i965: Use unreachable() instead of unconditional assert().
[mesa.git] / src / mesa / drivers / dri / i965 / gen7_sol_state.c
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file gen7_sol_state.c
26 *
27 * Controls the stream output logic (SOL) stage of the gen7 hardware, which is
28 * used to implement GL_EXT_transform_feedback.
29 */
30
31 #include "brw_context.h"
32 #include "brw_state.h"
33 #include "brw_defines.h"
34 #include "intel_batchbuffer.h"
35 #include "intel_buffer_objects.h"
36 #include "main/transformfeedback.h"
37
38 static void
39 upload_3dstate_so_buffers(struct brw_context *brw)
40 {
41 struct gl_context *ctx = &brw->ctx;
42 /* BRW_NEW_TRANSFORM_FEEDBACK */
43 struct gl_transform_feedback_object *xfb_obj =
44 ctx->TransformFeedback.CurrentObject;
45 const struct gl_transform_feedback_info *linked_xfb_info =
46 &xfb_obj->shader_program->LinkedTransformFeedback;
47 int i;
48
49 /* Set up the up to 4 output buffers. These are the ranges defined in the
50 * gl_transform_feedback_object.
51 */
52 for (i = 0; i < 4; i++) {
53 struct intel_buffer_object *bufferobj =
54 intel_buffer_object(xfb_obj->Buffers[i]);
55 drm_intel_bo *bo;
56 uint32_t start, end;
57 uint32_t stride;
58
59 if (!xfb_obj->Buffers[i]) {
60 /* The pitch of 0 in this command indicates that the buffer is
61 * unbound and won't be written to.
62 */
63 BEGIN_BATCH(4);
64 OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
65 OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT));
66 OUT_BATCH(0);
67 OUT_BATCH(0);
68 ADVANCE_BATCH();
69
70 continue;
71 }
72
73 stride = linked_xfb_info->BufferStride[i] * 4;
74
75 start = xfb_obj->Offset[i];
76 assert(start % 4 == 0);
77 end = ALIGN(start + xfb_obj->Size[i], 4);
78 bo = intel_bufferobj_buffer(brw, bufferobj, start, end - start);
79 assert(end <= bo->size);
80
81 BEGIN_BATCH(4);
82 OUT_BATCH(_3DSTATE_SO_BUFFER << 16 | (4 - 2));
83 OUT_BATCH((i << SO_BUFFER_INDEX_SHIFT) | stride);
84 OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, start);
85 OUT_RELOC(bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, end);
86 ADVANCE_BATCH();
87 }
88 }
89
90 /**
91 * Outputs the 3DSTATE_SO_DECL_LIST command.
92 *
93 * The data output is a series of 64-bit entries containing a SO_DECL per
94 * stream. We only have one stream of rendering coming out of the GS unit, so
95 * we only emit stream 0 (low 16 bits) SO_DECLs.
96 */
97 void
98 gen7_upload_3dstate_so_decl_list(struct brw_context *brw,
99 const struct brw_vue_map *vue_map)
100 {
101 struct gl_context *ctx = &brw->ctx;
102 /* BRW_NEW_TRANSFORM_FEEDBACK */
103 struct gl_transform_feedback_object *xfb_obj =
104 ctx->TransformFeedback.CurrentObject;
105 const struct gl_transform_feedback_info *linked_xfb_info =
106 &xfb_obj->shader_program->LinkedTransformFeedback;
107 uint16_t so_decl[MAX_VERTEX_STREAMS][128];
108 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
109 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
110 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
111 int max_decls = 0;
112 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
113
114 memset(so_decl, 0, sizeof(so_decl));
115
116 /* Construct the list of SO_DECLs to be emitted. The formatting of the
117 * command is feels strange -- each dword pair contains a SO_DECL per stream.
118 */
119 for (int i = 0; i < linked_xfb_info->NumOutputs; i++) {
120 int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
121 uint16_t decl = 0;
122 int varying = linked_xfb_info->Outputs[i].OutputRegister;
123 const unsigned components = linked_xfb_info->Outputs[i].NumComponents;
124 unsigned component_mask = (1 << components) - 1;
125 unsigned stream_id = linked_xfb_info->Outputs[i].StreamId;
126
127 assert(stream_id < MAX_VERTEX_STREAMS);
128
129 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w
130 * gl_Layer is stored in VARYING_SLOT_PSIZ.y
131 * gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
132 */
133 if (varying == VARYING_SLOT_PSIZ) {
134 assert(components == 1);
135 component_mask <<= 3;
136 } else if (varying == VARYING_SLOT_LAYER) {
137 assert(components == 1);
138 component_mask <<= 1;
139 } else if (varying == VARYING_SLOT_VIEWPORT) {
140 assert(components == 1);
141 component_mask <<= 2;
142 } else {
143 component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
144 }
145
146 buffer_mask[stream_id] |= 1 << buffer;
147
148 decl |= buffer << SO_DECL_OUTPUT_BUFFER_SLOT_SHIFT;
149 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT) {
150 decl |= vue_map->varying_to_slot[VARYING_SLOT_PSIZ] <<
151 SO_DECL_REGISTER_INDEX_SHIFT;
152 } else {
153 assert(vue_map->varying_to_slot[varying] >= 0);
154 decl |= vue_map->varying_to_slot[varying] <<
155 SO_DECL_REGISTER_INDEX_SHIFT;
156 }
157 decl |= component_mask << SO_DECL_COMPONENT_MASK_SHIFT;
158
159 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
160 * array. Instead, it simply increments DstOffset for the following
161 * input by the number of components that should be skipped.
162 *
163 * Our hardware is unusual in that it requires us to program SO_DECLs
164 * for fake "hole" components, rather than simply taking the offset
165 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
166 * program as many size = 4 holes as we can, then a final hole to
167 * accomodate the final 1, 2, or 3 remaining.
168 */
169 int skip_components =
170 linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer];
171
172 next_offset[buffer] += skip_components;
173
174 while (skip_components >= 4) {
175 so_decl[stream_id][decls[stream_id]++] = SO_DECL_HOLE_FLAG | 0xf;
176 skip_components -= 4;
177 }
178 if (skip_components > 0)
179 so_decl[stream_id][decls[stream_id]++] =
180 SO_DECL_HOLE_FLAG | ((1 << skip_components) - 1);
181
182 assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
183
184 next_offset[buffer] += components;
185
186 so_decl[stream_id][decls[stream_id]++] = decl;
187
188 if (decls[stream_id] > max_decls)
189 max_decls = decls[stream_id];
190 }
191
192 BEGIN_BATCH(max_decls * 2 + 3);
193 OUT_BATCH(_3DSTATE_SO_DECL_LIST << 16 | (max_decls * 2 + 1));
194
195 OUT_BATCH((buffer_mask[0] << SO_STREAM_TO_BUFFER_SELECTS_0_SHIFT) |
196 (buffer_mask[1] << SO_STREAM_TO_BUFFER_SELECTS_1_SHIFT) |
197 (buffer_mask[2] << SO_STREAM_TO_BUFFER_SELECTS_2_SHIFT) |
198 (buffer_mask[3] << SO_STREAM_TO_BUFFER_SELECTS_3_SHIFT));
199
200 OUT_BATCH((decls[0] << SO_NUM_ENTRIES_0_SHIFT) |
201 (decls[1] << SO_NUM_ENTRIES_1_SHIFT) |
202 (decls[2] << SO_NUM_ENTRIES_2_SHIFT) |
203 (decls[3] << SO_NUM_ENTRIES_3_SHIFT));
204
205 for (int i = 0; i < max_decls; i++) {
206 /* Stream 1 | Stream 0 */
207 OUT_BATCH(((uint32_t) so_decl[1][i]) << 16 | so_decl[0][i]);
208 /* Stream 3 | Stream 2 */
209 OUT_BATCH(((uint32_t) so_decl[3][i]) << 16 | so_decl[2][i]);
210 }
211
212 ADVANCE_BATCH();
213 }
214
215 static void
216 upload_3dstate_streamout(struct brw_context *brw, bool active,
217 const struct brw_vue_map *vue_map)
218 {
219 struct gl_context *ctx = &brw->ctx;
220 /* BRW_NEW_TRANSFORM_FEEDBACK */
221 struct gl_transform_feedback_object *xfb_obj =
222 ctx->TransformFeedback.CurrentObject;
223 uint32_t dw1 = 0, dw2 = 0;
224 int i;
225
226 /*
227 * From ARB_transform_feedback3:
228 *
229 * "When a generated primitive query for a vertex stream is active, the
230 * primitives-generated count is incremented every time a primitive
231 * emitted to that stream reaches the Discarding Rasterization stage
232 * (see Section 3.x) right before rasterization. This counter is
233 * incremented whether or not transform feedback is active."
234 *
235 * Since we can only keep track of generated primitives for each stream
236 * in the SOL stage we need to make sure it is always active even if
237 * transform beedback is not. This way we can track primitives generated
238 * in each stream via SO_PRIMITIVE_STORAGE_NEEDED.
239 */
240 dw1 |= SO_FUNCTION_ENABLE;
241 dw1 |= SO_STATISTICS_ENABLE;
242
243 if (active) {
244 int urb_entry_read_offset = 0;
245 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
246 urb_entry_read_offset;
247
248 /* _NEW_LIGHT */
249 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
250 dw1 |= SO_REORDER_TRAILING;
251
252 for (i = 0; i < 4; i++) {
253 if (xfb_obj->Buffers[i]) {
254 dw1 |= SO_BUFFER_ENABLE(i);
255 }
256 }
257
258 /* We always read the whole vertex. This could be reduced at some
259 * point by reading less and offsetting the register index in the
260 * SO_DECLs.
261 */
262 dw2 |= urb_entry_read_offset << SO_STREAM_0_VERTEX_READ_OFFSET_SHIFT;
263 dw2 |= (urb_entry_read_length - 1) << SO_STREAM_0_VERTEX_READ_LENGTH_SHIFT;
264
265 dw2 |= urb_entry_read_offset << SO_STREAM_1_VERTEX_READ_OFFSET_SHIFT;
266 dw2 |= (urb_entry_read_length - 1) << SO_STREAM_1_VERTEX_READ_LENGTH_SHIFT;
267
268 dw2 |= urb_entry_read_offset << SO_STREAM_2_VERTEX_READ_OFFSET_SHIFT;
269 dw2 |= (urb_entry_read_length - 1) << SO_STREAM_2_VERTEX_READ_LENGTH_SHIFT;
270
271 dw2 |= urb_entry_read_offset << SO_STREAM_3_VERTEX_READ_OFFSET_SHIFT;
272 dw2 |= (urb_entry_read_length - 1) << SO_STREAM_3_VERTEX_READ_LENGTH_SHIFT;
273 }
274
275 BEGIN_BATCH(3);
276 OUT_BATCH(_3DSTATE_STREAMOUT << 16 | (3 - 2));
277 OUT_BATCH(dw1);
278 OUT_BATCH(dw2);
279 ADVANCE_BATCH();
280 }
281
282 static void
283 upload_sol_state(struct brw_context *brw)
284 {
285 struct gl_context *ctx = &brw->ctx;
286 /* BRW_NEW_TRANSFORM_FEEDBACK */
287 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
288
289 if (active) {
290 upload_3dstate_so_buffers(brw);
291 /* BRW_NEW_VUE_MAP_GEOM_OUT */
292 gen7_upload_3dstate_so_decl_list(brw, &brw->vue_map_geom_out);
293 }
294
295 /* Finally, set up the SOL stage. This command must always follow updates to
296 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
297 * MMIO register updates (current performed by the kernel at each batch
298 * emit).
299 */
300 upload_3dstate_streamout(brw, active, &brw->vue_map_geom_out);
301 }
302
303 const struct brw_tracked_state gen7_sol_state = {
304 .dirty = {
305 .mesa = (_NEW_LIGHT),
306 .brw = (BRW_NEW_BATCH |
307 BRW_NEW_VUE_MAP_GEOM_OUT |
308 BRW_NEW_TRANSFORM_FEEDBACK)
309 },
310 .emit = upload_sol_state,
311 };
312
313 /**
314 * Tally the number of primitives generated so far.
315 *
316 * The buffer contains a series of pairs:
317 * (<start0, start1, start2, start3>, <end0, end1, end2, end3>) ;
318 * (<start0, start1, start2, start3>, <end0, end1, end2, end3>) ;
319 *
320 * For each stream, we subtract the pair of values (end - start) to get the
321 * number of primitives generated during one section. We accumulate these
322 * values, adding them up to get the total number of primitives generated.
323 */
324 static void
325 gen7_tally_prims_generated(struct brw_context *brw,
326 struct brw_transform_feedback_object *obj)
327 {
328 /* If the current batch is still contributing to the number of primitives
329 * generated, flush it now so the results will be present when mapped.
330 */
331 if (drm_intel_bo_references(brw->batch.bo, obj->prim_count_bo))
332 intel_batchbuffer_flush(brw);
333
334 if (unlikely(brw->perf_debug && drm_intel_bo_busy(obj->prim_count_bo)))
335 perf_debug("Stalling for # of transform feedback primitives written.\n");
336
337 drm_intel_bo_map(obj->prim_count_bo, false);
338 uint64_t *prim_counts = obj->prim_count_bo->virtual;
339
340 assert(obj->prim_count_buffer_index % (2 * BRW_MAX_XFB_STREAMS) == 0);
341 int pairs = obj->prim_count_buffer_index / (2 * BRW_MAX_XFB_STREAMS);
342
343 for (int i = 0; i < pairs; i++) {
344 for (int s = 0; s < BRW_MAX_XFB_STREAMS; s++) {
345 obj->prims_generated[s] +=
346 prim_counts[BRW_MAX_XFB_STREAMS + s] - prim_counts[s];
347 }
348 prim_counts += 2 * BRW_MAX_XFB_STREAMS; /* move to the next pair */
349 }
350
351 drm_intel_bo_unmap(obj->prim_count_bo);
352
353 /* We've already gathered up the old data; we can safely overwrite it now. */
354 obj->prim_count_buffer_index = 0;
355 }
356
357 /**
358 * Store the SO_NUM_PRIMS_WRITTEN counters for each stream (4 uint64_t values)
359 * to prim_count_bo.
360 *
361 * If prim_count_bo is out of space, gather up the results so far into
362 * prims_generated[] and allocate a new buffer with enough space.
363 *
364 * The number of primitives written is used to compute the number of vertices
365 * written to a transform feedback stream, which is required to implement
366 * DrawTransformFeedback().
367 */
368 static void
369 gen7_save_primitives_written_counters(struct brw_context *brw,
370 struct brw_transform_feedback_object *obj)
371 {
372 const int streams = BRW_MAX_XFB_STREAMS;
373
374 /* Check if there's enough space for a new pair of four values. */
375 if (obj->prim_count_bo != NULL &&
376 obj->prim_count_buffer_index + 2 * streams >= 4096 / sizeof(uint64_t)) {
377 /* Gather up the results so far and release the BO. */
378 gen7_tally_prims_generated(brw, obj);
379 }
380
381 /* Flush any drawing so that the counters have the right values. */
382 intel_batchbuffer_emit_mi_flush(brw);
383
384 /* Emit MI_STORE_REGISTER_MEM commands to write the values. */
385 for (int i = 0; i < streams; i++) {
386 brw_store_register_mem64(brw, obj->prim_count_bo,
387 GEN7_SO_NUM_PRIMS_WRITTEN(i),
388 obj->prim_count_buffer_index + i);
389 }
390
391 /* Update where to write data to. */
392 obj->prim_count_buffer_index += streams;
393 }
394
395 /**
396 * Compute the number of vertices written by this transform feedback operation.
397 */
398 static void
399 brw_compute_xfb_vertices_written(struct brw_context *brw,
400 struct brw_transform_feedback_object *obj)
401 {
402 if (obj->vertices_written_valid || !obj->base.EndedAnytime)
403 return;
404
405 unsigned vertices_per_prim = 0;
406
407 switch (obj->primitive_mode) {
408 case GL_POINTS:
409 vertices_per_prim = 1;
410 break;
411 case GL_LINES:
412 vertices_per_prim = 2;
413 break;
414 case GL_TRIANGLES:
415 vertices_per_prim = 3;
416 break;
417 default:
418 unreachable("Invalid transform feedback primitive mode.");
419 }
420
421 /* Get the number of primitives generated. */
422 gen7_tally_prims_generated(brw, obj);
423
424 for (int i = 0; i < BRW_MAX_XFB_STREAMS; i++) {
425 obj->vertices_written[i] = vertices_per_prim * obj->prims_generated[i];
426 }
427 obj->vertices_written_valid = true;
428 }
429
430 /**
431 * GetTransformFeedbackVertexCount() driver hook.
432 *
433 * Returns the number of vertices written to a particular stream by the last
434 * Begin/EndTransformFeedback block. Used to implement DrawTransformFeedback().
435 */
436 GLsizei
437 brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
438 struct gl_transform_feedback_object *obj,
439 GLuint stream)
440 {
441 struct brw_context *brw = brw_context(ctx);
442 struct brw_transform_feedback_object *brw_obj =
443 (struct brw_transform_feedback_object *) obj;
444
445 assert(obj->EndedAnytime);
446 assert(stream < BRW_MAX_XFB_STREAMS);
447
448 brw_compute_xfb_vertices_written(brw, brw_obj);
449 return brw_obj->vertices_written[stream];
450 }
451
452 void
453 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
454 struct gl_transform_feedback_object *obj)
455 {
456 struct brw_context *brw = brw_context(ctx);
457 struct brw_transform_feedback_object *brw_obj =
458 (struct brw_transform_feedback_object *) obj;
459
460 /* Reset the SO buffer offsets to 0. */
461 if (brw->gen >= 8) {
462 brw_obj->zero_offsets = true;
463 } else {
464 intel_batchbuffer_flush(brw);
465 brw->batch.needs_sol_reset = true;
466 }
467
468 /* We're about to lose the information needed to compute the number of
469 * vertices written during the last Begin/EndTransformFeedback section,
470 * so we can't delay it any further.
471 */
472 brw_compute_xfb_vertices_written(brw, brw_obj);
473
474 /* No primitives have been generated yet. */
475 for (int i = 0; i < BRW_MAX_XFB_STREAMS; i++) {
476 brw_obj->prims_generated[i] = 0;
477 }
478
479 /* Store the starting value of the SO_NUM_PRIMS_WRITTEN counters. */
480 gen7_save_primitives_written_counters(brw, brw_obj);
481
482 brw_obj->primitive_mode = mode;
483 }
484
485 void
486 gen7_end_transform_feedback(struct gl_context *ctx,
487 struct gl_transform_feedback_object *obj)
488 {
489 /* After EndTransformFeedback, it's likely that the client program will try
490 * to draw using the contents of the transform feedback buffer as vertex
491 * input. In order for this to work, we need to flush the data through at
492 * least the GS stage of the pipeline, and flush out the render cache. For
493 * simplicity, just do a full flush.
494 */
495 struct brw_context *brw = brw_context(ctx);
496 struct brw_transform_feedback_object *brw_obj =
497 (struct brw_transform_feedback_object *) obj;
498
499 /* Store the ending value of the SO_NUM_PRIMS_WRITTEN counters. */
500 gen7_save_primitives_written_counters(brw, brw_obj);
501
502 /* EndTransformFeedback() means that we need to update the number of
503 * vertices written. Since it's only necessary if DrawTransformFeedback()
504 * is called and it means mapping a buffer object, we delay computing it
505 * until it's absolutely necessary to try and avoid stalls.
506 */
507 brw_obj->vertices_written_valid = false;
508 }
509
510 void
511 gen7_pause_transform_feedback(struct gl_context *ctx,
512 struct gl_transform_feedback_object *obj)
513 {
514 struct brw_context *brw = brw_context(ctx);
515 struct brw_transform_feedback_object *brw_obj =
516 (struct brw_transform_feedback_object *) obj;
517
518 /* Flush any drawing so that the counters have the right values. */
519 intel_batchbuffer_emit_mi_flush(brw);
520
521 /* Save the SOL buffer offset register values. */
522 if (brw->gen < 8) {
523 for (int i = 0; i < 4; i++) {
524 BEGIN_BATCH(3);
525 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
526 OUT_BATCH(GEN7_SO_WRITE_OFFSET(i));
527 OUT_RELOC(brw_obj->offset_bo,
528 I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
529 i * sizeof(uint32_t));
530 ADVANCE_BATCH();
531 }
532 }
533
534 /* Store the temporary ending value of the SO_NUM_PRIMS_WRITTEN counters.
535 * While this operation is paused, other transform feedback actions may
536 * occur, which will contribute to the counters. We need to exclude that
537 * from our counts.
538 */
539 gen7_save_primitives_written_counters(brw, brw_obj);
540 }
541
542 void
543 gen7_resume_transform_feedback(struct gl_context *ctx,
544 struct gl_transform_feedback_object *obj)
545 {
546 struct brw_context *brw = brw_context(ctx);
547 struct brw_transform_feedback_object *brw_obj =
548 (struct brw_transform_feedback_object *) obj;
549
550 /* Reload the SOL buffer offset registers. */
551 if (brw->gen < 8) {
552 for (int i = 0; i < 4; i++) {
553 BEGIN_BATCH(3);
554 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
555 OUT_BATCH(GEN7_SO_WRITE_OFFSET(i));
556 OUT_RELOC(brw_obj->offset_bo,
557 I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
558 i * sizeof(uint32_t));
559 ADVANCE_BATCH();
560 }
561 }
562
563 /* Store the new starting value of the SO_NUM_PRIMS_WRITTEN counters. */
564 gen7_save_primitives_written_counters(brw, brw_obj);
565 }