intel/batch_decoder: decoding of 3DSTATE_CONSTANT_BODY.
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "dev/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #include "brw_draw.h"
38 #include "brw_multisample_state.h"
39 #include "brw_state.h"
40 #include "brw_wm.h"
41 #include "brw_util.h"
42
43 #include "intel_batchbuffer.h"
44 #include "intel_buffer_objects.h"
45 #include "intel_fbo.h"
46
47 #include "main/enums.h"
48 #include "main/fbobject.h"
49 #include "main/framebuffer.h"
50 #include "main/glformats.h"
51 #include "main/samplerobj.h"
52 #include "main/shaderapi.h"
53 #include "main/stencil.h"
54 #include "main/transformfeedback.h"
55 #include "main/varray.h"
56 #include "main/viewport.h"
57 #include "util/half_float.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 unsigned reloc_flags;
72 uint32_t offset;
73 };
74
75 #define __gen_address_type struct brw_address
76 #define __gen_user_data struct brw_context
77
78 static uint64_t
79 __gen_combine_address(struct brw_context *brw, void *location,
80 struct brw_address address, uint32_t delta)
81 {
82 struct intel_batchbuffer *batch = &brw->batch;
83 uint32_t offset;
84
85 if (address.bo == NULL) {
86 return address.offset + delta;
87 } else {
88 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
89 offset = (char *) location - (char *) brw->batch.state.map;
90 return brw_state_reloc(batch, offset, address.bo,
91 address.offset + delta,
92 address.reloc_flags);
93 }
94
95 assert(!brw_ptr_in_state_buffer(batch, location));
96
97 offset = (char *) location - (char *) brw->batch.batch.map;
98 return brw_batch_reloc(batch, offset, address.bo,
99 address.offset + delta,
100 address.reloc_flags);
101 }
102 }
103
104 UNUSED static struct brw_address
105 rw_bo(struct brw_bo *bo, uint32_t offset)
106 {
107 return (struct brw_address) {
108 .bo = bo,
109 .offset = offset,
110 .reloc_flags = RELOC_WRITE,
111 };
112 }
113
114 static struct brw_address
115 ro_bo(struct brw_bo *bo, uint32_t offset)
116 {
117 return (struct brw_address) {
118 .bo = bo,
119 .offset = offset,
120 };
121 }
122
123 static struct brw_address
124 rw_32_bo(struct brw_bo *bo, uint32_t offset)
125 {
126 return (struct brw_address) {
127 .bo = bo,
128 .offset = offset,
129 .reloc_flags = RELOC_WRITE | RELOC_32BIT,
130 };
131 }
132
133 static struct brw_address
134 ro_32_bo(struct brw_bo *bo, uint32_t offset)
135 {
136 return (struct brw_address) {
137 .bo = bo,
138 .offset = offset,
139 .reloc_flags = RELOC_32BIT,
140 };
141 }
142
143 UNUSED static struct brw_address
144 ggtt_bo(struct brw_bo *bo, uint32_t offset)
145 {
146 return (struct brw_address) {
147 .bo = bo,
148 .offset = offset,
149 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
150 };
151 }
152
153 #if GEN_GEN == 4
154 static struct brw_address
155 KSP(struct brw_context *brw, uint32_t offset)
156 {
157 return ro_bo(brw->cache.bo, offset);
158 }
159 #else
160 static uint32_t
161 KSP(UNUSED struct brw_context *brw, uint32_t offset)
162 {
163 return offset;
164 }
165 #endif
166
167 #include "genxml/genX_pack.h"
168
169 #define _brw_cmd_length(cmd) cmd ## _length
170 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
171 #define _brw_cmd_header(cmd) cmd ## _header
172 #define _brw_cmd_pack(cmd) cmd ## _pack
173
174 #define brw_batch_emit(brw, cmd, name) \
175 for (struct cmd name = { _brw_cmd_header(cmd) }, \
176 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
177 __builtin_expect(_dst != NULL, 1); \
178 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
179 _dst = NULL)
180
181 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
182 uint32_t *_dw = emit_dwords(brw, n); \
183 struct cmd template = { \
184 _brw_cmd_header(cmd), \
185 .DWordLength = n - _brw_cmd_length_bias(cmd), \
186 __VA_ARGS__ \
187 }; \
188 _brw_cmd_pack(cmd)(brw, _dw, &template); \
189 _dw + 1; /* Array starts at dw[1] */ \
190 })
191
192 #define brw_state_emit(brw, cmd, align, offset, name) \
193 for (struct cmd name = {}, \
194 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
195 align, offset); \
196 __builtin_expect(_dst != NULL, 1); \
197 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
198 _dst = NULL)
199
200 /**
201 * Polygon stipple packet
202 */
203 static void
204 genX(upload_polygon_stipple)(struct brw_context *brw)
205 {
206 struct gl_context *ctx = &brw->ctx;
207
208 /* _NEW_POLYGON */
209 if (!ctx->Polygon.StippleFlag)
210 return;
211
212 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
213 /* Polygon stipple is provided in OpenGL order, i.e. bottom
214 * row first. If we're rendering to a window (i.e. the
215 * default frame buffer object, 0), then we need to invert
216 * it to match our pixel layout. But if we're rendering
217 * to a FBO (i.e. any named frame buffer object), we *don't*
218 * need to invert - we already match the layout.
219 */
220 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
221 for (unsigned i = 0; i < 32; i++)
222 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
223 } else {
224 for (unsigned i = 0; i < 32; i++)
225 poly.PatternRow[i] = ctx->PolygonStipple[i];
226 }
227 }
228 }
229
230 static const struct brw_tracked_state genX(polygon_stipple) = {
231 .dirty = {
232 .mesa = _NEW_POLYGON |
233 _NEW_POLYGONSTIPPLE,
234 .brw = BRW_NEW_CONTEXT,
235 },
236 .emit = genX(upload_polygon_stipple),
237 };
238
239 /**
240 * Polygon stipple offset packet
241 */
242 static void
243 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
244 {
245 struct gl_context *ctx = &brw->ctx;
246
247 /* _NEW_POLYGON */
248 if (!ctx->Polygon.StippleFlag)
249 return;
250
251 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
252 /* _NEW_BUFFERS
253 *
254 * If we're drawing to a system window we have to invert the Y axis
255 * in order to match the OpenGL pixel coordinate system, and our
256 * offset must be matched to the window position. If we're drawing
257 * to a user-created FBO then our native pixel coordinate system
258 * works just fine, and there's no window system to worry about.
259 */
260 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
261 poly.PolygonStippleYOffset =
262 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
263 }
264 }
265 }
266
267 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
268 .dirty = {
269 .mesa = _NEW_BUFFERS |
270 _NEW_POLYGON,
271 .brw = BRW_NEW_CONTEXT,
272 },
273 .emit = genX(upload_polygon_stipple_offset),
274 };
275
276 /**
277 * Line stipple packet
278 */
279 static void
280 genX(upload_line_stipple)(struct brw_context *brw)
281 {
282 struct gl_context *ctx = &brw->ctx;
283
284 if (!ctx->Line.StippleFlag)
285 return;
286
287 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
288 line.LineStipplePattern = ctx->Line.StipplePattern;
289
290 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
291 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
292 }
293 }
294
295 static const struct brw_tracked_state genX(line_stipple) = {
296 .dirty = {
297 .mesa = _NEW_LINE,
298 .brw = BRW_NEW_CONTEXT,
299 },
300 .emit = genX(upload_line_stipple),
301 };
302
303 /* Constant single cliprect for framebuffer object or DRI2 drawing */
304 static void
305 genX(upload_drawing_rect)(struct brw_context *brw)
306 {
307 struct gl_context *ctx = &brw->ctx;
308 const struct gl_framebuffer *fb = ctx->DrawBuffer;
309 const unsigned int fb_width = _mesa_geometric_width(fb);
310 const unsigned int fb_height = _mesa_geometric_height(fb);
311
312 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
313 rect.ClippedDrawingRectangleXMax = fb_width - 1;
314 rect.ClippedDrawingRectangleYMax = fb_height - 1;
315 }
316 }
317
318 static const struct brw_tracked_state genX(drawing_rect) = {
319 .dirty = {
320 .mesa = _NEW_BUFFERS,
321 .brw = BRW_NEW_BLORP |
322 BRW_NEW_CONTEXT,
323 },
324 .emit = genX(upload_drawing_rect),
325 };
326
327 static uint32_t *
328 genX(emit_vertex_buffer_state)(struct brw_context *brw,
329 uint32_t *dw,
330 unsigned buffer_nr,
331 struct brw_bo *bo,
332 unsigned start_offset,
333 MAYBE_UNUSED unsigned end_offset,
334 unsigned stride,
335 MAYBE_UNUSED unsigned step_rate)
336 {
337 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
338 .VertexBufferIndex = buffer_nr,
339 .BufferPitch = stride,
340
341 /* The VF cache designers apparently cut corners, and made the cache
342 * only consider the bottom 32 bits of memory addresses. If you happen
343 * to have two vertex buffers which get placed exactly 4 GiB apart and
344 * use them in back-to-back draw calls, you can get collisions. To work
345 * around this problem, we restrict vertex buffers to the low 32 bits of
346 * the address space.
347 */
348 .BufferStartingAddress = ro_32_bo(bo, start_offset),
349 #if GEN_GEN >= 8
350 .BufferSize = end_offset - start_offset,
351 #endif
352
353 #if GEN_GEN >= 7
354 .AddressModifyEnable = true,
355 #endif
356
357 #if GEN_GEN < 8
358 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
359 .InstanceDataStepRate = step_rate,
360 #if GEN_GEN >= 5
361 .EndAddress = ro_bo(bo, end_offset - 1),
362 #endif
363 #endif
364
365 #if GEN_GEN == 11
366 .VertexBufferMOCS = ICL_MOCS_WB,
367 #elif GEN_GEN == 10
368 .VertexBufferMOCS = CNL_MOCS_WB,
369 #elif GEN_GEN == 9
370 .VertexBufferMOCS = SKL_MOCS_WB,
371 #elif GEN_GEN == 8
372 .VertexBufferMOCS = BDW_MOCS_WB,
373 #elif GEN_GEN == 7
374 .VertexBufferMOCS = GEN7_MOCS_L3,
375 #endif
376 };
377
378 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
379 return dw + GENX(VERTEX_BUFFER_STATE_length);
380 }
381
382 UNUSED static bool
383 is_passthru_format(uint32_t format)
384 {
385 switch (format) {
386 case ISL_FORMAT_R64_PASSTHRU:
387 case ISL_FORMAT_R64G64_PASSTHRU:
388 case ISL_FORMAT_R64G64B64_PASSTHRU:
389 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
390 return true;
391 default:
392 return false;
393 }
394 }
395
396 UNUSED static int
397 uploads_needed(uint32_t format,
398 bool is_dual_slot)
399 {
400 if (!is_passthru_format(format))
401 return 1;
402
403 if (is_dual_slot)
404 return 2;
405
406 switch (format) {
407 case ISL_FORMAT_R64_PASSTHRU:
408 case ISL_FORMAT_R64G64_PASSTHRU:
409 return 1;
410 case ISL_FORMAT_R64G64B64_PASSTHRU:
411 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
412 return 2;
413 default:
414 unreachable("not reached");
415 }
416 }
417
418 /*
419 * Returns the format that we are finally going to use when upload a vertex
420 * element. It will only change if we are using *64*PASSTHRU formats, as for
421 * gen < 8 they need to be splitted on two *32*FLOAT formats.
422 *
423 * @upload points in which upload we are. Valid values are [0,1]
424 */
425 static uint32_t
426 downsize_format_if_needed(uint32_t format,
427 int upload)
428 {
429 assert(upload == 0 || upload == 1);
430
431 if (!is_passthru_format(format))
432 return format;
433
434 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
435 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
436 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
437 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
438 * flagging that we want to fill with zeroes this second forced upload.
439 */
440 switch (format) {
441 case ISL_FORMAT_R64_PASSTHRU:
442 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
443 : ISL_FORMAT_R32_FLOAT;
444 case ISL_FORMAT_R64G64_PASSTHRU:
445 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
446 : ISL_FORMAT_R32_FLOAT;
447 case ISL_FORMAT_R64G64B64_PASSTHRU:
448 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
449 : ISL_FORMAT_R32G32_FLOAT;
450 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
451 return ISL_FORMAT_R32G32B32A32_FLOAT;
452 default:
453 unreachable("not reached");
454 }
455 }
456
457 /*
458 * Returns the number of componentes associated with a format that is used on
459 * a 64 to 32 format split. See downsize_format()
460 */
461 static int
462 upload_format_size(uint32_t upload_format)
463 {
464 switch (upload_format) {
465 case ISL_FORMAT_R32_FLOAT:
466
467 /* downsized_format has returned this one in order to flag that we are
468 * performing a second upload which we want to have filled with
469 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
470 * vertex shader input variables.
471 */
472
473 return 0;
474 case ISL_FORMAT_R32G32_FLOAT:
475 return 2;
476 case ISL_FORMAT_R32G32B32A32_FLOAT:
477 return 4;
478 default:
479 unreachable("not reached");
480 }
481 }
482
483 static UNUSED uint16_t
484 pinned_bo_high_bits(struct brw_bo *bo)
485 {
486 return (bo->kflags & EXEC_OBJECT_PINNED) ? bo->gtt_offset >> 32ull : 0;
487 }
488
489 /* The VF cache designers apparently cut corners, and made the cache key's
490 * <VertexBufferIndex, Memory Address> tuple only consider the bottom 32 bits
491 * of the address. If you happen to have two vertex buffers which get placed
492 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
493 * collisions. (These collisions can happen within a single batch.)
494 *
495 * In the soft-pin world, we'd like to assign addresses up front, and never
496 * move buffers. So, we need to do a VF cache invalidate if the buffer for
497 * a particular VB slot has different [48:32] address bits than the last one.
498 *
499 * In the relocation world, we have no idea what the addresses will be, so
500 * we can't apply this workaround. Instead, we tell the kernel to move it
501 * to the low 4GB regardless.
502 */
503 static void
504 vf_invalidate_for_vb_48bit_transitions(struct brw_context *brw)
505 {
506 #if GEN_GEN >= 8
507 bool need_invalidate = false;
508 unsigned i;
509
510 for (i = 0; i < brw->vb.nr_buffers; i++) {
511 uint16_t high_bits = pinned_bo_high_bits(brw->vb.buffers[i].bo);
512
513 if (high_bits != brw->vb.last_bo_high_bits[i]) {
514 need_invalidate = true;
515 brw->vb.last_bo_high_bits[i] = high_bits;
516 }
517 }
518
519 /* Don't bother with draw parameter buffers - those are generated by
520 * the driver so we can select a consistent memory zone.
521 */
522
523 if (need_invalidate) {
524 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE);
525 }
526 #endif
527 }
528
529 static void
530 vf_invalidate_for_ib_48bit_transition(struct brw_context *brw)
531 {
532 #if GEN_GEN >= 8
533 uint16_t high_bits = pinned_bo_high_bits(brw->ib.bo);
534
535 if (high_bits != brw->ib.last_bo_high_bits) {
536 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE);
537 brw->ib.last_bo_high_bits = high_bits;
538 }
539 #endif
540 }
541
542 static void
543 genX(emit_vertices)(struct brw_context *brw)
544 {
545 const struct gen_device_info *devinfo = &brw->screen->devinfo;
546 uint32_t *dw;
547
548 brw_prepare_vertices(brw);
549 brw_prepare_shader_draw_parameters(brw);
550
551 #if GEN_GEN < 6
552 brw_emit_query_begin(brw);
553 #endif
554
555 const struct brw_vs_prog_data *vs_prog_data =
556 brw_vs_prog_data(brw->vs.base.prog_data);
557
558 #if GEN_GEN >= 8
559 struct gl_context *ctx = &brw->ctx;
560 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
561 ctx->Polygon.BackMode != GL_FILL);
562
563 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
564 unsigned vue = brw->vb.nr_enabled;
565
566 /* The element for the edge flags must always be last, so we have to
567 * insert the SGVS before it in that case.
568 */
569 if (uses_edge_flag) {
570 assert(vue > 0);
571 vue--;
572 }
573
574 WARN_ONCE(vue >= 33,
575 "Trying to insert VID/IID past 33rd vertex element, "
576 "need to reorder the vertex attrbutes.");
577
578 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
579 if (vs_prog_data->uses_vertexid) {
580 vfs.VertexIDEnable = true;
581 vfs.VertexIDComponentNumber = 2;
582 vfs.VertexIDElementOffset = vue;
583 }
584
585 if (vs_prog_data->uses_instanceid) {
586 vfs.InstanceIDEnable = true;
587 vfs.InstanceIDComponentNumber = 3;
588 vfs.InstanceIDElementOffset = vue;
589 }
590 }
591
592 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
593 vfi.InstancingEnable = true;
594 vfi.VertexElementIndex = vue;
595 }
596 } else {
597 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
598 }
599 #endif
600
601 const bool uses_draw_params =
602 vs_prog_data->uses_firstvertex ||
603 vs_prog_data->uses_baseinstance;
604
605 const bool uses_derived_draw_params =
606 vs_prog_data->uses_drawid ||
607 vs_prog_data->uses_is_indexed_draw;
608
609 const bool needs_sgvs_element = (uses_draw_params ||
610 vs_prog_data->uses_instanceid ||
611 vs_prog_data->uses_vertexid);
612
613 unsigned nr_elements =
614 brw->vb.nr_enabled + needs_sgvs_element + uses_derived_draw_params;
615
616 #if GEN_GEN < 8
617 /* If any of the formats of vb.enabled needs more that one upload, we need
618 * to add it to nr_elements
619 */
620 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
621 struct brw_vertex_element *input = brw->vb.enabled[i];
622 const struct gl_array_attributes *glattrib = input->glattrib;
623 uint32_t format = brw_get_vertex_surface_type(brw, glattrib);
624
625 if (uploads_needed(format, input->is_dual_slot) > 1)
626 nr_elements++;
627 }
628 #endif
629
630 /* If the VS doesn't read any inputs (calculating vertex position from
631 * a state variable for some reason, for example), emit a single pad
632 * VERTEX_ELEMENT struct and bail.
633 *
634 * The stale VB state stays in place, but they don't do anything unless
635 * a VE loads from them.
636 */
637 if (nr_elements == 0) {
638 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
639 1 + GENX(VERTEX_ELEMENT_STATE_length));
640 struct GENX(VERTEX_ELEMENT_STATE) elem = {
641 .Valid = true,
642 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
643 .Component0Control = VFCOMP_STORE_0,
644 .Component1Control = VFCOMP_STORE_0,
645 .Component2Control = VFCOMP_STORE_0,
646 .Component3Control = VFCOMP_STORE_1_FP,
647 };
648 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
649 return;
650 }
651
652 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
653 const unsigned nr_buffers = brw->vb.nr_buffers +
654 uses_draw_params + uses_derived_draw_params;
655
656 vf_invalidate_for_vb_48bit_transitions(brw);
657
658 if (nr_buffers) {
659 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
660
661 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
662 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
663
664 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
665 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
666 /* Prior to Haswell and Bay Trail we have to use 4-component formats
667 * to fake 3-component ones. In particular, we do this for
668 * half-float and 8 and 16-bit integer formats. This means that the
669 * vertex element may poke over the end of the buffer by 2 bytes.
670 */
671 const unsigned padding =
672 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
673 const unsigned end = buffer->offset + buffer->size + padding;
674 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
675 buffer->offset,
676 end,
677 buffer->stride,
678 buffer->step_rate);
679 }
680
681 if (uses_draw_params) {
682 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
683 brw->draw.draw_params_bo,
684 brw->draw.draw_params_offset,
685 brw->draw.draw_params_bo->size,
686 0 /* stride */,
687 0 /* step rate */);
688 }
689
690 if (uses_derived_draw_params) {
691 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
692 brw->draw.derived_draw_params_bo,
693 brw->draw.derived_draw_params_offset,
694 brw->draw.derived_draw_params_bo->size,
695 0 /* stride */,
696 0 /* step rate */);
697 }
698 }
699
700 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
701 * presumably for VertexID/InstanceID.
702 */
703 #if GEN_GEN >= 6
704 assert(nr_elements <= 34);
705 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
706 #else
707 assert(nr_elements <= 18);
708 #endif
709
710 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
711 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
712 unsigned i;
713 for (i = 0; i < brw->vb.nr_enabled; i++) {
714 const struct brw_vertex_element *input = brw->vb.enabled[i];
715 const struct gl_array_attributes *glattrib = input->glattrib;
716 uint32_t format = brw_get_vertex_surface_type(brw, glattrib);
717 uint32_t comp0 = VFCOMP_STORE_SRC;
718 uint32_t comp1 = VFCOMP_STORE_SRC;
719 uint32_t comp2 = VFCOMP_STORE_SRC;
720 uint32_t comp3 = VFCOMP_STORE_SRC;
721 const unsigned num_uploads = GEN_GEN < 8 ?
722 uploads_needed(format, input->is_dual_slot) : 1;
723
724 #if GEN_GEN >= 8
725 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
726 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
727 * element which has edge flag enabled."
728 */
729 assert(!(is_passthru_format(format) && uses_edge_flag));
730 #endif
731
732 /* The gen4 driver expects edgeflag to come in as a float, and passes
733 * that float on to the tests in the clipper. Mesa's current vertex
734 * attribute value for EdgeFlag is stored as a float, which works out.
735 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
736 * integer ubyte. Just rewrite that to convert to a float.
737 *
738 * Gen6+ passes edgeflag as sideband along with the vertex, instead
739 * of in the VUE. We have to upload it sideband as the last vertex
740 * element according to the B-Spec.
741 */
742 #if GEN_GEN >= 6
743 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
744 gen6_edgeflag_input = input;
745 continue;
746 }
747 #endif
748
749 for (unsigned c = 0; c < num_uploads; c++) {
750 const uint32_t upload_format = GEN_GEN >= 8 ? format :
751 downsize_format_if_needed(format, c);
752 /* If we need more that one upload, the offset stride would be 128
753 * bits (16 bytes), as for previous uploads we are using the full
754 * entry. */
755 const unsigned offset = input->offset + c * 16;
756
757 const struct gl_array_attributes *glattrib = input->glattrib;
758 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
759 upload_format_size(upload_format) : glattrib->Size;
760
761 switch (size) {
762 case 0: comp0 = VFCOMP_STORE_0;
763 case 1: comp1 = VFCOMP_STORE_0;
764 case 2: comp2 = VFCOMP_STORE_0;
765 case 3:
766 if (GEN_GEN >= 8 && glattrib->Doubles) {
767 comp3 = VFCOMP_STORE_0;
768 } else if (glattrib->Integer) {
769 comp3 = VFCOMP_STORE_1_INT;
770 } else {
771 comp3 = VFCOMP_STORE_1_FP;
772 }
773
774 break;
775 }
776
777 #if GEN_GEN >= 8
778 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
779 *
780 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
781 * formats, 64-bit components are stored in the URB without any
782 * conversion. In this case, vertex elements must be written as 128
783 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
784 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
785 * component into the URB, Component 1 must be specified as
786 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
787 * order to output a 128-bit vertex element, or Components 1-3 must
788 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
789 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
790 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
791 * vertex element."
792 */
793 if (glattrib->Doubles && !input->is_dual_slot) {
794 /* Store vertex elements which correspond to double and dvec2 vertex
795 * shader inputs as 128-bit vertex elements, instead of 256-bits.
796 */
797 comp2 = VFCOMP_NOSTORE;
798 comp3 = VFCOMP_NOSTORE;
799 }
800 #endif
801
802 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
803 .VertexBufferIndex = input->buffer,
804 .Valid = true,
805 .SourceElementFormat = upload_format,
806 .SourceElementOffset = offset,
807 .Component0Control = comp0,
808 .Component1Control = comp1,
809 .Component2Control = comp2,
810 .Component3Control = comp3,
811 #if GEN_GEN < 5
812 .DestinationElementOffset = i * 4,
813 #endif
814 };
815
816 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
817 dw += GENX(VERTEX_ELEMENT_STATE_length);
818 }
819 }
820
821 if (needs_sgvs_element) {
822 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
823 .Valid = true,
824 .Component0Control = VFCOMP_STORE_0,
825 .Component1Control = VFCOMP_STORE_0,
826 .Component2Control = VFCOMP_STORE_0,
827 .Component3Control = VFCOMP_STORE_0,
828 #if GEN_GEN < 5
829 .DestinationElementOffset = i * 4,
830 #endif
831 };
832
833 #if GEN_GEN >= 8
834 if (uses_draw_params) {
835 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
836 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
837 elem_state.Component0Control = VFCOMP_STORE_SRC;
838 elem_state.Component1Control = VFCOMP_STORE_SRC;
839 }
840 #else
841 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
842 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
843 if (uses_draw_params) {
844 elem_state.Component0Control = VFCOMP_STORE_SRC;
845 elem_state.Component1Control = VFCOMP_STORE_SRC;
846 }
847
848 if (vs_prog_data->uses_vertexid)
849 elem_state.Component2Control = VFCOMP_STORE_VID;
850
851 if (vs_prog_data->uses_instanceid)
852 elem_state.Component3Control = VFCOMP_STORE_IID;
853 #endif
854
855 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
856 dw += GENX(VERTEX_ELEMENT_STATE_length);
857 }
858
859 if (uses_derived_draw_params) {
860 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
861 .Valid = true,
862 .VertexBufferIndex = brw->vb.nr_buffers + 1,
863 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
864 .Component0Control = VFCOMP_STORE_SRC,
865 .Component1Control = VFCOMP_STORE_SRC,
866 .Component2Control = VFCOMP_STORE_0,
867 .Component3Control = VFCOMP_STORE_0,
868 #if GEN_GEN < 5
869 .DestinationElementOffset = i * 4,
870 #endif
871 };
872
873 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
874 dw += GENX(VERTEX_ELEMENT_STATE_length);
875 }
876
877 #if GEN_GEN >= 6
878 if (gen6_edgeflag_input) {
879 const struct gl_array_attributes *glattrib = gen6_edgeflag_input->glattrib;
880 const uint32_t format = brw_get_vertex_surface_type(brw, glattrib);
881
882 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
883 .Valid = true,
884 .VertexBufferIndex = gen6_edgeflag_input->buffer,
885 .EdgeFlagEnable = true,
886 .SourceElementFormat = format,
887 .SourceElementOffset = gen6_edgeflag_input->offset,
888 .Component0Control = VFCOMP_STORE_SRC,
889 .Component1Control = VFCOMP_STORE_0,
890 .Component2Control = VFCOMP_STORE_0,
891 .Component3Control = VFCOMP_STORE_0,
892 };
893
894 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
895 dw += GENX(VERTEX_ELEMENT_STATE_length);
896 }
897 #endif
898
899 #if GEN_GEN >= 8
900 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
901 const struct brw_vertex_element *input = brw->vb.enabled[i];
902 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
903 unsigned element_index;
904
905 /* The edge flag element is reordered to be the last one in the code
906 * above so we need to compensate for that in the element indices used
907 * below.
908 */
909 if (input == gen6_edgeflag_input)
910 element_index = nr_elements - 1;
911 else
912 element_index = j++;
913
914 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
915 vfi.VertexElementIndex = element_index;
916 vfi.InstancingEnable = buffer->step_rate != 0;
917 vfi.InstanceDataStepRate = buffer->step_rate;
918 }
919 }
920
921 if (vs_prog_data->uses_drawid) {
922 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
923
924 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
925 vfi.VertexElementIndex = element;
926 }
927 }
928 #endif
929 }
930
931 static const struct brw_tracked_state genX(vertices) = {
932 .dirty = {
933 .mesa = _NEW_POLYGON,
934 .brw = BRW_NEW_BATCH |
935 BRW_NEW_BLORP |
936 BRW_NEW_VERTICES |
937 BRW_NEW_VS_PROG_DATA,
938 },
939 .emit = genX(emit_vertices),
940 };
941
942 static void
943 genX(emit_index_buffer)(struct brw_context *brw)
944 {
945 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
946
947 if (index_buffer == NULL)
948 return;
949
950 vf_invalidate_for_ib_48bit_transition(brw);
951
952 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
953 #if GEN_GEN < 8 && !GEN_IS_HASWELL
954 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
955 #endif
956 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
957
958 /* The VF cache designers apparently cut corners, and made the cache
959 * only consider the bottom 32 bits of memory addresses. If you happen
960 * to have two index buffers which get placed exactly 4 GiB apart and
961 * use them in back-to-back draw calls, you can get collisions. To work
962 * around this problem, we restrict index buffers to the low 32 bits of
963 * the address space.
964 */
965 ib.BufferStartingAddress = ro_32_bo(brw->ib.bo, 0);
966 #if GEN_GEN >= 8
967 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
968 ib.BufferSize = brw->ib.size;
969 #else
970 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
971 #endif
972 }
973 }
974
975 static const struct brw_tracked_state genX(index_buffer) = {
976 .dirty = {
977 .mesa = 0,
978 .brw = BRW_NEW_BATCH |
979 BRW_NEW_BLORP |
980 BRW_NEW_INDEX_BUFFER,
981 },
982 .emit = genX(emit_index_buffer),
983 };
984
985 #if GEN_IS_HASWELL || GEN_GEN >= 8
986 static void
987 genX(upload_cut_index)(struct brw_context *brw)
988 {
989 const struct gl_context *ctx = &brw->ctx;
990
991 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
992 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
993 vf.IndexedDrawCutIndexEnable = true;
994 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
995 }
996 }
997 }
998
999 const struct brw_tracked_state genX(cut_index) = {
1000 .dirty = {
1001 .mesa = _NEW_TRANSFORM,
1002 .brw = BRW_NEW_INDEX_BUFFER,
1003 },
1004 .emit = genX(upload_cut_index),
1005 };
1006 #endif
1007
1008 #if GEN_GEN >= 6
1009 /**
1010 * Determine the appropriate attribute override value to store into the
1011 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
1012 * override value contains two pieces of information: the location of the
1013 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
1014 * flag indicating whether to "swizzle" the attribute based on the direction
1015 * the triangle is facing.
1016 *
1017 * If an attribute is "swizzled", then the given VUE location is used for
1018 * front-facing triangles, and the VUE location that immediately follows is
1019 * used for back-facing triangles. We use this to implement the mapping from
1020 * gl_FrontColor/gl_BackColor to gl_Color.
1021 *
1022 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
1023 * being instructed to begin reading attribute data. It can be set to a
1024 * nonzero value to prevent the SF unit from wasting time reading elements of
1025 * the VUE that are not needed by the fragment shader. It is measured in
1026 * 256-bit increments.
1027 */
1028 static void
1029 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
1030 const struct brw_vue_map *vue_map,
1031 int urb_entry_read_offset, int fs_attr,
1032 bool two_side_color, uint32_t *max_source_attr)
1033 {
1034 /* Find the VUE slot for this attribute. */
1035 int slot = vue_map->varying_to_slot[fs_attr];
1036
1037 /* Viewport and Layer are stored in the VUE header. We need to override
1038 * them to zero if earlier stages didn't write them, as GL requires that
1039 * they read back as zero when not explicitly set.
1040 */
1041 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
1042 attr->ComponentOverrideX = true;
1043 attr->ComponentOverrideW = true;
1044 attr->ConstantSource = CONST_0000;
1045
1046 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
1047 attr->ComponentOverrideY = true;
1048 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
1049 attr->ComponentOverrideZ = true;
1050
1051 return;
1052 }
1053
1054 /* If there was only a back color written but not front, use back
1055 * as the color instead of undefined
1056 */
1057 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
1058 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
1059 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
1060 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
1061
1062 if (slot == -1) {
1063 /* This attribute does not exist in the VUE--that means that the vertex
1064 * shader did not write to it. This means that either:
1065 *
1066 * (a) This attribute is a texture coordinate, and it is going to be
1067 * replaced with point coordinates (as a consequence of a call to
1068 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
1069 * hardware will ignore whatever attribute override we supply.
1070 *
1071 * (b) This attribute is read by the fragment shader but not written by
1072 * the vertex shader, so its value is undefined. Therefore the
1073 * attribute override we supply doesn't matter.
1074 *
1075 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
1076 * previous shader stage.
1077 *
1078 * Note that we don't have to worry about the cases where the attribute
1079 * is gl_PointCoord or is undergoing point sprite coordinate
1080 * replacement, because in those cases, this function isn't called.
1081 *
1082 * In case (c), we need to program the attribute overrides so that the
1083 * primitive ID will be stored in this slot. In every other case, the
1084 * attribute override we supply doesn't matter. So just go ahead and
1085 * program primitive ID in every case.
1086 */
1087 attr->ComponentOverrideW = true;
1088 attr->ComponentOverrideX = true;
1089 attr->ComponentOverrideY = true;
1090 attr->ComponentOverrideZ = true;
1091 attr->ConstantSource = PRIM_ID;
1092 return;
1093 }
1094
1095 /* Compute the location of the attribute relative to urb_entry_read_offset.
1096 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1097 * it counts for two 128-bit VUE slots.
1098 */
1099 int source_attr = slot - 2 * urb_entry_read_offset;
1100 assert(source_attr >= 0 && source_attr < 32);
1101
1102 /* If we are doing two-sided color, and the VUE slot following this one
1103 * represents a back-facing color, then we need to instruct the SF unit to
1104 * do back-facing swizzling.
1105 */
1106 bool swizzling = two_side_color &&
1107 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1108 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1109 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1110 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1111
1112 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1113 if (*max_source_attr < source_attr + swizzling)
1114 *max_source_attr = source_attr + swizzling;
1115
1116 attr->SourceAttribute = source_attr;
1117 if (swizzling)
1118 attr->SwizzleSelect = INPUTATTR_FACING;
1119 }
1120
1121
1122 static void
1123 genX(calculate_attr_overrides)(const struct brw_context *brw,
1124 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1125 uint32_t *point_sprite_enables,
1126 uint32_t *urb_entry_read_length,
1127 uint32_t *urb_entry_read_offset)
1128 {
1129 const struct gl_context *ctx = &brw->ctx;
1130
1131 /* _NEW_POINT */
1132 const struct gl_point_attrib *point = &ctx->Point;
1133
1134 /* BRW_NEW_FRAGMENT_PROGRAM */
1135 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1136
1137 /* BRW_NEW_FS_PROG_DATA */
1138 const struct brw_wm_prog_data *wm_prog_data =
1139 brw_wm_prog_data(brw->wm.base.prog_data);
1140 uint32_t max_source_attr = 0;
1141
1142 *point_sprite_enables = 0;
1143
1144 int first_slot =
1145 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1146 &brw->vue_map_geom_out);
1147
1148 /* Each URB offset packs two varying slots */
1149 assert(first_slot % 2 == 0);
1150 *urb_entry_read_offset = first_slot / 2;
1151
1152 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1153 * description of dw10 Point Sprite Texture Coordinate Enable:
1154 *
1155 * "This field must be programmed to zero when non-point primitives
1156 * are rendered."
1157 *
1158 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1159 * must be programmed to zero when rendering non-point primitives, but
1160 * the IvyBridge PRM does, and if we don't, we get garbage.
1161 *
1162 * This is not required on Haswell, as the hardware ignores this state
1163 * when drawing non-points -- although we do still need to be careful to
1164 * correctly set the attr overrides.
1165 *
1166 * _NEW_POLYGON
1167 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1168 */
1169 bool drawing_points = brw_is_drawing_points(brw);
1170
1171 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1172 int input_index = wm_prog_data->urb_setup[attr];
1173
1174 if (input_index < 0)
1175 continue;
1176
1177 /* _NEW_POINT */
1178 bool point_sprite = false;
1179 if (drawing_points) {
1180 if (point->PointSprite &&
1181 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1182 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1183 point_sprite = true;
1184 }
1185
1186 if (attr == VARYING_SLOT_PNTC)
1187 point_sprite = true;
1188
1189 if (point_sprite)
1190 *point_sprite_enables |= (1 << input_index);
1191 }
1192
1193 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1194 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1195
1196 if (!point_sprite) {
1197 genX(get_attr_override)(&attribute,
1198 &brw->vue_map_geom_out,
1199 *urb_entry_read_offset, attr,
1200 _mesa_vertex_program_two_side_enabled(ctx),
1201 &max_source_attr);
1202 }
1203
1204 /* The hardware can only do the overrides on 16 overrides at a
1205 * time, and the other up to 16 have to be lined up so that the
1206 * input index = the output index. We'll need to do some
1207 * tweaking to make sure that's the case.
1208 */
1209 if (input_index < 16)
1210 attr_overrides[input_index] = attribute;
1211 else
1212 assert(attribute.SourceAttribute == input_index);
1213 }
1214
1215 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1216 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1217 *
1218 * "This field should be set to the minimum length required to read the
1219 * maximum source attribute. The maximum source attribute is indicated
1220 * by the maximum value of the enabled Attribute # Source Attribute if
1221 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1222 * enable is not set.
1223 * read_length = ceiling((max_source_attr + 1) / 2)
1224 *
1225 * [errata] Corruption/Hang possible if length programmed larger than
1226 * recommended"
1227 *
1228 * Similar text exists for Ivy Bridge.
1229 */
1230 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1231 }
1232 #endif
1233
1234 /* ---------------------------------------------------------------------- */
1235
1236 #if GEN_GEN >= 8
1237 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1238 #elif GEN_GEN >= 6
1239 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1240 #else
1241 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1242 #endif
1243
1244 static inline void
1245 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1246 {
1247 struct gl_context *ctx = &brw->ctx;
1248
1249 /* _NEW_BUFFERS */
1250 struct intel_renderbuffer *depth_irb =
1251 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1252
1253 /* _NEW_DEPTH */
1254 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1255
1256 /* _NEW_STENCIL */
1257 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1258 const int b = stencil->_BackFace;
1259
1260 if (depth->Test && depth_irb) {
1261 ds->DepthTestEnable = true;
1262 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1263 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1264 }
1265
1266 if (brw->stencil_enabled) {
1267 ds->StencilTestEnable = true;
1268 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1269 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1270
1271 ds->StencilTestFunction =
1272 intel_translate_compare_func(stencil->Function[0]);
1273 ds->StencilFailOp =
1274 intel_translate_stencil_op(stencil->FailFunc[0]);
1275 ds->StencilPassDepthPassOp =
1276 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1277 ds->StencilPassDepthFailOp =
1278 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1279
1280 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1281
1282 if (brw->stencil_two_sided) {
1283 ds->DoubleSidedStencilEnable = true;
1284 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1285 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1286
1287 ds->BackfaceStencilTestFunction =
1288 intel_translate_compare_func(stencil->Function[b]);
1289 ds->BackfaceStencilFailOp =
1290 intel_translate_stencil_op(stencil->FailFunc[b]);
1291 ds->BackfaceStencilPassDepthPassOp =
1292 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1293 ds->BackfaceStencilPassDepthFailOp =
1294 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1295 }
1296
1297 #if GEN_GEN <= 5 || GEN_GEN >= 9
1298 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1299 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1300 #endif
1301 }
1302 }
1303
1304 #if GEN_GEN >= 6
1305 static void
1306 genX(upload_depth_stencil_state)(struct brw_context *brw)
1307 {
1308 #if GEN_GEN >= 8
1309 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1310 set_depth_stencil_bits(brw, &wmds);
1311 }
1312 #else
1313 uint32_t ds_offset;
1314 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1315 set_depth_stencil_bits(brw, &ds);
1316 }
1317
1318 /* Now upload a pointer to the indirect state */
1319 #if GEN_GEN == 6
1320 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1321 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1322 ptr.DEPTH_STENCIL_STATEChange = true;
1323 }
1324 #else
1325 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1326 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1327 }
1328 #endif
1329 #endif
1330 }
1331
1332 static const struct brw_tracked_state genX(depth_stencil_state) = {
1333 .dirty = {
1334 .mesa = _NEW_BUFFERS |
1335 _NEW_DEPTH |
1336 _NEW_STENCIL,
1337 .brw = BRW_NEW_BLORP |
1338 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1339 : BRW_NEW_BATCH |
1340 BRW_NEW_STATE_BASE_ADDRESS),
1341 },
1342 .emit = genX(upload_depth_stencil_state),
1343 };
1344 #endif
1345
1346 /* ---------------------------------------------------------------------- */
1347
1348 #if GEN_GEN <= 5
1349
1350 static void
1351 genX(upload_clip_state)(struct brw_context *brw)
1352 {
1353 struct gl_context *ctx = &brw->ctx;
1354
1355 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1356 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1357 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1358 clip.GRFRegisterCount =
1359 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1360 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1361 clip.SingleProgramFlow = true;
1362 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1363 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1364
1365 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1366 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1367 clip.DispatchGRFStartRegisterForURBData = 1;
1368 clip.VertexURBEntryReadOffset = 0;
1369
1370 /* BRW_NEW_URB_FENCE */
1371 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1372 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1373
1374 if (brw->urb.nr_clip_entries >= 10) {
1375 /* Half of the URB entries go to each thread, and it has to be an
1376 * even number.
1377 */
1378 assert(brw->urb.nr_clip_entries % 2 == 0);
1379
1380 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1381 * only 2 threads can output VUEs at a time.
1382 */
1383 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1384 } else {
1385 assert(brw->urb.nr_clip_entries >= 5);
1386 clip.MaximumNumberofThreads = 1 - 1;
1387 }
1388
1389 clip.VertexPositionSpace = VPOS_NDCSPACE;
1390 clip.UserClipFlagsMustClipEnable = true;
1391 clip.GuardbandClipTestEnable = true;
1392
1393 clip.ClipperViewportStatePointer =
1394 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1395
1396 clip.ScreenSpaceViewportXMin = -1;
1397 clip.ScreenSpaceViewportXMax = 1;
1398 clip.ScreenSpaceViewportYMin = -1;
1399 clip.ScreenSpaceViewportYMax = 1;
1400
1401 clip.ViewportXYClipTestEnable = true;
1402 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1403
1404 /* _NEW_TRANSFORM */
1405 if (GEN_GEN == 5 || GEN_IS_G4X) {
1406 clip.UserClipDistanceClipTestEnableBitmask =
1407 ctx->Transform.ClipPlanesEnabled;
1408 } else {
1409 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1410 * workaround.
1411 */
1412 clip.UserClipDistanceClipTestEnableBitmask =
1413 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1414 }
1415
1416 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1417 clip.APIMode = APIMODE_D3D;
1418 else
1419 clip.APIMode = APIMODE_OGL;
1420
1421 clip.GuardbandClipTestEnable = true;
1422
1423 clip.ClipMode = brw->clip.prog_data->clip_mode;
1424
1425 #if GEN_IS_G4X
1426 clip.NegativeWClipTestEnable = true;
1427 #endif
1428 }
1429 }
1430
1431 const struct brw_tracked_state genX(clip_state) = {
1432 .dirty = {
1433 .mesa = _NEW_TRANSFORM |
1434 _NEW_VIEWPORT,
1435 .brw = BRW_NEW_BATCH |
1436 BRW_NEW_BLORP |
1437 BRW_NEW_CLIP_PROG_DATA |
1438 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1439 BRW_NEW_PROGRAM_CACHE |
1440 BRW_NEW_URB_FENCE,
1441 },
1442 .emit = genX(upload_clip_state),
1443 };
1444
1445 #else
1446
1447 static void
1448 genX(upload_clip_state)(struct brw_context *brw)
1449 {
1450 struct gl_context *ctx = &brw->ctx;
1451
1452 /* _NEW_BUFFERS */
1453 struct gl_framebuffer *fb = ctx->DrawBuffer;
1454
1455 /* BRW_NEW_FS_PROG_DATA */
1456 struct brw_wm_prog_data *wm_prog_data =
1457 brw_wm_prog_data(brw->wm.base.prog_data);
1458
1459 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1460 clip.StatisticsEnable = !brw->meta_in_progress;
1461
1462 if (wm_prog_data->barycentric_interp_modes &
1463 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1464 clip.NonPerspectiveBarycentricEnable = true;
1465
1466 #if GEN_GEN >= 7
1467 clip.EarlyCullEnable = true;
1468 #endif
1469
1470 #if GEN_GEN == 7
1471 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1472
1473 if (ctx->Polygon.CullFlag) {
1474 switch (ctx->Polygon.CullFaceMode) {
1475 case GL_FRONT:
1476 clip.CullMode = CULLMODE_FRONT;
1477 break;
1478 case GL_BACK:
1479 clip.CullMode = CULLMODE_BACK;
1480 break;
1481 case GL_FRONT_AND_BACK:
1482 clip.CullMode = CULLMODE_BOTH;
1483 break;
1484 default:
1485 unreachable("Should not get here: invalid CullFlag");
1486 }
1487 } else {
1488 clip.CullMode = CULLMODE_NONE;
1489 }
1490 #endif
1491
1492 #if GEN_GEN < 8
1493 clip.UserClipDistanceCullTestEnableBitmask =
1494 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1495
1496 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1497 #endif
1498
1499 /* _NEW_LIGHT */
1500 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1501 clip.TriangleStripListProvokingVertexSelect = 0;
1502 clip.TriangleFanProvokingVertexSelect = 1;
1503 clip.LineStripListProvokingVertexSelect = 0;
1504 } else {
1505 clip.TriangleStripListProvokingVertexSelect = 2;
1506 clip.TriangleFanProvokingVertexSelect = 2;
1507 clip.LineStripListProvokingVertexSelect = 1;
1508 }
1509
1510 /* _NEW_TRANSFORM */
1511 clip.UserClipDistanceClipTestEnableBitmask =
1512 ctx->Transform.ClipPlanesEnabled;
1513
1514 #if GEN_GEN >= 8
1515 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1516 #endif
1517
1518 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1519 clip.APIMode = APIMODE_D3D;
1520 else
1521 clip.APIMode = APIMODE_OGL;
1522
1523 clip.GuardbandClipTestEnable = true;
1524
1525 /* BRW_NEW_VIEWPORT_COUNT */
1526 const unsigned viewport_count = brw->clip.viewport_count;
1527
1528 if (ctx->RasterDiscard) {
1529 clip.ClipMode = CLIPMODE_REJECT_ALL;
1530 #if GEN_GEN == 6
1531 perf_debug("Rasterizer discard is currently implemented via the "
1532 "clipper; having the GS not write primitives would "
1533 "likely be faster.\n");
1534 #endif
1535 } else {
1536 clip.ClipMode = CLIPMODE_NORMAL;
1537 }
1538
1539 clip.ClipEnable = true;
1540
1541 /* _NEW_POLYGON,
1542 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1543 */
1544 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1545 clip.ViewportXYClipTestEnable = true;
1546
1547 clip.MinimumPointWidth = 0.125;
1548 clip.MaximumPointWidth = 255.875;
1549 clip.MaximumVPIndex = viewport_count - 1;
1550 if (_mesa_geometric_layers(fb) == 0)
1551 clip.ForceZeroRTAIndexEnable = true;
1552 }
1553 }
1554
1555 static const struct brw_tracked_state genX(clip_state) = {
1556 .dirty = {
1557 .mesa = _NEW_BUFFERS |
1558 _NEW_LIGHT |
1559 _NEW_POLYGON |
1560 _NEW_TRANSFORM,
1561 .brw = BRW_NEW_BLORP |
1562 BRW_NEW_CONTEXT |
1563 BRW_NEW_FS_PROG_DATA |
1564 BRW_NEW_GS_PROG_DATA |
1565 BRW_NEW_VS_PROG_DATA |
1566 BRW_NEW_META_IN_PROGRESS |
1567 BRW_NEW_PRIMITIVE |
1568 BRW_NEW_RASTERIZER_DISCARD |
1569 BRW_NEW_TES_PROG_DATA |
1570 BRW_NEW_VIEWPORT_COUNT,
1571 },
1572 .emit = genX(upload_clip_state),
1573 };
1574 #endif
1575
1576 /* ---------------------------------------------------------------------- */
1577
1578 static void
1579 genX(upload_sf)(struct brw_context *brw)
1580 {
1581 struct gl_context *ctx = &brw->ctx;
1582 float point_size;
1583
1584 #if GEN_GEN <= 7
1585 /* _NEW_BUFFERS */
1586 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1587 UNUSED const bool multisampled_fbo =
1588 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1589 #endif
1590
1591 #if GEN_GEN < 6
1592 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1593
1594 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1595
1596 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1597 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1598 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1599 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1600 sf.DispatchGRFStartRegisterForURBData = 3;
1601 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1602 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1603 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1604 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1605
1606 /* STATE_PREFETCH command description describes this state as being
1607 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1608 * domain.
1609 */
1610 sf.SetupViewportStateOffset =
1611 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1612
1613 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1614
1615 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1616 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1617
1618 sf.MaximumNumberofThreads =
1619 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1620
1621 sf.SpritePointEnable = ctx->Point.PointSprite;
1622
1623 sf.DestinationOriginHorizontalBias = 0.5;
1624 sf.DestinationOriginVerticalBias = 0.5;
1625 #else
1626 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1627 sf.StatisticsEnable = true;
1628 #endif
1629 sf.ViewportTransformEnable = true;
1630
1631 #if GEN_GEN == 7
1632 /* _NEW_BUFFERS */
1633 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1634 #endif
1635
1636 #if GEN_GEN <= 7
1637 /* _NEW_POLYGON */
1638 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1639 #if GEN_GEN >= 6
1640 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1641 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1642 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1643
1644 switch (ctx->Polygon.FrontMode) {
1645 case GL_FILL:
1646 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1647 break;
1648 case GL_LINE:
1649 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1650 break;
1651 case GL_POINT:
1652 sf.FrontFaceFillMode = FILL_MODE_POINT;
1653 break;
1654 default:
1655 unreachable("not reached");
1656 }
1657
1658 switch (ctx->Polygon.BackMode) {
1659 case GL_FILL:
1660 sf.BackFaceFillMode = FILL_MODE_SOLID;
1661 break;
1662 case GL_LINE:
1663 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1664 break;
1665 case GL_POINT:
1666 sf.BackFaceFillMode = FILL_MODE_POINT;
1667 break;
1668 default:
1669 unreachable("not reached");
1670 }
1671
1672 if (multisampled_fbo && ctx->Multisample.Enabled)
1673 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1674
1675 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1676 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1677 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1678 #endif
1679
1680 sf.ScissorRectangleEnable = true;
1681
1682 if (ctx->Polygon.CullFlag) {
1683 switch (ctx->Polygon.CullFaceMode) {
1684 case GL_FRONT:
1685 sf.CullMode = CULLMODE_FRONT;
1686 break;
1687 case GL_BACK:
1688 sf.CullMode = CULLMODE_BACK;
1689 break;
1690 case GL_FRONT_AND_BACK:
1691 sf.CullMode = CULLMODE_BOTH;
1692 break;
1693 default:
1694 unreachable("not reached");
1695 }
1696 } else {
1697 sf.CullMode = CULLMODE_NONE;
1698 }
1699
1700 #if GEN_IS_HASWELL
1701 sf.LineStippleEnable = ctx->Line.StippleFlag;
1702 #endif
1703
1704 #endif
1705
1706 /* _NEW_LINE */
1707 #if GEN_GEN == 8
1708 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1709
1710 if (devinfo->is_cherryview)
1711 sf.CHVLineWidth = brw_get_line_width(brw);
1712 else
1713 sf.LineWidth = brw_get_line_width(brw);
1714 #else
1715 sf.LineWidth = brw_get_line_width(brw);
1716 #endif
1717
1718 if (ctx->Line.SmoothFlag) {
1719 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1720 #if GEN_GEN <= 7
1721 sf.AntiAliasingEnable = true;
1722 #endif
1723 }
1724
1725 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1726 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1727 /* Clamp to the hardware limits */
1728 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1729
1730 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1731 if (use_state_point_size(brw))
1732 sf.PointWidthSource = State;
1733
1734 #if GEN_GEN >= 8
1735 /* _NEW_POINT | _NEW_MULTISAMPLE */
1736 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1737 !ctx->Point.PointSprite)
1738 sf.SmoothPointEnable = true;
1739 #endif
1740
1741 #if GEN_GEN == 10
1742 /* _NEW_BUFFERS
1743 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1744 */
1745 const bool multisampled_fbo =
1746 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1747 if (multisampled_fbo)
1748 sf.SmoothPointEnable = false;
1749 #endif
1750
1751 #if GEN_IS_G4X || GEN_GEN >= 5
1752 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1753 #endif
1754
1755 /* _NEW_LIGHT */
1756 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1757 sf.TriangleStripListProvokingVertexSelect = 2;
1758 sf.TriangleFanProvokingVertexSelect = 2;
1759 sf.LineStripListProvokingVertexSelect = 1;
1760 } else {
1761 sf.TriangleFanProvokingVertexSelect = 1;
1762 }
1763
1764 #if GEN_GEN == 6
1765 /* BRW_NEW_FS_PROG_DATA */
1766 const struct brw_wm_prog_data *wm_prog_data =
1767 brw_wm_prog_data(brw->wm.base.prog_data);
1768
1769 sf.AttributeSwizzleEnable = true;
1770 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1771
1772 /*
1773 * Window coordinates in an FBO are inverted, which means point
1774 * sprite origin must be inverted, too.
1775 */
1776 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1777 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1778 } else {
1779 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1780 }
1781
1782 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1783 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1784 */
1785 uint32_t urb_entry_read_length;
1786 uint32_t urb_entry_read_offset;
1787 uint32_t point_sprite_enables;
1788 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1789 &urb_entry_read_length,
1790 &urb_entry_read_offset);
1791 sf.VertexURBEntryReadLength = urb_entry_read_length;
1792 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1793 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1794 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1795 #endif
1796 }
1797 }
1798
1799 static const struct brw_tracked_state genX(sf_state) = {
1800 .dirty = {
1801 .mesa = _NEW_LIGHT |
1802 _NEW_LINE |
1803 _NEW_POINT |
1804 _NEW_PROGRAM |
1805 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1806 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1807 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1808 .brw = BRW_NEW_BLORP |
1809 BRW_NEW_VUE_MAP_GEOM_OUT |
1810 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1811 BRW_NEW_PROGRAM_CACHE |
1812 BRW_NEW_SF_PROG_DATA |
1813 BRW_NEW_SF_VP |
1814 BRW_NEW_URB_FENCE
1815 : 0) |
1816 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1817 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1818 BRW_NEW_GS_PROG_DATA |
1819 BRW_NEW_PRIMITIVE |
1820 BRW_NEW_TES_PROG_DATA
1821 : 0) |
1822 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1823 BRW_NEW_FRAGMENT_PROGRAM
1824 : 0),
1825 },
1826 .emit = genX(upload_sf),
1827 };
1828
1829 /* ---------------------------------------------------------------------- */
1830
1831 static bool
1832 brw_color_buffer_write_enabled(struct brw_context *brw)
1833 {
1834 struct gl_context *ctx = &brw->ctx;
1835 /* BRW_NEW_FRAGMENT_PROGRAM */
1836 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1837 unsigned i;
1838
1839 /* _NEW_BUFFERS */
1840 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1841 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1842 uint64_t outputs_written = fp->info.outputs_written;
1843
1844 /* _NEW_COLOR */
1845 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1846 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1847 GET_COLORMASK(ctx->Color.ColorMask, i)) {
1848 return true;
1849 }
1850 }
1851
1852 return false;
1853 }
1854
1855 static void
1856 genX(upload_wm)(struct brw_context *brw)
1857 {
1858 struct gl_context *ctx = &brw->ctx;
1859
1860 /* BRW_NEW_FS_PROG_DATA */
1861 const struct brw_wm_prog_data *wm_prog_data =
1862 brw_wm_prog_data(brw->wm.base.prog_data);
1863
1864 UNUSED bool writes_depth =
1865 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1866 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1867 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1868
1869 #if GEN_GEN == 6
1870 /* We can't fold this into gen6_upload_wm_push_constants(), because
1871 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1872 * (3DSTATE_CONSTANT_PS [DevSNB]):
1873 *
1874 * "[DevSNB]: This packet must be followed by WM_STATE."
1875 */
1876 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1877 if (wm_prog_data->base.nr_params != 0) {
1878 wmcp.Buffer0Valid = true;
1879 /* Pointer to the WM constant buffer. Covered by the set of
1880 * state flags from gen6_upload_wm_push_constants.
1881 */
1882 wmcp.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
1883 wmcp.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1884 }
1885 }
1886 #endif
1887
1888 #if GEN_GEN >= 6
1889 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1890 #else
1891 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1892 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1893 #endif
1894
1895 #if GEN_GEN <= 6
1896 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1897 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1898 wm._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1899 #endif
1900
1901 #if GEN_GEN == 4
1902 /* On gen4, we only have one shader kernel */
1903 if (brw_wm_state_has_ksp(wm, 0)) {
1904 assert(brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0) == 0);
1905 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1906 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1907 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1908 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1909 }
1910 #elif GEN_GEN == 5
1911 /* On gen5, we have multiple shader kernels but only one GRF start
1912 * register for all kernels
1913 */
1914 wm.KernelStartPointer0 = stage_state->prog_offset +
1915 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1916 wm.KernelStartPointer1 = stage_state->prog_offset +
1917 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1918 wm.KernelStartPointer2 = stage_state->prog_offset +
1919 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1920
1921 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1922 wm.GRFRegisterCount1 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 1);
1923 wm.GRFRegisterCount2 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 2);
1924
1925 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1926 wm_prog_data->base.dispatch_grf_start_reg;
1927
1928 /* Dispatch GRF Start should be the same for all shaders on gen5 */
1929 if (brw_wm_state_has_ksp(wm, 1)) {
1930 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1931 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1));
1932 }
1933 if (brw_wm_state_has_ksp(wm, 2)) {
1934 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1935 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2));
1936 }
1937 #elif GEN_GEN == 6
1938 /* On gen6, we have multiple shader kernels and we no longer specify a
1939 * register count for each one.
1940 */
1941 wm.KernelStartPointer0 = stage_state->prog_offset +
1942 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1943 wm.KernelStartPointer1 = stage_state->prog_offset +
1944 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1945 wm.KernelStartPointer2 = stage_state->prog_offset +
1946 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1947
1948 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1949 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1950 wm.DispatchGRFStartRegisterForConstantSetupData1 =
1951 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1);
1952 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1953 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2);
1954 #endif
1955
1956 #if GEN_GEN <= 5
1957 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1958 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1959 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1960 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1961 wm.SetupURBEntryReadOffset = 0;
1962 wm.EarlyDepthTestEnable = true;
1963 #endif
1964
1965 #if GEN_GEN >= 6
1966 wm.LineAntialiasingRegionWidth = _10pixels;
1967 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1968
1969 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1970 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1971 #else
1972 if (stage_state->sampler_count)
1973 wm.SamplerStatePointer =
1974 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1975
1976 wm.LineAntialiasingRegionWidth = _05pixels;
1977 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1978
1979 /* _NEW_POLYGON */
1980 if (ctx->Polygon.OffsetFill) {
1981 wm.GlobalDepthOffsetEnable = true;
1982 /* Something weird going on with legacy_global_depth_bias,
1983 * offset_constant, scaling and MRD. This value passes glean
1984 * but gives some odd results elsewere (eg. the
1985 * quad-offset-units test).
1986 */
1987 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1988
1989 /* This is the only value that passes glean:
1990 */
1991 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1992 }
1993
1994 wm.DepthCoefficientURBReadOffset = 1;
1995 #endif
1996
1997 /* BRW_NEW_STATS_WM */
1998 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1999
2000 #if GEN_GEN < 7
2001 if (wm_prog_data->base.use_alt_mode)
2002 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2003
2004 wm.SamplerCount = GEN_GEN == 5 ?
2005 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
2006
2007 wm.BindingTableEntryCount =
2008 wm_prog_data->base.binding_table.size_bytes / 4;
2009 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
2010
2011 #if GEN_GEN == 6
2012 wm.DualSourceBlendEnable =
2013 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
2014 ctx->Color.Blend[0]._UsesDualSrc;
2015 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2016 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2017
2018 /* From the SNB PRM, volume 2 part 1, page 281:
2019 * "If the PS kernel does not need the Position XY Offsets
2020 * to compute a Position XY value, then this field should be
2021 * programmed to POSOFFSET_NONE."
2022 *
2023 * "SW Recommendation: If the PS kernel needs the Position Offsets
2024 * to compute a Position XY value, this field should match Position
2025 * ZW Interpolation Mode to ensure a consistent position.xyzw
2026 * computation."
2027 * We only require XY sample offsets. So, this recommendation doesn't
2028 * look useful at the moment. We might need this in future.
2029 */
2030 if (wm_prog_data->uses_pos_offset)
2031 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
2032 else
2033 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
2034 #endif
2035
2036 if (wm_prog_data->base.total_scratch) {
2037 wm.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
2038 wm.PerThreadScratchSpace =
2039 ffs(stage_state->per_thread_scratch) - 11;
2040 }
2041
2042 wm.PixelShaderComputedDepth = writes_depth;
2043 #endif
2044
2045 /* _NEW_LINE */
2046 wm.LineStippleEnable = ctx->Line.StippleFlag;
2047
2048 /* _NEW_POLYGON */
2049 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
2050
2051 #if GEN_GEN < 8
2052
2053 #if GEN_GEN >= 6
2054 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2055
2056 /* _NEW_BUFFERS */
2057 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
2058
2059 if (multisampled_fbo) {
2060 /* _NEW_MULTISAMPLE */
2061 if (ctx->Multisample.Enabled)
2062 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
2063 else
2064 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2065
2066 if (wm_prog_data->persample_dispatch)
2067 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2068 else
2069 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
2070 } else {
2071 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2072 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2073 }
2074 #endif
2075 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2076 if (wm_prog_data->uses_kill ||
2077 _mesa_is_alpha_test_enabled(ctx) ||
2078 _mesa_is_alpha_to_coverage_enabled(ctx) ||
2079 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
2080 wm.PixelShaderKillsPixel = true;
2081 }
2082
2083 /* _NEW_BUFFERS | _NEW_COLOR */
2084 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
2085 wm.PixelShaderKillsPixel ||
2086 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
2087 wm.ThreadDispatchEnable = true;
2088 }
2089
2090 #if GEN_GEN >= 7
2091 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2092 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2093 #endif
2094
2095 /* The "UAV access enable" bits are unnecessary on HSW because they only
2096 * seem to have an effect on the HW-assisted coherency mechanism which we
2097 * don't need, and the rasterization-related UAV_ONLY flag and the
2098 * DISPATCH_ENABLE bit can be set independently from it.
2099 * C.f. gen8_upload_ps_extra().
2100 *
2101 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
2102 * _NEW_COLOR
2103 */
2104 #if GEN_IS_HASWELL
2105 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
2106 wm_prog_data->has_side_effects)
2107 wm.PSUAVonly = ON;
2108 #endif
2109 #endif
2110
2111 #if GEN_GEN >= 7
2112 /* BRW_NEW_FS_PROG_DATA */
2113 if (wm_prog_data->early_fragment_tests)
2114 wm.EarlyDepthStencilControl = EDSC_PREPS;
2115 else if (wm_prog_data->has_side_effects)
2116 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2117 #endif
2118 }
2119
2120 #if GEN_GEN <= 5
2121 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
2122 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
2123 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
2124 }
2125
2126 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2127 }
2128 #endif
2129 }
2130
2131 static const struct brw_tracked_state genX(wm_state) = {
2132 .dirty = {
2133 .mesa = _NEW_LINE |
2134 _NEW_POLYGON |
2135 (GEN_GEN < 8 ? _NEW_BUFFERS |
2136 _NEW_COLOR :
2137 0) |
2138 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2139 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2140 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2141 .brw = BRW_NEW_BLORP |
2142 BRW_NEW_FS_PROG_DATA |
2143 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2144 BRW_NEW_FRAGMENT_PROGRAM |
2145 BRW_NEW_PROGRAM_CACHE |
2146 BRW_NEW_SAMPLER_STATE_TABLE |
2147 BRW_NEW_STATS_WM
2148 : 0) |
2149 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2150 },
2151 .emit = genX(upload_wm),
2152 };
2153
2154 /* ---------------------------------------------------------------------- */
2155
2156 /* We restrict scratch buffers to the bottom 32 bits of the address space
2157 * by using rw_32_bo().
2158 *
2159 * General State Base Address is a bit broken. If the address + size as
2160 * seen by STATE_BASE_ADDRESS overflows 48 bits, the GPU appears to treat
2161 * all accesses to the buffer as being out of bounds and returns zero.
2162 */
2163
2164 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2165 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2166 pkt.SamplerCount = \
2167 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2168 pkt.BindingTableEntryCount = \
2169 stage_prog_data->binding_table.size_bytes / 4; \
2170 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2171 \
2172 if (stage_prog_data->total_scratch) { \
2173 pkt.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0); \
2174 pkt.PerThreadScratchSpace = \
2175 ffs(stage_state->per_thread_scratch) - 11; \
2176 } \
2177 \
2178 pkt.DispatchGRFStartRegisterForURBData = \
2179 stage_prog_data->dispatch_grf_start_reg; \
2180 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2181 pkt.prefix##URBEntryReadOffset = 0; \
2182 \
2183 pkt.StatisticsEnable = true; \
2184 pkt.Enable = true;
2185
2186 static void
2187 genX(upload_vs_state)(struct brw_context *brw)
2188 {
2189 UNUSED struct gl_context *ctx = &brw->ctx;
2190 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2191 struct brw_stage_state *stage_state = &brw->vs.base;
2192
2193 /* BRW_NEW_VS_PROG_DATA */
2194 const struct brw_vue_prog_data *vue_prog_data =
2195 brw_vue_prog_data(brw->vs.base.prog_data);
2196 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2197
2198 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2199 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2200 assert(GEN_GEN < 11 ||
2201 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
2202
2203 #if GEN_GEN == 6
2204 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2205 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2206 *
2207 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2208 * command that causes the VS Function Enable to toggle. Pipeline
2209 * flush can be executed by sending a PIPE_CONTROL command with CS
2210 * stall bit set and a post sync operation.
2211 *
2212 * We've already done such a flush at the start of state upload, so we
2213 * don't need to do another one here.
2214 */
2215 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2216 if (stage_state->push_const_size != 0) {
2217 cvs.Buffer0Valid = true;
2218 cvs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2219 cvs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2220 }
2221 }
2222 #endif
2223
2224 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2225 gen7_emit_vs_workaround_flush(brw);
2226
2227 #if GEN_GEN >= 6
2228 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2229 #else
2230 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2231 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2232 #endif
2233 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2234
2235 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2236
2237 #if GEN_GEN < 6
2238 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2239 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2240 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2241
2242 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2243 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2244
2245 vs.MaximumNumberofThreads =
2246 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2247
2248 vs.StatisticsEnable = false;
2249 vs.SamplerStatePointer =
2250 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2251 #endif
2252
2253 #if GEN_GEN == 5
2254 /* Force single program flow on Ironlake. We cannot reliably get
2255 * all applications working without it. See:
2256 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2257 *
2258 * The most notable and reliably failing application is the Humus
2259 * demo "CelShading"
2260 */
2261 vs.SingleProgramFlow = true;
2262 vs.SamplerCount = 0; /* hardware requirement */
2263 #endif
2264
2265 #if GEN_GEN >= 8
2266 vs.SIMD8DispatchEnable =
2267 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2268
2269 vs.UserClipDistanceCullTestEnableBitmask =
2270 vue_prog_data->cull_distance_mask;
2271 #endif
2272 }
2273
2274 #if GEN_GEN == 6
2275 /* Based on my reading of the simulator, the VS constants don't get
2276 * pulled into the VS FF unit until an appropriate pipeline flush
2277 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2278 * references to them into a little FIFO. The flushes are common,
2279 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2280 * the primitive to use the wrong constants. Then the FIFO
2281 * containing the constant setup gets added to again on the next
2282 * constants change, and eventually when a flush does happen the
2283 * unit is overwhelmed by constant changes and dies.
2284 *
2285 * To avoid this, send a PIPE_CONTROL down the line that will
2286 * update the unit immediately loading the constants. The flush
2287 * type bits here were those set by the STATE_BASE_ADDRESS whose
2288 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2289 * bug reports that led to this workaround, and may be more than
2290 * what is strictly required to avoid the issue.
2291 */
2292 brw_emit_pipe_control_flush(brw,
2293 PIPE_CONTROL_DEPTH_STALL |
2294 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2295 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2296 #endif
2297 }
2298
2299 static const struct brw_tracked_state genX(vs_state) = {
2300 .dirty = {
2301 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2302 .brw = BRW_NEW_BATCH |
2303 BRW_NEW_BLORP |
2304 BRW_NEW_CONTEXT |
2305 BRW_NEW_VS_PROG_DATA |
2306 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2307 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2308 BRW_NEW_PROGRAM_CACHE |
2309 BRW_NEW_SAMPLER_STATE_TABLE |
2310 BRW_NEW_URB_FENCE
2311 : 0),
2312 },
2313 .emit = genX(upload_vs_state),
2314 };
2315
2316 /* ---------------------------------------------------------------------- */
2317
2318 static void
2319 genX(upload_cc_viewport)(struct brw_context *brw)
2320 {
2321 struct gl_context *ctx = &brw->ctx;
2322
2323 /* BRW_NEW_VIEWPORT_COUNT */
2324 const unsigned viewport_count = brw->clip.viewport_count;
2325
2326 struct GENX(CC_VIEWPORT) ccv;
2327 uint32_t cc_vp_offset;
2328 uint32_t *cc_map =
2329 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2330 32, &cc_vp_offset);
2331
2332 for (unsigned i = 0; i < viewport_count; i++) {
2333 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2334 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2335 if (ctx->Transform.DepthClamp) {
2336 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2337 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2338 } else {
2339 ccv.MinimumDepth = 0.0;
2340 ccv.MaximumDepth = 1.0;
2341 }
2342 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2343 cc_map += GENX(CC_VIEWPORT_length);
2344 }
2345
2346 #if GEN_GEN >= 7
2347 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2348 ptr.CCViewportPointer = cc_vp_offset;
2349 }
2350 #elif GEN_GEN == 6
2351 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2352 vp.CCViewportStateChange = 1;
2353 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2354 }
2355 #else
2356 brw->cc.vp_offset = cc_vp_offset;
2357 ctx->NewDriverState |= BRW_NEW_CC_VP;
2358 #endif
2359 }
2360
2361 const struct brw_tracked_state genX(cc_vp) = {
2362 .dirty = {
2363 .mesa = _NEW_TRANSFORM |
2364 _NEW_VIEWPORT,
2365 .brw = BRW_NEW_BATCH |
2366 BRW_NEW_BLORP |
2367 BRW_NEW_VIEWPORT_COUNT,
2368 },
2369 .emit = genX(upload_cc_viewport)
2370 };
2371
2372 /* ---------------------------------------------------------------------- */
2373
2374 static void
2375 set_scissor_bits(const struct gl_context *ctx, int i,
2376 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2377 struct GENX(SCISSOR_RECT) *sc)
2378 {
2379 int bbox[4];
2380
2381 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2382 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2383 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2384 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2385 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2386
2387 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2388 /* If the scissor was out of bounds and got clamped to 0 width/height
2389 * at the bounds, the subtraction of 1 from maximums could produce a
2390 * negative number and thus not clip anything. Instead, just provide
2391 * a min > max scissor inside the bounds, which produces the expected
2392 * no rendering.
2393 */
2394 sc->ScissorRectangleXMin = 1;
2395 sc->ScissorRectangleXMax = 0;
2396 sc->ScissorRectangleYMin = 1;
2397 sc->ScissorRectangleYMax = 0;
2398 } else if (render_to_fbo) {
2399 /* texmemory: Y=0=bottom */
2400 sc->ScissorRectangleXMin = bbox[0];
2401 sc->ScissorRectangleXMax = bbox[1] - 1;
2402 sc->ScissorRectangleYMin = bbox[2];
2403 sc->ScissorRectangleYMax = bbox[3] - 1;
2404 } else {
2405 /* memory: Y=0=top */
2406 sc->ScissorRectangleXMin = bbox[0];
2407 sc->ScissorRectangleXMax = bbox[1] - 1;
2408 sc->ScissorRectangleYMin = fb_height - bbox[3];
2409 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2410 }
2411 }
2412
2413 #if GEN_GEN >= 6
2414 static void
2415 genX(upload_scissor_state)(struct brw_context *brw)
2416 {
2417 struct gl_context *ctx = &brw->ctx;
2418 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2419 struct GENX(SCISSOR_RECT) scissor;
2420 uint32_t scissor_state_offset;
2421 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2422 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2423 uint32_t *scissor_map;
2424
2425 /* BRW_NEW_VIEWPORT_COUNT */
2426 const unsigned viewport_count = brw->clip.viewport_count;
2427
2428 scissor_map = brw_state_batch(
2429 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2430 32, &scissor_state_offset);
2431
2432 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2433
2434 /* The scissor only needs to handle the intersection of drawable and
2435 * scissor rect. Clipping to the boundaries of static shared buffers
2436 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2437 *
2438 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2439 * inclusive but max is exclusive.
2440 */
2441 for (unsigned i = 0; i < viewport_count; i++) {
2442 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2443 GENX(SCISSOR_RECT_pack)(
2444 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2445 }
2446
2447 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2448 ptr.ScissorRectPointer = scissor_state_offset;
2449 }
2450 }
2451
2452 static const struct brw_tracked_state genX(scissor_state) = {
2453 .dirty = {
2454 .mesa = _NEW_BUFFERS |
2455 _NEW_SCISSOR |
2456 _NEW_VIEWPORT,
2457 .brw = BRW_NEW_BATCH |
2458 BRW_NEW_BLORP |
2459 BRW_NEW_VIEWPORT_COUNT,
2460 },
2461 .emit = genX(upload_scissor_state),
2462 };
2463 #endif
2464
2465 /* ---------------------------------------------------------------------- */
2466
2467 static void
2468 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2469 float m00, float m11, float m30, float m31,
2470 float *xmin, float *xmax,
2471 float *ymin, float *ymax)
2472 {
2473 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2474 * Strips and Fans documentation:
2475 *
2476 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2477 * fixed-point "guardband" range supported by the rasterization hardware"
2478 *
2479 * and
2480 *
2481 * "In almost all circumstances, if an object’s vertices are actually
2482 * modified by this clamping (i.e., had X or Y coordinates outside of
2483 * the guardband extent the rendered object will not match the intended
2484 * result. Therefore software should take steps to ensure that this does
2485 * not happen - e.g., by clipping objects such that they do not exceed
2486 * these limits after the Drawing Rectangle is applied."
2487 *
2488 * I believe the fundamental restriction is that the rasterizer (in
2489 * the SF/WM stages) have a limit on the number of pixels that can be
2490 * rasterized. We need to ensure any coordinates beyond the rasterizer
2491 * limit are handled by the clipper. So effectively that limit becomes
2492 * the clipper's guardband size.
2493 *
2494 * It goes on to say:
2495 *
2496 * "In addition, in order to be correctly rendered, objects must have a
2497 * screenspace bounding box not exceeding 8K in the X or Y direction.
2498 * This additional restriction must also be comprehended by software,
2499 * i.e., enforced by use of clipping."
2500 *
2501 * This makes no sense. Gen7+ hardware supports 16K render targets,
2502 * and you definitely need to be able to draw polygons that fill the
2503 * surface. Our assumption is that the rasterizer was limited to 8K
2504 * on Sandybridge, which only supports 8K surfaces, and it was actually
2505 * increased to 16K on Ivybridge and later.
2506 *
2507 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2508 */
2509 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2510
2511 if (m00 != 0 && m11 != 0) {
2512 /* First, we compute the screen-space render area */
2513 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2514 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2515 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2516 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2517
2518 /* We want the guardband to be centered on that */
2519 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2520 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2521 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2522 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2523
2524 /* Now we need it in native device coordinates */
2525 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2526 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2527 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2528 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2529
2530 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2531 * flipped upside-down. X should be fine though.
2532 */
2533 assert(ndc_gb_xmin <= ndc_gb_xmax);
2534 *xmin = ndc_gb_xmin;
2535 *xmax = ndc_gb_xmax;
2536 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2537 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2538 } else {
2539 /* The viewport scales to 0, so nothing will be rendered. */
2540 *xmin = 0.0f;
2541 *xmax = 0.0f;
2542 *ymin = 0.0f;
2543 *ymax = 0.0f;
2544 }
2545 }
2546
2547 static void
2548 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2549 {
2550 struct gl_context *ctx = &brw->ctx;
2551 float y_scale, y_bias;
2552
2553 /* BRW_NEW_VIEWPORT_COUNT */
2554 const unsigned viewport_count = brw->clip.viewport_count;
2555
2556 /* _NEW_BUFFERS */
2557 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2558 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2559 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2560
2561 #if GEN_GEN >= 7
2562 #define clv sfv
2563 struct GENX(SF_CLIP_VIEWPORT) sfv;
2564 uint32_t sf_clip_vp_offset;
2565 uint32_t *sf_clip_map =
2566 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2567 64, &sf_clip_vp_offset);
2568 #else
2569 struct GENX(SF_VIEWPORT) sfv;
2570 struct GENX(CLIP_VIEWPORT) clv;
2571 uint32_t sf_vp_offset, clip_vp_offset;
2572 uint32_t *sf_map =
2573 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2574 32, &sf_vp_offset);
2575 uint32_t *clip_map =
2576 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2577 32, &clip_vp_offset);
2578 #endif
2579
2580 /* _NEW_BUFFERS */
2581 if (render_to_fbo) {
2582 y_scale = 1.0;
2583 y_bias = 0;
2584 } else {
2585 y_scale = -1.0;
2586 y_bias = (float)fb_height;
2587 }
2588
2589 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2590 /* _NEW_VIEWPORT: Guardband Clipping */
2591 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2592 _mesa_get_viewport_xform(ctx, i, scale, translate);
2593
2594 sfv.ViewportMatrixElementm00 = scale[0];
2595 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2596 sfv.ViewportMatrixElementm22 = scale[2],
2597 sfv.ViewportMatrixElementm30 = translate[0],
2598 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2599 sfv.ViewportMatrixElementm32 = translate[2],
2600 brw_calculate_guardband_size(fb_width, fb_height,
2601 sfv.ViewportMatrixElementm00,
2602 sfv.ViewportMatrixElementm11,
2603 sfv.ViewportMatrixElementm30,
2604 sfv.ViewportMatrixElementm31,
2605 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2606
2607
2608 clv.XMinClipGuardband = gb_xmin;
2609 clv.XMaxClipGuardband = gb_xmax;
2610 clv.YMinClipGuardband = gb_ymin;
2611 clv.YMaxClipGuardband = gb_ymax;
2612
2613 #if GEN_GEN < 6
2614 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2615 &sfv.ScissorRectangle);
2616 #elif GEN_GEN >= 8
2617 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2618 * The hardware will take the intersection of the drawing rectangle,
2619 * scissor rectangle, and the viewport extents. However, emitting
2620 * 3DSTATE_DRAWING_RECTANGLE is expensive since it requires a full
2621 * pipeline stall so we're better off just being a little more clever
2622 * with our viewport so we can emit it once at context creation time.
2623 */
2624 const float viewport_Xmin = MAX2(ctx->ViewportArray[i].X, 0);
2625 const float viewport_Ymin = MAX2(ctx->ViewportArray[i].Y, 0);
2626 const float viewport_Xmax =
2627 MIN2(ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width, fb_width);
2628 const float viewport_Ymax =
2629 MIN2(ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height, fb_height);
2630
2631 if (render_to_fbo) {
2632 sfv.XMinViewPort = viewport_Xmin;
2633 sfv.XMaxViewPort = viewport_Xmax - 1;
2634 sfv.YMinViewPort = viewport_Ymin;
2635 sfv.YMaxViewPort = viewport_Ymax - 1;
2636 } else {
2637 sfv.XMinViewPort = viewport_Xmin;
2638 sfv.XMaxViewPort = viewport_Xmax - 1;
2639 sfv.YMinViewPort = fb_height - viewport_Ymax;
2640 sfv.YMaxViewPort = fb_height - viewport_Ymin - 1;
2641 }
2642 #endif
2643
2644 #if GEN_GEN >= 7
2645 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2646 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2647 #else
2648 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2649 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2650 sf_map += GENX(SF_VIEWPORT_length);
2651 clip_map += GENX(CLIP_VIEWPORT_length);
2652 #endif
2653 }
2654
2655 #if GEN_GEN >= 7
2656 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2657 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2658 }
2659 #elif GEN_GEN == 6
2660 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2661 vp.SFViewportStateChange = 1;
2662 vp.CLIPViewportStateChange = 1;
2663 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2664 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2665 }
2666 #else
2667 brw->sf.vp_offset = sf_vp_offset;
2668 brw->clip.vp_offset = clip_vp_offset;
2669 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2670 #endif
2671 }
2672
2673 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2674 .dirty = {
2675 .mesa = _NEW_BUFFERS |
2676 _NEW_VIEWPORT |
2677 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2678 .brw = BRW_NEW_BATCH |
2679 BRW_NEW_BLORP |
2680 BRW_NEW_VIEWPORT_COUNT,
2681 },
2682 .emit = genX(upload_sf_clip_viewport),
2683 };
2684
2685 /* ---------------------------------------------------------------------- */
2686
2687 static void
2688 genX(upload_gs_state)(struct brw_context *brw)
2689 {
2690 UNUSED struct gl_context *ctx = &brw->ctx;
2691 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2692 const struct brw_stage_state *stage_state = &brw->gs.base;
2693 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2694 /* BRW_NEW_GEOMETRY_PROGRAM */
2695 bool active = GEN_GEN >= 6 && gs_prog;
2696
2697 /* BRW_NEW_GS_PROG_DATA */
2698 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2699 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2700 brw_vue_prog_data(stage_prog_data);
2701 #if GEN_GEN >= 7
2702 const struct brw_gs_prog_data *gs_prog_data =
2703 brw_gs_prog_data(stage_prog_data);
2704 #endif
2705
2706 #if GEN_GEN == 6
2707 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2708 if (active && stage_state->push_const_size != 0) {
2709 cgs.Buffer0Valid = true;
2710 cgs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2711 cgs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2712 }
2713 }
2714 #endif
2715
2716 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2717 /**
2718 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2719 * Geometry > Geometry Shader > State:
2720 *
2721 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2722 * whole fixed function pipeline when the GS enable changes value in
2723 * the 3DSTATE_GS."
2724 *
2725 * The hardware architects have clarified that in this context "flush the
2726 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2727 * Stall" bit set.
2728 */
2729 if (devinfo->gt == 2 && brw->gs.enabled != active)
2730 gen7_emit_cs_stall_flush(brw);
2731 #endif
2732
2733 #if GEN_GEN >= 6
2734 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2735 #else
2736 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2737 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2738 #endif
2739
2740 #if GEN_GEN >= 6
2741 if (active) {
2742 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2743
2744 #if GEN_GEN >= 7
2745 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2746 gs.OutputTopology = gs_prog_data->output_topology;
2747 gs.ControlDataHeaderSize =
2748 gs_prog_data->control_data_header_size_hwords;
2749
2750 gs.InstanceControl = gs_prog_data->invocations - 1;
2751 gs.DispatchMode = vue_prog_data->dispatch_mode;
2752
2753 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2754
2755 gs.ControlDataFormat = gs_prog_data->control_data_format;
2756 #endif
2757
2758 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2759 * Ivy Bridge and Haswell.
2760 *
2761 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2762 * strip to be delivered to the geometry shader in an order that does
2763 * not strictly follow the OpenGL spec, but preserves triangle
2764 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2765 * the geometry shader sees triangles:
2766 *
2767 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2768 *
2769 * (Clearing the bit is even worse, because it fails to preserve
2770 * orientation).
2771 *
2772 * Triangle strips with adjacency always ordered in a way that preserves
2773 * triangle orientation but does not strictly follow the OpenGL spec,
2774 * regardless of the setting of this bit.
2775 *
2776 * On Haswell, both triangle strips and triangle strips with adjacency
2777 * are always ordered in a way that preserves triangle orientation.
2778 * Setting this bit causes the ordering to strictly follow the OpenGL
2779 * spec.
2780 *
2781 * So in either case we want to set the bit. Unfortunately on Ivy
2782 * Bridge this will get the order close to correct but not perfect.
2783 */
2784 gs.ReorderMode = TRAILING;
2785 gs.MaximumNumberofThreads =
2786 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2787 : (devinfo->max_gs_threads - 1);
2788
2789 #if GEN_GEN < 7
2790 gs.SOStatisticsEnable = true;
2791 if (gs_prog->info.has_transform_feedback_varyings)
2792 gs.SVBIPayloadEnable = true;
2793
2794 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2795 * was previously done for gen6.
2796 *
2797 * TODO: test with both disabled to see if the HW is behaving
2798 * as expected, like in gen7.
2799 */
2800 gs.SingleProgramFlow = true;
2801 gs.VectorMaskEnable = true;
2802 #endif
2803
2804 #if GEN_GEN >= 8
2805 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2806
2807 if (gs_prog_data->static_vertex_count != -1) {
2808 gs.StaticOutput = true;
2809 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2810 }
2811 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2812
2813 gs.UserClipDistanceCullTestEnableBitmask =
2814 vue_prog_data->cull_distance_mask;
2815
2816 const int urb_entry_write_offset = 1;
2817 const uint32_t urb_entry_output_length =
2818 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2819 urb_entry_write_offset;
2820
2821 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2822 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2823 #endif
2824 }
2825 #endif
2826
2827 #if GEN_GEN <= 6
2828 if (!active && brw->ff_gs.prog_active) {
2829 /* In gen6, transform feedback for the VS stage is done with an
2830 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2831 * for this.
2832 */
2833 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2834 gs.SingleProgramFlow = true;
2835 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2836 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2837
2838 #if GEN_GEN <= 5
2839 gs.GRFRegisterCount =
2840 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2841 /* BRW_NEW_URB_FENCE */
2842 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2843 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2844 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2845 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2846 #else
2847 gs.Enable = true;
2848 gs.VectorMaskEnable = true;
2849 gs.SVBIPayloadEnable = true;
2850 gs.SVBIPostIncrementEnable = true;
2851 gs.SVBIPostIncrementValue =
2852 brw->ff_gs.prog_data->svbi_postincrement_value;
2853 gs.SOStatisticsEnable = true;
2854 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2855 #endif
2856 }
2857 #endif
2858 if (!active && !brw->ff_gs.prog_active) {
2859 #if GEN_GEN < 8
2860 gs.DispatchGRFStartRegisterForURBData = 1;
2861 #if GEN_GEN >= 7
2862 gs.IncludeVertexHandles = true;
2863 #endif
2864 #endif
2865 }
2866
2867 #if GEN_GEN >= 6
2868 gs.StatisticsEnable = true;
2869 #endif
2870 #if GEN_GEN == 5 || GEN_GEN == 6
2871 gs.RenderingEnabled = true;
2872 #endif
2873 #if GEN_GEN <= 5
2874 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2875 #endif
2876 }
2877
2878 #if GEN_GEN == 6
2879 brw->gs.enabled = active;
2880 #endif
2881 }
2882
2883 static const struct brw_tracked_state genX(gs_state) = {
2884 .dirty = {
2885 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2886 .brw = BRW_NEW_BATCH |
2887 BRW_NEW_BLORP |
2888 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2889 BRW_NEW_PROGRAM_CACHE |
2890 BRW_NEW_URB_FENCE |
2891 BRW_NEW_VIEWPORT_COUNT
2892 : 0) |
2893 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2894 BRW_NEW_GEOMETRY_PROGRAM |
2895 BRW_NEW_GS_PROG_DATA
2896 : 0) |
2897 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2898 },
2899 .emit = genX(upload_gs_state),
2900 };
2901
2902 /* ---------------------------------------------------------------------- */
2903
2904 UNUSED static GLenum
2905 fix_dual_blend_alpha_to_one(GLenum function)
2906 {
2907 switch (function) {
2908 case GL_SRC1_ALPHA:
2909 return GL_ONE;
2910
2911 case GL_ONE_MINUS_SRC1_ALPHA:
2912 return GL_ZERO;
2913 }
2914
2915 return function;
2916 }
2917
2918 #define blend_factor(x) brw_translate_blend_factor(x)
2919 #define blend_eqn(x) brw_translate_blend_equation(x)
2920
2921 /**
2922 * Modify blend function to force destination alpha to 1.0
2923 *
2924 * If \c function specifies a blend function that uses destination alpha,
2925 * replace it with a function that hard-wires destination alpha to 1.0. This
2926 * is used when rendering to xRGB targets.
2927 */
2928 static GLenum
2929 brw_fix_xRGB_alpha(GLenum function)
2930 {
2931 switch (function) {
2932 case GL_DST_ALPHA:
2933 return GL_ONE;
2934
2935 case GL_ONE_MINUS_DST_ALPHA:
2936 case GL_SRC_ALPHA_SATURATE:
2937 return GL_ZERO;
2938 }
2939
2940 return function;
2941 }
2942
2943 #if GEN_GEN >= 6
2944 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2945 #else
2946 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2947 #endif
2948
2949 UNUSED static bool
2950 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2951 bool alpha_to_one)
2952 {
2953 struct gl_context *ctx = &brw->ctx;
2954
2955 /* _NEW_BUFFERS */
2956 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2957
2958 bool independent_alpha_blend = false;
2959
2960 /* Used for implementing the following bit of GL_EXT_texture_integer:
2961 * "Per-fragment operations that require floating-point color
2962 * components, including multisample alpha operations, alpha test,
2963 * blending, and dithering, have no effect when the corresponding
2964 * colors are written to an integer color buffer."
2965 */
2966 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2967
2968 const unsigned blend_enabled = GEN_GEN >= 6 ?
2969 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2970
2971 /* _NEW_COLOR */
2972 if (ctx->Color.ColorLogicOpEnabled) {
2973 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2974 : GL_UNSIGNED_NORMALIZED;
2975 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2976 rb_type != GL_UNSIGNED_NORMALIZED &&
2977 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2978 "renderbuffer\n",
2979 _mesa_enum_to_string(ctx->Color.LogicOp),
2980 _mesa_enum_to_string(rb_type));
2981 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2982 entry->LogicOpEnable = true;
2983 entry->LogicOpFunction = ctx->Color._LogicOp;
2984 }
2985 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2986 && (GEN_GEN <= 5 || !integer)) {
2987 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2988 GLenum eqA = ctx->Color.Blend[i].EquationA;
2989 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2990 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2991 GLenum srcA = ctx->Color.Blend[i].SrcA;
2992 GLenum dstA = ctx->Color.Blend[i].DstA;
2993
2994 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2995 srcRGB = dstRGB = GL_ONE;
2996
2997 if (eqA == GL_MIN || eqA == GL_MAX)
2998 srcA = dstA = GL_ONE;
2999
3000 /* Due to hardware limitations, the destination may have information
3001 * in an alpha channel even when the format specifies no alpha
3002 * channel. In order to avoid getting any incorrect blending due to
3003 * that alpha channel, coerce the blend factors to values that will
3004 * not read the alpha channel, but will instead use the correct
3005 * implicit value for alpha.
3006 */
3007 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
3008 GL_TEXTURE_ALPHA_TYPE)) {
3009 srcRGB = brw_fix_xRGB_alpha(srcRGB);
3010 srcA = brw_fix_xRGB_alpha(srcA);
3011 dstRGB = brw_fix_xRGB_alpha(dstRGB);
3012 dstA = brw_fix_xRGB_alpha(dstA);
3013 }
3014
3015 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
3016 * "If Dual Source Blending is enabled, this bit must be disabled."
3017 *
3018 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
3019 * and leave it enabled anyway.
3020 */
3021 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
3022 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
3023 srcA = fix_dual_blend_alpha_to_one(srcA);
3024 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
3025 dstA = fix_dual_blend_alpha_to_one(dstA);
3026 }
3027
3028 entry->ColorBufferBlendEnable = true;
3029 entry->DestinationBlendFactor = blend_factor(dstRGB);
3030 entry->SourceBlendFactor = blend_factor(srcRGB);
3031 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
3032 entry->SourceAlphaBlendFactor = blend_factor(srcA);
3033 entry->ColorBlendFunction = blend_eqn(eqRGB);
3034 entry->AlphaBlendFunction = blend_eqn(eqA);
3035
3036 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
3037 independent_alpha_blend = true;
3038 }
3039
3040 return independent_alpha_blend;
3041 }
3042
3043 #if GEN_GEN >= 6
3044 static void
3045 genX(upload_blend_state)(struct brw_context *brw)
3046 {
3047 struct gl_context *ctx = &brw->ctx;
3048 int size;
3049
3050 /* We need at least one BLEND_STATE written, because we might do
3051 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
3052 * for computed depth or alpha test), which will do an FB write
3053 * with render target 0, which will reference BLEND_STATE[0] for
3054 * alpha test enable.
3055 */
3056 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
3057 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
3058 nr_draw_buffers = 1;
3059
3060 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
3061 #if GEN_GEN >= 8
3062 size += GENX(BLEND_STATE_length) * 4;
3063 #endif
3064
3065 uint32_t *blend_map;
3066 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
3067
3068 #if GEN_GEN >= 8
3069 struct GENX(BLEND_STATE) blend = { 0 };
3070 {
3071 #else
3072 for (int i = 0; i < nr_draw_buffers; i++) {
3073 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
3074 #define blend entry
3075 #endif
3076 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
3077 * "If drawbuffer zero is not NONE and the buffer it references has an
3078 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
3079 * operations are skipped."
3080 */
3081 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
3082 /* _NEW_MULTISAMPLE */
3083 if (_mesa_is_multisample_enabled(ctx)) {
3084 if (ctx->Multisample.SampleAlphaToCoverage) {
3085 blend.AlphaToCoverageEnable = true;
3086 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
3087 }
3088 if (ctx->Multisample.SampleAlphaToOne)
3089 blend.AlphaToOneEnable = true;
3090 }
3091
3092 /* _NEW_COLOR */
3093 if (ctx->Color.AlphaEnabled) {
3094 blend.AlphaTestEnable = true;
3095 blend.AlphaTestFunction =
3096 intel_translate_compare_func(ctx->Color.AlphaFunc);
3097 }
3098
3099 if (ctx->Color.DitherFlag) {
3100 blend.ColorDitherEnable = true;
3101 }
3102 }
3103
3104 #if GEN_GEN >= 8
3105 for (int i = 0; i < nr_draw_buffers; i++) {
3106 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
3107 #else
3108 {
3109 #endif
3110 blend.IndependentAlphaBlendEnable =
3111 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
3112 blend.IndependentAlphaBlendEnable;
3113
3114 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
3115 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
3116 *
3117 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
3118 * clamping in the fragment shader. For its clamping of
3119 * blending, the spec says:
3120 *
3121 * "RESOLVED: For fixed-point color buffers, the inputs and
3122 * the result of the blending equation are clamped. For
3123 * floating-point color buffers, no clamping occurs."
3124 *
3125 * So, generally, we want clamping to the render target's range.
3126 * And, good news, the hardware tables for both pre- and
3127 * post-blend color clamping are either ignored, or any are
3128 * allowed, or clamping is required but RT range clamping is a
3129 * valid option.
3130 */
3131 entry.PreBlendColorClampEnable = true;
3132 entry.PostBlendColorClampEnable = true;
3133 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
3134
3135 entry.WriteDisableRed = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
3136 entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
3137 entry.WriteDisableBlue = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
3138 entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
3139
3140 #if GEN_GEN >= 8
3141 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3142 #else
3143 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3144 #endif
3145 }
3146 }
3147
3148 #if GEN_GEN >= 8
3149 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3150 #endif
3151
3152 #if GEN_GEN < 7
3153 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3154 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3155 ptr.BLEND_STATEChange = true;
3156 }
3157 #else
3158 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3159 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3160 #if GEN_GEN >= 8
3161 ptr.BlendStatePointerValid = true;
3162 #endif
3163 }
3164 #endif
3165 }
3166
3167 static const struct brw_tracked_state genX(blend_state) = {
3168 .dirty = {
3169 .mesa = _NEW_BUFFERS |
3170 _NEW_COLOR |
3171 _NEW_MULTISAMPLE,
3172 .brw = BRW_NEW_BATCH |
3173 BRW_NEW_BLORP |
3174 BRW_NEW_STATE_BASE_ADDRESS,
3175 },
3176 .emit = genX(upload_blend_state),
3177 };
3178 #endif
3179
3180 /* ---------------------------------------------------------------------- */
3181
3182 #if GEN_GEN >= 7
3183 UNUSED static const uint32_t push_constant_opcodes[] = {
3184 [MESA_SHADER_VERTEX] = 21,
3185 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3186 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3187 [MESA_SHADER_GEOMETRY] = 22,
3188 [MESA_SHADER_FRAGMENT] = 23,
3189 [MESA_SHADER_COMPUTE] = 0,
3190 };
3191
3192 static void
3193 genX(upload_push_constant_packets)(struct brw_context *brw)
3194 {
3195 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3196 struct gl_context *ctx = &brw->ctx;
3197
3198 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3199
3200 struct brw_stage_state *stage_states[] = {
3201 &brw->vs.base,
3202 &brw->tcs.base,
3203 &brw->tes.base,
3204 &brw->gs.base,
3205 &brw->wm.base,
3206 };
3207
3208 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3209 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3210 gen7_emit_vs_workaround_flush(brw);
3211
3212 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3213 struct brw_stage_state *stage_state = stage_states[stage];
3214 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3215
3216 if (!stage_state->push_constants_dirty)
3217 continue;
3218
3219 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3220 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3221 if (stage_state->prog_data) {
3222 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3223 /* The Skylake PRM contains the following restriction:
3224 *
3225 * "The driver must ensure The following case does not occur
3226 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3227 * buffer 3 read length equal to zero committed followed by a
3228 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3229 * zero committed."
3230 *
3231 * To avoid this, we program the buffers in the highest slots.
3232 * This way, slot 0 is only used if slot 3 is also used.
3233 */
3234 int n = 3;
3235
3236 for (int i = 3; i >= 0; i--) {
3237 const struct brw_ubo_range *range =
3238 &stage_state->prog_data->ubo_ranges[i];
3239
3240 if (range->length == 0)
3241 continue;
3242
3243 const struct gl_uniform_block *block =
3244 prog->sh.UniformBlocks[range->block];
3245 const struct gl_buffer_binding *binding =
3246 &ctx->UniformBufferBindings[block->Binding];
3247
3248 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3249 static unsigned msg_id = 0;
3250 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3251 MESA_DEBUG_TYPE_UNDEFINED,
3252 MESA_DEBUG_SEVERITY_HIGH,
3253 "UBO %d unbound, %s shader uniform data "
3254 "will be undefined.",
3255 range->block,
3256 _mesa_shader_stage_to_string(stage));
3257 continue;
3258 }
3259
3260 assert(binding->Offset % 32 == 0);
3261
3262 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3263 intel_buffer_object(binding->BufferObject),
3264 binding->Offset, range->length * 32, false);
3265
3266 pkt.ConstantBody.ReadLength[n] = range->length;
3267 pkt.ConstantBody.Buffer[n] =
3268 ro_bo(bo, range->start * 32 + binding->Offset);
3269 n--;
3270 }
3271
3272 if (stage_state->push_const_size > 0) {
3273 assert(n >= 0);
3274 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3275 pkt.ConstantBody.Buffer[n] =
3276 ro_bo(stage_state->push_const_bo,
3277 stage_state->push_const_offset);
3278 }
3279 #else
3280 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3281 pkt.ConstantBody.Buffer[0].offset =
3282 stage_state->push_const_offset | mocs;
3283 #endif
3284 }
3285 }
3286
3287 stage_state->push_constants_dirty = false;
3288 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3289 }
3290 }
3291
3292 const struct brw_tracked_state genX(push_constant_packets) = {
3293 .dirty = {
3294 .mesa = 0,
3295 .brw = BRW_NEW_DRAW_CALL,
3296 },
3297 .emit = genX(upload_push_constant_packets),
3298 };
3299 #endif
3300
3301 #if GEN_GEN >= 6
3302 static void
3303 genX(upload_vs_push_constants)(struct brw_context *brw)
3304 {
3305 struct brw_stage_state *stage_state = &brw->vs.base;
3306
3307 /* BRW_NEW_VERTEX_PROGRAM */
3308 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3309 /* BRW_NEW_VS_PROG_DATA */
3310 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3311
3312 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3313 }
3314
3315 static const struct brw_tracked_state genX(vs_push_constants) = {
3316 .dirty = {
3317 .mesa = _NEW_PROGRAM_CONSTANTS |
3318 _NEW_TRANSFORM,
3319 .brw = BRW_NEW_BATCH |
3320 BRW_NEW_BLORP |
3321 BRW_NEW_VERTEX_PROGRAM |
3322 BRW_NEW_VS_PROG_DATA,
3323 },
3324 .emit = genX(upload_vs_push_constants),
3325 };
3326
3327 static void
3328 genX(upload_gs_push_constants)(struct brw_context *brw)
3329 {
3330 struct brw_stage_state *stage_state = &brw->gs.base;
3331
3332 /* BRW_NEW_GEOMETRY_PROGRAM */
3333 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3334
3335 /* BRW_NEW_GS_PROG_DATA */
3336 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3337
3338 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3339 }
3340
3341 static const struct brw_tracked_state genX(gs_push_constants) = {
3342 .dirty = {
3343 .mesa = _NEW_PROGRAM_CONSTANTS |
3344 _NEW_TRANSFORM,
3345 .brw = BRW_NEW_BATCH |
3346 BRW_NEW_BLORP |
3347 BRW_NEW_GEOMETRY_PROGRAM |
3348 BRW_NEW_GS_PROG_DATA,
3349 },
3350 .emit = genX(upload_gs_push_constants),
3351 };
3352
3353 static void
3354 genX(upload_wm_push_constants)(struct brw_context *brw)
3355 {
3356 struct brw_stage_state *stage_state = &brw->wm.base;
3357 /* BRW_NEW_FRAGMENT_PROGRAM */
3358 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3359 /* BRW_NEW_FS_PROG_DATA */
3360 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3361
3362 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3363 }
3364
3365 static const struct brw_tracked_state genX(wm_push_constants) = {
3366 .dirty = {
3367 .mesa = _NEW_PROGRAM_CONSTANTS,
3368 .brw = BRW_NEW_BATCH |
3369 BRW_NEW_BLORP |
3370 BRW_NEW_FRAGMENT_PROGRAM |
3371 BRW_NEW_FS_PROG_DATA,
3372 },
3373 .emit = genX(upload_wm_push_constants),
3374 };
3375 #endif
3376
3377 /* ---------------------------------------------------------------------- */
3378
3379 #if GEN_GEN >= 6
3380 static unsigned
3381 genX(determine_sample_mask)(struct brw_context *brw)
3382 {
3383 struct gl_context *ctx = &brw->ctx;
3384 float coverage = 1.0f;
3385 float coverage_invert = false;
3386 unsigned sample_mask = ~0u;
3387
3388 /* BRW_NEW_NUM_SAMPLES */
3389 unsigned num_samples = brw->num_samples;
3390
3391 if (_mesa_is_multisample_enabled(ctx)) {
3392 if (ctx->Multisample.SampleCoverage) {
3393 coverage = ctx->Multisample.SampleCoverageValue;
3394 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3395 }
3396 if (ctx->Multisample.SampleMask) {
3397 sample_mask = ctx->Multisample.SampleMaskValue;
3398 }
3399 }
3400
3401 if (num_samples > 1) {
3402 int coverage_int = (int) (num_samples * coverage + 0.5f);
3403 uint32_t coverage_bits = (1 << coverage_int) - 1;
3404 if (coverage_invert)
3405 coverage_bits ^= (1 << num_samples) - 1;
3406 return coverage_bits & sample_mask;
3407 } else {
3408 return 1;
3409 }
3410 }
3411
3412 static void
3413 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3414 unsigned num_samples)
3415 {
3416 unsigned log2_samples = ffs(num_samples) - 1;
3417
3418 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3419 multi.PixelLocation = CENTER;
3420 multi.NumberofMultisamples = log2_samples;
3421 #if GEN_GEN == 6
3422 GEN_SAMPLE_POS_4X(multi.Sample);
3423 #elif GEN_GEN == 7
3424 switch (num_samples) {
3425 case 1:
3426 GEN_SAMPLE_POS_1X(multi.Sample);
3427 break;
3428 case 2:
3429 GEN_SAMPLE_POS_2X(multi.Sample);
3430 break;
3431 case 4:
3432 GEN_SAMPLE_POS_4X(multi.Sample);
3433 break;
3434 case 8:
3435 GEN_SAMPLE_POS_8X(multi.Sample);
3436 break;
3437 default:
3438 break;
3439 }
3440 #endif
3441 }
3442 }
3443
3444 static void
3445 genX(upload_multisample_state)(struct brw_context *brw)
3446 {
3447 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3448
3449 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3450
3451 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3452 sm.SampleMask = genX(determine_sample_mask)(brw);
3453 }
3454 }
3455
3456 static const struct brw_tracked_state genX(multisample_state) = {
3457 .dirty = {
3458 .mesa = _NEW_MULTISAMPLE |
3459 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3460 .brw = BRW_NEW_BLORP |
3461 BRW_NEW_CONTEXT |
3462 BRW_NEW_NUM_SAMPLES,
3463 },
3464 .emit = genX(upload_multisample_state)
3465 };
3466 #endif
3467
3468 /* ---------------------------------------------------------------------- */
3469
3470 static void
3471 genX(upload_color_calc_state)(struct brw_context *brw)
3472 {
3473 struct gl_context *ctx = &brw->ctx;
3474
3475 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3476 #if GEN_GEN <= 5
3477 cc.IndependentAlphaBlendEnable =
3478 set_blend_entry_bits(brw, &cc, 0, false);
3479 set_depth_stencil_bits(brw, &cc);
3480
3481 if (ctx->Color.AlphaEnabled &&
3482 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3483 cc.AlphaTestEnable = true;
3484 cc.AlphaTestFunction =
3485 intel_translate_compare_func(ctx->Color.AlphaFunc);
3486 }
3487
3488 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3489
3490 cc.StatisticsEnable = brw->stats_wm;
3491
3492 cc.CCViewportStatePointer =
3493 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3494 #else
3495 /* _NEW_COLOR */
3496 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3497 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3498 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3499 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3500
3501 #if GEN_GEN < 9
3502 /* _NEW_STENCIL */
3503 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3504 cc.BackfaceStencilReferenceValue =
3505 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3506 #endif
3507
3508 #endif
3509
3510 /* _NEW_COLOR */
3511 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3512 ctx->Color.AlphaRef);
3513 }
3514
3515 #if GEN_GEN >= 6
3516 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3517 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3518 #if GEN_GEN != 7
3519 ptr.ColorCalcStatePointerValid = true;
3520 #endif
3521 }
3522 #else
3523 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3524 #endif
3525 }
3526
3527 static const struct brw_tracked_state genX(color_calc_state) = {
3528 .dirty = {
3529 .mesa = _NEW_COLOR |
3530 _NEW_STENCIL |
3531 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3532 _NEW_DEPTH
3533 : 0),
3534 .brw = BRW_NEW_BATCH |
3535 BRW_NEW_BLORP |
3536 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3537 BRW_NEW_STATS_WM
3538 : BRW_NEW_CC_STATE |
3539 BRW_NEW_STATE_BASE_ADDRESS),
3540 },
3541 .emit = genX(upload_color_calc_state),
3542 };
3543
3544
3545 /* ---------------------------------------------------------------------- */
3546
3547 #if GEN_GEN >= 7
3548 static void
3549 genX(upload_sbe)(struct brw_context *brw)
3550 {
3551 struct gl_context *ctx = &brw->ctx;
3552 /* BRW_NEW_FRAGMENT_PROGRAM */
3553 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3554 /* BRW_NEW_FS_PROG_DATA */
3555 const struct brw_wm_prog_data *wm_prog_data =
3556 brw_wm_prog_data(brw->wm.base.prog_data);
3557 #if GEN_GEN >= 8
3558 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3559 #else
3560 #define attr_overrides sbe.Attribute
3561 #endif
3562 uint32_t urb_entry_read_length;
3563 uint32_t urb_entry_read_offset;
3564 uint32_t point_sprite_enables;
3565
3566 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3567 sbe.AttributeSwizzleEnable = true;
3568 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3569
3570 /* _NEW_BUFFERS */
3571 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3572
3573 /* _NEW_POINT
3574 *
3575 * Window coordinates in an FBO are inverted, which means point
3576 * sprite origin must be inverted.
3577 */
3578 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3579 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3580 else
3581 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3582
3583 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3584 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3585 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3586 * BRW_NEW_VUE_MAP_GEOM_OUT
3587 */
3588 genX(calculate_attr_overrides)(brw,
3589 attr_overrides,
3590 &point_sprite_enables,
3591 &urb_entry_read_length,
3592 &urb_entry_read_offset);
3593
3594 /* Typically, the URB entry read length and offset should be programmed
3595 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3596 * stage which produces geometry. However, we don't know the proper
3597 * value until we call calculate_attr_overrides().
3598 *
3599 * To fit with our existing code, we override the inherited values and
3600 * specify it here directly, as we did on previous generations.
3601 */
3602 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3603 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3604 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3605 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3606
3607 #if GEN_GEN >= 8
3608 sbe.ForceVertexURBEntryReadLength = true;
3609 sbe.ForceVertexURBEntryReadOffset = true;
3610 #endif
3611
3612 #if GEN_GEN >= 9
3613 /* prepare the active component dwords */
3614 for (int i = 0; i < 32; i++)
3615 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3616 #endif
3617 }
3618
3619 #if GEN_GEN >= 8
3620 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3621 for (int i = 0; i < 16; i++)
3622 sbes.Attribute[i] = attr_overrides[i];
3623 }
3624 #endif
3625
3626 #undef attr_overrides
3627 }
3628
3629 static const struct brw_tracked_state genX(sbe_state) = {
3630 .dirty = {
3631 .mesa = _NEW_BUFFERS |
3632 _NEW_LIGHT |
3633 _NEW_POINT |
3634 _NEW_POLYGON |
3635 _NEW_PROGRAM,
3636 .brw = BRW_NEW_BLORP |
3637 BRW_NEW_CONTEXT |
3638 BRW_NEW_FRAGMENT_PROGRAM |
3639 BRW_NEW_FS_PROG_DATA |
3640 BRW_NEW_GS_PROG_DATA |
3641 BRW_NEW_TES_PROG_DATA |
3642 BRW_NEW_VUE_MAP_GEOM_OUT |
3643 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3644 : 0),
3645 },
3646 .emit = genX(upload_sbe),
3647 };
3648 #endif
3649
3650 /* ---------------------------------------------------------------------- */
3651
3652 #if GEN_GEN >= 7
3653 /**
3654 * Outputs the 3DSTATE_SO_DECL_LIST command.
3655 *
3656 * The data output is a series of 64-bit entries containing a SO_DECL per
3657 * stream. We only have one stream of rendering coming out of the GS unit, so
3658 * we only emit stream 0 (low 16 bits) SO_DECLs.
3659 */
3660 static void
3661 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3662 const struct brw_vue_map *vue_map)
3663 {
3664 struct gl_context *ctx = &brw->ctx;
3665 /* BRW_NEW_TRANSFORM_FEEDBACK */
3666 struct gl_transform_feedback_object *xfb_obj =
3667 ctx->TransformFeedback.CurrentObject;
3668 const struct gl_transform_feedback_info *linked_xfb_info =
3669 xfb_obj->program->sh.LinkedTransformFeedback;
3670 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3671 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3672 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3673 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3674 int max_decls = 0;
3675 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3676
3677 memset(so_decl, 0, sizeof(so_decl));
3678
3679 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3680 * command feels strange -- each dword pair contains a SO_DECL per stream.
3681 */
3682 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3683 const struct gl_transform_feedback_output *output =
3684 &linked_xfb_info->Outputs[i];
3685 const int buffer = output->OutputBuffer;
3686 const int varying = output->OutputRegister;
3687 const unsigned stream_id = output->StreamId;
3688 assert(stream_id < MAX_VERTEX_STREAMS);
3689
3690 buffer_mask[stream_id] |= 1 << buffer;
3691
3692 assert(vue_map->varying_to_slot[varying] >= 0);
3693
3694 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3695 * array. Instead, it simply increments DstOffset for the following
3696 * input by the number of components that should be skipped.
3697 *
3698 * Our hardware is unusual in that it requires us to program SO_DECLs
3699 * for fake "hole" components, rather than simply taking the offset
3700 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3701 * program as many size = 4 holes as we can, then a final hole to
3702 * accommodate the final 1, 2, or 3 remaining.
3703 */
3704 int skip_components = output->DstOffset - next_offset[buffer];
3705
3706 while (skip_components > 0) {
3707 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3708 .HoleFlag = 1,
3709 .OutputBufferSlot = output->OutputBuffer,
3710 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3711 };
3712 skip_components -= 4;
3713 }
3714
3715 next_offset[buffer] = output->DstOffset + output->NumComponents;
3716
3717 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3718 .OutputBufferSlot = output->OutputBuffer,
3719 .RegisterIndex = vue_map->varying_to_slot[varying],
3720 .ComponentMask =
3721 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3722 };
3723
3724 if (decls[stream_id] > max_decls)
3725 max_decls = decls[stream_id];
3726 }
3727
3728 uint32_t *dw;
3729 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3730 .StreamtoBufferSelects0 = buffer_mask[0],
3731 .StreamtoBufferSelects1 = buffer_mask[1],
3732 .StreamtoBufferSelects2 = buffer_mask[2],
3733 .StreamtoBufferSelects3 = buffer_mask[3],
3734 .NumEntries0 = decls[0],
3735 .NumEntries1 = decls[1],
3736 .NumEntries2 = decls[2],
3737 .NumEntries3 = decls[3]);
3738
3739 for (int i = 0; i < max_decls; i++) {
3740 GENX(SO_DECL_ENTRY_pack)(
3741 brw, dw + 2 + i * 2,
3742 &(struct GENX(SO_DECL_ENTRY)) {
3743 .Stream0Decl = so_decl[0][i],
3744 .Stream1Decl = so_decl[1][i],
3745 .Stream2Decl = so_decl[2][i],
3746 .Stream3Decl = so_decl[3][i],
3747 });
3748 }
3749 }
3750
3751 static void
3752 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3753 {
3754 struct gl_context *ctx = &brw->ctx;
3755 /* BRW_NEW_TRANSFORM_FEEDBACK */
3756 struct gl_transform_feedback_object *xfb_obj =
3757 ctx->TransformFeedback.CurrentObject;
3758 #if GEN_GEN < 8
3759 const struct gl_transform_feedback_info *linked_xfb_info =
3760 xfb_obj->program->sh.LinkedTransformFeedback;
3761 #else
3762 struct brw_transform_feedback_object *brw_obj =
3763 (struct brw_transform_feedback_object *) xfb_obj;
3764 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3765 #endif
3766
3767 /* Set up the up to 4 output buffers. These are the ranges defined in the
3768 * gl_transform_feedback_object.
3769 */
3770 for (int i = 0; i < 4; i++) {
3771 struct intel_buffer_object *bufferobj =
3772 intel_buffer_object(xfb_obj->Buffers[i]);
3773
3774 if (!bufferobj) {
3775 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3776 sob.SOBufferIndex = i;
3777 }
3778 continue;
3779 }
3780
3781 uint32_t start = xfb_obj->Offset[i];
3782 assert(start % 4 == 0);
3783 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3784 struct brw_bo *bo =
3785 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3786 assert(end <= bo->size);
3787
3788 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3789 sob.SOBufferIndex = i;
3790
3791 sob.SurfaceBaseAddress = rw_bo(bo, start);
3792 #if GEN_GEN < 8
3793 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3794 sob.SurfaceEndAddress = rw_bo(bo, end);
3795 #else
3796 sob.SOBufferEnable = true;
3797 sob.StreamOffsetWriteEnable = true;
3798 sob.StreamOutputBufferOffsetAddressEnable = true;
3799 sob.SOBufferMOCS = mocs_wb;
3800
3801 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3802 sob.StreamOutputBufferOffsetAddress =
3803 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3804
3805 if (brw_obj->zero_offsets) {
3806 /* Zero out the offset and write that to offset_bo */
3807 sob.StreamOffset = 0;
3808 } else {
3809 /* Use offset_bo as the "Stream Offset." */
3810 sob.StreamOffset = 0xFFFFFFFF;
3811 }
3812 #endif
3813 }
3814 }
3815
3816 #if GEN_GEN >= 8
3817 brw_obj->zero_offsets = false;
3818 #endif
3819 }
3820
3821 static bool
3822 query_active(struct gl_query_object *q)
3823 {
3824 return q && q->Active;
3825 }
3826
3827 static void
3828 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3829 const struct brw_vue_map *vue_map)
3830 {
3831 struct gl_context *ctx = &brw->ctx;
3832 /* BRW_NEW_TRANSFORM_FEEDBACK */
3833 struct gl_transform_feedback_object *xfb_obj =
3834 ctx->TransformFeedback.CurrentObject;
3835
3836 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3837 if (active) {
3838 int urb_entry_read_offset = 0;
3839 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3840 urb_entry_read_offset;
3841
3842 sos.SOFunctionEnable = true;
3843 sos.SOStatisticsEnable = true;
3844
3845 /* BRW_NEW_RASTERIZER_DISCARD */
3846 if (ctx->RasterDiscard) {
3847 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3848 sos.RenderingDisable = true;
3849 } else {
3850 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3851 "query active relies on the clipper.\n");
3852 }
3853 }
3854
3855 /* _NEW_LIGHT */
3856 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3857 sos.ReorderMode = TRAILING;
3858
3859 #if GEN_GEN < 8
3860 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3861 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3862 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3863 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3864 #else
3865 const struct gl_transform_feedback_info *linked_xfb_info =
3866 xfb_obj->program->sh.LinkedTransformFeedback;
3867 /* Set buffer pitches; 0 means unbound. */
3868 if (xfb_obj->Buffers[0])
3869 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3870 if (xfb_obj->Buffers[1])
3871 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3872 if (xfb_obj->Buffers[2])
3873 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3874 if (xfb_obj->Buffers[3])
3875 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3876 #endif
3877
3878 /* We always read the whole vertex. This could be reduced at some
3879 * point by reading less and offsetting the register index in the
3880 * SO_DECLs.
3881 */
3882 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3883 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3884 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3885 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3886 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3887 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3888 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3889 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3890 }
3891 }
3892 }
3893
3894 static void
3895 genX(upload_sol)(struct brw_context *brw)
3896 {
3897 struct gl_context *ctx = &brw->ctx;
3898 /* BRW_NEW_TRANSFORM_FEEDBACK */
3899 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3900
3901 if (active) {
3902 genX(upload_3dstate_so_buffers)(brw);
3903
3904 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3905 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3906 }
3907
3908 /* Finally, set up the SOL stage. This command must always follow updates to
3909 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3910 * MMIO register updates (current performed by the kernel at each batch
3911 * emit).
3912 */
3913 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3914 }
3915
3916 static const struct brw_tracked_state genX(sol_state) = {
3917 .dirty = {
3918 .mesa = _NEW_LIGHT,
3919 .brw = BRW_NEW_BATCH |
3920 BRW_NEW_BLORP |
3921 BRW_NEW_RASTERIZER_DISCARD |
3922 BRW_NEW_VUE_MAP_GEOM_OUT |
3923 BRW_NEW_TRANSFORM_FEEDBACK,
3924 },
3925 .emit = genX(upload_sol),
3926 };
3927 #endif
3928
3929 /* ---------------------------------------------------------------------- */
3930
3931 #if GEN_GEN >= 7
3932 static void
3933 genX(upload_ps)(struct brw_context *brw)
3934 {
3935 UNUSED const struct gl_context *ctx = &brw->ctx;
3936 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3937
3938 /* BRW_NEW_FS_PROG_DATA */
3939 const struct brw_wm_prog_data *prog_data =
3940 brw_wm_prog_data(brw->wm.base.prog_data);
3941 const struct brw_stage_state *stage_state = &brw->wm.base;
3942
3943 #if GEN_GEN < 8
3944 #endif
3945
3946 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3947 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3948 * incorrect for subspans where some of the pixels are unlit. We believe
3949 * the bit just didn't take effect in previous generations.
3950 */
3951 ps.VectorMaskEnable = GEN_GEN >= 8;
3952
3953 ps.SamplerCount =
3954 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3955
3956 /* BRW_NEW_FS_PROG_DATA */
3957 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3958
3959 if (prog_data->base.use_alt_mode)
3960 ps.FloatingPointMode = Alternate;
3961
3962 /* Haswell requires the sample mask to be set in this packet as well as
3963 * in 3DSTATE_SAMPLE_MASK; the values should match.
3964 */
3965
3966 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3967 #if GEN_IS_HASWELL
3968 ps.SampleMask = genX(determine_sample_mask(brw));
3969 #endif
3970
3971 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64
3972 * for pre Gen11 and 128 for gen11+; On gen11+ If a programmed value is
3973 * k, it implies 2(k+1) threads. It implicitly scales for different GT
3974 * levels (which have some # of PSDs).
3975 *
3976 * In Gen8 the format is U8-2 whereas in Gen9+ it is U9-1.
3977 */
3978 #if GEN_GEN >= 9
3979 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3980 #elif GEN_GEN >= 8
3981 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3982 #else
3983 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3984 #endif
3985
3986 if (prog_data->base.nr_params > 0 ||
3987 prog_data->base.ubo_ranges[0].length > 0)
3988 ps.PushConstantEnable = true;
3989
3990 #if GEN_GEN < 8
3991 /* From the IVB PRM, volume 2 part 1, page 287:
3992 * "This bit is inserted in the PS payload header and made available to
3993 * the DataPort (either via the message header or via header bypass) to
3994 * indicate that oMask data (one or two phases) is included in Render
3995 * Target Write messages. If present, the oMask data is used to mask off
3996 * samples."
3997 */
3998 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3999
4000 /* The hardware wedges if you have this bit set but don't turn on any
4001 * dual source blend factors.
4002 *
4003 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
4004 */
4005 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
4006 (ctx->Color.BlendEnabled & 1) &&
4007 ctx->Color.Blend[0]._UsesDualSrc;
4008
4009 /* BRW_NEW_FS_PROG_DATA */
4010 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
4011 #endif
4012
4013 /* From the documentation for this packet:
4014 * "If the PS kernel does not need the Position XY Offsets to
4015 * compute a Position Value, then this field should be programmed
4016 * to POSOFFSET_NONE."
4017 *
4018 * "SW Recommendation: If the PS kernel needs the Position Offsets
4019 * to compute a Position XY value, this field should match Position
4020 * ZW Interpolation Mode to ensure a consistent position.xyzw
4021 * computation."
4022 *
4023 * We only require XY sample offsets. So, this recommendation doesn't
4024 * look useful at the moment. We might need this in future.
4025 */
4026 if (prog_data->uses_pos_offset)
4027 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
4028 else
4029 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
4030
4031 ps._8PixelDispatchEnable = prog_data->dispatch_8;
4032 ps._16PixelDispatchEnable = prog_data->dispatch_16;
4033 ps._32PixelDispatchEnable = prog_data->dispatch_32;
4034
4035 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
4036 *
4037 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
4038 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
4039 *
4040 * Since 16x MSAA is first introduced on SKL, we don't need to apply
4041 * the workaround on any older hardware.
4042 *
4043 * BRW_NEW_NUM_SAMPLES
4044 */
4045 if (GEN_GEN >= 9 && !prog_data->persample_dispatch &&
4046 brw->num_samples == 16) {
4047 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
4048 ps._32PixelDispatchEnable = false;
4049 }
4050
4051 ps.DispatchGRFStartRegisterForConstantSetupData0 =
4052 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
4053 ps.DispatchGRFStartRegisterForConstantSetupData1 =
4054 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
4055 ps.DispatchGRFStartRegisterForConstantSetupData2 =
4056 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);
4057
4058 ps.KernelStartPointer0 = stage_state->prog_offset +
4059 brw_wm_prog_data_prog_offset(prog_data, ps, 0);
4060 ps.KernelStartPointer1 = stage_state->prog_offset +
4061 brw_wm_prog_data_prog_offset(prog_data, ps, 1);
4062 ps.KernelStartPointer2 = stage_state->prog_offset +
4063 brw_wm_prog_data_prog_offset(prog_data, ps, 2);
4064
4065 if (prog_data->base.total_scratch) {
4066 ps.ScratchSpaceBasePointer =
4067 rw_32_bo(stage_state->scratch_bo,
4068 ffs(stage_state->per_thread_scratch) - 11);
4069 }
4070 }
4071 }
4072
4073 static const struct brw_tracked_state genX(ps_state) = {
4074 .dirty = {
4075 .mesa = _NEW_MULTISAMPLE |
4076 (GEN_GEN < 8 ? _NEW_BUFFERS |
4077 _NEW_COLOR
4078 : 0),
4079 .brw = BRW_NEW_BATCH |
4080 BRW_NEW_BLORP |
4081 BRW_NEW_FS_PROG_DATA |
4082 (GEN_GEN >= 9 ? BRW_NEW_NUM_SAMPLES : 0),
4083 },
4084 .emit = genX(upload_ps),
4085 };
4086 #endif
4087
4088 /* ---------------------------------------------------------------------- */
4089
4090 #if GEN_GEN >= 7
4091 static void
4092 genX(upload_hs_state)(struct brw_context *brw)
4093 {
4094 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4095 struct brw_stage_state *stage_state = &brw->tcs.base;
4096 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4097 const struct brw_vue_prog_data *vue_prog_data =
4098 brw_vue_prog_data(stage_prog_data);
4099
4100 /* BRW_NEW_TES_PROG_DATA */
4101 struct brw_tcs_prog_data *tcs_prog_data =
4102 brw_tcs_prog_data(stage_prog_data);
4103
4104 if (!tcs_prog_data) {
4105 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
4106 } else {
4107 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
4108 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
4109
4110 hs.InstanceCount = tcs_prog_data->instances - 1;
4111 hs.IncludeVertexHandles = true;
4112
4113 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4114 }
4115 }
4116 }
4117
4118 static const struct brw_tracked_state genX(hs_state) = {
4119 .dirty = {
4120 .mesa = 0,
4121 .brw = BRW_NEW_BATCH |
4122 BRW_NEW_BLORP |
4123 BRW_NEW_TCS_PROG_DATA |
4124 BRW_NEW_TESS_PROGRAMS,
4125 },
4126 .emit = genX(upload_hs_state),
4127 };
4128
4129 static void
4130 genX(upload_ds_state)(struct brw_context *brw)
4131 {
4132 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4133 const struct brw_stage_state *stage_state = &brw->tes.base;
4134 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4135
4136 /* BRW_NEW_TES_PROG_DATA */
4137 const struct brw_tes_prog_data *tes_prog_data =
4138 brw_tes_prog_data(stage_prog_data);
4139 const struct brw_vue_prog_data *vue_prog_data =
4140 brw_vue_prog_data(stage_prog_data);
4141
4142 if (!tes_prog_data) {
4143 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
4144 } else {
4145 assert(GEN_GEN < 11 ||
4146 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
4147
4148 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
4149 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
4150
4151 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4152 ds.ComputeWCoordinateEnable =
4153 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4154
4155 #if GEN_GEN >= 8
4156 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
4157 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4158 ds.UserClipDistanceCullTestEnableBitmask =
4159 vue_prog_data->cull_distance_mask;
4160 #endif
4161 }
4162 }
4163 }
4164
4165 static const struct brw_tracked_state genX(ds_state) = {
4166 .dirty = {
4167 .mesa = 0,
4168 .brw = BRW_NEW_BATCH |
4169 BRW_NEW_BLORP |
4170 BRW_NEW_TESS_PROGRAMS |
4171 BRW_NEW_TES_PROG_DATA,
4172 },
4173 .emit = genX(upload_ds_state),
4174 };
4175
4176 /* ---------------------------------------------------------------------- */
4177
4178 static void
4179 upload_te_state(struct brw_context *brw)
4180 {
4181 /* BRW_NEW_TESS_PROGRAMS */
4182 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4183
4184 /* BRW_NEW_TES_PROG_DATA */
4185 const struct brw_tes_prog_data *tes_prog_data =
4186 brw_tes_prog_data(brw->tes.base.prog_data);
4187
4188 if (active) {
4189 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4190 te.Partitioning = tes_prog_data->partitioning;
4191 te.OutputTopology = tes_prog_data->output_topology;
4192 te.TEDomain = tes_prog_data->domain;
4193 te.TEEnable = true;
4194 te.MaximumTessellationFactorOdd = 63.0;
4195 te.MaximumTessellationFactorNotOdd = 64.0;
4196 }
4197 } else {
4198 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4199 }
4200 }
4201
4202 static const struct brw_tracked_state genX(te_state) = {
4203 .dirty = {
4204 .mesa = 0,
4205 .brw = BRW_NEW_BLORP |
4206 BRW_NEW_CONTEXT |
4207 BRW_NEW_TES_PROG_DATA |
4208 BRW_NEW_TESS_PROGRAMS,
4209 },
4210 .emit = upload_te_state,
4211 };
4212
4213 /* ---------------------------------------------------------------------- */
4214
4215 static void
4216 genX(upload_tes_push_constants)(struct brw_context *brw)
4217 {
4218 struct brw_stage_state *stage_state = &brw->tes.base;
4219 /* BRW_NEW_TESS_PROGRAMS */
4220 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4221
4222 /* BRW_NEW_TES_PROG_DATA */
4223 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4224 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4225 }
4226
4227 static const struct brw_tracked_state genX(tes_push_constants) = {
4228 .dirty = {
4229 .mesa = _NEW_PROGRAM_CONSTANTS,
4230 .brw = BRW_NEW_BATCH |
4231 BRW_NEW_BLORP |
4232 BRW_NEW_TESS_PROGRAMS |
4233 BRW_NEW_TES_PROG_DATA,
4234 },
4235 .emit = genX(upload_tes_push_constants),
4236 };
4237
4238 static void
4239 genX(upload_tcs_push_constants)(struct brw_context *brw)
4240 {
4241 struct brw_stage_state *stage_state = &brw->tcs.base;
4242 /* BRW_NEW_TESS_PROGRAMS */
4243 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4244
4245 /* BRW_NEW_TCS_PROG_DATA */
4246 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4247
4248 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4249 }
4250
4251 static const struct brw_tracked_state genX(tcs_push_constants) = {
4252 .dirty = {
4253 .mesa = _NEW_PROGRAM_CONSTANTS,
4254 .brw = BRW_NEW_BATCH |
4255 BRW_NEW_BLORP |
4256 BRW_NEW_DEFAULT_TESS_LEVELS |
4257 BRW_NEW_TESS_PROGRAMS |
4258 BRW_NEW_TCS_PROG_DATA,
4259 },
4260 .emit = genX(upload_tcs_push_constants),
4261 };
4262
4263 #endif
4264
4265 /* ---------------------------------------------------------------------- */
4266
4267 #if GEN_GEN >= 7
4268 static void
4269 genX(upload_cs_push_constants)(struct brw_context *brw)
4270 {
4271 struct brw_stage_state *stage_state = &brw->cs.base;
4272
4273 /* BRW_NEW_COMPUTE_PROGRAM */
4274 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4275
4276 if (cp) {
4277 /* BRW_NEW_CS_PROG_DATA */
4278 struct brw_cs_prog_data *cs_prog_data =
4279 brw_cs_prog_data(brw->cs.base.prog_data);
4280
4281 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4282 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4283 }
4284 }
4285
4286 const struct brw_tracked_state genX(cs_push_constants) = {
4287 .dirty = {
4288 .mesa = _NEW_PROGRAM_CONSTANTS,
4289 .brw = BRW_NEW_BATCH |
4290 BRW_NEW_BLORP |
4291 BRW_NEW_COMPUTE_PROGRAM |
4292 BRW_NEW_CS_PROG_DATA,
4293 },
4294 .emit = genX(upload_cs_push_constants),
4295 };
4296
4297 /**
4298 * Creates a new CS constant buffer reflecting the current CS program's
4299 * constants, if needed by the CS program.
4300 */
4301 static void
4302 genX(upload_cs_pull_constants)(struct brw_context *brw)
4303 {
4304 struct brw_stage_state *stage_state = &brw->cs.base;
4305
4306 /* BRW_NEW_COMPUTE_PROGRAM */
4307 struct brw_program *cp =
4308 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4309
4310 /* BRW_NEW_CS_PROG_DATA */
4311 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4312
4313 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4314 /* _NEW_PROGRAM_CONSTANTS */
4315 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4316 stage_state, prog_data);
4317 }
4318
4319 const struct brw_tracked_state genX(cs_pull_constants) = {
4320 .dirty = {
4321 .mesa = _NEW_PROGRAM_CONSTANTS,
4322 .brw = BRW_NEW_BATCH |
4323 BRW_NEW_BLORP |
4324 BRW_NEW_COMPUTE_PROGRAM |
4325 BRW_NEW_CS_PROG_DATA,
4326 },
4327 .emit = genX(upload_cs_pull_constants),
4328 };
4329
4330 static void
4331 genX(upload_cs_state)(struct brw_context *brw)
4332 {
4333 if (!brw->cs.base.prog_data)
4334 return;
4335
4336 uint32_t offset;
4337 uint32_t *desc = (uint32_t*) brw_state_batch(
4338 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4339 &offset);
4340
4341 struct brw_stage_state *stage_state = &brw->cs.base;
4342 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4343 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4344 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4345
4346 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4347 brw_emit_buffer_surface_state(
4348 brw, &stage_state->surf_offset[
4349 prog_data->binding_table.shader_time_start],
4350 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4351 brw->shader_time.bo->size, 1,
4352 RELOC_WRITE);
4353 }
4354
4355 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4356 32, &stage_state->bind_bo_offset);
4357
4358 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4359 *
4360 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4361 * the only bits that are changed are scoreboard related: Scoreboard
4362 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4363 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4364 *
4365 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4366 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4367 */
4368 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4369
4370 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4371 if (prog_data->total_scratch) {
4372 uint32_t per_thread_scratch_value;
4373
4374 if (GEN_GEN >= 8) {
4375 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4376 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4377 */
4378 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4379 } else if (GEN_IS_HASWELL) {
4380 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4381 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4382 */
4383 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4384 } else {
4385 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4386 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4387 */
4388 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4389 }
4390 vfe.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
4391 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4392 }
4393
4394 /* If brw->screen->subslice_total is greater than one, then
4395 * devinfo->max_cs_threads stores number of threads per sub-slice;
4396 * thus we need to multiply by that number by subslices to get
4397 * the actual maximum number of threads; the -1 is because the HW
4398 * has a bias of 1 (would not make sense to say the maximum number
4399 * of threads is 0).
4400 */
4401 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4402 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4403 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4404 #if GEN_GEN < 11
4405 vfe.ResetGatewayTimer =
4406 Resettingrelativetimerandlatchingtheglobaltimestamp;
4407 #endif
4408 #if GEN_GEN < 9
4409 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4410 #endif
4411 #if GEN_GEN == 7
4412 vfe.GPGPUMode = 1;
4413 #endif
4414
4415 /* We are uploading duplicated copies of push constant uniforms for each
4416 * thread. Although the local id data needs to vary per thread, it won't
4417 * change for other uniform data. Unfortunately this duplication is
4418 * required for gen7. As of Haswell, this duplication can be avoided,
4419 * but this older mechanism with duplicated data continues to work.
4420 *
4421 * FINISHME: As of Haswell, we could make use of the
4422 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4423 * field to only store one copy of uniform data.
4424 *
4425 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4426 * which is described in the GPGPU_WALKER command and in the Broadwell
4427 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4428 * Operations => GPGPU Mode => Indirect Payload Storage.
4429 *
4430 * Note: The constant data is built in brw_upload_cs_push_constants
4431 * below.
4432 */
4433 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4434
4435 const uint32_t vfe_curbe_allocation =
4436 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4437 cs_prog_data->push.cross_thread.regs, 2);
4438 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4439 }
4440
4441 if (cs_prog_data->push.total.size > 0) {
4442 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4443 curbe.CURBETotalDataLength =
4444 ALIGN(cs_prog_data->push.total.size, 64);
4445 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4446 }
4447 }
4448
4449 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4450 memcpy(bind, stage_state->surf_offset,
4451 prog_data->binding_table.size_bytes);
4452 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4453 .KernelStartPointer = brw->cs.base.prog_offset,
4454 .SamplerStatePointer = stage_state->sampler_offset,
4455 .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4456 .BindingTablePointer = stage_state->bind_bo_offset,
4457 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4458 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4459 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4460 prog_data->total_shared),
4461 .BarrierEnable = cs_prog_data->uses_barrier,
4462 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4463 .CrossThreadConstantDataReadLength =
4464 cs_prog_data->push.cross_thread.regs,
4465 #endif
4466 };
4467
4468 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4469
4470 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4471 load.InterfaceDescriptorTotalLength =
4472 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4473 load.InterfaceDescriptorDataStartAddress = offset;
4474 }
4475 }
4476
4477 static const struct brw_tracked_state genX(cs_state) = {
4478 .dirty = {
4479 .mesa = _NEW_PROGRAM_CONSTANTS,
4480 .brw = BRW_NEW_BATCH |
4481 BRW_NEW_BLORP |
4482 BRW_NEW_CS_PROG_DATA |
4483 BRW_NEW_SAMPLER_STATE_TABLE |
4484 BRW_NEW_SURFACES,
4485 },
4486 .emit = genX(upload_cs_state)
4487 };
4488
4489 #endif
4490
4491 /* ---------------------------------------------------------------------- */
4492
4493 #if GEN_GEN >= 8
4494 static void
4495 genX(upload_raster)(struct brw_context *brw)
4496 {
4497 const struct gl_context *ctx = &brw->ctx;
4498
4499 /* _NEW_BUFFERS */
4500 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4501
4502 /* _NEW_POLYGON */
4503 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4504
4505 /* _NEW_POINT */
4506 const struct gl_point_attrib *point = &ctx->Point;
4507
4508 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4509 if (brw->polygon_front_bit == render_to_fbo)
4510 raster.FrontWinding = CounterClockwise;
4511
4512 if (polygon->CullFlag) {
4513 switch (polygon->CullFaceMode) {
4514 case GL_FRONT:
4515 raster.CullMode = CULLMODE_FRONT;
4516 break;
4517 case GL_BACK:
4518 raster.CullMode = CULLMODE_BACK;
4519 break;
4520 case GL_FRONT_AND_BACK:
4521 raster.CullMode = CULLMODE_BOTH;
4522 break;
4523 default:
4524 unreachable("not reached");
4525 }
4526 } else {
4527 raster.CullMode = CULLMODE_NONE;
4528 }
4529
4530 raster.SmoothPointEnable = point->SmoothFlag;
4531
4532 raster.DXMultisampleRasterizationEnable =
4533 _mesa_is_multisample_enabled(ctx);
4534
4535 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4536 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4537 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4538
4539 switch (polygon->FrontMode) {
4540 case GL_FILL:
4541 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4542 break;
4543 case GL_LINE:
4544 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4545 break;
4546 case GL_POINT:
4547 raster.FrontFaceFillMode = FILL_MODE_POINT;
4548 break;
4549 default:
4550 unreachable("not reached");
4551 }
4552
4553 switch (polygon->BackMode) {
4554 case GL_FILL:
4555 raster.BackFaceFillMode = FILL_MODE_SOLID;
4556 break;
4557 case GL_LINE:
4558 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4559 break;
4560 case GL_POINT:
4561 raster.BackFaceFillMode = FILL_MODE_POINT;
4562 break;
4563 default:
4564 unreachable("not reached");
4565 }
4566
4567 /* _NEW_LINE */
4568 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4569
4570 #if GEN_GEN == 10
4571 /* _NEW_BUFFERS
4572 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4573 */
4574 const bool multisampled_fbo =
4575 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4576 if (multisampled_fbo)
4577 raster.AntialiasingEnable = false;
4578 #endif
4579
4580 /* _NEW_SCISSOR */
4581 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4582
4583 /* _NEW_TRANSFORM */
4584 if (!ctx->Transform.DepthClamp) {
4585 #if GEN_GEN >= 9
4586 raster.ViewportZFarClipTestEnable = true;
4587 raster.ViewportZNearClipTestEnable = true;
4588 #else
4589 raster.ViewportZClipTestEnable = true;
4590 #endif
4591 }
4592
4593 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4594 #if GEN_GEN >= 9
4595 raster.ConservativeRasterizationEnable =
4596 ctx->IntelConservativeRasterization;
4597 #endif
4598
4599 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4600 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4601
4602 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4603 }
4604 }
4605
4606 static const struct brw_tracked_state genX(raster_state) = {
4607 .dirty = {
4608 .mesa = _NEW_BUFFERS |
4609 _NEW_LINE |
4610 _NEW_MULTISAMPLE |
4611 _NEW_POINT |
4612 _NEW_POLYGON |
4613 _NEW_SCISSOR |
4614 _NEW_TRANSFORM,
4615 .brw = BRW_NEW_BLORP |
4616 BRW_NEW_CONTEXT |
4617 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4618 },
4619 .emit = genX(upload_raster),
4620 };
4621 #endif
4622
4623 /* ---------------------------------------------------------------------- */
4624
4625 #if GEN_GEN >= 8
4626 static void
4627 genX(upload_ps_extra)(struct brw_context *brw)
4628 {
4629 UNUSED struct gl_context *ctx = &brw->ctx;
4630
4631 const struct brw_wm_prog_data *prog_data =
4632 brw_wm_prog_data(brw->wm.base.prog_data);
4633
4634 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4635 psx.PixelShaderValid = true;
4636 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4637 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4638 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4639 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4640 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4641 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4642
4643 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4644 if (prog_data->uses_sample_mask) {
4645 #if GEN_GEN >= 9
4646 if (prog_data->post_depth_coverage)
4647 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4648 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4649 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4650 else
4651 psx.InputCoverageMaskState = ICMS_NORMAL;
4652 #else
4653 psx.PixelShaderUsesInputCoverageMask = true;
4654 #endif
4655 }
4656
4657 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4658 #if GEN_GEN >= 9
4659 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4660 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4661 #endif
4662
4663 /* The stricter cross-primitive coherency guarantees that the hardware
4664 * gives us with the "Accesses UAV" bit set for at least one shader stage
4665 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4666 * are redundant within the current image, atomic counter and SSBO GL
4667 * APIs, which all have very loose ordering and coherency requirements
4668 * and generally rely on the application to insert explicit barriers when
4669 * a shader invocation is expected to see the memory writes performed by
4670 * the invocations of some previous primitive. Regardless of the value
4671 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4672 * cause an in most cases useless DC flush when the lowermost stage with
4673 * the bit set finishes execution.
4674 *
4675 * It would be nice to disable it, but in some cases we can't because on
4676 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4677 * signal (which could be set independently from the coherency mechanism
4678 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4679 * determine whether the hardware skips execution of the fragment shader
4680 * or not via the ThreadDispatchEnable signal. However if we know that
4681 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4682 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4683 * difference so we may just disable it here.
4684 *
4685 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4686 * take into account KillPixels when no depth or stencil writes are
4687 * enabled. In order for occlusion queries to work correctly with no
4688 * attachments, we need to force-enable here.
4689 *
4690 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4691 * _NEW_COLOR
4692 */
4693 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4694 !brw_color_buffer_write_enabled(brw))
4695 psx.PixelShaderHasUAV = true;
4696 }
4697 }
4698
4699 const struct brw_tracked_state genX(ps_extra) = {
4700 .dirty = {
4701 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4702 .brw = BRW_NEW_BLORP |
4703 BRW_NEW_CONTEXT |
4704 BRW_NEW_FRAGMENT_PROGRAM |
4705 BRW_NEW_FS_PROG_DATA |
4706 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4707 },
4708 .emit = genX(upload_ps_extra),
4709 };
4710 #endif
4711
4712 /* ---------------------------------------------------------------------- */
4713
4714 #if GEN_GEN >= 8
4715 static void
4716 genX(upload_ps_blend)(struct brw_context *brw)
4717 {
4718 struct gl_context *ctx = &brw->ctx;
4719
4720 /* _NEW_BUFFERS */
4721 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4722 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4723
4724 /* _NEW_COLOR */
4725 struct gl_colorbuffer_attrib *color = &ctx->Color;
4726
4727 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4728 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4729 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4730
4731 bool alpha_to_one = false;
4732
4733 if (!buffer0_is_integer) {
4734 /* _NEW_MULTISAMPLE */
4735
4736 if (_mesa_is_multisample_enabled(ctx)) {
4737 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4738 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4739 }
4740
4741 pb.AlphaTestEnable = color->AlphaEnabled;
4742 }
4743
4744 /* Used for implementing the following bit of GL_EXT_texture_integer:
4745 * "Per-fragment operations that require floating-point color
4746 * components, including multisample alpha operations, alpha test,
4747 * blending, and dithering, have no effect when the corresponding
4748 * colors are written to an integer color buffer."
4749 *
4750 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4751 * "If drawbuffer zero is not NONE and the buffer it references has an
4752 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4753 * operations are skipped."
4754 */
4755 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4756 GLenum eqRGB = color->Blend[0].EquationRGB;
4757 GLenum eqA = color->Blend[0].EquationA;
4758 GLenum srcRGB = color->Blend[0].SrcRGB;
4759 GLenum dstRGB = color->Blend[0].DstRGB;
4760 GLenum srcA = color->Blend[0].SrcA;
4761 GLenum dstA = color->Blend[0].DstA;
4762
4763 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4764 srcRGB = dstRGB = GL_ONE;
4765
4766 if (eqA == GL_MIN || eqA == GL_MAX)
4767 srcA = dstA = GL_ONE;
4768
4769 /* Due to hardware limitations, the destination may have information
4770 * in an alpha channel even when the format specifies no alpha
4771 * channel. In order to avoid getting any incorrect blending due to
4772 * that alpha channel, coerce the blend factors to values that will
4773 * not read the alpha channel, but will instead use the correct
4774 * implicit value for alpha.
4775 */
4776 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4777 GL_TEXTURE_ALPHA_TYPE)) {
4778 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4779 srcA = brw_fix_xRGB_alpha(srcA);
4780 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4781 dstA = brw_fix_xRGB_alpha(dstA);
4782 }
4783
4784 /* Alpha to One doesn't work with Dual Color Blending. Override
4785 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4786 */
4787 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4788 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4789 srcA = fix_dual_blend_alpha_to_one(srcA);
4790 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4791 dstA = fix_dual_blend_alpha_to_one(dstA);
4792 }
4793
4794 pb.ColorBufferBlendEnable = true;
4795 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4796 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4797 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4798 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4799
4800 pb.IndependentAlphaBlendEnable =
4801 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4802 }
4803 }
4804 }
4805
4806 static const struct brw_tracked_state genX(ps_blend) = {
4807 .dirty = {
4808 .mesa = _NEW_BUFFERS |
4809 _NEW_COLOR |
4810 _NEW_MULTISAMPLE,
4811 .brw = BRW_NEW_BLORP |
4812 BRW_NEW_CONTEXT |
4813 BRW_NEW_FRAGMENT_PROGRAM,
4814 },
4815 .emit = genX(upload_ps_blend)
4816 };
4817 #endif
4818
4819 /* ---------------------------------------------------------------------- */
4820
4821 #if GEN_GEN >= 8
4822 static void
4823 genX(emit_vf_topology)(struct brw_context *brw)
4824 {
4825 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4826 vftopo.PrimitiveTopologyType = brw->primitive;
4827 }
4828 }
4829
4830 static const struct brw_tracked_state genX(vf_topology) = {
4831 .dirty = {
4832 .mesa = 0,
4833 .brw = BRW_NEW_BLORP |
4834 BRW_NEW_PRIMITIVE,
4835 },
4836 .emit = genX(emit_vf_topology),
4837 };
4838 #endif
4839
4840 /* ---------------------------------------------------------------------- */
4841
4842 #if GEN_GEN >= 7
4843 static void
4844 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4845 struct brw_bo *bo,
4846 uint32_t offset_in_bytes,
4847 uint32_t report_id)
4848 {
4849 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4850 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4851 mi_rpc.ReportID = report_id;
4852 }
4853 }
4854 #endif
4855
4856 /* ---------------------------------------------------------------------- */
4857
4858 /**
4859 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4860 */
4861 static void
4862 genX(emit_sampler_state_pointers_xs)(MAYBE_UNUSED struct brw_context *brw,
4863 MAYBE_UNUSED struct brw_stage_state *stage_state)
4864 {
4865 #if GEN_GEN >= 7
4866 static const uint16_t packet_headers[] = {
4867 [MESA_SHADER_VERTEX] = 43,
4868 [MESA_SHADER_TESS_CTRL] = 44,
4869 [MESA_SHADER_TESS_EVAL] = 45,
4870 [MESA_SHADER_GEOMETRY] = 46,
4871 [MESA_SHADER_FRAGMENT] = 47,
4872 };
4873
4874 /* Ivybridge requires a workaround flush before VS packets. */
4875 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4876 stage_state->stage == MESA_SHADER_VERTEX) {
4877 gen7_emit_vs_workaround_flush(brw);
4878 }
4879
4880 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4881 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4882 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4883 }
4884 #endif
4885 }
4886
4887 UNUSED static bool
4888 has_component(mesa_format format, int i)
4889 {
4890 if (_mesa_is_format_color_format(format))
4891 return _mesa_format_has_color_component(format, i);
4892
4893 /* depth and stencil have only one component */
4894 return i == 0;
4895 }
4896
4897 /**
4898 * Upload SAMPLER_BORDER_COLOR_STATE.
4899 */
4900 static void
4901 genX(upload_default_color)(struct brw_context *brw,
4902 const struct gl_sampler_object *sampler,
4903 MAYBE_UNUSED mesa_format format, GLenum base_format,
4904 bool is_integer_format, bool is_stencil_sampling,
4905 uint32_t *sdc_offset)
4906 {
4907 union gl_color_union color;
4908
4909 switch (base_format) {
4910 case GL_DEPTH_COMPONENT:
4911 /* GL specs that border color for depth textures is taken from the
4912 * R channel, while the hardware uses A. Spam R into all the
4913 * channels for safety.
4914 */
4915 color.ui[0] = sampler->BorderColor.ui[0];
4916 color.ui[1] = sampler->BorderColor.ui[0];
4917 color.ui[2] = sampler->BorderColor.ui[0];
4918 color.ui[3] = sampler->BorderColor.ui[0];
4919 break;
4920 case GL_ALPHA:
4921 color.ui[0] = 0u;
4922 color.ui[1] = 0u;
4923 color.ui[2] = 0u;
4924 color.ui[3] = sampler->BorderColor.ui[3];
4925 break;
4926 case GL_INTENSITY:
4927 color.ui[0] = sampler->BorderColor.ui[0];
4928 color.ui[1] = sampler->BorderColor.ui[0];
4929 color.ui[2] = sampler->BorderColor.ui[0];
4930 color.ui[3] = sampler->BorderColor.ui[0];
4931 break;
4932 case GL_LUMINANCE:
4933 color.ui[0] = sampler->BorderColor.ui[0];
4934 color.ui[1] = sampler->BorderColor.ui[0];
4935 color.ui[2] = sampler->BorderColor.ui[0];
4936 color.ui[3] = float_as_int(1.0);
4937 break;
4938 case GL_LUMINANCE_ALPHA:
4939 color.ui[0] = sampler->BorderColor.ui[0];
4940 color.ui[1] = sampler->BorderColor.ui[0];
4941 color.ui[2] = sampler->BorderColor.ui[0];
4942 color.ui[3] = sampler->BorderColor.ui[3];
4943 break;
4944 default:
4945 color.ui[0] = sampler->BorderColor.ui[0];
4946 color.ui[1] = sampler->BorderColor.ui[1];
4947 color.ui[2] = sampler->BorderColor.ui[2];
4948 color.ui[3] = sampler->BorderColor.ui[3];
4949 break;
4950 }
4951
4952 /* In some cases we use an RGBA surface format for GL RGB textures,
4953 * where we've initialized the A channel to 1.0. We also have to set
4954 * the border color alpha to 1.0 in that case.
4955 */
4956 if (base_format == GL_RGB)
4957 color.ui[3] = float_as_int(1.0);
4958
4959 int alignment = 32;
4960 if (GEN_GEN >= 8) {
4961 alignment = 64;
4962 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4963 alignment = 512;
4964 }
4965
4966 uint32_t *sdc = brw_state_batch(
4967 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4968 alignment, sdc_offset);
4969
4970 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4971
4972 #define ASSIGN(dst, src) \
4973 do { \
4974 dst = src; \
4975 } while (0)
4976
4977 #define ASSIGNu16(dst, src) \
4978 do { \
4979 dst = (uint16_t)src; \
4980 } while (0)
4981
4982 #define ASSIGNu8(dst, src) \
4983 do { \
4984 dst = (uint8_t)src; \
4985 } while (0)
4986
4987 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4988 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4989 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4990 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4991 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4992
4993 #if GEN_GEN >= 8
4994 /* On Broadwell, the border color is represented as four 32-bit floats,
4995 * integers, or unsigned values, interpreted according to the surface
4996 * format. This matches the sampler->BorderColor union exactly; just
4997 * memcpy the values.
4998 */
4999 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
5000 #elif GEN_IS_HASWELL
5001 if (is_integer_format || is_stencil_sampling) {
5002 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
5003 const int bits_per_channel =
5004 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
5005
5006 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
5007 * "If any color channel is missing from the surface format,
5008 * corresponding border color should be programmed as zero and if
5009 * alpha channel is missing, corresponding Alpha border color should
5010 * be programmed as 1."
5011 */
5012 unsigned c[4] = { 0, 0, 0, 1 };
5013 for (int i = 0; i < 4; i++) {
5014 if (has_component(format, i))
5015 c[i] = color.ui[i];
5016 }
5017
5018 switch (bits_per_channel) {
5019 case 8:
5020 /* Copy RGBA in order. */
5021 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
5022 break;
5023 case 10:
5024 /* R10G10B10A2_UINT is treated like a 16-bit format. */
5025 case 16:
5026 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
5027 break;
5028 case 32:
5029 if (base_format == GL_RG) {
5030 /* Careful inspection of the tables reveals that for RG32 formats,
5031 * the green channel needs to go where blue normally belongs.
5032 */
5033 state.BorderColor32bitRed = c[0];
5034 state.BorderColor32bitBlue = c[1];
5035 state.BorderColor32bitAlpha = 1;
5036 } else {
5037 /* Copy RGBA in order. */
5038 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
5039 }
5040 break;
5041 default:
5042 assert(!"Invalid number of bits per channel in integer format.");
5043 break;
5044 }
5045 } else {
5046 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5047 }
5048 #elif GEN_GEN == 5 || GEN_GEN == 6
5049 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
5050 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
5051 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
5052
5053 #define MESA_FLOAT_TO_HALF(dst, src) \
5054 dst = _mesa_float_to_half(src);
5055
5056 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
5057
5058 #undef MESA_FLOAT_TO_HALF
5059
5060 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
5061 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
5062 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
5063 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
5064
5065 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5066 #elif GEN_GEN == 4
5067 BORDER_COLOR_ATTR(ASSIGN, , color.f);
5068 #else
5069 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5070 #endif
5071
5072 #undef ASSIGN
5073 #undef BORDER_COLOR_ATTR
5074
5075 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
5076 }
5077
5078 static uint32_t
5079 translate_wrap_mode(GLenum wrap, MAYBE_UNUSED bool using_nearest)
5080 {
5081 switch (wrap) {
5082 case GL_REPEAT:
5083 return TCM_WRAP;
5084 case GL_CLAMP:
5085 #if GEN_GEN >= 8
5086 /* GL_CLAMP is the weird mode where coordinates are clamped to
5087 * [0.0, 1.0], so linear filtering of coordinates outside of
5088 * [0.0, 1.0] give you half edge texel value and half border
5089 * color.
5090 *
5091 * Gen8+ supports this natively.
5092 */
5093 return TCM_HALF_BORDER;
5094 #else
5095 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
5096 * and set clamp_border here, which gets the result desired.
5097 * We just use clamp(_to_edge) for nearest, because for nearest
5098 * clamping to 1.0 gives border color instead of the desired
5099 * edge texels.
5100 */
5101 if (using_nearest)
5102 return TCM_CLAMP;
5103 else
5104 return TCM_CLAMP_BORDER;
5105 #endif
5106 case GL_CLAMP_TO_EDGE:
5107 return TCM_CLAMP;
5108 case GL_CLAMP_TO_BORDER:
5109 return TCM_CLAMP_BORDER;
5110 case GL_MIRRORED_REPEAT:
5111 return TCM_MIRROR;
5112 case GL_MIRROR_CLAMP_TO_EDGE:
5113 return TCM_MIRROR_ONCE;
5114 default:
5115 return TCM_WRAP;
5116 }
5117 }
5118
5119 /**
5120 * Return true if the given wrap mode requires the border color to exist.
5121 */
5122 static bool
5123 wrap_mode_needs_border_color(unsigned wrap_mode)
5124 {
5125 #if GEN_GEN >= 8
5126 return wrap_mode == TCM_CLAMP_BORDER ||
5127 wrap_mode == TCM_HALF_BORDER;
5128 #else
5129 return wrap_mode == TCM_CLAMP_BORDER;
5130 #endif
5131 }
5132
5133 /**
5134 * Sets the sampler state for a single unit based off of the sampler key
5135 * entry.
5136 */
5137 static void
5138 genX(update_sampler_state)(struct brw_context *brw,
5139 GLenum target, bool tex_cube_map_seamless,
5140 GLfloat tex_unit_lod_bias,
5141 mesa_format format, GLenum base_format,
5142 const struct gl_texture_object *texObj,
5143 const struct gl_sampler_object *sampler,
5144 uint32_t *sampler_state)
5145 {
5146 struct GENX(SAMPLER_STATE) samp_st = { 0 };
5147
5148 /* Select min and mip filters. */
5149 switch (sampler->MinFilter) {
5150 case GL_NEAREST:
5151 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5152 samp_st.MipModeFilter = MIPFILTER_NONE;
5153 break;
5154 case GL_LINEAR:
5155 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5156 samp_st.MipModeFilter = MIPFILTER_NONE;
5157 break;
5158 case GL_NEAREST_MIPMAP_NEAREST:
5159 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5160 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5161 break;
5162 case GL_LINEAR_MIPMAP_NEAREST:
5163 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5164 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5165 break;
5166 case GL_NEAREST_MIPMAP_LINEAR:
5167 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5168 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5169 break;
5170 case GL_LINEAR_MIPMAP_LINEAR:
5171 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5172 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5173 break;
5174 default:
5175 unreachable("not reached");
5176 }
5177
5178 /* Select mag filter. */
5179 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5180 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5181
5182 /* Enable anisotropic filtering if desired. */
5183 samp_st.MaximumAnisotropy = RATIO21;
5184
5185 if (sampler->MaxAnisotropy > 1.0f) {
5186 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5187 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5188 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5189 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5190
5191 if (sampler->MaxAnisotropy > 2.0f) {
5192 samp_st.MaximumAnisotropy =
5193 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5194 }
5195 }
5196
5197 /* Set address rounding bits if not using nearest filtering. */
5198 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5199 samp_st.UAddressMinFilterRoundingEnable = true;
5200 samp_st.VAddressMinFilterRoundingEnable = true;
5201 samp_st.RAddressMinFilterRoundingEnable = true;
5202 }
5203
5204 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5205 samp_st.UAddressMagFilterRoundingEnable = true;
5206 samp_st.VAddressMagFilterRoundingEnable = true;
5207 samp_st.RAddressMagFilterRoundingEnable = true;
5208 }
5209
5210 bool either_nearest =
5211 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5212 unsigned wrap_s = translate_wrap_mode(sampler->WrapS, either_nearest);
5213 unsigned wrap_t = translate_wrap_mode(sampler->WrapT, either_nearest);
5214 unsigned wrap_r = translate_wrap_mode(sampler->WrapR, either_nearest);
5215
5216 if (target == GL_TEXTURE_CUBE_MAP ||
5217 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5218 /* Cube maps must use the same wrap mode for all three coordinate
5219 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5220 *
5221 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5222 * integer formats. Fall back to CLAMP for now.
5223 */
5224 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5225 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5226 wrap_s = TCM_CUBE;
5227 wrap_t = TCM_CUBE;
5228 wrap_r = TCM_CUBE;
5229 } else {
5230 wrap_s = TCM_CLAMP;
5231 wrap_t = TCM_CLAMP;
5232 wrap_r = TCM_CLAMP;
5233 }
5234 } else if (target == GL_TEXTURE_1D) {
5235 /* There's a bug in 1D texture sampling - it actually pays
5236 * attention to the wrap_t value, though it should not.
5237 * Override the wrap_t value here to GL_REPEAT to keep
5238 * any nonexistent border pixels from floating in.
5239 */
5240 wrap_t = TCM_WRAP;
5241 }
5242
5243 samp_st.TCXAddressControlMode = wrap_s;
5244 samp_st.TCYAddressControlMode = wrap_t;
5245 samp_st.TCZAddressControlMode = wrap_r;
5246
5247 samp_st.ShadowFunction =
5248 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5249 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5250
5251 #if GEN_GEN >= 7
5252 /* Set shadow function. */
5253 samp_st.AnisotropicAlgorithm =
5254 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5255 EWAApproximation : LEGACY;
5256 #endif
5257
5258 #if GEN_GEN >= 6
5259 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5260 #endif
5261
5262 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5263 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5264 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5265 samp_st.TextureLODBias =
5266 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5267
5268 #if GEN_GEN == 6
5269 samp_st.BaseMipLevel =
5270 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5271 samp_st.MinandMagStateNotEqual =
5272 samp_st.MinModeFilter != samp_st.MagModeFilter;
5273 #endif
5274
5275 /* Upload the border color if necessary. If not, just point it at
5276 * offset 0 (the start of the batch) - the color should be ignored,
5277 * but that address won't fault in case something reads it anyway.
5278 */
5279 uint32_t border_color_offset = 0;
5280 if (wrap_mode_needs_border_color(wrap_s) ||
5281 wrap_mode_needs_border_color(wrap_t) ||
5282 wrap_mode_needs_border_color(wrap_r)) {
5283 genX(upload_default_color)(brw, sampler, format, base_format,
5284 texObj->_IsIntegerFormat,
5285 texObj->StencilSampling,
5286 &border_color_offset);
5287 }
5288 #if GEN_GEN < 6
5289 samp_st.BorderColorPointer =
5290 ro_bo(brw->batch.state.bo, border_color_offset);
5291 #else
5292 samp_st.BorderColorPointer = border_color_offset;
5293 #endif
5294
5295 #if GEN_GEN >= 8
5296 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5297 #else
5298 samp_st.LODPreClampEnable = true;
5299 #endif
5300
5301 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5302 }
5303
5304 static void
5305 update_sampler_state(struct brw_context *brw,
5306 int unit,
5307 uint32_t *sampler_state)
5308 {
5309 struct gl_context *ctx = &brw->ctx;
5310 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5311 const struct gl_texture_object *texObj = texUnit->_Current;
5312 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5313
5314 /* These don't use samplers at all. */
5315 if (texObj->Target == GL_TEXTURE_BUFFER)
5316 return;
5317
5318 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5319 genX(update_sampler_state)(brw, texObj->Target,
5320 ctx->Texture.CubeMapSeamless,
5321 texUnit->LodBias,
5322 firstImage->TexFormat, firstImage->_BaseFormat,
5323 texObj, sampler,
5324 sampler_state);
5325 }
5326
5327 static void
5328 genX(upload_sampler_state_table)(struct brw_context *brw,
5329 struct gl_program *prog,
5330 struct brw_stage_state *stage_state)
5331 {
5332 struct gl_context *ctx = &brw->ctx;
5333 uint32_t sampler_count = stage_state->sampler_count;
5334
5335 GLbitfield SamplersUsed = prog->SamplersUsed;
5336
5337 if (sampler_count == 0)
5338 return;
5339
5340 /* SAMPLER_STATE is 4 DWords on all platforms. */
5341 const int dwords = GENX(SAMPLER_STATE_length);
5342 const int size_in_bytes = dwords * sizeof(uint32_t);
5343
5344 uint32_t *sampler_state = brw_state_batch(brw,
5345 sampler_count * size_in_bytes,
5346 32, &stage_state->sampler_offset);
5347 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5348
5349 for (unsigned s = 0; s < sampler_count; s++) {
5350 if (SamplersUsed & (1 << s)) {
5351 const unsigned unit = prog->SamplerUnits[s];
5352 if (ctx->Texture.Unit[unit]._Current) {
5353 update_sampler_state(brw, unit, sampler_state);
5354 }
5355 }
5356
5357 sampler_state += dwords;
5358 }
5359
5360 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5361 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5362 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5363 } else {
5364 /* Flag that the sampler state table pointer has changed; later atoms
5365 * will handle it.
5366 */
5367 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5368 }
5369 }
5370
5371 static void
5372 genX(upload_fs_samplers)(struct brw_context *brw)
5373 {
5374 /* BRW_NEW_FRAGMENT_PROGRAM */
5375 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5376 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5377 }
5378
5379 static const struct brw_tracked_state genX(fs_samplers) = {
5380 .dirty = {
5381 .mesa = _NEW_TEXTURE,
5382 .brw = BRW_NEW_BATCH |
5383 BRW_NEW_BLORP |
5384 BRW_NEW_FRAGMENT_PROGRAM,
5385 },
5386 .emit = genX(upload_fs_samplers),
5387 };
5388
5389 static void
5390 genX(upload_vs_samplers)(struct brw_context *brw)
5391 {
5392 /* BRW_NEW_VERTEX_PROGRAM */
5393 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5394 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5395 }
5396
5397 static const struct brw_tracked_state genX(vs_samplers) = {
5398 .dirty = {
5399 .mesa = _NEW_TEXTURE,
5400 .brw = BRW_NEW_BATCH |
5401 BRW_NEW_BLORP |
5402 BRW_NEW_VERTEX_PROGRAM,
5403 },
5404 .emit = genX(upload_vs_samplers),
5405 };
5406
5407 #if GEN_GEN >= 6
5408 static void
5409 genX(upload_gs_samplers)(struct brw_context *brw)
5410 {
5411 /* BRW_NEW_GEOMETRY_PROGRAM */
5412 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5413 if (!gs)
5414 return;
5415
5416 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5417 }
5418
5419
5420 static const struct brw_tracked_state genX(gs_samplers) = {
5421 .dirty = {
5422 .mesa = _NEW_TEXTURE,
5423 .brw = BRW_NEW_BATCH |
5424 BRW_NEW_BLORP |
5425 BRW_NEW_GEOMETRY_PROGRAM,
5426 },
5427 .emit = genX(upload_gs_samplers),
5428 };
5429 #endif
5430
5431 #if GEN_GEN >= 7
5432 static void
5433 genX(upload_tcs_samplers)(struct brw_context *brw)
5434 {
5435 /* BRW_NEW_TESS_PROGRAMS */
5436 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5437 if (!tcs)
5438 return;
5439
5440 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5441 }
5442
5443 static const struct brw_tracked_state genX(tcs_samplers) = {
5444 .dirty = {
5445 .mesa = _NEW_TEXTURE,
5446 .brw = BRW_NEW_BATCH |
5447 BRW_NEW_BLORP |
5448 BRW_NEW_TESS_PROGRAMS,
5449 },
5450 .emit = genX(upload_tcs_samplers),
5451 };
5452 #endif
5453
5454 #if GEN_GEN >= 7
5455 static void
5456 genX(upload_tes_samplers)(struct brw_context *brw)
5457 {
5458 /* BRW_NEW_TESS_PROGRAMS */
5459 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5460 if (!tes)
5461 return;
5462
5463 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5464 }
5465
5466 static const struct brw_tracked_state genX(tes_samplers) = {
5467 .dirty = {
5468 .mesa = _NEW_TEXTURE,
5469 .brw = BRW_NEW_BATCH |
5470 BRW_NEW_BLORP |
5471 BRW_NEW_TESS_PROGRAMS,
5472 },
5473 .emit = genX(upload_tes_samplers),
5474 };
5475 #endif
5476
5477 #if GEN_GEN >= 7
5478 static void
5479 genX(upload_cs_samplers)(struct brw_context *brw)
5480 {
5481 /* BRW_NEW_COMPUTE_PROGRAM */
5482 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5483 if (!cs)
5484 return;
5485
5486 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5487 }
5488
5489 const struct brw_tracked_state genX(cs_samplers) = {
5490 .dirty = {
5491 .mesa = _NEW_TEXTURE,
5492 .brw = BRW_NEW_BATCH |
5493 BRW_NEW_BLORP |
5494 BRW_NEW_COMPUTE_PROGRAM,
5495 },
5496 .emit = genX(upload_cs_samplers),
5497 };
5498 #endif
5499
5500 /* ---------------------------------------------------------------------- */
5501
5502 #if GEN_GEN <= 5
5503
5504 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5505 {
5506 struct gl_context *ctx = &brw->ctx;
5507
5508 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5509 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5510 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5511 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5512 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5513 }
5514 }
5515
5516 static const struct brw_tracked_state genX(blend_constant_color) = {
5517 .dirty = {
5518 .mesa = _NEW_COLOR,
5519 .brw = BRW_NEW_CONTEXT |
5520 BRW_NEW_BLORP,
5521 },
5522 .emit = genX(upload_blend_constant_color)
5523 };
5524 #endif
5525
5526 /* ---------------------------------------------------------------------- */
5527
5528 void
5529 genX(init_atoms)(struct brw_context *brw)
5530 {
5531 #if GEN_GEN < 6
5532 static const struct brw_tracked_state *render_atoms[] =
5533 {
5534 /* Once all the programs are done, we know how large urb entry
5535 * sizes need to be and can decide if we need to change the urb
5536 * layout.
5537 */
5538 &brw_curbe_offsets,
5539 &brw_recalculate_urb_fence,
5540
5541 &genX(cc_vp),
5542 &genX(color_calc_state),
5543
5544 /* Surface state setup. Must come before the VS/WM unit. The binding
5545 * table upload must be last.
5546 */
5547 &brw_vs_pull_constants,
5548 &brw_wm_pull_constants,
5549 &brw_renderbuffer_surfaces,
5550 &brw_renderbuffer_read_surfaces,
5551 &brw_texture_surfaces,
5552 &brw_vs_binding_table,
5553 &brw_wm_binding_table,
5554
5555 &genX(fs_samplers),
5556 &genX(vs_samplers),
5557
5558 /* These set up state for brw_psp_urb_cbs */
5559 &genX(wm_state),
5560 &genX(sf_clip_viewport),
5561 &genX(sf_state),
5562 &genX(vs_state), /* always required, enabled or not */
5563 &genX(clip_state),
5564 &genX(gs_state),
5565
5566 /* Command packets:
5567 */
5568 &brw_binding_table_pointers,
5569 &genX(blend_constant_color),
5570
5571 &brw_depthbuffer,
5572
5573 &genX(polygon_stipple),
5574 &genX(polygon_stipple_offset),
5575
5576 &genX(line_stipple),
5577
5578 &brw_psp_urb_cbs,
5579
5580 &genX(drawing_rect),
5581 &brw_indices, /* must come before brw_vertices */
5582 &genX(index_buffer),
5583 &genX(vertices),
5584
5585 &brw_constant_buffer
5586 };
5587 #elif GEN_GEN == 6
5588 static const struct brw_tracked_state *render_atoms[] =
5589 {
5590 &genX(sf_clip_viewport),
5591
5592 /* Command packets: */
5593
5594 &genX(cc_vp),
5595
5596 &gen6_urb,
5597 &genX(blend_state), /* must do before cc unit */
5598 &genX(color_calc_state), /* must do before cc unit */
5599 &genX(depth_stencil_state), /* must do before cc unit */
5600
5601 &genX(vs_push_constants), /* Before vs_state */
5602 &genX(gs_push_constants), /* Before gs_state */
5603 &genX(wm_push_constants), /* Before wm_state */
5604
5605 /* Surface state setup. Must come before the VS/WM unit. The binding
5606 * table upload must be last.
5607 */
5608 &brw_vs_pull_constants,
5609 &brw_vs_ubo_surfaces,
5610 &brw_gs_pull_constants,
5611 &brw_gs_ubo_surfaces,
5612 &brw_wm_pull_constants,
5613 &brw_wm_ubo_surfaces,
5614 &gen6_renderbuffer_surfaces,
5615 &brw_renderbuffer_read_surfaces,
5616 &brw_texture_surfaces,
5617 &gen6_sol_surface,
5618 &brw_vs_binding_table,
5619 &gen6_gs_binding_table,
5620 &brw_wm_binding_table,
5621
5622 &genX(fs_samplers),
5623 &genX(vs_samplers),
5624 &genX(gs_samplers),
5625 &gen6_sampler_state,
5626 &genX(multisample_state),
5627
5628 &genX(vs_state),
5629 &genX(gs_state),
5630 &genX(clip_state),
5631 &genX(sf_state),
5632 &genX(wm_state),
5633
5634 &genX(scissor_state),
5635
5636 &gen6_binding_table_pointers,
5637
5638 &brw_depthbuffer,
5639
5640 &genX(polygon_stipple),
5641 &genX(polygon_stipple_offset),
5642
5643 &genX(line_stipple),
5644
5645 &genX(drawing_rect),
5646
5647 &brw_indices, /* must come before brw_vertices */
5648 &genX(index_buffer),
5649 &genX(vertices),
5650 };
5651 #elif GEN_GEN == 7
5652 static const struct brw_tracked_state *render_atoms[] =
5653 {
5654 /* Command packets: */
5655
5656 &genX(cc_vp),
5657 &genX(sf_clip_viewport),
5658
5659 &gen7_l3_state,
5660 &gen7_push_constant_space,
5661 &gen7_urb,
5662 &genX(blend_state), /* must do before cc unit */
5663 &genX(color_calc_state), /* must do before cc unit */
5664 &genX(depth_stencil_state), /* must do before cc unit */
5665
5666 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5667 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5668 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5669 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5670 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5671
5672 &genX(vs_push_constants), /* Before vs_state */
5673 &genX(tcs_push_constants),
5674 &genX(tes_push_constants),
5675 &genX(gs_push_constants), /* Before gs_state */
5676 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5677
5678 /* Surface state setup. Must come before the VS/WM unit. The binding
5679 * table upload must be last.
5680 */
5681 &brw_vs_pull_constants,
5682 &brw_vs_ubo_surfaces,
5683 &brw_tcs_pull_constants,
5684 &brw_tcs_ubo_surfaces,
5685 &brw_tes_pull_constants,
5686 &brw_tes_ubo_surfaces,
5687 &brw_gs_pull_constants,
5688 &brw_gs_ubo_surfaces,
5689 &brw_wm_pull_constants,
5690 &brw_wm_ubo_surfaces,
5691 &gen6_renderbuffer_surfaces,
5692 &brw_renderbuffer_read_surfaces,
5693 &brw_texture_surfaces,
5694
5695 &genX(push_constant_packets),
5696
5697 &brw_vs_binding_table,
5698 &brw_tcs_binding_table,
5699 &brw_tes_binding_table,
5700 &brw_gs_binding_table,
5701 &brw_wm_binding_table,
5702
5703 &genX(fs_samplers),
5704 &genX(vs_samplers),
5705 &genX(tcs_samplers),
5706 &genX(tes_samplers),
5707 &genX(gs_samplers),
5708 &genX(multisample_state),
5709
5710 &genX(vs_state),
5711 &genX(hs_state),
5712 &genX(te_state),
5713 &genX(ds_state),
5714 &genX(gs_state),
5715 &genX(sol_state),
5716 &genX(clip_state),
5717 &genX(sbe_state),
5718 &genX(sf_state),
5719 &genX(wm_state),
5720 &genX(ps_state),
5721
5722 &genX(scissor_state),
5723
5724 &brw_depthbuffer,
5725
5726 &genX(polygon_stipple),
5727 &genX(polygon_stipple_offset),
5728
5729 &genX(line_stipple),
5730
5731 &genX(drawing_rect),
5732
5733 &brw_indices, /* must come before brw_vertices */
5734 &genX(index_buffer),
5735 &genX(vertices),
5736
5737 #if GEN_IS_HASWELL
5738 &genX(cut_index),
5739 #endif
5740 };
5741 #elif GEN_GEN >= 8
5742 static const struct brw_tracked_state *render_atoms[] =
5743 {
5744 &genX(cc_vp),
5745 &genX(sf_clip_viewport),
5746
5747 &gen7_l3_state,
5748 &gen7_push_constant_space,
5749 &gen7_urb,
5750 &genX(blend_state),
5751 &genX(color_calc_state),
5752
5753 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5754 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5755 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5756 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5757 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5758
5759 &genX(vs_push_constants), /* Before vs_state */
5760 &genX(tcs_push_constants),
5761 &genX(tes_push_constants),
5762 &genX(gs_push_constants), /* Before gs_state */
5763 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5764
5765 /* Surface state setup. Must come before the VS/WM unit. The binding
5766 * table upload must be last.
5767 */
5768 &brw_vs_pull_constants,
5769 &brw_vs_ubo_surfaces,
5770 &brw_tcs_pull_constants,
5771 &brw_tcs_ubo_surfaces,
5772 &brw_tes_pull_constants,
5773 &brw_tes_ubo_surfaces,
5774 &brw_gs_pull_constants,
5775 &brw_gs_ubo_surfaces,
5776 &brw_wm_pull_constants,
5777 &brw_wm_ubo_surfaces,
5778 &gen6_renderbuffer_surfaces,
5779 &brw_renderbuffer_read_surfaces,
5780 &brw_texture_surfaces,
5781
5782 &genX(push_constant_packets),
5783
5784 &brw_vs_binding_table,
5785 &brw_tcs_binding_table,
5786 &brw_tes_binding_table,
5787 &brw_gs_binding_table,
5788 &brw_wm_binding_table,
5789
5790 &genX(fs_samplers),
5791 &genX(vs_samplers),
5792 &genX(tcs_samplers),
5793 &genX(tes_samplers),
5794 &genX(gs_samplers),
5795 &genX(multisample_state),
5796
5797 &genX(vs_state),
5798 &genX(hs_state),
5799 &genX(te_state),
5800 &genX(ds_state),
5801 &genX(gs_state),
5802 &genX(sol_state),
5803 &genX(clip_state),
5804 &genX(raster_state),
5805 &genX(sbe_state),
5806 &genX(sf_state),
5807 &genX(ps_blend),
5808 &genX(ps_extra),
5809 &genX(ps_state),
5810 &genX(depth_stencil_state),
5811 &genX(wm_state),
5812
5813 &genX(scissor_state),
5814
5815 &brw_depthbuffer,
5816
5817 &genX(polygon_stipple),
5818 &genX(polygon_stipple_offset),
5819
5820 &genX(line_stipple),
5821
5822 &genX(drawing_rect),
5823
5824 &genX(vf_topology),
5825
5826 &brw_indices,
5827 &genX(index_buffer),
5828 &genX(vertices),
5829
5830 &genX(cut_index),
5831 &gen8_pma_fix,
5832 };
5833 #endif
5834
5835 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5836 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5837 render_atoms, ARRAY_SIZE(render_atoms));
5838
5839 #if GEN_GEN >= 7
5840 static const struct brw_tracked_state *compute_atoms[] =
5841 {
5842 &gen7_l3_state,
5843 &brw_cs_image_surfaces,
5844 &genX(cs_push_constants),
5845 &genX(cs_pull_constants),
5846 &brw_cs_ubo_surfaces,
5847 &brw_cs_texture_surfaces,
5848 &brw_cs_work_groups_surface,
5849 &genX(cs_samplers),
5850 &genX(cs_state),
5851 };
5852
5853 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5854 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5855 compute_atoms, ARRAY_SIZE(compute_atoms));
5856
5857 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5858 #endif
5859 }