44e3e99d33d908ccb499bcd100af85d512f11f29
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34
35 #include "brw_context.h"
36 #if GEN_GEN == 6
37 #include "brw_defines.h"
38 #endif
39 #include "brw_draw.h"
40 #include "brw_multisample_state.h"
41 #include "brw_state.h"
42 #include "brw_wm.h"
43 #include "brw_util.h"
44
45 #include "intel_batchbuffer.h"
46 #include "intel_buffer_objects.h"
47 #include "intel_fbo.h"
48
49 #include "main/enums.h"
50 #include "main/fbobject.h"
51 #include "main/framebuffer.h"
52 #include "main/glformats.h"
53 #include "main/shaderapi.h"
54 #include "main/stencil.h"
55 #include "main/transformfeedback.h"
56 #include "main/varray.h"
57 #include "main/viewport.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 uint32_t read_domains;
72 uint32_t write_domain;
73 uint32_t offset;
74 };
75
76 static uint64_t
77 emit_reloc(struct brw_context *brw,
78 void *location, struct brw_address address, uint32_t delta)
79 {
80 uint32_t offset = (char *) location - (char *) brw->batch.map;
81
82 return brw_emit_reloc(&brw->batch, offset, address.bo,
83 address.offset + delta,
84 address.read_domains,
85 address.write_domain);
86 }
87
88 #define __gen_address_type struct brw_address
89 #define __gen_user_data struct brw_context
90
91 static uint64_t
92 __gen_combine_address(struct brw_context *brw, void *location,
93 struct brw_address address, uint32_t delta)
94 {
95 if (address.bo == NULL) {
96 return address.offset + delta;
97 } else {
98 return emit_reloc(brw, location, address, delta);
99 }
100 }
101
102 static inline struct brw_address
103 render_bo(struct brw_bo *bo, uint32_t offset)
104 {
105 return (struct brw_address) {
106 .bo = bo,
107 .offset = offset,
108 .read_domains = I915_GEM_DOMAIN_RENDER,
109 .write_domain = I915_GEM_DOMAIN_RENDER,
110 };
111 }
112
113 static inline struct brw_address
114 render_ro_bo(struct brw_bo *bo, uint32_t offset)
115 {
116 return (struct brw_address) {
117 .bo = bo,
118 .offset = offset,
119 .read_domains = I915_GEM_DOMAIN_RENDER,
120 .write_domain = 0,
121 };
122 }
123
124 static inline struct brw_address
125 instruction_bo(struct brw_bo *bo, uint32_t offset)
126 {
127 return (struct brw_address) {
128 .bo = bo,
129 .offset = offset,
130 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
131 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
132 };
133 }
134
135 static inline struct brw_address
136 instruction_ro_bo(struct brw_bo *bo, uint32_t offset)
137 {
138 return (struct brw_address) {
139 .bo = bo,
140 .offset = offset,
141 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
142 .write_domain = 0,
143 };
144 }
145
146 static inline struct brw_address
147 vertex_bo(struct brw_bo *bo, uint32_t offset)
148 {
149 return (struct brw_address) {
150 .bo = bo,
151 .offset = offset,
152 .read_domains = I915_GEM_DOMAIN_VERTEX,
153 .write_domain = 0,
154 };
155 }
156
157 #include "genxml/genX_pack.h"
158
159 #define _brw_cmd_length(cmd) cmd ## _length
160 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
161 #define _brw_cmd_header(cmd) cmd ## _header
162 #define _brw_cmd_pack(cmd) cmd ## _pack
163
164 #define brw_batch_emit(brw, cmd, name) \
165 for (struct cmd name = { _brw_cmd_header(cmd) }, \
166 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
167 __builtin_expect(_dst != NULL, 1); \
168 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
169 _dst = NULL)
170
171 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
172 uint32_t *_dw = emit_dwords(brw, n); \
173 struct cmd template = { \
174 _brw_cmd_header(cmd), \
175 .DWordLength = n - _brw_cmd_length_bias(cmd), \
176 __VA_ARGS__ \
177 }; \
178 _brw_cmd_pack(cmd)(brw, _dw, &template); \
179 _dw + 1; /* Array starts at dw[1] */ \
180 })
181
182 #define brw_state_emit(brw, cmd, align, offset, name) \
183 for (struct cmd name = { 0, }, \
184 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
185 align, offset); \
186 __builtin_expect(_dst != NULL, 1); \
187 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
188 _dst = NULL)
189
190 /**
191 * Polygon stipple packet
192 */
193 static void
194 genX(upload_polygon_stipple)(struct brw_context *brw)
195 {
196 struct gl_context *ctx = &brw->ctx;
197
198 /* _NEW_POLYGON */
199 if (!ctx->Polygon.StippleFlag)
200 return;
201
202 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
203 /* Polygon stipple is provided in OpenGL order, i.e. bottom
204 * row first. If we're rendering to a window (i.e. the
205 * default frame buffer object, 0), then we need to invert
206 * it to match our pixel layout. But if we're rendering
207 * to a FBO (i.e. any named frame buffer object), we *don't*
208 * need to invert - we already match the layout.
209 */
210 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
211 for (unsigned i = 0; i < 32; i++)
212 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
213 } else {
214 for (unsigned i = 0; i < 32; i++)
215 poly.PatternRow[i] = ctx->PolygonStipple[i];
216 }
217 }
218 }
219
220 static const struct brw_tracked_state genX(polygon_stipple) = {
221 .dirty = {
222 .mesa = _NEW_POLYGON |
223 _NEW_POLYGONSTIPPLE,
224 .brw = BRW_NEW_CONTEXT,
225 },
226 .emit = genX(upload_polygon_stipple),
227 };
228
229 /**
230 * Polygon stipple offset packet
231 */
232 static void
233 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
234 {
235 struct gl_context *ctx = &brw->ctx;
236
237 /* _NEW_POLYGON */
238 if (!ctx->Polygon.StippleFlag)
239 return;
240
241 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
242 /* _NEW_BUFFERS
243 *
244 * If we're drawing to a system window we have to invert the Y axis
245 * in order to match the OpenGL pixel coordinate system, and our
246 * offset must be matched to the window position. If we're drawing
247 * to a user-created FBO then our native pixel coordinate system
248 * works just fine, and there's no window system to worry about.
249 */
250 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
251 poly.PolygonStippleYOffset =
252 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
253 }
254 }
255 }
256
257 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
258 .dirty = {
259 .mesa = _NEW_BUFFERS |
260 _NEW_POLYGON,
261 .brw = BRW_NEW_CONTEXT,
262 },
263 .emit = genX(upload_polygon_stipple_offset),
264 };
265
266 /**
267 * Line stipple packet
268 */
269 static void
270 genX(upload_line_stipple)(struct brw_context *brw)
271 {
272 struct gl_context *ctx = &brw->ctx;
273
274 if (!ctx->Line.StippleFlag)
275 return;
276
277 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
278 line.LineStipplePattern = ctx->Line.StipplePattern;
279
280 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
281 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
282 }
283 }
284
285 static const struct brw_tracked_state genX(line_stipple) = {
286 .dirty = {
287 .mesa = _NEW_LINE,
288 .brw = BRW_NEW_CONTEXT,
289 },
290 .emit = genX(upload_line_stipple),
291 };
292
293 /* Constant single cliprect for framebuffer object or DRI2 drawing */
294 static void
295 genX(upload_drawing_rect)(struct brw_context *brw)
296 {
297 struct gl_context *ctx = &brw->ctx;
298 const struct gl_framebuffer *fb = ctx->DrawBuffer;
299 const unsigned int fb_width = _mesa_geometric_width(fb);
300 const unsigned int fb_height = _mesa_geometric_height(fb);
301
302 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
303 rect.ClippedDrawingRectangleXMax = fb_width - 1;
304 rect.ClippedDrawingRectangleYMax = fb_height - 1;
305 }
306 }
307
308 static const struct brw_tracked_state genX(drawing_rect) = {
309 .dirty = {
310 .mesa = _NEW_BUFFERS,
311 .brw = BRW_NEW_BLORP |
312 BRW_NEW_CONTEXT,
313 },
314 .emit = genX(upload_drawing_rect),
315 };
316
317 static uint32_t *
318 genX(emit_vertex_buffer_state)(struct brw_context *brw,
319 uint32_t *dw,
320 unsigned buffer_nr,
321 struct brw_bo *bo,
322 unsigned start_offset,
323 unsigned end_offset,
324 unsigned stride,
325 unsigned step_rate)
326 {
327 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
328 .VertexBufferIndex = buffer_nr,
329 .BufferPitch = stride,
330 .BufferStartingAddress = vertex_bo(bo, start_offset),
331 #if GEN_GEN >= 8
332 .BufferSize = end_offset - start_offset,
333 #endif
334
335 #if GEN_GEN >= 7
336 .AddressModifyEnable = true,
337 #endif
338
339 #if GEN_GEN < 8
340 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
341 .InstanceDataStepRate = step_rate,
342 #if GEN_GEN >= 5
343 .EndAddress = vertex_bo(bo, end_offset - 1),
344 #endif
345 #endif
346
347 #if GEN_GEN == 9
348 .VertexBufferMOCS = SKL_MOCS_WB,
349 #elif GEN_GEN == 8
350 .VertexBufferMOCS = BDW_MOCS_WB,
351 #elif GEN_GEN == 7
352 .VertexBufferMOCS = GEN7_MOCS_L3,
353 #endif
354 };
355
356 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
357 return dw + GENX(VERTEX_BUFFER_STATE_length);
358 }
359
360 UNUSED static bool
361 is_passthru_format(uint32_t format)
362 {
363 switch (format) {
364 case ISL_FORMAT_R64_PASSTHRU:
365 case ISL_FORMAT_R64G64_PASSTHRU:
366 case ISL_FORMAT_R64G64B64_PASSTHRU:
367 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
368 return true;
369 default:
370 return false;
371 }
372 }
373
374 UNUSED static int
375 uploads_needed(uint32_t format)
376 {
377 if (!is_passthru_format(format))
378 return 1;
379
380 switch (format) {
381 case ISL_FORMAT_R64_PASSTHRU:
382 case ISL_FORMAT_R64G64_PASSTHRU:
383 return 1;
384 case ISL_FORMAT_R64G64B64_PASSTHRU:
385 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
386 return 2;
387 default:
388 unreachable("not reached");
389 }
390 }
391
392 /*
393 * Returns the format that we are finally going to use when upload a vertex
394 * element. It will only change if we are using *64*PASSTHRU formats, as for
395 * gen < 8 they need to be splitted on two *32*FLOAT formats.
396 *
397 * @upload points in which upload we are. Valid values are [0,1]
398 */
399 static uint32_t
400 downsize_format_if_needed(uint32_t format,
401 int upload)
402 {
403 assert(upload == 0 || upload == 1);
404
405 if (!is_passthru_format(format))
406 return format;
407
408 switch (format) {
409 case ISL_FORMAT_R64_PASSTHRU:
410 return ISL_FORMAT_R32G32_FLOAT;
411 case ISL_FORMAT_R64G64_PASSTHRU:
412 return ISL_FORMAT_R32G32B32A32_FLOAT;
413 case ISL_FORMAT_R64G64B64_PASSTHRU:
414 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
415 : ISL_FORMAT_R32G32_FLOAT;
416 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
417 return ISL_FORMAT_R32G32B32A32_FLOAT;
418 default:
419 unreachable("not reached");
420 }
421 }
422
423 /*
424 * Returns the number of componentes associated with a format that is used on
425 * a 64 to 32 format split. See downsize_format()
426 */
427 static int
428 upload_format_size(uint32_t upload_format)
429 {
430 switch (upload_format) {
431 case ISL_FORMAT_R32G32_FLOAT:
432 return 2;
433 case ISL_FORMAT_R32G32B32A32_FLOAT:
434 return 4;
435 default:
436 unreachable("not reached");
437 }
438 }
439
440 static void
441 genX(emit_vertices)(struct brw_context *brw)
442 {
443 uint32_t *dw;
444
445 brw_prepare_vertices(brw);
446 brw_prepare_shader_draw_parameters(brw);
447
448 #if GEN_GEN < 6
449 brw_emit_query_begin(brw);
450 #endif
451
452 const struct brw_vs_prog_data *vs_prog_data =
453 brw_vs_prog_data(brw->vs.base.prog_data);
454
455 #if GEN_GEN >= 8
456 struct gl_context *ctx = &brw->ctx;
457 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
458 ctx->Polygon.BackMode != GL_FILL);
459
460 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
461 unsigned vue = brw->vb.nr_enabled;
462
463 /* The element for the edge flags must always be last, so we have to
464 * insert the SGVS before it in that case.
465 */
466 if (uses_edge_flag) {
467 assert(vue > 0);
468 vue--;
469 }
470
471 WARN_ONCE(vue >= 33,
472 "Trying to insert VID/IID past 33rd vertex element, "
473 "need to reorder the vertex attrbutes.");
474
475 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
476 if (vs_prog_data->uses_vertexid) {
477 vfs.VertexIDEnable = true;
478 vfs.VertexIDComponentNumber = 2;
479 vfs.VertexIDElementOffset = vue;
480 }
481
482 if (vs_prog_data->uses_instanceid) {
483 vfs.InstanceIDEnable = true;
484 vfs.InstanceIDComponentNumber = 3;
485 vfs.InstanceIDElementOffset = vue;
486 }
487 }
488
489 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
490 vfi.InstancingEnable = true;
491 vfi.VertexElementIndex = vue;
492 }
493 } else {
494 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
495 }
496
497 /* Normally we don't need an element for the SGVS attribute because the
498 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
499 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
500 * we're using draw parameters then we need an element for the those
501 * values. Additionally if there is an edge flag element then the SGVS
502 * can't be inserted past that so we need a dummy element to ensure that
503 * the edge flag is the last one.
504 */
505 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
506 vs_prog_data->uses_baseinstance ||
507 ((vs_prog_data->uses_instanceid ||
508 vs_prog_data->uses_vertexid)
509 && uses_edge_flag));
510 #else
511 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
512 vs_prog_data->uses_baseinstance ||
513 vs_prog_data->uses_instanceid ||
514 vs_prog_data->uses_vertexid);
515 #endif
516 unsigned nr_elements =
517 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
518
519 #if GEN_GEN < 8
520 /* If any of the formats of vb.enabled needs more that one upload, we need
521 * to add it to nr_elements
522 */
523 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
524 struct brw_vertex_element *input = brw->vb.enabled[i];
525 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
526
527 if (uploads_needed(format) > 1)
528 nr_elements++;
529 }
530 #endif
531
532 /* If the VS doesn't read any inputs (calculating vertex position from
533 * a state variable for some reason, for example), emit a single pad
534 * VERTEX_ELEMENT struct and bail.
535 *
536 * The stale VB state stays in place, but they don't do anything unless
537 * a VE loads from them.
538 */
539 if (nr_elements == 0) {
540 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
541 1 + GENX(VERTEX_ELEMENT_STATE_length));
542 struct GENX(VERTEX_ELEMENT_STATE) elem = {
543 .Valid = true,
544 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
545 .Component0Control = VFCOMP_STORE_0,
546 .Component1Control = VFCOMP_STORE_0,
547 .Component2Control = VFCOMP_STORE_0,
548 .Component3Control = VFCOMP_STORE_1_FP,
549 };
550 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
551 return;
552 }
553
554 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
555 const bool uses_draw_params =
556 vs_prog_data->uses_basevertex ||
557 vs_prog_data->uses_baseinstance;
558 const unsigned nr_buffers = brw->vb.nr_buffers +
559 uses_draw_params + vs_prog_data->uses_drawid;
560
561 if (nr_buffers) {
562 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
563
564 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
565 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
566
567 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
568 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
569 /* Prior to Haswell and Bay Trail we have to use 4-component formats
570 * to fake 3-component ones. In particular, we do this for
571 * half-float and 8 and 16-bit integer formats. This means that the
572 * vertex element may poke over the end of the buffer by 2 bytes.
573 */
574 const unsigned padding =
575 (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
576 const unsigned end = buffer->offset + buffer->size + padding;
577 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
578 buffer->offset,
579 end,
580 buffer->stride,
581 buffer->step_rate);
582 }
583
584 if (uses_draw_params) {
585 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
586 brw->draw.draw_params_bo,
587 brw->draw.draw_params_offset,
588 brw->draw.draw_params_bo->size,
589 0 /* stride */,
590 0 /* step rate */);
591 }
592
593 if (vs_prog_data->uses_drawid) {
594 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
595 brw->draw.draw_id_bo,
596 brw->draw.draw_id_offset,
597 brw->draw.draw_id_bo->size,
598 0 /* stride */,
599 0 /* step rate */);
600 }
601 }
602
603 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
604 * presumably for VertexID/InstanceID.
605 */
606 #if GEN_GEN >= 6
607 assert(nr_elements <= 34);
608 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
609 #else
610 assert(nr_elements <= 18);
611 #endif
612
613 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
614 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
615 unsigned i;
616 for (i = 0; i < brw->vb.nr_enabled; i++) {
617 const struct brw_vertex_element *input = brw->vb.enabled[i];
618 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
619 uint32_t comp0 = VFCOMP_STORE_SRC;
620 uint32_t comp1 = VFCOMP_STORE_SRC;
621 uint32_t comp2 = VFCOMP_STORE_SRC;
622 uint32_t comp3 = VFCOMP_STORE_SRC;
623 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
624
625 #if GEN_GEN >= 8
626 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
627 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
628 * element which has edge flag enabled."
629 */
630 assert(!(is_passthru_format(format) && uses_edge_flag));
631 #endif
632
633 /* The gen4 driver expects edgeflag to come in as a float, and passes
634 * that float on to the tests in the clipper. Mesa's current vertex
635 * attribute value for EdgeFlag is stored as a float, which works out.
636 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
637 * integer ubyte. Just rewrite that to convert to a float.
638 *
639 * Gen6+ passes edgeflag as sideband along with the vertex, instead
640 * of in the VUE. We have to upload it sideband as the last vertex
641 * element according to the B-Spec.
642 */
643 #if GEN_GEN >= 6
644 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
645 gen6_edgeflag_input = input;
646 continue;
647 }
648 #endif
649
650 for (unsigned c = 0; c < num_uploads; c++) {
651 const uint32_t upload_format = GEN_GEN >= 8 ? format :
652 downsize_format_if_needed(format, c);
653 /* If we need more that one upload, the offset stride would be 128
654 * bits (16 bytes), as for previous uploads we are using the full
655 * entry. */
656 const unsigned offset = input->offset + c * 16;
657
658 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
659 upload_format_size(upload_format) : input->glarray->Size;
660
661 switch (size) {
662 case 0: comp0 = VFCOMP_STORE_0;
663 case 1: comp1 = VFCOMP_STORE_0;
664 case 2: comp2 = VFCOMP_STORE_0;
665 case 3:
666 if (GEN_GEN >= 8 && input->glarray->Doubles) {
667 comp3 = VFCOMP_STORE_0;
668 } else if (input->glarray->Integer) {
669 comp3 = VFCOMP_STORE_1_INT;
670 } else {
671 comp3 = VFCOMP_STORE_1_FP;
672 }
673
674 break;
675 }
676
677 #if GEN_GEN >= 8
678 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
679 *
680 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
681 * formats, 64-bit components are stored in the URB without any
682 * conversion. In this case, vertex elements must be written as 128
683 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
684 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
685 * component into the URB, Component 1 must be specified as
686 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
687 * order to output a 128-bit vertex element, or Components 1-3 must
688 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
689 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
690 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
691 * vertex element."
692 */
693 if (input->glarray->Doubles && !input->is_dual_slot) {
694 /* Store vertex elements which correspond to double and dvec2 vertex
695 * shader inputs as 128-bit vertex elements, instead of 256-bits.
696 */
697 comp2 = VFCOMP_NOSTORE;
698 comp3 = VFCOMP_NOSTORE;
699 }
700 #endif
701
702 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
703 .VertexBufferIndex = input->buffer,
704 .Valid = true,
705 .SourceElementFormat = upload_format,
706 .SourceElementOffset = offset,
707 .Component0Control = comp0,
708 .Component1Control = comp1,
709 .Component2Control = comp2,
710 .Component3Control = comp3,
711 #if GEN_GEN < 5
712 .DestinationElementOffset = i * 4,
713 #endif
714 };
715
716 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
717 dw += GENX(VERTEX_ELEMENT_STATE_length);
718 }
719 }
720
721 if (needs_sgvs_element) {
722 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
723 .Valid = true,
724 .Component0Control = VFCOMP_STORE_0,
725 .Component1Control = VFCOMP_STORE_0,
726 .Component2Control = VFCOMP_STORE_0,
727 .Component3Control = VFCOMP_STORE_0,
728 #if GEN_GEN < 5
729 .DestinationElementOffset = i * 4,
730 #endif
731 };
732
733 #if GEN_GEN >= 8
734 if (vs_prog_data->uses_basevertex ||
735 vs_prog_data->uses_baseinstance) {
736 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
737 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
738 elem_state.Component0Control = VFCOMP_STORE_SRC;
739 elem_state.Component1Control = VFCOMP_STORE_SRC;
740 }
741 #else
742 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
743 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
744 if (vs_prog_data->uses_basevertex)
745 elem_state.Component0Control = VFCOMP_STORE_SRC;
746
747 if (vs_prog_data->uses_baseinstance)
748 elem_state.Component1Control = VFCOMP_STORE_SRC;
749
750 if (vs_prog_data->uses_vertexid)
751 elem_state.Component2Control = VFCOMP_STORE_VID;
752
753 if (vs_prog_data->uses_instanceid)
754 elem_state.Component3Control = VFCOMP_STORE_IID;
755 #endif
756
757 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
758 dw += GENX(VERTEX_ELEMENT_STATE_length);
759 }
760
761 if (vs_prog_data->uses_drawid) {
762 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
763 .Valid = true,
764 .VertexBufferIndex = brw->vb.nr_buffers + 1,
765 .SourceElementFormat = ISL_FORMAT_R32_UINT,
766 .Component0Control = VFCOMP_STORE_SRC,
767 .Component1Control = VFCOMP_STORE_0,
768 .Component2Control = VFCOMP_STORE_0,
769 .Component3Control = VFCOMP_STORE_0,
770 #if GEN_GEN < 5
771 .DestinationElementOffset = i * 4,
772 #endif
773 };
774
775 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
776 dw += GENX(VERTEX_ELEMENT_STATE_length);
777 }
778
779 #if GEN_GEN >= 6
780 if (gen6_edgeflag_input) {
781 const uint32_t format =
782 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
783
784 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
785 .Valid = true,
786 .VertexBufferIndex = gen6_edgeflag_input->buffer,
787 .EdgeFlagEnable = true,
788 .SourceElementFormat = format,
789 .SourceElementOffset = gen6_edgeflag_input->offset,
790 .Component0Control = VFCOMP_STORE_SRC,
791 .Component1Control = VFCOMP_STORE_0,
792 .Component2Control = VFCOMP_STORE_0,
793 .Component3Control = VFCOMP_STORE_0,
794 };
795
796 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
797 dw += GENX(VERTEX_ELEMENT_STATE_length);
798 }
799 #endif
800
801 #if GEN_GEN >= 8
802 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
803 const struct brw_vertex_element *input = brw->vb.enabled[i];
804 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
805 unsigned element_index;
806
807 /* The edge flag element is reordered to be the last one in the code
808 * above so we need to compensate for that in the element indices used
809 * below.
810 */
811 if (input == gen6_edgeflag_input)
812 element_index = nr_elements - 1;
813 else
814 element_index = j++;
815
816 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
817 vfi.VertexElementIndex = element_index;
818 vfi.InstancingEnable = buffer->step_rate != 0;
819 vfi.InstanceDataStepRate = buffer->step_rate;
820 }
821 }
822
823 if (vs_prog_data->uses_drawid) {
824 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
825
826 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
827 vfi.VertexElementIndex = element;
828 }
829 }
830 #endif
831 }
832
833 static const struct brw_tracked_state genX(vertices) = {
834 .dirty = {
835 .mesa = _NEW_POLYGON,
836 .brw = BRW_NEW_BATCH |
837 BRW_NEW_BLORP |
838 BRW_NEW_VERTICES |
839 BRW_NEW_VS_PROG_DATA,
840 },
841 .emit = genX(emit_vertices),
842 };
843
844 static void
845 genX(emit_index_buffer)(struct brw_context *brw)
846 {
847 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
848
849 if (index_buffer == NULL)
850 return;
851
852 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
853 #if GEN_GEN < 8 && !GEN_IS_HASWELL
854 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
855 #endif
856 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
857 ib.BufferStartingAddress = vertex_bo(brw->ib.bo, 0);
858 #if GEN_GEN >= 8
859 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
860 ib.BufferSize = brw->ib.size;
861 #else
862 ib.BufferEndingAddress = vertex_bo(brw->ib.bo, brw->ib.size - 1);
863 #endif
864 }
865 }
866
867 static const struct brw_tracked_state genX(index_buffer) = {
868 .dirty = {
869 .mesa = 0,
870 .brw = BRW_NEW_BATCH |
871 BRW_NEW_BLORP |
872 BRW_NEW_INDEX_BUFFER,
873 },
874 .emit = genX(emit_index_buffer),
875 };
876
877 #if GEN_IS_HASWELL || GEN_GEN >= 8
878 static void
879 genX(upload_cut_index)(struct brw_context *brw)
880 {
881 const struct gl_context *ctx = &brw->ctx;
882
883 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
884 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
885 vf.IndexedDrawCutIndexEnable = true;
886 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
887 }
888 }
889 }
890
891 const struct brw_tracked_state genX(cut_index) = {
892 .dirty = {
893 .mesa = _NEW_TRANSFORM,
894 .brw = BRW_NEW_INDEX_BUFFER,
895 },
896 .emit = genX(upload_cut_index),
897 };
898 #endif
899
900 #if GEN_GEN >= 6
901 /**
902 * Determine the appropriate attribute override value to store into the
903 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
904 * override value contains two pieces of information: the location of the
905 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
906 * flag indicating whether to "swizzle" the attribute based on the direction
907 * the triangle is facing.
908 *
909 * If an attribute is "swizzled", then the given VUE location is used for
910 * front-facing triangles, and the VUE location that immediately follows is
911 * used for back-facing triangles. We use this to implement the mapping from
912 * gl_FrontColor/gl_BackColor to gl_Color.
913 *
914 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
915 * being instructed to begin reading attribute data. It can be set to a
916 * nonzero value to prevent the SF unit from wasting time reading elements of
917 * the VUE that are not needed by the fragment shader. It is measured in
918 * 256-bit increments.
919 */
920 static void
921 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
922 const struct brw_vue_map *vue_map,
923 int urb_entry_read_offset, int fs_attr,
924 bool two_side_color, uint32_t *max_source_attr)
925 {
926 /* Find the VUE slot for this attribute. */
927 int slot = vue_map->varying_to_slot[fs_attr];
928
929 /* Viewport and Layer are stored in the VUE header. We need to override
930 * them to zero if earlier stages didn't write them, as GL requires that
931 * they read back as zero when not explicitly set.
932 */
933 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
934 attr->ComponentOverrideX = true;
935 attr->ComponentOverrideW = true;
936 attr->ConstantSource = CONST_0000;
937
938 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
939 attr->ComponentOverrideY = true;
940 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
941 attr->ComponentOverrideZ = true;
942
943 return;
944 }
945
946 /* If there was only a back color written but not front, use back
947 * as the color instead of undefined
948 */
949 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
950 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
951 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
952 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
953
954 if (slot == -1) {
955 /* This attribute does not exist in the VUE--that means that the vertex
956 * shader did not write to it. This means that either:
957 *
958 * (a) This attribute is a texture coordinate, and it is going to be
959 * replaced with point coordinates (as a consequence of a call to
960 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
961 * hardware will ignore whatever attribute override we supply.
962 *
963 * (b) This attribute is read by the fragment shader but not written by
964 * the vertex shader, so its value is undefined. Therefore the
965 * attribute override we supply doesn't matter.
966 *
967 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
968 * previous shader stage.
969 *
970 * Note that we don't have to worry about the cases where the attribute
971 * is gl_PointCoord or is undergoing point sprite coordinate
972 * replacement, because in those cases, this function isn't called.
973 *
974 * In case (c), we need to program the attribute overrides so that the
975 * primitive ID will be stored in this slot. In every other case, the
976 * attribute override we supply doesn't matter. So just go ahead and
977 * program primitive ID in every case.
978 */
979 attr->ComponentOverrideW = true;
980 attr->ComponentOverrideX = true;
981 attr->ComponentOverrideY = true;
982 attr->ComponentOverrideZ = true;
983 attr->ConstantSource = PRIM_ID;
984 return;
985 }
986
987 /* Compute the location of the attribute relative to urb_entry_read_offset.
988 * Each increment of urb_entry_read_offset represents a 256-bit value, so
989 * it counts for two 128-bit VUE slots.
990 */
991 int source_attr = slot - 2 * urb_entry_read_offset;
992 assert(source_attr >= 0 && source_attr < 32);
993
994 /* If we are doing two-sided color, and the VUE slot following this one
995 * represents a back-facing color, then we need to instruct the SF unit to
996 * do back-facing swizzling.
997 */
998 bool swizzling = two_side_color &&
999 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1000 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1001 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1002 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1003
1004 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1005 if (*max_source_attr < source_attr + swizzling)
1006 *max_source_attr = source_attr + swizzling;
1007
1008 attr->SourceAttribute = source_attr;
1009 if (swizzling)
1010 attr->SwizzleSelect = INPUTATTR_FACING;
1011 }
1012
1013
1014 static void
1015 genX(calculate_attr_overrides)(const struct brw_context *brw,
1016 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1017 uint32_t *point_sprite_enables,
1018 uint32_t *urb_entry_read_length,
1019 uint32_t *urb_entry_read_offset)
1020 {
1021 const struct gl_context *ctx = &brw->ctx;
1022
1023 /* _NEW_POINT */
1024 const struct gl_point_attrib *point = &ctx->Point;
1025
1026 /* BRW_NEW_FS_PROG_DATA */
1027 const struct brw_wm_prog_data *wm_prog_data =
1028 brw_wm_prog_data(brw->wm.base.prog_data);
1029 uint32_t max_source_attr = 0;
1030
1031 *point_sprite_enables = 0;
1032
1033 /* BRW_NEW_FRAGMENT_PROGRAM
1034 *
1035 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
1036 * the full vertex header. Otherwise, we can program the SF to start
1037 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
1038 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1039 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
1040 */
1041
1042 bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
1043 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1044
1045 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
1046
1047 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1048 * description of dw10 Point Sprite Texture Coordinate Enable:
1049 *
1050 * "This field must be programmed to zero when non-point primitives
1051 * are rendered."
1052 *
1053 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1054 * must be programmed to zero when rendering non-point primitives, but
1055 * the IvyBridge PRM does, and if we don't, we get garbage.
1056 *
1057 * This is not required on Haswell, as the hardware ignores this state
1058 * when drawing non-points -- although we do still need to be careful to
1059 * correctly set the attr overrides.
1060 *
1061 * _NEW_POLYGON
1062 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1063 */
1064 bool drawing_points = brw_is_drawing_points(brw);
1065
1066 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1067 int input_index = wm_prog_data->urb_setup[attr];
1068
1069 if (input_index < 0)
1070 continue;
1071
1072 /* _NEW_POINT */
1073 bool point_sprite = false;
1074 if (drawing_points) {
1075 if (point->PointSprite &&
1076 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1077 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1078 point_sprite = true;
1079 }
1080
1081 if (attr == VARYING_SLOT_PNTC)
1082 point_sprite = true;
1083
1084 if (point_sprite)
1085 *point_sprite_enables |= (1 << input_index);
1086 }
1087
1088 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1089 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1090
1091 if (!point_sprite) {
1092 genX(get_attr_override)(&attribute,
1093 &brw->vue_map_geom_out,
1094 *urb_entry_read_offset, attr,
1095 brw->ctx.VertexProgram._TwoSideEnabled,
1096 &max_source_attr);
1097 }
1098
1099 /* The hardware can only do the overrides on 16 overrides at a
1100 * time, and the other up to 16 have to be lined up so that the
1101 * input index = the output index. We'll need to do some
1102 * tweaking to make sure that's the case.
1103 */
1104 if (input_index < 16)
1105 attr_overrides[input_index] = attribute;
1106 else
1107 assert(attribute.SourceAttribute == input_index);
1108 }
1109
1110 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1111 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1112 *
1113 * "This field should be set to the minimum length required to read the
1114 * maximum source attribute. The maximum source attribute is indicated
1115 * by the maximum value of the enabled Attribute # Source Attribute if
1116 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1117 * enable is not set.
1118 * read_length = ceiling((max_source_attr + 1) / 2)
1119 *
1120 * [errata] Corruption/Hang possible if length programmed larger than
1121 * recommended"
1122 *
1123 * Similar text exists for Ivy Bridge.
1124 */
1125 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1126 }
1127 #endif
1128
1129 /* ---------------------------------------------------------------------- */
1130
1131 #if GEN_GEN >= 6
1132 static void
1133 genX(upload_depth_stencil_state)(struct brw_context *brw)
1134 {
1135 struct gl_context *ctx = &brw->ctx;
1136
1137 /* _NEW_BUFFERS */
1138 struct intel_renderbuffer *depth_irb =
1139 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1140
1141 /* _NEW_DEPTH */
1142 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1143
1144 /* _NEW_STENCIL */
1145 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1146 const int b = stencil->_BackFace;
1147
1148 #if GEN_GEN >= 8
1149 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1150 #else
1151 uint32_t ds_offset;
1152 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, wmds) {
1153 #endif
1154 if (depth->Test && depth_irb) {
1155 wmds.DepthTestEnable = true;
1156 wmds.DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1157 wmds.DepthTestFunction = intel_translate_compare_func(depth->Func);
1158 }
1159
1160 if (stencil->_Enabled) {
1161 wmds.StencilTestEnable = true;
1162 wmds.StencilWriteMask = stencil->WriteMask[0] & 0xff;
1163 wmds.StencilTestMask = stencil->ValueMask[0] & 0xff;
1164
1165 wmds.StencilTestFunction =
1166 intel_translate_compare_func(stencil->Function[0]);
1167 wmds.StencilFailOp =
1168 intel_translate_stencil_op(stencil->FailFunc[0]);
1169 wmds.StencilPassDepthPassOp =
1170 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1171 wmds.StencilPassDepthFailOp =
1172 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1173
1174 wmds.StencilBufferWriteEnable = stencil->_WriteEnabled;
1175
1176 if (stencil->_TestTwoSide) {
1177 wmds.DoubleSidedStencilEnable = true;
1178 wmds.BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1179 wmds.BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1180
1181 wmds.BackfaceStencilTestFunction =
1182 intel_translate_compare_func(stencil->Function[b]);
1183 wmds.BackfaceStencilFailOp =
1184 intel_translate_stencil_op(stencil->FailFunc[b]);
1185 wmds.BackfaceStencilPassDepthPassOp =
1186 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1187 wmds.BackfaceStencilPassDepthFailOp =
1188 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1189 }
1190
1191 #if GEN_GEN >= 9
1192 wmds.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1193 wmds.BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1194 #endif
1195 }
1196 }
1197
1198 #if GEN_GEN == 6
1199 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1200 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1201 ptr.DEPTH_STENCIL_STATEChange = true;
1202 }
1203 #elif GEN_GEN == 7
1204 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1205 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1206 }
1207 #endif
1208 }
1209
1210 static const struct brw_tracked_state genX(depth_stencil_state) = {
1211 .dirty = {
1212 .mesa = _NEW_BUFFERS |
1213 _NEW_DEPTH |
1214 _NEW_STENCIL,
1215 .brw = BRW_NEW_BLORP |
1216 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1217 : BRW_NEW_BATCH |
1218 BRW_NEW_STATE_BASE_ADDRESS),
1219 },
1220 .emit = genX(upload_depth_stencil_state),
1221 };
1222 #endif
1223
1224 /* ---------------------------------------------------------------------- */
1225
1226 #if GEN_GEN >= 6
1227 static void
1228 genX(upload_clip_state)(struct brw_context *brw)
1229 {
1230 struct gl_context *ctx = &brw->ctx;
1231
1232 /* _NEW_BUFFERS */
1233 struct gl_framebuffer *fb = ctx->DrawBuffer;
1234
1235 /* BRW_NEW_FS_PROG_DATA */
1236 struct brw_wm_prog_data *wm_prog_data =
1237 brw_wm_prog_data(brw->wm.base.prog_data);
1238
1239 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1240 clip.StatisticsEnable = !brw->meta_in_progress;
1241
1242 if (wm_prog_data->barycentric_interp_modes &
1243 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1244 clip.NonPerspectiveBarycentricEnable = true;
1245
1246 #if GEN_GEN >= 7
1247 clip.EarlyCullEnable = true;
1248 #endif
1249
1250 #if GEN_GEN == 7
1251 clip.FrontWinding = ctx->Polygon._FrontBit == _mesa_is_user_fbo(fb);
1252
1253 if (ctx->Polygon.CullFlag) {
1254 switch (ctx->Polygon.CullFaceMode) {
1255 case GL_FRONT:
1256 clip.CullMode = CULLMODE_FRONT;
1257 break;
1258 case GL_BACK:
1259 clip.CullMode = CULLMODE_BACK;
1260 break;
1261 case GL_FRONT_AND_BACK:
1262 clip.CullMode = CULLMODE_BOTH;
1263 break;
1264 default:
1265 unreachable("Should not get here: invalid CullFlag");
1266 }
1267 } else {
1268 clip.CullMode = CULLMODE_NONE;
1269 }
1270 #endif
1271
1272 #if GEN_GEN < 8
1273 clip.UserClipDistanceCullTestEnableBitmask =
1274 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1275
1276 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1277 #endif
1278
1279 /* _NEW_LIGHT */
1280 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1281 clip.TriangleStripListProvokingVertexSelect = 0;
1282 clip.TriangleFanProvokingVertexSelect = 1;
1283 clip.LineStripListProvokingVertexSelect = 0;
1284 } else {
1285 clip.TriangleStripListProvokingVertexSelect = 2;
1286 clip.TriangleFanProvokingVertexSelect = 2;
1287 clip.LineStripListProvokingVertexSelect = 1;
1288 }
1289
1290 /* _NEW_TRANSFORM */
1291 clip.UserClipDistanceClipTestEnableBitmask =
1292 ctx->Transform.ClipPlanesEnabled;
1293
1294 #if GEN_GEN >= 8
1295 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1296 #endif
1297
1298 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1299 clip.APIMode = APIMODE_D3D;
1300 else
1301 clip.APIMode = APIMODE_OGL;
1302
1303 clip.GuardbandClipTestEnable = true;
1304
1305 /* BRW_NEW_VIEWPORT_COUNT */
1306 const unsigned viewport_count = brw->clip.viewport_count;
1307
1308 if (ctx->RasterDiscard) {
1309 clip.ClipMode = CLIPMODE_REJECT_ALL;
1310 #if GEN_GEN == 6
1311 perf_debug("Rasterizer discard is currently implemented via the "
1312 "clipper; having the GS not write primitives would "
1313 "likely be faster.\n");
1314 #endif
1315 } else {
1316 clip.ClipMode = CLIPMODE_NORMAL;
1317 }
1318
1319 clip.ClipEnable = brw->primitive != _3DPRIM_RECTLIST;
1320
1321 /* _NEW_POLYGON,
1322 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1323 */
1324 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1325 clip.ViewportXYClipTestEnable = true;
1326
1327 clip.MinimumPointWidth = 0.125;
1328 clip.MaximumPointWidth = 255.875;
1329 clip.MaximumVPIndex = viewport_count - 1;
1330 if (_mesa_geometric_layers(fb) == 0)
1331 clip.ForceZeroRTAIndexEnable = true;
1332 }
1333 }
1334
1335 static const struct brw_tracked_state genX(clip_state) = {
1336 .dirty = {
1337 .mesa = _NEW_BUFFERS |
1338 _NEW_LIGHT |
1339 _NEW_POLYGON |
1340 _NEW_TRANSFORM,
1341 .brw = BRW_NEW_BLORP |
1342 BRW_NEW_CONTEXT |
1343 BRW_NEW_FS_PROG_DATA |
1344 BRW_NEW_GS_PROG_DATA |
1345 BRW_NEW_VS_PROG_DATA |
1346 BRW_NEW_META_IN_PROGRESS |
1347 BRW_NEW_PRIMITIVE |
1348 BRW_NEW_RASTERIZER_DISCARD |
1349 BRW_NEW_TES_PROG_DATA |
1350 BRW_NEW_VIEWPORT_COUNT,
1351 },
1352 .emit = genX(upload_clip_state),
1353 };
1354 #endif
1355
1356 /* ---------------------------------------------------------------------- */
1357
1358 #if GEN_GEN >= 6
1359 static void
1360 genX(upload_sf)(struct brw_context *brw)
1361 {
1362 struct gl_context *ctx = &brw->ctx;
1363 float point_size;
1364
1365 #if GEN_GEN <= 7
1366 /* _NEW_BUFFERS */
1367 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1368 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1369 #endif
1370
1371 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1372 sf.StatisticsEnable = true;
1373 sf.ViewportTransformEnable = true;
1374
1375 #if GEN_GEN == 7
1376 /* _NEW_BUFFERS */
1377 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1378 #endif
1379
1380 #if GEN_GEN <= 7
1381 /* _NEW_POLYGON */
1382 sf.FrontWinding = ctx->Polygon._FrontBit == render_to_fbo;
1383 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1384 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1385 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1386
1387 switch (ctx->Polygon.FrontMode) {
1388 case GL_FILL:
1389 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1390 break;
1391 case GL_LINE:
1392 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1393 break;
1394 case GL_POINT:
1395 sf.FrontFaceFillMode = FILL_MODE_POINT;
1396 break;
1397 default:
1398 unreachable("not reached");
1399 }
1400
1401 switch (ctx->Polygon.BackMode) {
1402 case GL_FILL:
1403 sf.BackFaceFillMode = FILL_MODE_SOLID;
1404 break;
1405 case GL_LINE:
1406 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1407 break;
1408 case GL_POINT:
1409 sf.BackFaceFillMode = FILL_MODE_POINT;
1410 break;
1411 default:
1412 unreachable("not reached");
1413 }
1414
1415 sf.ScissorRectangleEnable = true;
1416
1417 if (ctx->Polygon.CullFlag) {
1418 switch (ctx->Polygon.CullFaceMode) {
1419 case GL_FRONT:
1420 sf.CullMode = CULLMODE_FRONT;
1421 break;
1422 case GL_BACK:
1423 sf.CullMode = CULLMODE_BACK;
1424 break;
1425 case GL_FRONT_AND_BACK:
1426 sf.CullMode = CULLMODE_BOTH;
1427 break;
1428 default:
1429 unreachable("not reached");
1430 }
1431 } else {
1432 sf.CullMode = CULLMODE_NONE;
1433 }
1434
1435 #if GEN_IS_HASWELL
1436 sf.LineStippleEnable = ctx->Line.StippleFlag;
1437 #endif
1438
1439 if (multisampled_fbo && ctx->Multisample.Enabled)
1440 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1441
1442 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1443 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1444 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1445 #endif
1446
1447 /* _NEW_LINE */
1448 #if GEN_GEN == 8
1449 if (brw->is_cherryview)
1450 sf.CHVLineWidth = brw_get_line_width(brw);
1451 else
1452 sf.LineWidth = brw_get_line_width(brw);
1453 #else
1454 sf.LineWidth = brw_get_line_width(brw);
1455 #endif
1456
1457 if (ctx->Line.SmoothFlag) {
1458 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1459 #if GEN_GEN <= 7
1460 sf.AntiAliasingEnable = true;
1461 #endif
1462 }
1463
1464 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1465 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1466 /* Clamp to the hardware limits */
1467 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1468
1469 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1470 if (use_state_point_size(brw))
1471 sf.PointWidthSource = State;
1472
1473 #if GEN_GEN >= 8
1474 /* _NEW_POINT | _NEW_MULTISAMPLE */
1475 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1476 !ctx->Point.PointSprite)
1477 sf.SmoothPointEnable = true;
1478 #endif
1479
1480 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1481
1482 /* _NEW_LIGHT */
1483 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1484 sf.TriangleStripListProvokingVertexSelect = 2;
1485 sf.TriangleFanProvokingVertexSelect = 2;
1486 sf.LineStripListProvokingVertexSelect = 1;
1487 } else {
1488 sf.TriangleFanProvokingVertexSelect = 1;
1489 }
1490
1491 #if GEN_GEN == 6
1492 /* BRW_NEW_FS_PROG_DATA */
1493 const struct brw_wm_prog_data *wm_prog_data =
1494 brw_wm_prog_data(brw->wm.base.prog_data);
1495
1496 sf.AttributeSwizzleEnable = true;
1497 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1498
1499 /*
1500 * Window coordinates in an FBO are inverted, which means point
1501 * sprite origin must be inverted, too.
1502 */
1503 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1504 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1505 } else {
1506 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1507 }
1508
1509 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1510 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1511 */
1512 uint32_t urb_entry_read_length;
1513 uint32_t urb_entry_read_offset;
1514 uint32_t point_sprite_enables;
1515 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1516 &urb_entry_read_length,
1517 &urb_entry_read_offset);
1518 sf.VertexURBEntryReadLength = urb_entry_read_length;
1519 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1520 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1521 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1522 #endif
1523 }
1524 }
1525
1526 static const struct brw_tracked_state genX(sf_state) = {
1527 .dirty = {
1528 .mesa = _NEW_LIGHT |
1529 _NEW_LINE |
1530 _NEW_MULTISAMPLE |
1531 _NEW_POINT |
1532 _NEW_PROGRAM |
1533 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1534 .brw = BRW_NEW_BLORP |
1535 BRW_NEW_CONTEXT |
1536 BRW_NEW_VUE_MAP_GEOM_OUT |
1537 (GEN_GEN <= 7 ? BRW_NEW_GS_PROG_DATA |
1538 BRW_NEW_PRIMITIVE |
1539 BRW_NEW_TES_PROG_DATA
1540 : 0) |
1541 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1542 BRW_NEW_FRAGMENT_PROGRAM
1543 : 0),
1544 },
1545 .emit = genX(upload_sf),
1546 };
1547 #endif
1548
1549 /* ---------------------------------------------------------------------- */
1550
1551 #if GEN_GEN >= 6
1552 static void
1553 genX(upload_wm)(struct brw_context *brw)
1554 {
1555 struct gl_context *ctx = &brw->ctx;
1556
1557 /* BRW_NEW_FS_PROG_DATA */
1558 const struct brw_wm_prog_data *wm_prog_data =
1559 brw_wm_prog_data(brw->wm.base.prog_data);
1560
1561 UNUSED bool writes_depth =
1562 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1563
1564 #if GEN_GEN < 7
1565 const struct brw_stage_state *stage_state = &brw->wm.base;
1566 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1567
1568 /* We can't fold this into gen6_upload_wm_push_constants(), because
1569 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1570 * (3DSTATE_CONSTANT_PS [DevSNB]):
1571 *
1572 * "[DevSNB]: This packet must be followed by WM_STATE."
1573 */
1574 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1575 if (wm_prog_data->base.nr_params != 0) {
1576 wmcp.Buffer0Valid = true;
1577 /* Pointer to the WM constant buffer. Covered by the set of
1578 * state flags from gen6_upload_wm_push_constants.
1579 */
1580 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1581 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1582 }
1583 }
1584 #endif
1585
1586 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1587 wm.StatisticsEnable = true;
1588 wm.LineAntialiasingRegionWidth = _10pixels;
1589 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1590
1591 #if GEN_GEN < 7
1592 if (wm_prog_data->base.use_alt_mode)
1593 wm.FloatingPointMode = Alternate;
1594
1595 wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4);
1596 wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4;
1597 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1598 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1599 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1600 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1601 wm_prog_data->base.dispatch_grf_start_reg;
1602 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1603 wm_prog_data->dispatch_grf_start_reg_2;
1604 wm.KernelStartPointer0 = stage_state->prog_offset;
1605 wm.KernelStartPointer2 = stage_state->prog_offset +
1606 wm_prog_data->prog_offset_2;
1607 wm.DualSourceBlendEnable =
1608 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1609 ctx->Color.Blend[0]._UsesDualSrc;
1610 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1611 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1612
1613 /* From the SNB PRM, volume 2 part 1, page 281:
1614 * "If the PS kernel does not need the Position XY Offsets
1615 * to compute a Position XY value, then this field should be
1616 * programmed to POSOFFSET_NONE."
1617 *
1618 * "SW Recommendation: If the PS kernel needs the Position Offsets
1619 * to compute a Position XY value, this field should match Position
1620 * ZW Interpolation Mode to ensure a consistent position.xyzw
1621 * computation."
1622 * We only require XY sample offsets. So, this recommendation doesn't
1623 * look useful at the moment. We might need this in future.
1624 */
1625 if (wm_prog_data->uses_pos_offset)
1626 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1627 else
1628 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1629
1630 if (wm_prog_data->base.total_scratch) {
1631 wm.ScratchSpaceBasePointer =
1632 render_bo(stage_state->scratch_bo,
1633 ffs(stage_state->per_thread_scratch) - 11);
1634 }
1635
1636 wm.PixelShaderComputedDepth = writes_depth;
1637 #endif
1638
1639 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1640
1641 /* _NEW_LINE */
1642 wm.LineStippleEnable = ctx->Line.StippleFlag;
1643
1644 /* _NEW_POLYGON */
1645 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1646 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1647
1648 #if GEN_GEN < 8
1649 /* _NEW_BUFFERS */
1650 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1651
1652 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1653 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1654 if (wm_prog_data->uses_kill ||
1655 _mesa_is_alpha_test_enabled(ctx) ||
1656 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1657 wm_prog_data->uses_omask) {
1658 wm.PixelShaderKillsPixel = true;
1659 }
1660
1661 /* _NEW_BUFFERS | _NEW_COLOR */
1662 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1663 wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) {
1664 wm.ThreadDispatchEnable = true;
1665 }
1666 if (multisampled_fbo) {
1667 /* _NEW_MULTISAMPLE */
1668 if (ctx->Multisample.Enabled)
1669 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1670 else
1671 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1672
1673 if (wm_prog_data->persample_dispatch)
1674 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1675 else
1676 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1677 } else {
1678 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1679 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1680 }
1681
1682 #if GEN_GEN >= 7
1683 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1684 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1685 #endif
1686
1687 /* The "UAV access enable" bits are unnecessary on HSW because they only
1688 * seem to have an effect on the HW-assisted coherency mechanism which we
1689 * don't need, and the rasterization-related UAV_ONLY flag and the
1690 * DISPATCH_ENABLE bit can be set independently from it.
1691 * C.f. gen8_upload_ps_extra().
1692 *
1693 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1694 * _NEW_COLOR
1695 */
1696 #if GEN_IS_HASWELL
1697 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1698 wm_prog_data->has_side_effects)
1699 wm.PSUAVonly = ON;
1700 #endif
1701 #endif
1702
1703 #if GEN_GEN >= 7
1704 /* BRW_NEW_FS_PROG_DATA */
1705 if (wm_prog_data->early_fragment_tests)
1706 wm.EarlyDepthStencilControl = EDSC_PREPS;
1707 else if (wm_prog_data->has_side_effects)
1708 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1709 #endif
1710 }
1711 }
1712
1713 static const struct brw_tracked_state genX(wm_state) = {
1714 .dirty = {
1715 .mesa = _NEW_LINE |
1716 _NEW_POLYGON |
1717 (GEN_GEN < 8 ? _NEW_BUFFERS |
1718 _NEW_COLOR |
1719 _NEW_MULTISAMPLE :
1720 0) |
1721 (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
1722 .brw = BRW_NEW_BLORP |
1723 BRW_NEW_FS_PROG_DATA |
1724 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1725 },
1726 .emit = genX(upload_wm),
1727 };
1728 #endif
1729
1730 /* ---------------------------------------------------------------------- */
1731
1732 #if GEN_GEN == 4
1733 static inline struct brw_address
1734 KSP(struct brw_context *brw, uint32_t offset)
1735 {
1736 return instruction_bo(brw->cache.bo, offset);
1737 }
1738 #else
1739 static inline uint32_t
1740 KSP(struct brw_context *brw, uint32_t offset)
1741 {
1742 return offset;
1743 }
1744 #endif
1745
1746 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1747 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
1748 pkt.SamplerCount = \
1749 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1750 pkt.BindingTableEntryCount = \
1751 stage_prog_data->binding_table.size_bytes / 4; \
1752 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
1753 \
1754 if (stage_prog_data->total_scratch) { \
1755 pkt.ScratchSpaceBasePointer = \
1756 render_bo(stage_state->scratch_bo, 0); \
1757 pkt.PerThreadScratchSpace = \
1758 ffs(stage_state->per_thread_scratch) - 11; \
1759 } \
1760 \
1761 pkt.DispatchGRFStartRegisterForURBData = \
1762 stage_prog_data->dispatch_grf_start_reg; \
1763 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1764 pkt.prefix##URBEntryReadOffset = 0; \
1765 \
1766 pkt.StatisticsEnable = true; \
1767 pkt.Enable = true;
1768
1769 static void
1770 genX(upload_vs_state)(struct brw_context *brw)
1771 {
1772 UNUSED struct gl_context *ctx = &brw->ctx;
1773 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1774 struct brw_stage_state *stage_state = &brw->vs.base;
1775
1776 /* BRW_NEW_VS_PROG_DATA */
1777 const struct brw_vue_prog_data *vue_prog_data =
1778 brw_vue_prog_data(brw->vs.base.prog_data);
1779 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
1780
1781 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
1782 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
1783
1784 #if GEN_GEN == 6
1785 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
1786 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
1787 *
1788 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
1789 * command that causes the VS Function Enable to toggle. Pipeline
1790 * flush can be executed by sending a PIPE_CONTROL command with CS
1791 * stall bit set and a post sync operation.
1792 *
1793 * We've already done such a flush at the start of state upload, so we
1794 * don't need to do another one here.
1795 */
1796 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
1797 if (stage_state->push_const_size != 0) {
1798 cvs.Buffer0Valid = true;
1799 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
1800 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1801 }
1802 }
1803 #endif
1804
1805 if (GEN_GEN == 7 && devinfo->is_ivybridge)
1806 gen7_emit_vs_workaround_flush(brw);
1807
1808 #if GEN_GEN >= 6
1809 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
1810 #else
1811 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1812 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
1813 #endif
1814 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1815
1816 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1817
1818 #if GEN_GEN < 6
1819 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
1820 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
1821 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
1822
1823 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
1824 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
1825
1826 vs.MaximumNumberofThreads =
1827 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
1828
1829 vs.StatisticsEnable = false;
1830 vs.SamplerStatePointer =
1831 instruction_ro_bo(brw->batch.bo, stage_state->sampler_offset);
1832 #endif
1833
1834 #if GEN_GEN == 5
1835 /* Force single program flow on Ironlake. We cannot reliably get
1836 * all applications working without it. See:
1837 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
1838 *
1839 * The most notable and reliably failing application is the Humus
1840 * demo "CelShading"
1841 */
1842 vs.SingleProgramFlow = true;
1843 vs.SamplerCount = 0; /* hardware requirement */
1844 #endif
1845
1846 #if GEN_GEN >= 8
1847 vs.SIMD8DispatchEnable =
1848 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
1849
1850 vs.UserClipDistanceCullTestEnableBitmask =
1851 vue_prog_data->cull_distance_mask;
1852 #endif
1853 }
1854
1855 #if GEN_GEN == 6
1856 /* Based on my reading of the simulator, the VS constants don't get
1857 * pulled into the VS FF unit until an appropriate pipeline flush
1858 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
1859 * references to them into a little FIFO. The flushes are common,
1860 * but don't reliably happen between this and a 3DPRIMITIVE, causing
1861 * the primitive to use the wrong constants. Then the FIFO
1862 * containing the constant setup gets added to again on the next
1863 * constants change, and eventually when a flush does happen the
1864 * unit is overwhelmed by constant changes and dies.
1865 *
1866 * To avoid this, send a PIPE_CONTROL down the line that will
1867 * update the unit immediately loading the constants. The flush
1868 * type bits here were those set by the STATE_BASE_ADDRESS whose
1869 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
1870 * bug reports that led to this workaround, and may be more than
1871 * what is strictly required to avoid the issue.
1872 */
1873 brw_emit_pipe_control_flush(brw,
1874 PIPE_CONTROL_DEPTH_STALL |
1875 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1876 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1877 #endif
1878 }
1879
1880 static const struct brw_tracked_state genX(vs_state) = {
1881 .dirty = {
1882 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
1883 .brw = BRW_NEW_BATCH |
1884 BRW_NEW_BLORP |
1885 BRW_NEW_CONTEXT |
1886 BRW_NEW_VS_PROG_DATA |
1887 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
1888 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1889 BRW_NEW_PROGRAM_CACHE |
1890 BRW_NEW_SAMPLER_STATE_TABLE |
1891 BRW_NEW_URB_FENCE
1892 : 0),
1893 },
1894 .emit = genX(upload_vs_state),
1895 };
1896
1897 /* ---------------------------------------------------------------------- */
1898
1899 static void
1900 genX(upload_cc_viewport)(struct brw_context *brw)
1901 {
1902 struct gl_context *ctx = &brw->ctx;
1903
1904 /* BRW_NEW_VIEWPORT_COUNT */
1905 const unsigned viewport_count = brw->clip.viewport_count;
1906
1907 struct GENX(CC_VIEWPORT) ccv;
1908 uint32_t cc_vp_offset;
1909 uint32_t *cc_map =
1910 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
1911 32, &cc_vp_offset);
1912
1913 for (unsigned i = 0; i < viewport_count; i++) {
1914 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
1915 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
1916 if (ctx->Transform.DepthClamp) {
1917 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
1918 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
1919 } else {
1920 ccv.MinimumDepth = 0.0;
1921 ccv.MaximumDepth = 1.0;
1922 }
1923 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
1924 cc_map += GENX(CC_VIEWPORT_length);
1925 }
1926
1927 #if GEN_GEN >= 7
1928 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
1929 ptr.CCViewportPointer = cc_vp_offset;
1930 }
1931 #elif GEN_GEN == 6
1932 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
1933 vp.CCViewportStateChange = 1;
1934 vp.PointertoCC_VIEWPORT = cc_vp_offset;
1935 }
1936 #else
1937 brw->cc.vp_offset = cc_vp_offset;
1938 ctx->NewDriverState |= BRW_NEW_CC_VP;
1939 #endif
1940 }
1941
1942 const struct brw_tracked_state genX(cc_vp) = {
1943 .dirty = {
1944 .mesa = _NEW_TRANSFORM |
1945 _NEW_VIEWPORT,
1946 .brw = BRW_NEW_BATCH |
1947 BRW_NEW_BLORP |
1948 BRW_NEW_VIEWPORT_COUNT,
1949 },
1950 .emit = genX(upload_cc_viewport)
1951 };
1952
1953 /* ---------------------------------------------------------------------- */
1954
1955 #if GEN_GEN >= 6
1956 static void
1957 genX(upload_scissor_state)(struct brw_context *brw)
1958 {
1959 struct gl_context *ctx = &brw->ctx;
1960 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1961 struct GENX(SCISSOR_RECT) scissor;
1962 uint32_t scissor_state_offset;
1963 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
1964 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
1965 uint32_t *scissor_map;
1966
1967 /* BRW_NEW_VIEWPORT_COUNT */
1968 const unsigned viewport_count = brw->clip.viewport_count;
1969
1970 scissor_map = brw_state_batch(
1971 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
1972 32, &scissor_state_offset);
1973
1974 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
1975
1976 /* The scissor only needs to handle the intersection of drawable and
1977 * scissor rect. Clipping to the boundaries of static shared buffers
1978 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
1979 *
1980 * Note that the hardware's coordinates are inclusive, while Mesa's min is
1981 * inclusive but max is exclusive.
1982 */
1983 for (unsigned i = 0; i < viewport_count; i++) {
1984 int bbox[4];
1985
1986 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
1987 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
1988 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
1989 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
1990 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
1991
1992 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
1993 /* If the scissor was out of bounds and got clamped to 0 width/height
1994 * at the bounds, the subtraction of 1 from maximums could produce a
1995 * negative number and thus not clip anything. Instead, just provide
1996 * a min > max scissor inside the bounds, which produces the expected
1997 * no rendering.
1998 */
1999 scissor.ScissorRectangleXMin = 1;
2000 scissor.ScissorRectangleXMax = 0;
2001 scissor.ScissorRectangleYMin = 1;
2002 scissor.ScissorRectangleYMax = 0;
2003 } else if (render_to_fbo) {
2004 /* texmemory: Y=0=bottom */
2005 scissor.ScissorRectangleXMin = bbox[0];
2006 scissor.ScissorRectangleXMax = bbox[1] - 1;
2007 scissor.ScissorRectangleYMin = bbox[2];
2008 scissor.ScissorRectangleYMax = bbox[3] - 1;
2009 } else {
2010 /* memory: Y=0=top */
2011 scissor.ScissorRectangleXMin = bbox[0];
2012 scissor.ScissorRectangleXMax = bbox[1] - 1;
2013 scissor.ScissorRectangleYMin = fb_height - bbox[3];
2014 scissor.ScissorRectangleYMax = fb_height - bbox[2] - 1;
2015 }
2016
2017 GENX(SCISSOR_RECT_pack)(
2018 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2019 }
2020
2021 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2022 ptr.ScissorRectPointer = scissor_state_offset;
2023 }
2024 }
2025
2026 static const struct brw_tracked_state genX(scissor_state) = {
2027 .dirty = {
2028 .mesa = _NEW_BUFFERS |
2029 _NEW_SCISSOR |
2030 _NEW_VIEWPORT,
2031 .brw = BRW_NEW_BATCH |
2032 BRW_NEW_BLORP |
2033 BRW_NEW_VIEWPORT_COUNT,
2034 },
2035 .emit = genX(upload_scissor_state),
2036 };
2037 #endif
2038
2039 /* ---------------------------------------------------------------------- */
2040
2041 #if GEN_GEN >= 6
2042 static void
2043 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2044 float m00, float m11, float m30, float m31,
2045 float *xmin, float *xmax,
2046 float *ymin, float *ymax)
2047 {
2048 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2049 * Strips and Fans documentation:
2050 *
2051 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2052 * fixed-point "guardband" range supported by the rasterization hardware"
2053 *
2054 * and
2055 *
2056 * "In almost all circumstances, if an object’s vertices are actually
2057 * modified by this clamping (i.e., had X or Y coordinates outside of
2058 * the guardband extent the rendered object will not match the intended
2059 * result. Therefore software should take steps to ensure that this does
2060 * not happen - e.g., by clipping objects such that they do not exceed
2061 * these limits after the Drawing Rectangle is applied."
2062 *
2063 * I believe the fundamental restriction is that the rasterizer (in
2064 * the SF/WM stages) have a limit on the number of pixels that can be
2065 * rasterized. We need to ensure any coordinates beyond the rasterizer
2066 * limit are handled by the clipper. So effectively that limit becomes
2067 * the clipper's guardband size.
2068 *
2069 * It goes on to say:
2070 *
2071 * "In addition, in order to be correctly rendered, objects must have a
2072 * screenspace bounding box not exceeding 8K in the X or Y direction.
2073 * This additional restriction must also be comprehended by software,
2074 * i.e., enforced by use of clipping."
2075 *
2076 * This makes no sense. Gen7+ hardware supports 16K render targets,
2077 * and you definitely need to be able to draw polygons that fill the
2078 * surface. Our assumption is that the rasterizer was limited to 8K
2079 * on Sandybridge, which only supports 8K surfaces, and it was actually
2080 * increased to 16K on Ivybridge and later.
2081 *
2082 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2083 */
2084 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2085
2086 if (m00 != 0 && m11 != 0) {
2087 /* First, we compute the screen-space render area */
2088 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2089 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2090 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2091 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2092
2093 /* We want the guardband to be centered on that */
2094 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2095 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2096 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2097 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2098
2099 /* Now we need it in native device coordinates */
2100 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2101 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2102 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2103 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2104
2105 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2106 * flipped upside-down. X should be fine though.
2107 */
2108 assert(ndc_gb_xmin <= ndc_gb_xmax);
2109 *xmin = ndc_gb_xmin;
2110 *xmax = ndc_gb_xmax;
2111 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2112 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2113 } else {
2114 /* The viewport scales to 0, so nothing will be rendered. */
2115 *xmin = 0.0f;
2116 *xmax = 0.0f;
2117 *ymin = 0.0f;
2118 *ymax = 0.0f;
2119 }
2120 }
2121
2122 static void
2123 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2124 {
2125 struct gl_context *ctx = &brw->ctx;
2126 float y_scale, y_bias;
2127
2128 /* BRW_NEW_VIEWPORT_COUNT */
2129 const unsigned viewport_count = brw->clip.viewport_count;
2130
2131 /* _NEW_BUFFERS */
2132 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2133 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2134 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2135
2136 #if GEN_GEN >= 7
2137 #define clv sfv
2138 struct GENX(SF_CLIP_VIEWPORT) sfv;
2139 uint32_t sf_clip_vp_offset;
2140 uint32_t *sf_clip_map = brw_state_batch(brw, 16 * 4 * viewport_count,
2141 64, &sf_clip_vp_offset);
2142 #else
2143 struct GENX(SF_VIEWPORT) sfv;
2144 struct GENX(CLIP_VIEWPORT) clv;
2145 uint32_t sf_vp_offset, clip_vp_offset;
2146 uint32_t *sf_map = brw_state_batch(brw, 8 * 4 * viewport_count,
2147 32, &sf_vp_offset);
2148 uint32_t *clip_map = brw_state_batch(brw, 4 * 4 * viewport_count,
2149 32, &clip_vp_offset);
2150 #endif
2151
2152 /* _NEW_BUFFERS */
2153 if (render_to_fbo) {
2154 y_scale = 1.0;
2155 y_bias = 0;
2156 } else {
2157 y_scale = -1.0;
2158 y_bias = (float)fb_height;
2159 }
2160
2161 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2162 /* _NEW_VIEWPORT: Guardband Clipping */
2163 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2164 _mesa_get_viewport_xform(ctx, i, scale, translate);
2165
2166 sfv.ViewportMatrixElementm00 = scale[0];
2167 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2168 sfv.ViewportMatrixElementm22 = scale[2],
2169 sfv.ViewportMatrixElementm30 = translate[0],
2170 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2171 sfv.ViewportMatrixElementm32 = translate[2],
2172 brw_calculate_guardband_size(fb_width, fb_height,
2173 sfv.ViewportMatrixElementm00,
2174 sfv.ViewportMatrixElementm11,
2175 sfv.ViewportMatrixElementm30,
2176 sfv.ViewportMatrixElementm31,
2177 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2178
2179
2180 clv.XMinClipGuardband = gb_xmin;
2181 clv.XMaxClipGuardband = gb_xmax;
2182 clv.YMinClipGuardband = gb_ymin;
2183 clv.YMaxClipGuardband = gb_ymax;
2184
2185 #if GEN_GEN >= 8
2186 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2187 * The hardware will take the intersection of the drawing rectangle,
2188 * scissor rectangle, and the viewport extents. We don't need to be
2189 * smart, and can therefore just program the viewport extents.
2190 */
2191 const float viewport_Xmax =
2192 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2193 const float viewport_Ymax =
2194 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2195
2196 if (render_to_fbo) {
2197 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2198 sfv.XMaxViewPort = viewport_Xmax - 1;
2199 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2200 sfv.YMaxViewPort = viewport_Ymax - 1;
2201 } else {
2202 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2203 sfv.XMaxViewPort = viewport_Xmax - 1;
2204 sfv.YMinViewPort = fb_height - viewport_Ymax;
2205 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2206 }
2207 #endif
2208
2209 #if GEN_GEN >= 7
2210 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2211 sf_clip_map += 16;
2212 #else
2213 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2214 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2215 sf_map += 8;
2216 clip_map += 4;
2217 #endif
2218 }
2219
2220 #if GEN_GEN >= 7
2221 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2222 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2223 }
2224 #elif GEN_GEN == 6
2225 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2226 vp.SFViewportStateChange = 1;
2227 vp.CLIPViewportStateChange = 1;
2228 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2229 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2230 }
2231 #else
2232 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2233 #endif
2234 }
2235
2236 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2237 .dirty = {
2238 .mesa = _NEW_BUFFERS |
2239 _NEW_VIEWPORT,
2240 .brw = BRW_NEW_BATCH |
2241 BRW_NEW_BLORP |
2242 BRW_NEW_VIEWPORT_COUNT,
2243 },
2244 .emit = genX(upload_sf_clip_viewport),
2245 };
2246 #endif
2247
2248 /* ---------------------------------------------------------------------- */
2249
2250 #if GEN_GEN >= 6
2251 static void
2252 genX(upload_gs_state)(struct brw_context *brw)
2253 {
2254 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2255 const struct brw_stage_state *stage_state = &brw->gs.base;
2256 /* BRW_NEW_GEOMETRY_PROGRAM */
2257 bool active = brw->geometry_program;
2258
2259 /* BRW_NEW_GS_PROG_DATA */
2260 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2261 const struct brw_vue_prog_data *vue_prog_data =
2262 brw_vue_prog_data(stage_prog_data);
2263 #if GEN_GEN >= 7
2264 const struct brw_gs_prog_data *gs_prog_data =
2265 brw_gs_prog_data(stage_prog_data);
2266 #endif
2267
2268 #if GEN_GEN < 7
2269 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2270 if (active && stage_state->push_const_size != 0) {
2271 cgs.Buffer0Valid = true;
2272 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2273 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2274 }
2275 }
2276 #endif
2277
2278 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2279 /**
2280 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2281 * Geometry > Geometry Shader > State:
2282 *
2283 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2284 * whole fixed function pipeline when the GS enable changes value in
2285 * the 3DSTATE_GS."
2286 *
2287 * The hardware architects have clarified that in this context "flush the
2288 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2289 * Stall" bit set.
2290 */
2291 if (brw->gt == 2 && brw->gs.enabled != active)
2292 gen7_emit_cs_stall_flush(brw);
2293 #endif
2294
2295 if (active) {
2296 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2297 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2298
2299 #if GEN_GEN >= 7
2300 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2301 gs.OutputTopology = gs_prog_data->output_topology;
2302 gs.ControlDataHeaderSize =
2303 gs_prog_data->control_data_header_size_hwords;
2304
2305 gs.InstanceControl = gs_prog_data->invocations - 1;
2306 gs.DispatchMode = vue_prog_data->dispatch_mode;
2307
2308 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2309
2310 gs.ControlDataFormat = gs_prog_data->control_data_format;
2311 #endif
2312
2313 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2314 * Ivy Bridge and Haswell.
2315 *
2316 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2317 * strip to be delivered to the geometry shader in an order that does
2318 * not strictly follow the OpenGL spec, but preserves triangle
2319 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2320 * the geometry shader sees triangles:
2321 *
2322 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2323 *
2324 * (Clearing the bit is even worse, because it fails to preserve
2325 * orientation).
2326 *
2327 * Triangle strips with adjacency always ordered in a way that preserves
2328 * triangle orientation but does not strictly follow the OpenGL spec,
2329 * regardless of the setting of this bit.
2330 *
2331 * On Haswell, both triangle strips and triangle strips with adjacency
2332 * are always ordered in a way that preserves triangle orientation.
2333 * Setting this bit causes the ordering to strictly follow the OpenGL
2334 * spec.
2335 *
2336 * So in either case we want to set the bit. Unfortunately on Ivy
2337 * Bridge this will get the order close to correct but not perfect.
2338 */
2339 gs.ReorderMode = TRAILING;
2340 gs.MaximumNumberofThreads =
2341 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2342 : (devinfo->max_gs_threads - 1);
2343
2344 #if GEN_GEN < 7
2345 gs.SOStatisticsEnable = true;
2346 gs.RenderingEnabled = 1;
2347 if (brw->geometry_program->info.has_transform_feedback_varyings)
2348 gs.SVBIPayloadEnable = true;
2349
2350 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2351 * was previously done for gen6.
2352 *
2353 * TODO: test with both disabled to see if the HW is behaving
2354 * as expected, like in gen7.
2355 */
2356 gs.SingleProgramFlow = true;
2357 gs.VectorMaskEnable = true;
2358 #endif
2359
2360 #if GEN_GEN >= 8
2361 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2362
2363 if (gs_prog_data->static_vertex_count != -1) {
2364 gs.StaticOutput = true;
2365 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2366 }
2367 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2368
2369 gs.UserClipDistanceCullTestEnableBitmask =
2370 vue_prog_data->cull_distance_mask;
2371
2372 const int urb_entry_write_offset = 1;
2373 const uint32_t urb_entry_output_length =
2374 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2375 urb_entry_write_offset;
2376
2377 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2378 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2379 #endif
2380 }
2381 #if GEN_GEN < 7
2382 } else if (brw->ff_gs.prog_active) {
2383 /* In gen6, transform feedback for the VS stage is done with an ad-hoc GS
2384 * program. This function provides the needed 3DSTATE_GS for this.
2385 */
2386 upload_gs_state_for_tf(brw);
2387 #endif
2388 } else {
2389 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2390 gs.StatisticsEnable = true;
2391 #if GEN_GEN < 7
2392 gs.RenderingEnabled = true;
2393 #endif
2394
2395 #if GEN_GEN < 8
2396 gs.DispatchGRFStartRegisterForURBData = 1;
2397 #if GEN_GEN >= 7
2398 gs.IncludeVertexHandles = true;
2399 #endif
2400 #endif
2401 }
2402 }
2403 #if GEN_GEN < 7
2404 brw->gs.enabled = active;
2405 #endif
2406 }
2407
2408 static const struct brw_tracked_state genX(gs_state) = {
2409 .dirty = {
2410 .mesa = (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
2411 .brw = BRW_NEW_BATCH |
2412 BRW_NEW_BLORP |
2413 BRW_NEW_CONTEXT |
2414 BRW_NEW_GEOMETRY_PROGRAM |
2415 BRW_NEW_GS_PROG_DATA |
2416 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2417 },
2418 .emit = genX(upload_gs_state),
2419 };
2420 #endif
2421
2422 /* ---------------------------------------------------------------------- */
2423
2424 #define blend_factor(x) brw_translate_blend_factor(x)
2425 #define blend_eqn(x) brw_translate_blend_equation(x)
2426
2427 #if GEN_GEN >= 6
2428 static void
2429 genX(upload_blend_state)(struct brw_context *brw)
2430 {
2431 struct gl_context *ctx = &brw->ctx;
2432 int size;
2433
2434 /* We need at least one BLEND_STATE written, because we might do
2435 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2436 * for computed depth or alpha test), which will do an FB write
2437 * with render target 0, which will reference BLEND_STATE[0] for
2438 * alpha test enable.
2439 */
2440 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2441 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2442 nr_draw_buffers = 1;
2443
2444 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2445 #if GEN_GEN >= 8
2446 size += GENX(BLEND_STATE_length) * 4;
2447 #endif
2448
2449 uint32_t *blend_map;
2450 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2451
2452 #if GEN_GEN >= 8
2453 struct GENX(BLEND_STATE) blend = { 0 };
2454 {
2455 #else
2456 for (int i = 0; i < nr_draw_buffers; i++) {
2457 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2458 #define blend entry
2459 #endif
2460 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2461 * "If drawbuffer zero is not NONE and the buffer it references has an
2462 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2463 * operations are skipped."
2464 */
2465 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2466 /* _NEW_MULTISAMPLE */
2467 if (_mesa_is_multisample_enabled(ctx)) {
2468 if (ctx->Multisample.SampleAlphaToCoverage) {
2469 blend.AlphaToCoverageEnable = true;
2470 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2471 }
2472 if (ctx->Multisample.SampleAlphaToOne)
2473 blend.AlphaToOneEnable = true;
2474 }
2475
2476 /* _NEW_COLOR */
2477 if (ctx->Color.AlphaEnabled) {
2478 blend.AlphaTestEnable = true;
2479 blend.AlphaTestFunction =
2480 intel_translate_compare_func(ctx->Color.AlphaFunc);
2481 }
2482
2483 if (ctx->Color.DitherFlag) {
2484 blend.ColorDitherEnable = true;
2485 }
2486 }
2487
2488 #if GEN_GEN >= 8
2489 for (int i = 0; i < nr_draw_buffers; i++) {
2490 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2491 #else
2492 {
2493 #endif
2494
2495 /* _NEW_BUFFERS */
2496 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2497
2498 /* Used for implementing the following bit of GL_EXT_texture_integer:
2499 * "Per-fragment operations that require floating-point color
2500 * components, including multisample alpha operations, alpha test,
2501 * blending, and dithering, have no effect when the corresponding
2502 * colors are written to an integer color buffer."
2503 */
2504 bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2505
2506 /* _NEW_COLOR */
2507 if (ctx->Color.ColorLogicOpEnabled) {
2508 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2509 : GL_UNSIGNED_NORMALIZED;
2510 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2511 rb_type != GL_UNSIGNED_NORMALIZED &&
2512 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2513 "renderbuffer\n",
2514 _mesa_enum_to_string(ctx->Color.LogicOp),
2515 _mesa_enum_to_string(rb_type));
2516 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2517 entry.LogicOpEnable = true;
2518 entry.LogicOpFunction =
2519 intel_translate_logic_op(ctx->Color.LogicOp);
2520 }
2521 } else if (ctx->Color.BlendEnabled & (1 << i) && !integer &&
2522 !ctx->Color._AdvancedBlendMode) {
2523 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2524 GLenum eqA = ctx->Color.Blend[i].EquationA;
2525 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2526 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2527 GLenum srcA = ctx->Color.Blend[i].SrcA;
2528 GLenum dstA = ctx->Color.Blend[i].DstA;
2529
2530 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2531 srcRGB = dstRGB = GL_ONE;
2532
2533 if (eqA == GL_MIN || eqA == GL_MAX)
2534 srcA = dstA = GL_ONE;
2535
2536 /* Due to hardware limitations, the destination may have information
2537 * in an alpha channel even when the format specifies no alpha
2538 * channel. In order to avoid getting any incorrect blending due to
2539 * that alpha channel, coerce the blend factors to values that will
2540 * not read the alpha channel, but will instead use the correct
2541 * implicit value for alpha.
2542 */
2543 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2544 GL_TEXTURE_ALPHA_TYPE)) {
2545 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2546 srcA = brw_fix_xRGB_alpha(srcA);
2547 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2548 dstA = brw_fix_xRGB_alpha(dstA);
2549 }
2550
2551 entry.ColorBufferBlendEnable = true;
2552 entry.DestinationBlendFactor = blend_factor(dstRGB);
2553 entry.SourceBlendFactor = blend_factor(srcRGB);
2554 entry.DestinationAlphaBlendFactor = blend_factor(dstA);
2555 entry.SourceAlphaBlendFactor = blend_factor(srcA);
2556 entry.ColorBlendFunction = blend_eqn(eqRGB);
2557 entry.AlphaBlendFunction = blend_eqn(eqA);
2558
2559 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2560 blend.IndependentAlphaBlendEnable = true;
2561 }
2562
2563 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2564 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2565 *
2566 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2567 * clamping in the fragment shader. For its clamping of
2568 * blending, the spec says:
2569 *
2570 * "RESOLVED: For fixed-point color buffers, the inputs and
2571 * the result of the blending equation are clamped. For
2572 * floating-point color buffers, no clamping occurs."
2573 *
2574 * So, generally, we want clamping to the render target's range.
2575 * And, good news, the hardware tables for both pre- and
2576 * post-blend color clamping are either ignored, or any are
2577 * allowed, or clamping is required but RT range clamping is a
2578 * valid option.
2579 */
2580 entry.PreBlendColorClampEnable = true;
2581 entry.PostBlendColorClampEnable = true;
2582 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2583
2584 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2585 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2586 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2587 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2588
2589 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2590 * "If Dual Source Blending is enabled, this bit must be disabled."
2591 */
2592 WARN_ONCE(ctx->Color.Blend[i]._UsesDualSrc &&
2593 _mesa_is_multisample_enabled(ctx) &&
2594 ctx->Multisample.SampleAlphaToOne,
2595 "HW workaround: disabling alpha to one with dual src "
2596 "blending\n");
2597 if (ctx->Color.Blend[i]._UsesDualSrc)
2598 blend.AlphaToOneEnable = false;
2599 #if GEN_GEN >= 8
2600 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2601 #else
2602 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2603 #endif
2604 }
2605 }
2606
2607 #if GEN_GEN >= 8
2608 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2609 #endif
2610
2611 #if GEN_GEN < 7
2612 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2613 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2614 ptr.BLEND_STATEChange = true;
2615 }
2616 #else
2617 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2618 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2619 #if GEN_GEN >= 8
2620 ptr.BlendStatePointerValid = true;
2621 #endif
2622 }
2623 #endif
2624 }
2625
2626 static const struct brw_tracked_state genX(blend_state) = {
2627 .dirty = {
2628 .mesa = _NEW_BUFFERS |
2629 _NEW_COLOR |
2630 _NEW_MULTISAMPLE,
2631 .brw = BRW_NEW_BATCH |
2632 BRW_NEW_BLORP |
2633 BRW_NEW_STATE_BASE_ADDRESS,
2634 },
2635 .emit = genX(upload_blend_state),
2636 };
2637 #endif
2638
2639 /* ---------------------------------------------------------------------- */
2640
2641 #if GEN_GEN >= 7
2642 UNUSED static const uint32_t push_constant_opcodes[] = {
2643 [MESA_SHADER_VERTEX] = 21,
2644 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2645 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2646 [MESA_SHADER_GEOMETRY] = 22,
2647 [MESA_SHADER_FRAGMENT] = 23,
2648 [MESA_SHADER_COMPUTE] = 0,
2649 };
2650
2651 static void
2652 upload_constant_state(struct brw_context *brw,
2653 struct brw_stage_state *stage_state,
2654 bool active, uint32_t stage)
2655 {
2656 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
2657 active = active && stage_state->push_const_size != 0;
2658
2659 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
2660 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2661 if (active) {
2662 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2663 pkt.ConstantBody.ConstantBuffer2ReadLength =
2664 stage_state->push_const_size;
2665 pkt.ConstantBody.PointerToConstantBuffer2 =
2666 render_ro_bo(brw->curbe.curbe_bo, stage_state->push_const_offset);
2667 #else
2668 pkt.ConstantBody.ConstantBuffer0ReadLength =
2669 stage_state->push_const_size;
2670 pkt.ConstantBody.PointerToConstantBuffer0.offset =
2671 stage_state->push_const_offset | mocs;
2672 #endif
2673 }
2674 }
2675
2676 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
2677 }
2678 #endif
2679
2680 #if GEN_GEN >= 6
2681 static void
2682 genX(upload_vs_push_constants)(struct brw_context *brw)
2683 {
2684 struct brw_stage_state *stage_state = &brw->vs.base;
2685
2686 /* _BRW_NEW_VERTEX_PROGRAM */
2687 const struct brw_program *vp = brw_program_const(brw->vertex_program);
2688 /* BRW_NEW_VS_PROG_DATA */
2689 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
2690
2691 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
2692 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
2693
2694 #if GEN_GEN >= 7
2695 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail)
2696 gen7_emit_vs_workaround_flush(brw);
2697
2698 upload_constant_state(brw, stage_state, true /* active */,
2699 MESA_SHADER_VERTEX);
2700 #endif
2701 }
2702
2703 static const struct brw_tracked_state genX(vs_push_constants) = {
2704 .dirty = {
2705 .mesa = _NEW_PROGRAM_CONSTANTS |
2706 _NEW_TRANSFORM,
2707 .brw = BRW_NEW_BATCH |
2708 BRW_NEW_BLORP |
2709 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2710 BRW_NEW_VERTEX_PROGRAM |
2711 BRW_NEW_VS_PROG_DATA,
2712 },
2713 .emit = genX(upload_vs_push_constants),
2714 };
2715
2716 static void
2717 genX(upload_gs_push_constants)(struct brw_context *brw)
2718 {
2719 struct brw_stage_state *stage_state = &brw->gs.base;
2720
2721 /* BRW_NEW_GEOMETRY_PROGRAM */
2722 const struct brw_program *gp = brw_program_const(brw->geometry_program);
2723
2724 if (gp) {
2725 /* BRW_NEW_GS_PROG_DATA */
2726 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
2727
2728 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
2729 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
2730 }
2731
2732 #if GEN_GEN >= 7
2733 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY);
2734 #endif
2735 }
2736
2737 static const struct brw_tracked_state genX(gs_push_constants) = {
2738 .dirty = {
2739 .mesa = _NEW_PROGRAM_CONSTANTS |
2740 _NEW_TRANSFORM,
2741 .brw = BRW_NEW_BATCH |
2742 BRW_NEW_BLORP |
2743 BRW_NEW_GEOMETRY_PROGRAM |
2744 BRW_NEW_GS_PROG_DATA |
2745 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2746 },
2747 .emit = genX(upload_gs_push_constants),
2748 };
2749
2750 static void
2751 genX(upload_wm_push_constants)(struct brw_context *brw)
2752 {
2753 struct brw_stage_state *stage_state = &brw->wm.base;
2754 /* BRW_NEW_FRAGMENT_PROGRAM */
2755 const struct brw_program *fp = brw_program_const(brw->fragment_program);
2756 /* BRW_NEW_FS_PROG_DATA */
2757 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
2758
2759 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
2760
2761 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
2762
2763 #if GEN_GEN >= 7
2764 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT);
2765 #endif
2766 }
2767
2768 static const struct brw_tracked_state genX(wm_push_constants) = {
2769 .dirty = {
2770 .mesa = _NEW_PROGRAM_CONSTANTS,
2771 .brw = BRW_NEW_BATCH |
2772 BRW_NEW_BLORP |
2773 BRW_NEW_FRAGMENT_PROGRAM |
2774 BRW_NEW_FS_PROG_DATA |
2775 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2776 },
2777 .emit = genX(upload_wm_push_constants),
2778 };
2779 #endif
2780
2781 /* ---------------------------------------------------------------------- */
2782
2783 #if GEN_GEN >= 6
2784 static unsigned
2785 genX(determine_sample_mask)(struct brw_context *brw)
2786 {
2787 struct gl_context *ctx = &brw->ctx;
2788 float coverage = 1.0f;
2789 float coverage_invert = false;
2790 unsigned sample_mask = ~0u;
2791
2792 /* BRW_NEW_NUM_SAMPLES */
2793 unsigned num_samples = brw->num_samples;
2794
2795 if (_mesa_is_multisample_enabled(ctx)) {
2796 if (ctx->Multisample.SampleCoverage) {
2797 coverage = ctx->Multisample.SampleCoverageValue;
2798 coverage_invert = ctx->Multisample.SampleCoverageInvert;
2799 }
2800 if (ctx->Multisample.SampleMask) {
2801 sample_mask = ctx->Multisample.SampleMaskValue;
2802 }
2803 }
2804
2805 if (num_samples > 1) {
2806 int coverage_int = (int) (num_samples * coverage + 0.5f);
2807 uint32_t coverage_bits = (1 << coverage_int) - 1;
2808 if (coverage_invert)
2809 coverage_bits ^= (1 << num_samples) - 1;
2810 return coverage_bits & sample_mask;
2811 } else {
2812 return 1;
2813 }
2814 }
2815
2816 static void
2817 genX(emit_3dstate_multisample2)(struct brw_context *brw,
2818 unsigned num_samples)
2819 {
2820 assert(brw->num_samples <= 16);
2821
2822 unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1;
2823
2824 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
2825 multi.PixelLocation = CENTER;
2826 multi.NumberofMultisamples = log2_samples;
2827 #if GEN_GEN == 6
2828 GEN_SAMPLE_POS_4X(multi.Sample);
2829 #elif GEN_GEN == 7
2830 switch (num_samples) {
2831 case 1:
2832 GEN_SAMPLE_POS_1X(multi.Sample);
2833 break;
2834 case 2:
2835 GEN_SAMPLE_POS_2X(multi.Sample);
2836 break;
2837 case 4:
2838 GEN_SAMPLE_POS_4X(multi.Sample);
2839 break;
2840 case 8:
2841 GEN_SAMPLE_POS_8X(multi.Sample);
2842 break;
2843 default:
2844 break;
2845 }
2846 #endif
2847 }
2848 }
2849
2850 static void
2851 genX(upload_multisample_state)(struct brw_context *brw)
2852 {
2853 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
2854
2855 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
2856 sm.SampleMask = genX(determine_sample_mask)(brw);
2857 }
2858 }
2859
2860 static const struct brw_tracked_state genX(multisample_state) = {
2861 .dirty = {
2862 .mesa = _NEW_MULTISAMPLE,
2863 .brw = BRW_NEW_BLORP |
2864 BRW_NEW_CONTEXT |
2865 BRW_NEW_NUM_SAMPLES,
2866 },
2867 .emit = genX(upload_multisample_state)
2868 };
2869 #endif
2870
2871 /* ---------------------------------------------------------------------- */
2872
2873 #if GEN_GEN >= 6
2874 static void
2875 genX(upload_color_calc_state)(struct brw_context *brw)
2876 {
2877 struct gl_context *ctx = &brw->ctx;
2878
2879 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
2880 /* _NEW_COLOR */
2881 cc.AlphaTestFormat = ALPHATEST_UNORM8;
2882 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
2883 ctx->Color.AlphaRef);
2884
2885 #if GEN_GEN < 9
2886 /* _NEW_STENCIL */
2887 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
2888 cc.BackfaceStencilReferenceValue =
2889 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
2890 #endif
2891
2892 /* _NEW_COLOR */
2893 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
2894 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
2895 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
2896 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
2897 }
2898
2899 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2900 ptr.ColorCalcStatePointer = brw->cc.state_offset;
2901 #if GEN_GEN != 7
2902 ptr.ColorCalcStatePointerValid = true;
2903 #endif
2904 }
2905 }
2906
2907 static const struct brw_tracked_state genX(color_calc_state) = {
2908 .dirty = {
2909 .mesa = _NEW_COLOR |
2910 _NEW_STENCIL,
2911 .brw = BRW_NEW_BATCH |
2912 BRW_NEW_BLORP |
2913 BRW_NEW_CC_STATE |
2914 BRW_NEW_STATE_BASE_ADDRESS,
2915 },
2916 .emit = genX(upload_color_calc_state),
2917 };
2918
2919 #endif
2920
2921 /* ---------------------------------------------------------------------- */
2922
2923 #if GEN_GEN >= 7
2924 static void
2925 genX(upload_sbe)(struct brw_context *brw)
2926 {
2927 struct gl_context *ctx = &brw->ctx;
2928 /* BRW_NEW_FS_PROG_DATA */
2929 const struct brw_wm_prog_data *wm_prog_data =
2930 brw_wm_prog_data(brw->wm.base.prog_data);
2931 #if GEN_GEN >= 8
2932 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
2933 #else
2934 #define attr_overrides sbe.Attribute
2935 #endif
2936 uint32_t urb_entry_read_length;
2937 uint32_t urb_entry_read_offset;
2938 uint32_t point_sprite_enables;
2939
2940 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
2941 sbe.AttributeSwizzleEnable = true;
2942 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2943
2944 /* _NEW_BUFFERS */
2945 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2946
2947 /* _NEW_POINT
2948 *
2949 * Window coordinates in an FBO are inverted, which means point
2950 * sprite origin must be inverted.
2951 */
2952 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
2953 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
2954 else
2955 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
2956
2957 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
2958 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
2959 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
2960 * BRW_NEW_VUE_MAP_GEOM_OUT
2961 */
2962 genX(calculate_attr_overrides)(brw,
2963 attr_overrides,
2964 &point_sprite_enables,
2965 &urb_entry_read_length,
2966 &urb_entry_read_offset);
2967
2968 /* Typically, the URB entry read length and offset should be programmed
2969 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
2970 * stage which produces geometry. However, we don't know the proper
2971 * value until we call calculate_attr_overrides().
2972 *
2973 * To fit with our existing code, we override the inherited values and
2974 * specify it here directly, as we did on previous generations.
2975 */
2976 sbe.VertexURBEntryReadLength = urb_entry_read_length;
2977 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
2978 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
2979 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2980
2981 #if GEN_GEN >= 8
2982 sbe.ForceVertexURBEntryReadLength = true;
2983 sbe.ForceVertexURBEntryReadOffset = true;
2984 #endif
2985
2986 #if GEN_GEN >= 9
2987 /* prepare the active component dwords */
2988 int input_index = 0;
2989 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
2990 if (!(brw->fragment_program->info.inputs_read &
2991 BITFIELD64_BIT(attr))) {
2992 continue;
2993 }
2994
2995 assert(input_index < 32);
2996
2997 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
2998 ++input_index;
2999 }
3000 #endif
3001 }
3002
3003 #if GEN_GEN >= 8
3004 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3005 for (int i = 0; i < 16; i++)
3006 sbes.Attribute[i] = attr_overrides[i];
3007 }
3008 #endif
3009
3010 #undef attr_overrides
3011 }
3012
3013 static const struct brw_tracked_state genX(sbe_state) = {
3014 .dirty = {
3015 .mesa = _NEW_BUFFERS |
3016 _NEW_LIGHT |
3017 _NEW_POINT |
3018 _NEW_POLYGON |
3019 _NEW_PROGRAM,
3020 .brw = BRW_NEW_BLORP |
3021 BRW_NEW_CONTEXT |
3022 BRW_NEW_FRAGMENT_PROGRAM |
3023 BRW_NEW_FS_PROG_DATA |
3024 BRW_NEW_GS_PROG_DATA |
3025 BRW_NEW_TES_PROG_DATA |
3026 BRW_NEW_VUE_MAP_GEOM_OUT |
3027 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3028 : 0),
3029 },
3030 .emit = genX(upload_sbe),
3031 };
3032 #endif
3033
3034 /* ---------------------------------------------------------------------- */
3035
3036 #if GEN_GEN >= 7
3037 /**
3038 * Outputs the 3DSTATE_SO_DECL_LIST command.
3039 *
3040 * The data output is a series of 64-bit entries containing a SO_DECL per
3041 * stream. We only have one stream of rendering coming out of the GS unit, so
3042 * we only emit stream 0 (low 16 bits) SO_DECLs.
3043 */
3044 static void
3045 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3046 const struct brw_vue_map *vue_map)
3047 {
3048 struct gl_context *ctx = &brw->ctx;
3049 /* BRW_NEW_TRANSFORM_FEEDBACK */
3050 struct gl_transform_feedback_object *xfb_obj =
3051 ctx->TransformFeedback.CurrentObject;
3052 const struct gl_transform_feedback_info *linked_xfb_info =
3053 xfb_obj->program->sh.LinkedTransformFeedback;
3054 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3055 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3056 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3057 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3058 int max_decls = 0;
3059 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3060
3061 memset(so_decl, 0, sizeof(so_decl));
3062
3063 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3064 * command feels strange -- each dword pair contains a SO_DECL per stream.
3065 */
3066 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3067 int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
3068 struct GENX(SO_DECL) decl = {0};
3069 int varying = linked_xfb_info->Outputs[i].OutputRegister;
3070 const unsigned components = linked_xfb_info->Outputs[i].NumComponents;
3071 unsigned component_mask = (1 << components) - 1;
3072 unsigned stream_id = linked_xfb_info->Outputs[i].StreamId;
3073 unsigned decl_buffer_slot = buffer;
3074 assert(stream_id < MAX_VERTEX_STREAMS);
3075
3076 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w
3077 * gl_Layer is stored in VARYING_SLOT_PSIZ.y
3078 * gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
3079 */
3080 if (varying == VARYING_SLOT_PSIZ) {
3081 assert(components == 1);
3082 component_mask <<= 3;
3083 } else if (varying == VARYING_SLOT_LAYER) {
3084 assert(components == 1);
3085 component_mask <<= 1;
3086 } else if (varying == VARYING_SLOT_VIEWPORT) {
3087 assert(components == 1);
3088 component_mask <<= 2;
3089 } else {
3090 component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
3091 }
3092
3093 buffer_mask[stream_id] |= 1 << buffer;
3094
3095 decl.OutputBufferSlot = decl_buffer_slot;
3096 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT) {
3097 decl.RegisterIndex = vue_map->varying_to_slot[VARYING_SLOT_PSIZ];
3098 } else {
3099 assert(vue_map->varying_to_slot[varying] >= 0);
3100 decl.RegisterIndex = vue_map->varying_to_slot[varying];
3101 }
3102 decl.ComponentMask = component_mask;
3103
3104 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3105 * array. Instead, it simply increments DstOffset for the following
3106 * input by the number of components that should be skipped.
3107 *
3108 * Our hardware is unusual in that it requires us to program SO_DECLs
3109 * for fake "hole" components, rather than simply taking the offset
3110 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3111 * program as many size = 4 holes as we can, then a final hole to
3112 * accommodate the final 1, 2, or 3 remaining.
3113 */
3114 int skip_components =
3115 linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer];
3116
3117 next_offset[buffer] += skip_components;
3118
3119 while (skip_components >= 4) {
3120 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
3121 d->HoleFlag = 1;
3122 d->OutputBufferSlot = decl_buffer_slot;
3123 d->ComponentMask = 0xf;
3124 skip_components -= 4;
3125 }
3126
3127 if (skip_components > 0) {
3128 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
3129 d->HoleFlag = 1;
3130 d->OutputBufferSlot = decl_buffer_slot;
3131 d->ComponentMask = (1 << skip_components) - 1;
3132 }
3133
3134 assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
3135
3136 next_offset[buffer] += components;
3137
3138 so_decl[stream_id][decls[stream_id]++] = decl;
3139
3140 if (decls[stream_id] > max_decls)
3141 max_decls = decls[stream_id];
3142 }
3143
3144 uint32_t *dw;
3145 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3146 .StreamtoBufferSelects0 = buffer_mask[0],
3147 .StreamtoBufferSelects1 = buffer_mask[1],
3148 .StreamtoBufferSelects2 = buffer_mask[2],
3149 .StreamtoBufferSelects3 = buffer_mask[3],
3150 .NumEntries0 = decls[0],
3151 .NumEntries1 = decls[1],
3152 .NumEntries2 = decls[2],
3153 .NumEntries3 = decls[3]);
3154
3155 for (int i = 0; i < max_decls; i++) {
3156 GENX(SO_DECL_ENTRY_pack)(
3157 brw, dw + 2 + i * 2,
3158 &(struct GENX(SO_DECL_ENTRY)) {
3159 .Stream0Decl = so_decl[0][i],
3160 .Stream1Decl = so_decl[1][i],
3161 .Stream2Decl = so_decl[2][i],
3162 .Stream3Decl = so_decl[3][i],
3163 });
3164 }
3165 }
3166
3167 static void
3168 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3169 {
3170 struct gl_context *ctx = &brw->ctx;
3171 /* BRW_NEW_TRANSFORM_FEEDBACK */
3172 struct gl_transform_feedback_object *xfb_obj =
3173 ctx->TransformFeedback.CurrentObject;
3174 #if GEN_GEN < 8
3175 const struct gl_transform_feedback_info *linked_xfb_info =
3176 xfb_obj->program->sh.LinkedTransformFeedback;
3177 #else
3178 struct brw_transform_feedback_object *brw_obj =
3179 (struct brw_transform_feedback_object *) xfb_obj;
3180 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3181 #endif
3182
3183 /* Set up the up to 4 output buffers. These are the ranges defined in the
3184 * gl_transform_feedback_object.
3185 */
3186 for (int i = 0; i < 4; i++) {
3187 struct intel_buffer_object *bufferobj =
3188 intel_buffer_object(xfb_obj->Buffers[i]);
3189
3190 if (!bufferobj) {
3191 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3192 sob.SOBufferIndex = i;
3193 }
3194 continue;
3195 }
3196
3197 uint32_t start = xfb_obj->Offset[i];
3198 assert(start % 4 == 0);
3199 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3200 struct brw_bo *bo =
3201 intel_bufferobj_buffer(brw, bufferobj, start, end - start);
3202 assert(end <= bo->size);
3203
3204 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3205 sob.SOBufferIndex = i;
3206
3207 sob.SurfaceBaseAddress = render_bo(bo, start);
3208 #if GEN_GEN < 8
3209 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3210 sob.SurfaceEndAddress = render_bo(bo, end);
3211 #else
3212 sob.SOBufferEnable = true;
3213 sob.StreamOffsetWriteEnable = true;
3214 sob.StreamOutputBufferOffsetAddressEnable = true;
3215 sob.SOBufferMOCS = mocs_wb;
3216
3217 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3218 sob.StreamOutputBufferOffsetAddress =
3219 instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3220
3221 if (brw_obj->zero_offsets) {
3222 /* Zero out the offset and write that to offset_bo */
3223 sob.StreamOffset = 0;
3224 } else {
3225 /* Use offset_bo as the "Stream Offset." */
3226 sob.StreamOffset = 0xFFFFFFFF;
3227 }
3228 #endif
3229 }
3230 }
3231
3232 #if GEN_GEN >= 8
3233 brw_obj->zero_offsets = false;
3234 #endif
3235 }
3236
3237 static inline bool
3238 query_active(struct gl_query_object *q)
3239 {
3240 return q && q->Active;
3241 }
3242
3243 static void
3244 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3245 const struct brw_vue_map *vue_map)
3246 {
3247 struct gl_context *ctx = &brw->ctx;
3248 /* BRW_NEW_TRANSFORM_FEEDBACK */
3249 struct gl_transform_feedback_object *xfb_obj =
3250 ctx->TransformFeedback.CurrentObject;
3251
3252 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3253 if (active) {
3254 int urb_entry_read_offset = 0;
3255 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3256 urb_entry_read_offset;
3257
3258 sos.SOFunctionEnable = true;
3259 sos.SOStatisticsEnable = true;
3260
3261 /* BRW_NEW_RASTERIZER_DISCARD */
3262 if (ctx->RasterDiscard) {
3263 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3264 sos.RenderingDisable = true;
3265 } else {
3266 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3267 "query active relies on the clipper.");
3268 }
3269 }
3270
3271 /* _NEW_LIGHT */
3272 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3273 sos.ReorderMode = TRAILING;
3274
3275 #if GEN_GEN < 8
3276 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3277 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3278 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3279 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3280 #else
3281 const struct gl_transform_feedback_info *linked_xfb_info =
3282 xfb_obj->program->sh.LinkedTransformFeedback;
3283 /* Set buffer pitches; 0 means unbound. */
3284 if (xfb_obj->Buffers[0])
3285 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3286 if (xfb_obj->Buffers[1])
3287 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3288 if (xfb_obj->Buffers[2])
3289 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3290 if (xfb_obj->Buffers[3])
3291 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3292 #endif
3293
3294 /* We always read the whole vertex. This could be reduced at some
3295 * point by reading less and offsetting the register index in the
3296 * SO_DECLs.
3297 */
3298 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3299 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3300 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3301 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3302 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3303 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3304 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3305 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3306 }
3307 }
3308 }
3309
3310 static void
3311 genX(upload_sol)(struct brw_context *brw)
3312 {
3313 struct gl_context *ctx = &brw->ctx;
3314 /* BRW_NEW_TRANSFORM_FEEDBACK */
3315 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3316
3317 if (active) {
3318 genX(upload_3dstate_so_buffers)(brw);
3319
3320 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3321 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3322 }
3323
3324 /* Finally, set up the SOL stage. This command must always follow updates to
3325 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3326 * MMIO register updates (current performed by the kernel at each batch
3327 * emit).
3328 */
3329 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3330 }
3331
3332 static const struct brw_tracked_state genX(sol_state) = {
3333 .dirty = {
3334 .mesa = _NEW_LIGHT,
3335 .brw = BRW_NEW_BATCH |
3336 BRW_NEW_BLORP |
3337 BRW_NEW_RASTERIZER_DISCARD |
3338 BRW_NEW_VUE_MAP_GEOM_OUT |
3339 BRW_NEW_TRANSFORM_FEEDBACK,
3340 },
3341 .emit = genX(upload_sol),
3342 };
3343 #endif
3344
3345 /* ---------------------------------------------------------------------- */
3346
3347 #if GEN_GEN >= 7
3348 static void
3349 genX(upload_ps)(struct brw_context *brw)
3350 {
3351 UNUSED const struct gl_context *ctx = &brw->ctx;
3352 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3353
3354 /* BRW_NEW_FS_PROG_DATA */
3355 const struct brw_wm_prog_data *prog_data =
3356 brw_wm_prog_data(brw->wm.base.prog_data);
3357 const struct brw_stage_state *stage_state = &brw->wm.base;
3358
3359 #if GEN_GEN < 8
3360 #endif
3361
3362 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3363 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3364 * incorrect for subspans where some of the pixels are unlit. We believe
3365 * the bit just didn't take effect in previous generations.
3366 */
3367 ps.VectorMaskEnable = GEN_GEN >= 8;
3368
3369 ps.SamplerCount =
3370 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3371
3372 /* BRW_NEW_FS_PROG_DATA */
3373 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3374
3375 if (prog_data->base.use_alt_mode)
3376 ps.FloatingPointMode = Alternate;
3377
3378 /* Haswell requires the sample mask to be set in this packet as well as
3379 * in 3DSTATE_SAMPLE_MASK; the values should match.
3380 */
3381
3382 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3383 #if GEN_IS_HASWELL
3384 ps.SampleMask = genX(determine_sample_mask(brw));
3385 #endif
3386
3387 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3388 * it implicitly scales for different GT levels (which have some # of
3389 * PSDs).
3390 *
3391 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3392 */
3393 #if GEN_GEN >= 9
3394 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3395 #elif GEN_GEN >= 8
3396 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3397 #else
3398 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3399 #endif
3400
3401 if (prog_data->base.nr_params > 0)
3402 ps.PushConstantEnable = true;
3403
3404 #if GEN_GEN < 8
3405 /* From the IVB PRM, volume 2 part 1, page 287:
3406 * "This bit is inserted in the PS payload header and made available to
3407 * the DataPort (either via the message header or via header bypass) to
3408 * indicate that oMask data (one or two phases) is included in Render
3409 * Target Write messages. If present, the oMask data is used to mask off
3410 * samples."
3411 */
3412 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3413
3414 /* The hardware wedges if you have this bit set but don't turn on any
3415 * dual source blend factors.
3416 *
3417 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3418 */
3419 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3420 (ctx->Color.BlendEnabled & 1) &&
3421 ctx->Color.Blend[0]._UsesDualSrc;
3422
3423 /* BRW_NEW_FS_PROG_DATA */
3424 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3425 #endif
3426
3427 /* From the documentation for this packet:
3428 * "If the PS kernel does not need the Position XY Offsets to
3429 * compute a Position Value, then this field should be programmed
3430 * to POSOFFSET_NONE."
3431 *
3432 * "SW Recommendation: If the PS kernel needs the Position Offsets
3433 * to compute a Position XY value, this field should match Position
3434 * ZW Interpolation Mode to ensure a consistent position.xyzw
3435 * computation."
3436 *
3437 * We only require XY sample offsets. So, this recommendation doesn't
3438 * look useful at the moment. We might need this in future.
3439 */
3440 if (prog_data->uses_pos_offset)
3441 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3442 else
3443 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3444
3445 ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op;
3446 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3447 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3448 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3449 prog_data->base.dispatch_grf_start_reg;
3450 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3451 prog_data->dispatch_grf_start_reg_2;
3452
3453 ps.KernelStartPointer0 = stage_state->prog_offset;
3454 ps.KernelStartPointer2 = stage_state->prog_offset +
3455 prog_data->prog_offset_2;
3456
3457 if (prog_data->base.total_scratch) {
3458 ps.ScratchSpaceBasePointer =
3459 render_bo(stage_state->scratch_bo,
3460 ffs(stage_state->per_thread_scratch) - 11);
3461 }
3462 }
3463 }
3464
3465 static const struct brw_tracked_state genX(ps_state) = {
3466 .dirty = {
3467 .mesa = _NEW_MULTISAMPLE |
3468 (GEN_GEN < 8 ? _NEW_BUFFERS |
3469 _NEW_COLOR
3470 : 0),
3471 .brw = BRW_NEW_BATCH |
3472 BRW_NEW_BLORP |
3473 BRW_NEW_FS_PROG_DATA,
3474 },
3475 .emit = genX(upload_ps),
3476 };
3477 #endif
3478
3479 /* ---------------------------------------------------------------------- */
3480
3481 #if GEN_GEN >= 7
3482 static void
3483 genX(upload_hs_state)(struct brw_context *brw)
3484 {
3485 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3486 struct brw_stage_state *stage_state = &brw->tcs.base;
3487 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3488 const struct brw_vue_prog_data *vue_prog_data =
3489 brw_vue_prog_data(stage_prog_data);
3490
3491 /* BRW_NEW_TES_PROG_DATA */
3492 struct brw_tcs_prog_data *tcs_prog_data =
3493 brw_tcs_prog_data(stage_prog_data);
3494
3495 if (!tcs_prog_data) {
3496 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3497 } else {
3498 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3499 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3500
3501 hs.InstanceCount = tcs_prog_data->instances - 1;
3502 hs.IncludeVertexHandles = true;
3503
3504 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3505 }
3506 }
3507 }
3508
3509 static const struct brw_tracked_state genX(hs_state) = {
3510 .dirty = {
3511 .mesa = 0,
3512 .brw = BRW_NEW_BATCH |
3513 BRW_NEW_BLORP |
3514 BRW_NEW_TCS_PROG_DATA |
3515 BRW_NEW_TESS_PROGRAMS,
3516 },
3517 .emit = genX(upload_hs_state),
3518 };
3519
3520 static void
3521 genX(upload_ds_state)(struct brw_context *brw)
3522 {
3523 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3524 const struct brw_stage_state *stage_state = &brw->tes.base;
3525 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3526
3527 /* BRW_NEW_TES_PROG_DATA */
3528 const struct brw_tes_prog_data *tes_prog_data =
3529 brw_tes_prog_data(stage_prog_data);
3530 const struct brw_vue_prog_data *vue_prog_data =
3531 brw_vue_prog_data(stage_prog_data);
3532
3533 if (!tes_prog_data) {
3534 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3535 } else {
3536 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3537 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3538
3539 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3540 ds.ComputeWCoordinateEnable =
3541 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3542
3543 #if GEN_GEN >= 8
3544 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3545 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3546 ds.UserClipDistanceCullTestEnableBitmask =
3547 vue_prog_data->cull_distance_mask;
3548 #endif
3549 }
3550 }
3551 }
3552
3553 static const struct brw_tracked_state genX(ds_state) = {
3554 .dirty = {
3555 .mesa = 0,
3556 .brw = BRW_NEW_BATCH |
3557 BRW_NEW_BLORP |
3558 BRW_NEW_TESS_PROGRAMS |
3559 BRW_NEW_TES_PROG_DATA,
3560 },
3561 .emit = genX(upload_ds_state),
3562 };
3563
3564 /* ---------------------------------------------------------------------- */
3565
3566 static void
3567 upload_te_state(struct brw_context *brw)
3568 {
3569 /* BRW_NEW_TESS_PROGRAMS */
3570 bool active = brw->tess_eval_program;
3571
3572 /* BRW_NEW_TES_PROG_DATA */
3573 const struct brw_tes_prog_data *tes_prog_data =
3574 brw_tes_prog_data(brw->tes.base.prog_data);
3575
3576 if (active) {
3577 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3578 te.Partitioning = tes_prog_data->partitioning;
3579 te.OutputTopology = tes_prog_data->output_topology;
3580 te.TEDomain = tes_prog_data->domain;
3581 te.TEEnable = true;
3582 te.MaximumTessellationFactorOdd = 63.0;
3583 te.MaximumTessellationFactorNotOdd = 64.0;
3584 }
3585 } else {
3586 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
3587 }
3588 }
3589
3590 static const struct brw_tracked_state genX(te_state) = {
3591 .dirty = {
3592 .mesa = 0,
3593 .brw = BRW_NEW_BLORP |
3594 BRW_NEW_CONTEXT |
3595 BRW_NEW_TES_PROG_DATA |
3596 BRW_NEW_TESS_PROGRAMS,
3597 },
3598 .emit = upload_te_state,
3599 };
3600
3601 /* ---------------------------------------------------------------------- */
3602
3603 static void
3604 genX(upload_tes_push_constants)(struct brw_context *brw)
3605 {
3606 struct brw_stage_state *stage_state = &brw->tes.base;
3607 /* BRW_NEW_TESS_PROGRAMS */
3608 const struct brw_program *tep = brw_program_const(brw->tess_eval_program);
3609
3610 if (tep) {
3611 /* BRW_NEW_TES_PROG_DATA */
3612 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
3613 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
3614 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
3615 }
3616
3617 upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL);
3618 }
3619
3620 static const struct brw_tracked_state genX(tes_push_constants) = {
3621 .dirty = {
3622 .mesa = _NEW_PROGRAM_CONSTANTS,
3623 .brw = BRW_NEW_BATCH |
3624 BRW_NEW_BLORP |
3625 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3626 BRW_NEW_TESS_PROGRAMS |
3627 BRW_NEW_TES_PROG_DATA,
3628 },
3629 .emit = genX(upload_tes_push_constants),
3630 };
3631
3632 static void
3633 genX(upload_tcs_push_constants)(struct brw_context *brw)
3634 {
3635 struct brw_stage_state *stage_state = &brw->tcs.base;
3636 /* BRW_NEW_TESS_PROGRAMS */
3637 const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program);
3638 bool active = brw->tess_eval_program;
3639
3640 if (active) {
3641 /* BRW_NEW_TCS_PROG_DATA */
3642 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
3643
3644 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
3645 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
3646 }
3647
3648 upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL);
3649 }
3650
3651 static const struct brw_tracked_state genX(tcs_push_constants) = {
3652 .dirty = {
3653 .mesa = _NEW_PROGRAM_CONSTANTS,
3654 .brw = BRW_NEW_BATCH |
3655 BRW_NEW_BLORP |
3656 BRW_NEW_DEFAULT_TESS_LEVELS |
3657 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3658 BRW_NEW_TESS_PROGRAMS |
3659 BRW_NEW_TCS_PROG_DATA,
3660 },
3661 .emit = genX(upload_tcs_push_constants),
3662 };
3663
3664 #endif
3665
3666 /* ---------------------------------------------------------------------- */
3667
3668 #if GEN_GEN >= 7
3669 static void
3670 genX(upload_cs_state)(struct brw_context *brw)
3671 {
3672 if (!brw->cs.base.prog_data)
3673 return;
3674
3675 uint32_t offset;
3676 uint32_t *desc = (uint32_t*) brw_state_batch(
3677 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
3678 &offset);
3679
3680 struct brw_stage_state *stage_state = &brw->cs.base;
3681 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
3682 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3683 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3684
3685 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
3686 brw_emit_buffer_surface_state(
3687 brw, &stage_state->surf_offset[
3688 prog_data->binding_table.shader_time_start],
3689 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
3690 brw->shader_time.bo->size, 1, true);
3691 }
3692
3693 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
3694 32, &stage_state->bind_bo_offset);
3695
3696 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
3697 if (prog_data->total_scratch) {
3698 uint32_t bo_offset;
3699
3700 if (GEN_GEN >= 8) {
3701 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
3702 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
3703 */
3704 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
3705 } else if (GEN_IS_HASWELL) {
3706 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
3707 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
3708 */
3709 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
3710 } else {
3711 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
3712 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
3713 */
3714 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
3715 }
3716 vfe.ScratchSpaceBasePointer =
3717 render_bo(stage_state->scratch_bo, bo_offset);
3718 }
3719
3720 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
3721 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
3722 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;;
3723 vfe.ResetGatewayTimer =
3724 Resettingrelativetimerandlatchingtheglobaltimestamp;
3725 #if GEN_GEN < 9
3726 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
3727 #endif
3728 #if GEN_GEN == 7
3729 vfe.GPGPUMode = 1;
3730 #endif
3731
3732 /* We are uploading duplicated copies of push constant uniforms for each
3733 * thread. Although the local id data needs to vary per thread, it won't
3734 * change for other uniform data. Unfortunately this duplication is
3735 * required for gen7. As of Haswell, this duplication can be avoided,
3736 * but this older mechanism with duplicated data continues to work.
3737 *
3738 * FINISHME: As of Haswell, we could make use of the
3739 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
3740 * field to only store one copy of uniform data.
3741 *
3742 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
3743 * which is described in the GPGPU_WALKER command and in the Broadwell
3744 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
3745 * Operations => GPGPU Mode => Indirect Payload Storage.
3746 *
3747 * Note: The constant data is built in brw_upload_cs_push_constants
3748 * below.
3749 */
3750 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
3751
3752 const uint32_t vfe_curbe_allocation =
3753 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
3754 cs_prog_data->push.cross_thread.regs, 2);
3755 vfe.CURBEAllocationSize = vfe_curbe_allocation;
3756 }
3757
3758 if (cs_prog_data->push.total.size > 0) {
3759 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
3760 curbe.CURBETotalDataLength =
3761 ALIGN(cs_prog_data->push.total.size, 64);
3762 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
3763 }
3764 }
3765
3766 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
3767 memcpy(bind, stage_state->surf_offset,
3768 prog_data->binding_table.size_bytes);
3769 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
3770 .KernelStartPointer = brw->cs.base.prog_offset,
3771 .SamplerStatePointer = stage_state->sampler_offset,
3772 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
3773 .BindingTablePointer = stage_state->bind_bo_offset,
3774 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
3775 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
3776 .SharedLocalMemorySize = encode_slm_size(devinfo->gen,
3777 prog_data->total_shared),
3778 .BarrierEnable = cs_prog_data->uses_barrier,
3779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3780 .CrossThreadConstantDataReadLength =
3781 cs_prog_data->push.cross_thread.regs,
3782 #endif
3783 };
3784
3785 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
3786
3787 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
3788 load.InterfaceDescriptorTotalLength =
3789 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3790 load.InterfaceDescriptorDataStartAddress = offset;
3791 }
3792 }
3793
3794 static const struct brw_tracked_state genX(cs_state) = {
3795 .dirty = {
3796 .mesa = _NEW_PROGRAM_CONSTANTS,
3797 .brw = BRW_NEW_BATCH |
3798 BRW_NEW_BLORP |
3799 BRW_NEW_CS_PROG_DATA |
3800 BRW_NEW_SAMPLER_STATE_TABLE |
3801 BRW_NEW_SURFACES,
3802 },
3803 .emit = genX(upload_cs_state)
3804 };
3805
3806 #endif
3807
3808 /* ---------------------------------------------------------------------- */
3809
3810 #if GEN_GEN >= 8
3811 static void
3812 genX(upload_raster)(struct brw_context *brw)
3813 {
3814 struct gl_context *ctx = &brw->ctx;
3815
3816 /* _NEW_BUFFERS */
3817 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3818
3819 /* _NEW_POLYGON */
3820 struct gl_polygon_attrib *polygon = &ctx->Polygon;
3821
3822 /* _NEW_POINT */
3823 struct gl_point_attrib *point = &ctx->Point;
3824
3825 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
3826 if (polygon->_FrontBit == render_to_fbo)
3827 raster.FrontWinding = CounterClockwise;
3828
3829 if (polygon->CullFlag) {
3830 switch (polygon->CullFaceMode) {
3831 case GL_FRONT:
3832 raster.CullMode = CULLMODE_FRONT;
3833 break;
3834 case GL_BACK:
3835 raster.CullMode = CULLMODE_BACK;
3836 break;
3837 case GL_FRONT_AND_BACK:
3838 raster.CullMode = CULLMODE_BOTH;
3839 break;
3840 default:
3841 unreachable("not reached");
3842 }
3843 } else {
3844 raster.CullMode = CULLMODE_NONE;
3845 }
3846
3847 point->SmoothFlag = raster.SmoothPointEnable;
3848
3849 raster.DXMultisampleRasterizationEnable =
3850 _mesa_is_multisample_enabled(ctx);
3851
3852 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
3853 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
3854 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
3855
3856 switch (polygon->FrontMode) {
3857 case GL_FILL:
3858 raster.FrontFaceFillMode = FILL_MODE_SOLID;
3859 break;
3860 case GL_LINE:
3861 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
3862 break;
3863 case GL_POINT:
3864 raster.FrontFaceFillMode = FILL_MODE_POINT;
3865 break;
3866 default:
3867 unreachable("not reached");
3868 }
3869
3870 switch (polygon->BackMode) {
3871 case GL_FILL:
3872 raster.BackFaceFillMode = FILL_MODE_SOLID;
3873 break;
3874 case GL_LINE:
3875 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
3876 break;
3877 case GL_POINT:
3878 raster.BackFaceFillMode = FILL_MODE_POINT;
3879 break;
3880 default:
3881 unreachable("not reached");
3882 }
3883
3884 /* _NEW_LINE */
3885 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
3886
3887 /* _NEW_SCISSOR */
3888 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
3889
3890 /* _NEW_TRANSFORM */
3891 if (!ctx->Transform.DepthClamp) {
3892 #if GEN_GEN >= 9
3893 raster.ViewportZFarClipTestEnable = true;
3894 raster.ViewportZNearClipTestEnable = true;
3895 #else
3896 raster.ViewportZClipTestEnable = true;
3897 #endif
3898 }
3899
3900 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
3901 #if GEN_GEN >= 9
3902 raster.ConservativeRasterizationEnable =
3903 ctx->IntelConservativeRasterization;
3904 #endif
3905
3906 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
3907 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
3908
3909 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
3910 }
3911 }
3912
3913 static const struct brw_tracked_state genX(raster_state) = {
3914 .dirty = {
3915 .mesa = _NEW_BUFFERS |
3916 _NEW_LINE |
3917 _NEW_MULTISAMPLE |
3918 _NEW_POINT |
3919 _NEW_POLYGON |
3920 _NEW_SCISSOR |
3921 _NEW_TRANSFORM,
3922 .brw = BRW_NEW_BLORP |
3923 BRW_NEW_CONTEXT |
3924 BRW_NEW_CONSERVATIVE_RASTERIZATION,
3925 },
3926 .emit = genX(upload_raster),
3927 };
3928 #endif
3929
3930 /* ---------------------------------------------------------------------- */
3931
3932 #if GEN_GEN >= 8
3933 static void
3934 genX(upload_ps_extra)(struct brw_context *brw)
3935 {
3936 UNUSED struct gl_context *ctx = &brw->ctx;
3937
3938 const struct brw_wm_prog_data *prog_data =
3939 brw_wm_prog_data(brw->wm.base.prog_data);
3940
3941 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
3942 psx.PixelShaderValid = true;
3943 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
3944 psx.PixelShaderKillsPixel = prog_data->uses_kill;
3945 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
3946 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
3947 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
3948 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
3949
3950 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
3951 if (prog_data->uses_sample_mask) {
3952 #if GEN_GEN >= 9
3953 if (prog_data->post_depth_coverage)
3954 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3955 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
3956 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
3957 else
3958 psx.InputCoverageMaskState = ICMS_NORMAL;
3959 #else
3960 psx.PixelShaderUsesInputCoverageMask = true;
3961 #endif
3962 }
3963
3964 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3965 #if GEN_GEN >= 9
3966 psx.PixelShaderPullsBary = prog_data->pulls_bary;
3967 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
3968 #endif
3969
3970 /* The stricter cross-primitive coherency guarantees that the hardware
3971 * gives us with the "Accesses UAV" bit set for at least one shader stage
3972 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
3973 * are redundant within the current image, atomic counter and SSBO GL
3974 * APIs, which all have very loose ordering and coherency requirements
3975 * and generally rely on the application to insert explicit barriers when
3976 * a shader invocation is expected to see the memory writes performed by
3977 * the invocations of some previous primitive. Regardless of the value
3978 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
3979 * cause an in most cases useless DC flush when the lowermost stage with
3980 * the bit set finishes execution.
3981 *
3982 * It would be nice to disable it, but in some cases we can't because on
3983 * Gen8+ it also has an influence on rasterization via the PS UAV-only
3984 * signal (which could be set independently from the coherency mechanism
3985 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
3986 * determine whether the hardware skips execution of the fragment shader
3987 * or not via the ThreadDispatchEnable signal. However if we know that
3988 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
3989 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
3990 * difference so we may just disable it here.
3991 *
3992 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
3993 * take into account KillPixels when no depth or stencil writes are
3994 * enabled. In order for occlusion queries to work correctly with no
3995 * attachments, we need to force-enable here.
3996 *
3997 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
3998 * _NEW_COLOR
3999 */
4000 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4001 !brw_color_buffer_write_enabled(brw))
4002 psx.PixelShaderHasUAV = true;
4003 }
4004 }
4005
4006 const struct brw_tracked_state genX(ps_extra) = {
4007 .dirty = {
4008 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4009 .brw = BRW_NEW_BLORP |
4010 BRW_NEW_CONTEXT |
4011 BRW_NEW_FRAGMENT_PROGRAM |
4012 BRW_NEW_FS_PROG_DATA |
4013 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4014 },
4015 .emit = genX(upload_ps_extra),
4016 };
4017 #endif
4018
4019 /* ---------------------------------------------------------------------- */
4020
4021 #if GEN_GEN >= 8
4022 static void
4023 genX(upload_ps_blend)(struct brw_context *brw)
4024 {
4025 struct gl_context *ctx = &brw->ctx;
4026
4027 /* _NEW_BUFFERS */
4028 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4029 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4030
4031 /* _NEW_COLOR */
4032 struct gl_colorbuffer_attrib *color = &ctx->Color;
4033
4034 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4035 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4036 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4037
4038 if (!buffer0_is_integer) {
4039 /* _NEW_MULTISAMPLE */
4040 pb.AlphaToCoverageEnable =
4041 _mesa_is_multisample_enabled(ctx) &&
4042 ctx->Multisample.SampleAlphaToCoverage;
4043
4044 pb.AlphaTestEnable = color->AlphaEnabled;
4045 }
4046
4047 /* Used for implementing the following bit of GL_EXT_texture_integer:
4048 * "Per-fragment operations that require floating-point color
4049 * components, including multisample alpha operations, alpha test,
4050 * blending, and dithering, have no effect when the corresponding
4051 * colors are written to an integer color buffer."
4052 *
4053 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4054 * "If drawbuffer zero is not NONE and the buffer it references has an
4055 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4056 * operations are skipped."
4057 */
4058 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4059 GLenum eqRGB = color->Blend[0].EquationRGB;
4060 GLenum eqA = color->Blend[0].EquationA;
4061 GLenum srcRGB = color->Blend[0].SrcRGB;
4062 GLenum dstRGB = color->Blend[0].DstRGB;
4063 GLenum srcA = color->Blend[0].SrcA;
4064 GLenum dstA = color->Blend[0].DstA;
4065
4066 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4067 srcRGB = dstRGB = GL_ONE;
4068
4069 if (eqA == GL_MIN || eqA == GL_MAX)
4070 srcA = dstA = GL_ONE;
4071
4072 /* Due to hardware limitations, the destination may have information
4073 * in an alpha channel even when the format specifies no alpha
4074 * channel. In order to avoid getting any incorrect blending due to
4075 * that alpha channel, coerce the blend factors to values that will
4076 * not read the alpha channel, but will instead use the correct
4077 * implicit value for alpha.
4078 */
4079 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4080 GL_TEXTURE_ALPHA_TYPE)) {
4081 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4082 srcA = brw_fix_xRGB_alpha(srcA);
4083 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4084 dstA = brw_fix_xRGB_alpha(dstA);
4085 }
4086
4087 pb.ColorBufferBlendEnable = true;
4088 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4089 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4090 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4091 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4092
4093 pb.IndependentAlphaBlendEnable =
4094 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4095 }
4096 }
4097 }
4098
4099 static const struct brw_tracked_state genX(ps_blend) = {
4100 .dirty = {
4101 .mesa = _NEW_BUFFERS |
4102 _NEW_COLOR |
4103 _NEW_MULTISAMPLE,
4104 .brw = BRW_NEW_BLORP |
4105 BRW_NEW_CONTEXT |
4106 BRW_NEW_FRAGMENT_PROGRAM,
4107 },
4108 .emit = genX(upload_ps_blend)
4109 };
4110 #endif
4111
4112 /* ---------------------------------------------------------------------- */
4113
4114 #if GEN_GEN >= 8
4115 static void
4116 genX(emit_vf_topology)(struct brw_context *brw)
4117 {
4118 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4119 vftopo.PrimitiveTopologyType = brw->primitive;
4120 }
4121 }
4122
4123 static const struct brw_tracked_state genX(vf_topology) = {
4124 .dirty = {
4125 .mesa = 0,
4126 .brw = BRW_NEW_BLORP |
4127 BRW_NEW_PRIMITIVE,
4128 },
4129 .emit = genX(emit_vf_topology),
4130 };
4131 #endif
4132
4133 /* ---------------------------------------------------------------------- */
4134
4135 void
4136 genX(init_atoms)(struct brw_context *brw)
4137 {
4138 #if GEN_GEN < 6
4139 static const struct brw_tracked_state *render_atoms[] =
4140 {
4141 /* Once all the programs are done, we know how large urb entry
4142 * sizes need to be and can decide if we need to change the urb
4143 * layout.
4144 */
4145 &brw_curbe_offsets,
4146 &brw_recalculate_urb_fence,
4147
4148 &genX(cc_vp),
4149 &brw_cc_unit,
4150
4151 /* Surface state setup. Must come before the VS/WM unit. The binding
4152 * table upload must be last.
4153 */
4154 &brw_vs_pull_constants,
4155 &brw_wm_pull_constants,
4156 &brw_renderbuffer_surfaces,
4157 &brw_renderbuffer_read_surfaces,
4158 &brw_texture_surfaces,
4159 &brw_vs_binding_table,
4160 &brw_wm_binding_table,
4161
4162 &brw_fs_samplers,
4163 &brw_vs_samplers,
4164
4165 /* These set up state for brw_psp_urb_cbs */
4166 &brw_wm_unit,
4167 &brw_sf_vp,
4168 &brw_sf_unit,
4169 &genX(vs_state), /* always required, enabled or not */
4170 &brw_clip_unit,
4171 &brw_gs_unit,
4172
4173 /* Command packets:
4174 */
4175 &brw_invariant_state,
4176
4177 &brw_binding_table_pointers,
4178 &brw_blend_constant_color,
4179
4180 &brw_depthbuffer,
4181
4182 &genX(polygon_stipple),
4183 &genX(polygon_stipple_offset),
4184
4185 &genX(line_stipple),
4186
4187 &brw_psp_urb_cbs,
4188
4189 &genX(drawing_rect),
4190 &brw_indices, /* must come before brw_vertices */
4191 &genX(index_buffer),
4192 &genX(vertices),
4193
4194 &brw_constant_buffer
4195 };
4196 #elif GEN_GEN == 6
4197 static const struct brw_tracked_state *render_atoms[] =
4198 {
4199 &genX(sf_clip_viewport),
4200
4201 /* Command packets: */
4202
4203 &genX(cc_vp),
4204
4205 &gen6_urb,
4206 &genX(blend_state), /* must do before cc unit */
4207 &genX(color_calc_state), /* must do before cc unit */
4208 &genX(depth_stencil_state), /* must do before cc unit */
4209
4210 &genX(vs_push_constants), /* Before vs_state */
4211 &genX(gs_push_constants), /* Before gs_state */
4212 &genX(wm_push_constants), /* Before wm_state */
4213
4214 /* Surface state setup. Must come before the VS/WM unit. The binding
4215 * table upload must be last.
4216 */
4217 &brw_vs_pull_constants,
4218 &brw_vs_ubo_surfaces,
4219 &brw_gs_pull_constants,
4220 &brw_gs_ubo_surfaces,
4221 &brw_wm_pull_constants,
4222 &brw_wm_ubo_surfaces,
4223 &gen6_renderbuffer_surfaces,
4224 &brw_renderbuffer_read_surfaces,
4225 &brw_texture_surfaces,
4226 &gen6_sol_surface,
4227 &brw_vs_binding_table,
4228 &gen6_gs_binding_table,
4229 &brw_wm_binding_table,
4230
4231 &brw_fs_samplers,
4232 &brw_vs_samplers,
4233 &brw_gs_samplers,
4234 &gen6_sampler_state,
4235 &genX(multisample_state),
4236
4237 &genX(vs_state),
4238 &genX(gs_state),
4239 &genX(clip_state),
4240 &genX(sf_state),
4241 &genX(wm_state),
4242
4243 &genX(scissor_state),
4244
4245 &gen6_binding_table_pointers,
4246
4247 &brw_depthbuffer,
4248
4249 &genX(polygon_stipple),
4250 &genX(polygon_stipple_offset),
4251
4252 &genX(line_stipple),
4253
4254 &genX(drawing_rect),
4255
4256 &brw_indices, /* must come before brw_vertices */
4257 &genX(index_buffer),
4258 &genX(vertices),
4259 };
4260 #elif GEN_GEN == 7
4261 static const struct brw_tracked_state *render_atoms[] =
4262 {
4263 /* Command packets: */
4264
4265 &genX(cc_vp),
4266 &genX(sf_clip_viewport),
4267
4268 &gen7_l3_state,
4269 &gen7_push_constant_space,
4270 &gen7_urb,
4271 &genX(blend_state), /* must do before cc unit */
4272 &genX(color_calc_state), /* must do before cc unit */
4273 &genX(depth_stencil_state), /* must do before cc unit */
4274
4275 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
4276 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
4277 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
4278 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
4279 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
4280
4281 &genX(vs_push_constants), /* Before vs_state */
4282 &genX(tcs_push_constants),
4283 &genX(tes_push_constants),
4284 &genX(gs_push_constants), /* Before gs_state */
4285 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4286
4287 /* Surface state setup. Must come before the VS/WM unit. The binding
4288 * table upload must be last.
4289 */
4290 &brw_vs_pull_constants,
4291 &brw_vs_ubo_surfaces,
4292 &brw_vs_abo_surfaces,
4293 &brw_tcs_pull_constants,
4294 &brw_tcs_ubo_surfaces,
4295 &brw_tcs_abo_surfaces,
4296 &brw_tes_pull_constants,
4297 &brw_tes_ubo_surfaces,
4298 &brw_tes_abo_surfaces,
4299 &brw_gs_pull_constants,
4300 &brw_gs_ubo_surfaces,
4301 &brw_gs_abo_surfaces,
4302 &brw_wm_pull_constants,
4303 &brw_wm_ubo_surfaces,
4304 &brw_wm_abo_surfaces,
4305 &gen6_renderbuffer_surfaces,
4306 &brw_renderbuffer_read_surfaces,
4307 &brw_texture_surfaces,
4308 &brw_vs_binding_table,
4309 &brw_tcs_binding_table,
4310 &brw_tes_binding_table,
4311 &brw_gs_binding_table,
4312 &brw_wm_binding_table,
4313
4314 &brw_fs_samplers,
4315 &brw_vs_samplers,
4316 &brw_tcs_samplers,
4317 &brw_tes_samplers,
4318 &brw_gs_samplers,
4319 &genX(multisample_state),
4320
4321 &genX(vs_state),
4322 &genX(hs_state),
4323 &genX(te_state),
4324 &genX(ds_state),
4325 &genX(gs_state),
4326 &genX(sol_state),
4327 &genX(clip_state),
4328 &genX(sbe_state),
4329 &genX(sf_state),
4330 &genX(wm_state),
4331 &genX(ps_state),
4332
4333 &genX(scissor_state),
4334
4335 &gen7_depthbuffer,
4336
4337 &genX(polygon_stipple),
4338 &genX(polygon_stipple_offset),
4339
4340 &genX(line_stipple),
4341
4342 &genX(drawing_rect),
4343
4344 &brw_indices, /* must come before brw_vertices */
4345 &genX(index_buffer),
4346 &genX(vertices),
4347
4348 #if GEN_IS_HASWELL
4349 &genX(cut_index),
4350 #endif
4351 };
4352 #elif GEN_GEN >= 8
4353 static const struct brw_tracked_state *render_atoms[] =
4354 {
4355 &genX(cc_vp),
4356 &genX(sf_clip_viewport),
4357
4358 &gen7_l3_state,
4359 &gen7_push_constant_space,
4360 &gen7_urb,
4361 &genX(blend_state),
4362 &genX(color_calc_state),
4363
4364 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
4365 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
4366 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
4367 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
4368 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
4369
4370 &genX(vs_push_constants), /* Before vs_state */
4371 &genX(tcs_push_constants),
4372 &genX(tes_push_constants),
4373 &genX(gs_push_constants), /* Before gs_state */
4374 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4375
4376 /* Surface state setup. Must come before the VS/WM unit. The binding
4377 * table upload must be last.
4378 */
4379 &brw_vs_pull_constants,
4380 &brw_vs_ubo_surfaces,
4381 &brw_vs_abo_surfaces,
4382 &brw_tcs_pull_constants,
4383 &brw_tcs_ubo_surfaces,
4384 &brw_tcs_abo_surfaces,
4385 &brw_tes_pull_constants,
4386 &brw_tes_ubo_surfaces,
4387 &brw_tes_abo_surfaces,
4388 &brw_gs_pull_constants,
4389 &brw_gs_ubo_surfaces,
4390 &brw_gs_abo_surfaces,
4391 &brw_wm_pull_constants,
4392 &brw_wm_ubo_surfaces,
4393 &brw_wm_abo_surfaces,
4394 &gen6_renderbuffer_surfaces,
4395 &brw_renderbuffer_read_surfaces,
4396 &brw_texture_surfaces,
4397 &brw_vs_binding_table,
4398 &brw_tcs_binding_table,
4399 &brw_tes_binding_table,
4400 &brw_gs_binding_table,
4401 &brw_wm_binding_table,
4402
4403 &brw_fs_samplers,
4404 &brw_vs_samplers,
4405 &brw_tcs_samplers,
4406 &brw_tes_samplers,
4407 &brw_gs_samplers,
4408 &genX(multisample_state),
4409
4410 &genX(vs_state),
4411 &genX(hs_state),
4412 &genX(te_state),
4413 &genX(ds_state),
4414 &genX(gs_state),
4415 &genX(sol_state),
4416 &genX(clip_state),
4417 &genX(raster_state),
4418 &genX(sbe_state),
4419 &genX(sf_state),
4420 &genX(ps_blend),
4421 &genX(ps_extra),
4422 &genX(ps_state),
4423 &genX(depth_stencil_state),
4424 &genX(wm_state),
4425
4426 &genX(scissor_state),
4427
4428 &gen7_depthbuffer,
4429
4430 &genX(polygon_stipple),
4431 &genX(polygon_stipple_offset),
4432
4433 &genX(line_stipple),
4434
4435 &genX(drawing_rect),
4436
4437 &genX(vf_topology),
4438
4439 &brw_indices,
4440 &genX(index_buffer),
4441 &genX(vertices),
4442
4443 &genX(cut_index),
4444 &gen8_pma_fix,
4445 };
4446 #endif
4447
4448 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
4449 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
4450 render_atoms, ARRAY_SIZE(render_atoms));
4451
4452 #if GEN_GEN >= 7
4453 static const struct brw_tracked_state *compute_atoms[] =
4454 {
4455 &gen7_l3_state,
4456 &brw_cs_image_surfaces,
4457 &gen7_cs_push_constants,
4458 &brw_cs_pull_constants,
4459 &brw_cs_ubo_surfaces,
4460 &brw_cs_abo_surfaces,
4461 &brw_cs_texture_surfaces,
4462 &brw_cs_work_groups_surface,
4463 &brw_cs_samplers,
4464 &genX(cs_state),
4465 };
4466
4467 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
4468 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
4469 compute_atoms, ARRAY_SIZE(compute_atoms));
4470 #endif
4471 }