.
262 */
263 drm_intel_bo_unreference(query->bo);
264 query->bo = NULL;
265
266 query->Base.Ready = true;
267 }
268
269 /**
270 * Driver hook for glBeginQuery().
271 *
272 * Initializes driver structures and emits any GPU commands required to begin
273 * recording data for the query.
274 */
275 static void
276 gen6_begin_query(struct gl_context *ctx, struct gl_query_object *q)
277 {
278 struct brw_context *brw = brw_context(ctx);
279 struct brw_query_object *query = (struct brw_query_object *)q;
280
281 /* Since we're starting a new query, we need to throw away old results. */
282 drm_intel_bo_unreference(query->bo);
283 query->bo = drm_intel_bo_alloc(brw->bufmgr, "query results", 4096, 4096);
284
285 switch (query->Base.Target) {
286 case GL_TIME_ELAPSED:
287 /* For timestamp queries, we record the starting time right away so that
288 * we measure the full time between BeginQuery and EndQuery. There's
289 * some debate about whether this is the right thing to do. Our decision
290 * is based on the following text from the ARB_timer_query extension:
291 *
292 * "(5) Should the extension measure total time elapsed between the full
293 * completion of the BeginQuery and EndQuery commands, or just time
294 * spent in the graphics library?
295 *
296 * RESOLVED: This extension will measure the total time elapsed
297 * between the full completion of these commands. Future extensions
298 * may implement a query to determine time elapsed at different stages
299 * of the graphics pipeline."
300 *
301 * We write a starting timestamp now (at index 0). At EndQuery() time,
302 * we'll write a second timestamp (at index 1), and subtract the two to
303 * obtain the time elapsed. Notably, this includes time elapsed while
304 * the system was doing other work, such as running other applications.
305 */
306 brw_write_timestamp(brw, query->bo, 0);
307 break;
308
309 case GL_ANY_SAMPLES_PASSED:
310 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
311 case GL_SAMPLES_PASSED_ARB:
312 brw_write_depth_count(brw, query->bo, 0);
313 break;
314
315 case GL_PRIMITIVES_GENERATED:
316 write_primitives_generated(brw, query->bo, query->Base.Stream, 0);
317 break;
318
319 case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
320 write_xfb_primitives_written(brw, query->bo, query->Base.Stream, 0);
321 break;
322
323 case GL_VERTICES_SUBMITTED_ARB:
324 case GL_PRIMITIVES_SUBMITTED_ARB:
325 case GL_VERTEX_SHADER_INVOCATIONS_ARB:
326 case GL_GEOMETRY_SHADER_INVOCATIONS:
327 case GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB:
328 case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
329 case GL_CLIPPING_INPUT_PRIMITIVES_ARB:
330 case GL_CLIPPING_OUTPUT_PRIMITIVES_ARB:
331 case GL_COMPUTE_SHADER_INVOCATIONS_ARB:
332 emit_pipeline_stat(brw, query->bo, query->Base.Stream, query->Base.Target, 0);
333 break;
334
335 case GL_TESS_CONTROL_SHADER_PATCHES_ARB:
336 case GL_TESS_EVALUATION_SHADER_INVOCATIONS_ARB:
337 default:
338 unreachable("Unrecognized query target in brw_begin_query()");
339 }
340 }
341
342 /**
343 * Driver hook for glEndQuery().
344 *
345 * Emits GPU commands to record a final query value, ending any data capturing.
346 * However, the final result isn't necessarily available until the GPU processes
347 * those commands. brw_queryobj_get_results() processes the captured data to
348 * produce the final result.
349 */
350 static void
351 gen6_end_query(struct gl_context *ctx, struct gl_query_object *q)
352 {
353 struct brw_context *brw = brw_context(ctx);
354 struct brw_query_object *query = (struct brw_query_object *)q;
355
356 switch (query->Base.Target) {
357 case GL_TIME_ELAPSED:
358 brw_write_timestamp(brw, query->bo, 1);
359 break;
360
361 case GL_ANY_SAMPLES_PASSED:
362 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
363 case GL_SAMPLES_PASSED_ARB:
364 brw_write_depth_count(brw, query->bo, 1);
365 break;
366
367 case GL_PRIMITIVES_GENERATED:
368 write_primitives_generated(brw, query->bo, query->Base.Stream, 1);
369 break;
370
371 case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
372 write_xfb_primitives_written(brw, query->bo, query->Base.Stream, 1);
373 break;
374
375 case GL_VERTICES_SUBMITTED_ARB:
376 case GL_PRIMITIVES_SUBMITTED_ARB:
377 case GL_VERTEX_SHADER_INVOCATIONS_ARB:
378 case GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB:
379 case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
380 case GL_COMPUTE_SHADER_INVOCATIONS_ARB:
381 case GL_CLIPPING_INPUT_PRIMITIVES_ARB:
382 case GL_CLIPPING_OUTPUT_PRIMITIVES_ARB:
383 case GL_GEOMETRY_SHADER_INVOCATIONS:
384 emit_pipeline_stat(brw, query->bo,
385 query->Base.Stream, query->Base.Target, 1);
386 break;
387
388 case GL_TESS_CONTROL_SHADER_PATCHES_ARB:
389 case GL_TESS_EVALUATION_SHADER_INVOCATIONS_ARB:
390 default:
391 unreachable("Unrecognized query target in brw_end_query()");
392 }
393
394 /* The current batch contains the commands to handle EndQuery(),
395 * but they won't actually execute until it is flushed.
396 */
397 query->flushed = false;
398 }
399
400 /**
401 * Flush the batch if it still references the query object BO.
402 */
403 static void
404 flush_batch_if_needed(struct brw_context *brw, struct brw_query_object *query)
405 {
406 /* If the batch doesn't reference the BO, it must have been flushed
407 * (for example, due to being full). Record that it's been flushed.
408 */
409 query->flushed = query->flushed ||
410 !drm_intel_bo_references(brw->batch.bo, query->bo);
411
412 if (!query->flushed)
413 intel_batchbuffer_flush(brw);
414 }
415
416 /**
417 * The WaitQuery() driver hook.
418 *
419 * Wait for a query result to become available and return it. This is the
420 * backing for glGetQueryObjectiv() with the GL_QUERY_RESULT pname.
421 */
422 static void gen6_wait_query(struct gl_context *ctx, struct gl_query_object *q)
423 {
424 struct brw_context *brw = brw_context(ctx);
425 struct brw_query_object *query = (struct brw_query_object *)q;
426
427 /* If the application has requested the query result, but this batch is
428 * still contributing to it, flush it now to finish that work so the
429 * result will become available (eventually).
430 */
431 flush_batch_if_needed(brw, query);
432
433 gen6_queryobj_get_results(ctx, query);
434 }
435
436 /**
437 * The CheckQuery() driver hook.
438 *
439 * Checks whether a query result is ready yet. If not, flushes.
440 * This is the backing for glGetQueryObjectiv()'s QUERY_RESULT_AVAILABLE pname.
441 */
442 static void gen6_check_query(struct gl_context *ctx, struct gl_query_object *q)
443 {
444 struct brw_context *brw = brw_context(ctx);
445 struct brw_query_object *query = (struct brw_query_object *)q;
446
447 /* If query->bo is NULL, we've already gathered the results - this is a
448 * redundant CheckQuery call. Ignore it.
449 */
450 if (query->bo == NULL)
451 return;
452
453 /* From the GL_ARB_occlusion_query spec:
454 *
455 * "Instead of allowing for an infinite loop, performing a
456 * QUERY_RESULT_AVAILABLE_ARB will perform a flush if the result is
457 * not ready yet on the first time it is queried. This ensures that
458 * the async query will return true in finite time.
459 */
460 flush_batch_if_needed(brw, query);
461
462 if (!drm_intel_bo_busy(query->bo)) {
463 gen6_queryobj_get_results(ctx, query);
464 }
465 }
466
467 /* Initialize Gen6+-specific query object functions. */
468 void gen6_init_queryobj_functions(struct dd_function_table *functions)
469 {
470 functions->BeginQuery = gen6_begin_query;
471 functions->EndQuery = gen6_end_query;
472 functions->CheckQuery = gen6_check_query;
473 functions->WaitQuery = gen6_wait_query;
474 }