i965: bump MAX_DEPTH_TEXTURE_SAMPLES to 4/8
[mesa.git] / src / mesa / drivers / dri / i965 / gen7_sol_state.c
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file gen7_sol_state.c
26 *
27 * Controls the stream output logic (SOL) stage of the gen7 hardware, which is
28 * used to implement GL_EXT_transform_feedback.
29 */
30
31 #include "brw_context.h"
32 #include "brw_state.h"
33 #include "brw_defines.h"
34 #include "intel_batchbuffer.h"
35 #include "intel_buffer_objects.h"
36 #include "main/transformfeedback.h"
37
38 static void
39 upload_3dstate_so_buffers(struct brw_context *brw)
40 {
41 struct intel_context *intel = &brw->intel;
42 struct gl_context *ctx = &intel->ctx;
43 /* BRW_NEW_VERTEX_PROGRAM */
44 const struct gl_shader_program *vs_prog =
45 ctx->Shader.CurrentVertexProgram;
46 const struct gl_transform_feedback_info *linked_xfb_info =
47 &vs_prog->LinkedTransformFeedback;
48 /* _NEW_TRANSFORM_FEEDBACK */
49 struct gl_transform_feedback_object *xfb_obj =
50 ctx->TransformFeedback.CurrentObject;
51 int i;
52
53 /* Set up the up to 4 output buffers. These are the ranges defined in the
54 * gl_transform_feedback_object.
55 */
56 for (i = 0; i < 4; i++) {
57 struct intel_buffer_object *bufferobj =
58 intel_buffer_object(xfb_obj->Buffers[i]);
59 drm_intel_bo *bo;
60 uint32_t start, end;
61 uint32_t stride;
62
63 if (!xfb_obj->Buffers[i]) {
64 /* The pitch of 0 in this command indicates that the buffer is
65 * unbound and won't be written to.
66 */
67 BEGIN_BATCH(4);
68 OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
69 OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
70 OUT_BATCH(0);
71 OUT_BATCH(0);
72 ADVANCE_BATCH();
73
74 continue;
75 }
76
77 bo = intel_bufferobj_buffer(intel, bufferobj, INTEL_WRITE_PART);
78 stride = linked_xfb_info->BufferStride[i] * 4;
79
80 start = xfb_obj->Offset[i];
81 assert(start % 4 == 0);
82 end = ALIGN(start + xfb_obj->Size[i], 4);
83 assert(end <= bo->size);
84
85 /* Offset the starting offset by the current vertex index into the
86 * feedback buffer, offset register is always set to 0 at the start of the
87 * batchbuffer.
88 */
89 start += brw->sol.offset_0_batch_start * stride;
90 assert(start <= end);
91
92 BEGIN_BATCH(4);
93 OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
94 OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
95 OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
96 OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
97 ADVANCE_BATCH();
98 }
99 }
100
101 /**
102 * Outputs the 3DSTATE_SO_DECL_LIST command.
103 *
104 * The data output is a series of 64-bit entries containing a SO_DECL per
105 * stream. We only have one stream of rendering coming out of the GS unit, so
106 * we only emit stream 0 (low 16 bits) SO_DECLs.
107 */
108 static void
109 upload_3dstate_so_decl_list(struct brw_context *brw,
110 struct brw_vue_map *vue_map)
111 {
112 struct intel_context *intel = &brw->intel;
113 struct gl_context *ctx = &intel->ctx;
114 /* BRW_NEW_VERTEX_PROGRAM */
115 const struct gl_shader_program *vs_prog =
116 ctx->Shader.CurrentVertexProgram;
117 /* _NEW_TRANSFORM_FEEDBACK */
118 const struct gl_transform_feedback_info *linked_xfb_info =
119 &vs_prog->LinkedTransformFeedback;
120 int i;
121 uint16_t so_decl[128];
122 int buffer_mask = 0;
123 int next_offset[4] = {0, 0, 0, 0};
124
125 STATIC_ASSERT(ARRAY_SIZE(so_decl) >= MAX_PROGRAM_OUTPUTS);
126
127 /* Construct the list of SO_DECLs to be emitted. The formatting of the
128 * command is feels strange -- each dword pair contains a SO_DECL per stream.
129 */
130 for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
131 int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
132 uint16_t decl = 0;
133 int vert_result = linked_xfb_info->Outputs[i].OutputRegister;
134 unsigned component_mask =
135 (1 << linked_xfb_info->Outputs[i].NumComponents) - 1;
136
137 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
138 if (vert_result == VARYING_SLOT_PSIZ) {
139 assert(linked_xfb_info->Outputs[i].NumComponents == 1);
140 component_mask <<= 3;
141 } else {
142 component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
143 }
144
145 buffer_mask |= 1 << buffer;
146
147 decl |= buffer << SO_DECL_OUTPUT_BUFFER_SLOT_SHIFT;
148 decl |= vue_map->vert_result_to_slot[vert_result] <<
149 SO_DECL_REGISTER_INDEX_SHIFT;
150 decl |= component_mask << SO_DECL_COMPONENT_MASK_SHIFT;
151
152 /* This assert should be true until GL_ARB_transform_feedback_instanced
153 * is added and we start using the hole flag.
154 */
155 assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
156
157 next_offset[buffer] += linked_xfb_info->Outputs[i].NumComponents;
158
159 so_decl[i] = decl;
160 }
161
162 BEGIN_BATCH(linked_xfb_info->NumOutputs * 2 + 3);
163 OUT_BATCH(_3DSTATE_SO_DECL_LIST << 16 |
164 (linked_xfb_info->NumOutputs * 2 + 1));
165
166 OUT_BATCH((buffer_mask << SO_STREAM_TO_BUFFER_SELECTS_0_SHIFT) |
167 (0 << SO_STREAM_TO_BUFFER_SELECTS_1_SHIFT) |
168 (0 << SO_STREAM_TO_BUFFER_SELECTS_2_SHIFT) |
169 (0 << SO_STREAM_TO_BUFFER_SELECTS_3_SHIFT));
170
171 OUT_BATCH((linked_xfb_info->NumOutputs << SO_NUM_ENTRIES_0_SHIFT) |
172 (0 << SO_NUM_ENTRIES_1_SHIFT) |
173 (0 << SO_NUM_ENTRIES_2_SHIFT) |
174 (0 << SO_NUM_ENTRIES_3_SHIFT));
175
176 for (i = 0; i < linked_xfb_info->NumOutputs; i++) {
177 OUT_BATCH(so_decl[i]);
178 OUT_BATCH(0);
179 }
180
181 ADVANCE_BATCH();
182 }
183
184 static void
185 upload_3dstate_streamout(struct brw_context *brw, bool active,
186 struct brw_vue_map *vue_map)
187 {
188 struct intel_context *intel = &brw->intel;
189 struct gl_context *ctx = &intel->ctx;
190 /* _NEW_TRANSFORM_FEEDBACK */
191 struct gl_transform_feedback_object *xfb_obj =
192 ctx->TransformFeedback.CurrentObject;
193 uint32_t dw1 = 0, dw2 = 0;
194 int i;
195
196 /* _NEW_RASTERIZER_DISCARD */
197 if (ctx->RasterDiscard)
198 dw1 |= SO_RENDERING_DISABLE;
199
200 if (active) {
201 int urb_entry_read_offset = 0;
202 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
203 urb_entry_read_offset;
204
205 dw1 |= SO_FUNCTION_ENABLE;
206 dw1 |= SO_STATISTICS_ENABLE;
207
208 /* _NEW_LIGHT */
209 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
210 dw1 |= SO_REORDER_TRAILING;
211
212 for (i = 0; i < 4; i++) {
213 if (xfb_obj->Buffers[i]) {
214 dw1 |= SO_BUFFER_ENABLE(i);
215 }
216 }
217
218 /* We always read the whole vertex. This could be reduced at some
219 * point by reading less and offsetting the register index in the
220 * SO_DECLs.
221 */
222 dw2 |= urb_entry_read_offset << SO_STREAM_0_VERTEX_READ_OFFSET_SHIFT;
223 dw2 |= (urb_entry_read_length - 1) <<
224 SO_STREAM_0_VERTEX_READ_LENGTH_SHIFT;
225 }
226
227 BEGIN_BATCH(3);
228 OUT_BATCH(_3DSTATE_STREAMOUT << 16 | (3 - 2));
229 OUT_BATCH(dw1);
230 OUT_BATCH(dw2);
231 ADVANCE_BATCH();
232 }
233
234 static void
235 upload_sol_state(struct brw_context *brw)
236 {
237 struct intel_context *intel = &brw->intel;
238 struct gl_context *ctx = &intel->ctx;
239 /* _NEW_TRANSFORM_FEEDBACK */
240 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
241
242 if (active) {
243 upload_3dstate_so_buffers(brw);
244 /* CACHE_NEW_VS_PROG */
245 upload_3dstate_so_decl_list(brw, &brw->vs.prog_data->vue_map);
246
247 intel->batch.needs_sol_reset = true;
248 }
249
250 /* Finally, set up the SOL stage. This command must always follow updates to
251 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
252 * MMIO register updates (current performed by the kernel at each batch
253 * emit).
254 */
255 upload_3dstate_streamout(brw, active, &brw->vs.prog_data->vue_map);
256 }
257
258 const struct brw_tracked_state gen7_sol_state = {
259 .dirty = {
260 .mesa = (_NEW_RASTERIZER_DISCARD |
261 _NEW_LIGHT |
262 _NEW_TRANSFORM_FEEDBACK),
263 .brw = (BRW_NEW_BATCH |
264 BRW_NEW_VERTEX_PROGRAM),
265 .cache = CACHE_NEW_VS_PROG,
266 },
267 .emit = upload_sol_state,
268 };
269
270 void
271 gen7_end_transform_feedback(struct gl_context *ctx,
272 struct gl_transform_feedback_object *obj)
273 {
274 /* Because we have to rely on the kernel to reset our SO write offsets, and
275 * we only get to do it once per batchbuffer, flush the batch after feedback
276 * so another transform feedback can get the write offset reset it needs.
277 *
278 * This also covers any cache flushing required.
279 */
280 struct brw_context *brw = brw_context(ctx);
281 struct intel_context *intel = &brw->intel;
282
283 intel_batchbuffer_flush(intel);
284 }