i965: Make the userclip flag for the VUE map come from VS prog data.
[mesa.git] / src / mesa / drivers / dri / i965 / gen6_sf_state.c
1 /*
2 * Copyright © 2009 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_context.h"
29 #include "brw_state.h"
30 #include "brw_defines.h"
31 #include "brw_util.h"
32 #include "main/macros.h"
33 #include "intel_batchbuffer.h"
34
35 /**
36 * Determine the appropriate attribute override value to store into the
37 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
38 * override value contains two pieces of information: the location of the
39 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
40 * flag indicating whether to "swizzle" the attribute based on the direction
41 * the triangle is facing.
42 *
43 * If an attribute is "swizzled", then the given VUE location is used for
44 * front-facing triangles, and the VUE location that immediately follows is
45 * used for back-facing triangles. We use this to implement the mapping from
46 * gl_FrontColor/gl_BackColor to gl_Color.
47 *
48 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
49 * being instructed to begin reading attribute data. It can be set to a
50 * nonzero value to prevent the SF unit from wasting time reading elements of
51 * the VUE that are not needed by the fragment shader. It is measured in
52 * 256-bit increments.
53 */
54 uint32_t
55 get_attr_override(struct brw_vue_map *vue_map, int urb_entry_read_offset,
56 int fs_attr, bool two_side_color)
57 {
58 int attr_override, slot;
59 int vs_attr = _mesa_frag_attrib_to_vert_result(fs_attr);
60 if (vs_attr < 0 || vs_attr == VERT_RESULT_HPOS) {
61 /* These attributes will be overwritten by the fragment shader's
62 * interpolation code (see emit_interp() in brw_wm_fp.c), so just let
63 * them reference the first available attribute.
64 */
65 return 0;
66 }
67
68 /* Find the VUE slot for this attribute. */
69 slot = vue_map->vert_result_to_slot[vs_attr];
70
71 /* If there was only a back color written but not front, use back
72 * as the color instead of undefined
73 */
74 if (slot == -1 && vs_attr == VERT_RESULT_COL0)
75 slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC0];
76 if (slot == -1 && vs_attr == VERT_RESULT_COL1)
77 slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC1];
78
79 if (slot == -1) {
80 /* This attribute does not exist in the VUE--that means that the vertex
81 * shader did not write to it. Behavior is undefined in this case, so
82 * just reference the first available attribute.
83 */
84 return 0;
85 }
86
87 /* Compute the location of the attribute relative to urb_entry_read_offset.
88 * Each increment of urb_entry_read_offset represents a 256-bit value, so
89 * it counts for two 128-bit VUE slots.
90 */
91 attr_override = slot - 2 * urb_entry_read_offset;
92 assert (attr_override >= 0 && attr_override < 32);
93
94 /* If we are doing two-sided color, and the VUE slot following this one
95 * represents a back-facing color, then we need to instruct the SF unit to
96 * do back-facing swizzling.
97 */
98 if (two_side_color) {
99 if (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL0 &&
100 vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC0)
101 attr_override |= (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
102 else if (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL1 &&
103 vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC1)
104 attr_override |= (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT);
105 }
106
107 return attr_override;
108 }
109
110 static void
111 upload_sf_state(struct brw_context *brw)
112 {
113 struct intel_context *intel = &brw->intel;
114 struct gl_context *ctx = &intel->ctx;
115 struct brw_vue_map vue_map;
116 uint32_t urb_entry_read_length;
117 /* BRW_NEW_FRAGMENT_PROGRAM */
118 uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead);
119 /* _NEW_LIGHT */
120 bool shade_model_flat = ctx->Light.ShadeModel == GL_FLAT;
121 uint32_t dw1, dw2, dw3, dw4, dw16, dw17;
122 int i;
123 /* _NEW_BUFFER */
124 bool render_to_fbo = brw->intel.ctx.DrawBuffer->Name != 0;
125 int attr = 0, input_index = 0;
126 int urb_entry_read_offset = 1;
127 float point_size;
128 uint16_t attr_overrides[FRAG_ATTRIB_MAX];
129 uint32_t point_sprite_origin;
130
131 /* CACHE_NEW_VS_PROG */
132 brw_compute_vue_map(&vue_map, intel, brw->vs.prog_data);
133 urb_entry_read_length = (vue_map.num_slots + 1)/2 - urb_entry_read_offset;
134 if (urb_entry_read_length == 0) {
135 /* Setting the URB entry read length to 0 causes undefined behavior, so
136 * if we have no URB data to read, set it to 1.
137 */
138 urb_entry_read_length = 1;
139 }
140
141 dw1 =
142 GEN6_SF_SWIZZLE_ENABLE |
143 num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT |
144 urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
145 urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;
146
147 dw2 = GEN6_SF_STATISTICS_ENABLE |
148 GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
149
150 dw3 = 0;
151 dw4 = 0;
152 dw16 = 0;
153 dw17 = 0;
154
155 /* _NEW_POLYGON */
156 if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
157 dw2 |= GEN6_SF_WINDING_CCW;
158
159 if (ctx->Polygon.OffsetFill)
160 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
161
162 if (ctx->Polygon.OffsetLine)
163 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
164
165 if (ctx->Polygon.OffsetPoint)
166 dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
167
168 switch (ctx->Polygon.FrontMode) {
169 case GL_FILL:
170 dw2 |= GEN6_SF_FRONT_SOLID;
171 break;
172
173 case GL_LINE:
174 dw2 |= GEN6_SF_FRONT_WIREFRAME;
175 break;
176
177 case GL_POINT:
178 dw2 |= GEN6_SF_FRONT_POINT;
179 break;
180
181 default:
182 assert(0);
183 break;
184 }
185
186 switch (ctx->Polygon.BackMode) {
187 case GL_FILL:
188 dw2 |= GEN6_SF_BACK_SOLID;
189 break;
190
191 case GL_LINE:
192 dw2 |= GEN6_SF_BACK_WIREFRAME;
193 break;
194
195 case GL_POINT:
196 dw2 |= GEN6_SF_BACK_POINT;
197 break;
198
199 default:
200 assert(0);
201 break;
202 }
203
204 /* _NEW_SCISSOR */
205 if (ctx->Scissor.Enabled)
206 dw3 |= GEN6_SF_SCISSOR_ENABLE;
207
208 /* _NEW_POLYGON */
209 if (ctx->Polygon.CullFlag) {
210 switch (ctx->Polygon.CullFaceMode) {
211 case GL_FRONT:
212 dw3 |= GEN6_SF_CULL_FRONT;
213 break;
214 case GL_BACK:
215 dw3 |= GEN6_SF_CULL_BACK;
216 break;
217 case GL_FRONT_AND_BACK:
218 dw3 |= GEN6_SF_CULL_BOTH;
219 break;
220 default:
221 assert(0);
222 break;
223 }
224 } else {
225 dw3 |= GEN6_SF_CULL_NONE;
226 }
227
228 /* _NEW_LINE */
229 dw3 |= U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7) <<
230 GEN6_SF_LINE_WIDTH_SHIFT;
231 if (ctx->Line.SmoothFlag) {
232 dw3 |= GEN6_SF_LINE_AA_ENABLE;
233 dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
234 dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
235 }
236
237 /* _NEW_PROGRAM | _NEW_POINT */
238 if (!(ctx->VertexProgram.PointSizeEnabled ||
239 ctx->Point._Attenuated))
240 dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;
241
242 /* Clamp to ARB_point_parameters user limits */
243 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
244
245 /* Clamp to the hardware limits and convert to fixed point */
246 dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);
247
248 /*
249 * Window coordinates in an FBO are inverted, which means point
250 * sprite origin must be inverted, too.
251 */
252 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
253 point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
254 } else {
255 point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
256 }
257 dw1 |= point_sprite_origin;
258
259 /* _NEW_LIGHT */
260 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
261 dw4 |=
262 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
263 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
264 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
265 } else {
266 dw4 |=
267 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
268 }
269
270 /* Create the mapping from the FS inputs we produce to the VS outputs
271 * they source from.
272 */
273 for (; attr < FRAG_ATTRIB_MAX; attr++) {
274 enum glsl_interp_qualifier interp_qualifier =
275 brw->fragment_program->InterpQualifier[attr];
276 bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;
277
278 if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)))
279 continue;
280
281 /* _NEW_POINT */
282 if (ctx->Point.PointSprite &&
283 (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) &&
284 ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) {
285 dw16 |= (1 << input_index);
286 }
287
288 if (attr == FRAG_ATTRIB_PNTC)
289 dw16 |= (1 << input_index);
290
291 /* flat shading */
292 if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
293 (shade_model_flat && is_gl_Color &&
294 interp_qualifier == INTERP_QUALIFIER_NONE))
295 dw17 |= (1 << input_index);
296
297 /* The hardware can only do the overrides on 16 overrides at a
298 * time, and the other up to 16 have to be lined up so that the
299 * input index = the output index. We'll need to do some
300 * tweaking to make sure that's the case.
301 */
302 assert(input_index < 16 || attr == input_index);
303
304 /* _NEW_LIGHT | _NEW_PROGRAM */
305 attr_overrides[input_index++] =
306 get_attr_override(&vue_map, urb_entry_read_offset, attr,
307 ctx->VertexProgram._TwoSideEnabled);
308 }
309
310 for (; input_index < FRAG_ATTRIB_MAX; input_index++)
311 attr_overrides[input_index] = 0;
312
313 BEGIN_BATCH(20);
314 OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
315 OUT_BATCH(dw1);
316 OUT_BATCH(dw2);
317 OUT_BATCH(dw3);
318 OUT_BATCH(dw4);
319 OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */
320 OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
321 OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
322 for (i = 0; i < 8; i++) {
323 OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
324 }
325 OUT_BATCH(dw16); /* point sprite texcoord bitmask */
326 OUT_BATCH(dw17); /* constant interp bitmask */
327 OUT_BATCH(0); /* wrapshortest enables 0-7 */
328 OUT_BATCH(0); /* wrapshortest enables 8-15 */
329 ADVANCE_BATCH();
330 }
331
332 const struct brw_tracked_state gen6_sf_state = {
333 .dirty = {
334 .mesa = (_NEW_LIGHT |
335 _NEW_PROGRAM |
336 _NEW_POLYGON |
337 _NEW_LINE |
338 _NEW_SCISSOR |
339 _NEW_BUFFERS |
340 _NEW_POINT),
341 .brw = (BRW_NEW_CONTEXT |
342 BRW_NEW_FRAGMENT_PROGRAM),
343 .cache = CACHE_NEW_VS_PROG
344 },
345 .emit = upload_sf_state,
346 };