i965: Enable EGL_KHR_gl_texture_3D_image
[mesa.git] / src / mesa / drivers / dri / i965 / gen6_sf_state.c
1 /*
2 * Copyright © 2009 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_context.h"
29 #include "brw_state.h"
30 #include "brw_defines.h"
31 #include "brw_util.h"
32 #include "main/macros.h"
33 #include "main/fbobject.h"
34 #include "main/framebuffer.h"
35 #include "intel_batchbuffer.h"
36
37 /**
38 * Determine the appropriate attribute override value to store into the
39 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
40 * override value contains two pieces of information: the location of the
41 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
42 * flag indicating whether to "swizzle" the attribute based on the direction
43 * the triangle is facing.
44 *
45 * If an attribute is "swizzled", then the given VUE location is used for
46 * front-facing triangles, and the VUE location that immediately follows is
47 * used for back-facing triangles. We use this to implement the mapping from
48 * gl_FrontColor/gl_BackColor to gl_Color.
49 *
50 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
51 * being instructed to begin reading attribute data. It can be set to a
52 * nonzero value to prevent the SF unit from wasting time reading elements of
53 * the VUE that are not needed by the fragment shader. It is measured in
54 * 256-bit increments.
55 */
56 static uint32_t
57 get_attr_override(const struct brw_vue_map *vue_map, int urb_entry_read_offset,
58 int fs_attr, bool two_side_color, uint32_t *max_source_attr)
59 {
60 /* Find the VUE slot for this attribute. */
61 int slot = vue_map->varying_to_slot[fs_attr];
62
63 /* Viewport and Layer are stored in the VUE header. We need to override
64 * them to zero if earlier stages didn't write them, as GL requires that
65 * they read back as zero when not explicitly set.
66 */
67 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
68 unsigned override =
69 ATTRIBUTE_0_OVERRIDE_X | ATTRIBUTE_0_OVERRIDE_W |
70 ATTRIBUTE_CONST_0000 << ATTRIBUTE_0_CONST_SOURCE_SHIFT;
71
72 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
73 override |= ATTRIBUTE_0_OVERRIDE_Y;
74 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
75 override |= ATTRIBUTE_0_OVERRIDE_Z;
76
77 return override;
78 }
79
80 /* If there was only a back color written but not front, use back
81 * as the color instead of undefined
82 */
83 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
84 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
85 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
86 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
87
88 if (slot == -1) {
89 /* This attribute does not exist in the VUE--that means that the vertex
90 * shader did not write to it. This means that either:
91 *
92 * (a) This attribute is a texture coordinate, and it is going to be
93 * replaced with point coordinates (as a consequence of a call to
94 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
95 * hardware will ignore whatever attribute override we supply.
96 *
97 * (b) This attribute is read by the fragment shader but not written by
98 * the vertex shader, so its value is undefined. Therefore the
99 * attribute override we supply doesn't matter.
100 *
101 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
102 * previous shader stage.
103 *
104 * Note that we don't have to worry about the cases where the attribute
105 * is gl_PointCoord or is undergoing point sprite coordinate
106 * replacement, because in those cases, this function isn't called.
107 *
108 * In case (c), we need to program the attribute overrides so that the
109 * primitive ID will be stored in this slot. In every other case, the
110 * attribute override we supply doesn't matter. So just go ahead and
111 * program primitive ID in every case.
112 */
113 return (ATTRIBUTE_0_OVERRIDE_W |
114 ATTRIBUTE_0_OVERRIDE_Z |
115 ATTRIBUTE_0_OVERRIDE_Y |
116 ATTRIBUTE_0_OVERRIDE_X |
117 (ATTRIBUTE_CONST_PRIM_ID << ATTRIBUTE_0_CONST_SOURCE_SHIFT));
118 }
119
120 /* Compute the location of the attribute relative to urb_entry_read_offset.
121 * Each increment of urb_entry_read_offset represents a 256-bit value, so
122 * it counts for two 128-bit VUE slots.
123 */
124 int source_attr = slot - 2 * urb_entry_read_offset;
125 assert(source_attr >= 0 && source_attr < 32);
126
127 /* If we are doing two-sided color, and the VUE slot following this one
128 * represents a back-facing color, then we need to instruct the SF unit to
129 * do back-facing swizzling.
130 */
131 bool swizzling = two_side_color &&
132 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
133 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
134 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
135 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
136
137 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
138 if (*max_source_attr < source_attr + swizzling)
139 *max_source_attr = source_attr + swizzling;
140
141 if (swizzling) {
142 return source_attr |
143 (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
144 }
145
146 return source_attr;
147 }
148
149
150 /**
151 * Create the mapping from the FS inputs we produce to the previous pipeline
152 * stage (GS or VS) outputs they source from.
153 */
154 void
155 calculate_attr_overrides(const struct brw_context *brw,
156 uint16_t *attr_overrides,
157 uint32_t *point_sprite_enables,
158 uint32_t *urb_entry_read_length,
159 uint32_t *urb_entry_read_offset)
160 {
161 uint32_t max_source_attr = 0;
162
163 *point_sprite_enables = 0;
164
165 *urb_entry_read_offset = BRW_SF_URB_ENTRY_READ_OFFSET;
166
167 /* BRW_NEW_FRAGMENT_PROGRAM
168 *
169 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
170 * the full vertex header. Otherwise, we can program the SF to start
171 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
172 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
173 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
174 */
175
176 bool fs_needs_vue_header = brw->fragment_program->Base.InputsRead &
177 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
178
179 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
180
181 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
182 * description of dw10 Point Sprite Texture Coordinate Enable:
183 *
184 * "This field must be programmed to zero when non-point primitives
185 * are rendered."
186 *
187 * The SandyBridge PRM doesn't explicitly say that point sprite enables
188 * must be programmed to zero when rendering non-point primitives, but
189 * the IvyBridge PRM does, and if we don't, we get garbage.
190 *
191 * This is not required on Haswell, as the hardware ignores this state
192 * when drawing non-points -- although we do still need to be careful to
193 * correctly set the attr overrides.
194 *
195 * _NEW_POLYGON
196 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
197 */
198 bool drawing_points = brw_is_drawing_points(brw);
199
200 /* Initialize all the attr_overrides to 0. In the loop below we'll modify
201 * just the ones that correspond to inputs used by the fs.
202 */
203 memset(attr_overrides, 0, 16*sizeof(*attr_overrides));
204
205 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
206 /* BRW_NEW_FS_PROG_DATA */
207 int input_index = brw->wm.prog_data->urb_setup[attr];
208
209 if (input_index < 0)
210 continue;
211
212 /* _NEW_POINT */
213 bool point_sprite = false;
214 if (drawing_points) {
215 if (brw->ctx.Point.PointSprite &&
216 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
217 (brw->ctx.Point.CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
218 point_sprite = true;
219 }
220
221 if (attr == VARYING_SLOT_PNTC)
222 point_sprite = true;
223
224 if (point_sprite)
225 *point_sprite_enables |= (1 << input_index);
226 }
227
228 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
229 uint16_t attr_override = point_sprite ? 0 :
230 get_attr_override(&brw->vue_map_geom_out,
231 *urb_entry_read_offset, attr,
232 brw->ctx.VertexProgram._TwoSideEnabled,
233 &max_source_attr);
234
235 /* The hardware can only do the overrides on 16 overrides at a
236 * time, and the other up to 16 have to be lined up so that the
237 * input index = the output index. We'll need to do some
238 * tweaking to make sure that's the case.
239 */
240 if (input_index < 16)
241 attr_overrides[input_index] = attr_override;
242 else
243 assert(attr_override == input_index);
244 }
245
246 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
247 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
248 *
249 * "This field should be set to the minimum length required to read the
250 * maximum source attribute. The maximum source attribute is indicated
251 * by the maximum value of the enabled Attribute # Source Attribute if
252 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
253 * enable is not set.
254 * read_length = ceiling((max_source_attr + 1) / 2)
255 *
256 * [errata] Corruption/Hang possible if length programmed larger than
257 * recommended"
258 *
259 * Similar text exists for Ivy Bridge.
260 */
261 *urb_entry_read_length = ALIGN(max_source_attr + 1, 2) / 2;
262 }
263
264
265 static void
266 upload_sf_state(struct brw_context *brw)
267 {
268 struct gl_context *ctx = &brw->ctx;
269 /* BRW_NEW_FS_PROG_DATA */
270 uint32_t num_outputs = brw->wm.prog_data->num_varying_inputs;
271 uint32_t dw1, dw2, dw3, dw4;
272 uint32_t point_sprite_enables;
273 int i;
274 /* _NEW_BUFFER */
275 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
276 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
277
278 float point_size;
279 uint16_t attr_overrides[16];
280 uint32_t point_sprite_origin;
281
282 dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT;
283 dw2 = GEN6_SF_STATISTICS_ENABLE;
284
285 if (brw->sf.viewport_transform_enable)
286 dw2 |= GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
287
288 dw3 = 0;
289 dw4 = 0;
290
291 /* _NEW_POLYGON */
292 if (ctx->Polygon._FrontBit == render_to_fbo)
293 dw2 |= GEN6_SF_WINDING_CCW;
294
295 if (ctx->Polygon.OffsetFill)
296 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
297
298 if (ctx->Polygon.OffsetLine)
299 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
300
301 if (ctx->Polygon.OffsetPoint)
302 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
303
304 switch (ctx->Polygon.FrontMode) {
305 case GL_FILL:
306 dw2 |= GEN6_SF_FRONT_SOLID;
307 break;
308
309 case GL_LINE:
310 dw2 |= GEN6_SF_FRONT_WIREFRAME;
311 break;
312
313 case GL_POINT:
314 dw2 |= GEN6_SF_FRONT_POINT;
315 break;
316
317 default:
318 unreachable("not reached");
319 }
320
321 switch (ctx->Polygon.BackMode) {
322 case GL_FILL:
323 dw2 |= GEN6_SF_BACK_SOLID;
324 break;
325
326 case GL_LINE:
327 dw2 |= GEN6_SF_BACK_WIREFRAME;
328 break;
329
330 case GL_POINT:
331 dw2 |= GEN6_SF_BACK_POINT;
332 break;
333
334 default:
335 unreachable("not reached");
336 }
337
338 /* _NEW_SCISSOR | _NEW_POLYGON,
339 * BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
340 */
341 if (ctx->Scissor.EnableFlags ||
342 brw_is_drawing_points(brw) || brw_is_drawing_lines(brw))
343 dw3 |= GEN6_SF_SCISSOR_ENABLE;
344
345 /* _NEW_POLYGON */
346 if (ctx->Polygon.CullFlag) {
347 switch (ctx->Polygon.CullFaceMode) {
348 case GL_FRONT:
349 dw3 |= GEN6_SF_CULL_FRONT;
350 break;
351 case GL_BACK:
352 dw3 |= GEN6_SF_CULL_BACK;
353 break;
354 case GL_FRONT_AND_BACK:
355 dw3 |= GEN6_SF_CULL_BOTH;
356 break;
357 default:
358 unreachable("not reached");
359 }
360 } else {
361 dw3 |= GEN6_SF_CULL_NONE;
362 }
363
364 /* _NEW_LINE */
365 {
366 uint32_t line_width_u3_7 = brw_get_line_width(brw);
367 dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
368 }
369 if (ctx->Line.SmoothFlag) {
370 dw3 |= GEN6_SF_LINE_AA_ENABLE;
371 dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
372 dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
373 }
374 /* _NEW_MULTISAMPLE */
375 if (multisampled_fbo && ctx->Multisample.Enabled)
376 dw3 |= GEN6_SF_MSRAST_ON_PATTERN;
377
378 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
379 if (use_state_point_size(brw))
380 dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;
381
382 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
383 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
384
385 /* Clamp to the hardware limits and convert to fixed point */
386 dw4 |= U_FIXED(CLAMP(point_size, 0.125f, 255.875f), 3);
387
388 /*
389 * Window coordinates in an FBO are inverted, which means point
390 * sprite origin must be inverted, too.
391 */
392 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
393 point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
394 } else {
395 point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
396 }
397 dw1 |= point_sprite_origin;
398
399 /* _NEW_LIGHT */
400 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
401 dw4 |=
402 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
403 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
404 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
405 } else {
406 dw4 |=
407 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
408 }
409
410 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
411 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
412 */
413 uint32_t urb_entry_read_length;
414 uint32_t urb_entry_read_offset;
415 calculate_attr_overrides(brw, attr_overrides, &point_sprite_enables,
416 &urb_entry_read_length, &urb_entry_read_offset);
417 dw1 |= (urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
418 urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT);
419
420 BEGIN_BATCH(20);
421 OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
422 OUT_BATCH(dw1);
423 OUT_BATCH(dw2);
424 OUT_BATCH(dw3);
425 OUT_BATCH(dw4);
426 OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */
427 OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
428 OUT_BATCH_F(ctx->Polygon.OffsetClamp); /* global depth offset clamp */
429 for (i = 0; i < 8; i++) {
430 OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
431 }
432 OUT_BATCH(point_sprite_enables); /* dw16 */
433 OUT_BATCH(brw->wm.prog_data->flat_inputs);
434 OUT_BATCH(0); /* wrapshortest enables 0-7 */
435 OUT_BATCH(0); /* wrapshortest enables 8-15 */
436 ADVANCE_BATCH();
437 }
438
439 const struct brw_tracked_state gen6_sf_state = {
440 .dirty = {
441 .mesa = _NEW_BUFFERS |
442 _NEW_LIGHT |
443 _NEW_LINE |
444 _NEW_MULTISAMPLE |
445 _NEW_POINT |
446 _NEW_POLYGON |
447 _NEW_PROGRAM |
448 _NEW_SCISSOR,
449 .brw = BRW_NEW_BLORP |
450 BRW_NEW_CONTEXT |
451 BRW_NEW_FRAGMENT_PROGRAM |
452 BRW_NEW_FS_PROG_DATA |
453 BRW_NEW_GS_PROG_DATA |
454 BRW_NEW_PRIMITIVE |
455 BRW_NEW_TES_PROG_DATA |
456 BRW_NEW_VUE_MAP_GEOM_OUT,
457 },
458 .emit = upload_sf_state,
459 };