i965/icl: Update the assert in brw_memory_barrier()
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #include "brw_draw.h"
38 #include "brw_multisample_state.h"
39 #include "brw_state.h"
40 #include "brw_wm.h"
41 #include "brw_util.h"
42
43 #include "intel_batchbuffer.h"
44 #include "intel_buffer_objects.h"
45 #include "intel_fbo.h"
46
47 #include "main/enums.h"
48 #include "main/fbobject.h"
49 #include "main/framebuffer.h"
50 #include "main/glformats.h"
51 #include "main/samplerobj.h"
52 #include "main/shaderapi.h"
53 #include "main/stencil.h"
54 #include "main/transformfeedback.h"
55 #include "main/varray.h"
56 #include "main/viewport.h"
57 #include "util/half_float.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 unsigned reloc_flags;
72 uint32_t offset;
73 };
74
75 #define __gen_address_type struct brw_address
76 #define __gen_user_data struct brw_context
77
78 static uint64_t
79 __gen_combine_address(struct brw_context *brw, void *location,
80 struct brw_address address, uint32_t delta)
81 {
82 struct intel_batchbuffer *batch = &brw->batch;
83 uint32_t offset;
84
85 if (address.bo == NULL) {
86 return address.offset + delta;
87 } else {
88 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
89 offset = (char *) location - (char *) brw->batch.state.map;
90 return brw_state_reloc(batch, offset, address.bo,
91 address.offset + delta,
92 address.reloc_flags);
93 }
94
95 assert(!brw_ptr_in_state_buffer(batch, location));
96
97 offset = (char *) location - (char *) brw->batch.batch.map;
98 return brw_batch_reloc(batch, offset, address.bo,
99 address.offset + delta,
100 address.reloc_flags);
101 }
102 }
103
104 static struct brw_address
105 rw_bo(struct brw_bo *bo, uint32_t offset)
106 {
107 return (struct brw_address) {
108 .bo = bo,
109 .offset = offset,
110 .reloc_flags = RELOC_WRITE,
111 };
112 }
113
114 static struct brw_address
115 ro_bo(struct brw_bo *bo, uint32_t offset)
116 {
117 return (struct brw_address) {
118 .bo = bo,
119 .offset = offset,
120 };
121 }
122
123 UNUSED static struct brw_address
124 ggtt_bo(struct brw_bo *bo, uint32_t offset)
125 {
126 return (struct brw_address) {
127 .bo = bo,
128 .offset = offset,
129 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
130 };
131 }
132
133 #if GEN_GEN == 4
134 static struct brw_address
135 KSP(struct brw_context *brw, uint32_t offset)
136 {
137 return ro_bo(brw->cache.bo, offset);
138 }
139 #else
140 static uint32_t
141 KSP(struct brw_context *brw, uint32_t offset)
142 {
143 return offset;
144 }
145 #endif
146
147 #include "genxml/genX_pack.h"
148
149 #define _brw_cmd_length(cmd) cmd ## _length
150 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
151 #define _brw_cmd_header(cmd) cmd ## _header
152 #define _brw_cmd_pack(cmd) cmd ## _pack
153
154 #define brw_batch_emit(brw, cmd, name) \
155 for (struct cmd name = { _brw_cmd_header(cmd) }, \
156 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
157 __builtin_expect(_dst != NULL, 1); \
158 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
159 _dst = NULL)
160
161 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
162 uint32_t *_dw = emit_dwords(brw, n); \
163 struct cmd template = { \
164 _brw_cmd_header(cmd), \
165 .DWordLength = n - _brw_cmd_length_bias(cmd), \
166 __VA_ARGS__ \
167 }; \
168 _brw_cmd_pack(cmd)(brw, _dw, &template); \
169 _dw + 1; /* Array starts at dw[1] */ \
170 })
171
172 #define brw_state_emit(brw, cmd, align, offset, name) \
173 for (struct cmd name = {}, \
174 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
175 align, offset); \
176 __builtin_expect(_dst != NULL, 1); \
177 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
178 _dst = NULL)
179
180 /**
181 * Polygon stipple packet
182 */
183 static void
184 genX(upload_polygon_stipple)(struct brw_context *brw)
185 {
186 struct gl_context *ctx = &brw->ctx;
187
188 /* _NEW_POLYGON */
189 if (!ctx->Polygon.StippleFlag)
190 return;
191
192 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
193 /* Polygon stipple is provided in OpenGL order, i.e. bottom
194 * row first. If we're rendering to a window (i.e. the
195 * default frame buffer object, 0), then we need to invert
196 * it to match our pixel layout. But if we're rendering
197 * to a FBO (i.e. any named frame buffer object), we *don't*
198 * need to invert - we already match the layout.
199 */
200 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
201 for (unsigned i = 0; i < 32; i++)
202 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
203 } else {
204 for (unsigned i = 0; i < 32; i++)
205 poly.PatternRow[i] = ctx->PolygonStipple[i];
206 }
207 }
208 }
209
210 static const struct brw_tracked_state genX(polygon_stipple) = {
211 .dirty = {
212 .mesa = _NEW_POLYGON |
213 _NEW_POLYGONSTIPPLE,
214 .brw = BRW_NEW_CONTEXT,
215 },
216 .emit = genX(upload_polygon_stipple),
217 };
218
219 /**
220 * Polygon stipple offset packet
221 */
222 static void
223 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
224 {
225 struct gl_context *ctx = &brw->ctx;
226
227 /* _NEW_POLYGON */
228 if (!ctx->Polygon.StippleFlag)
229 return;
230
231 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
232 /* _NEW_BUFFERS
233 *
234 * If we're drawing to a system window we have to invert the Y axis
235 * in order to match the OpenGL pixel coordinate system, and our
236 * offset must be matched to the window position. If we're drawing
237 * to a user-created FBO then our native pixel coordinate system
238 * works just fine, and there's no window system to worry about.
239 */
240 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
241 poly.PolygonStippleYOffset =
242 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
243 }
244 }
245 }
246
247 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
248 .dirty = {
249 .mesa = _NEW_BUFFERS |
250 _NEW_POLYGON,
251 .brw = BRW_NEW_CONTEXT,
252 },
253 .emit = genX(upload_polygon_stipple_offset),
254 };
255
256 /**
257 * Line stipple packet
258 */
259 static void
260 genX(upload_line_stipple)(struct brw_context *brw)
261 {
262 struct gl_context *ctx = &brw->ctx;
263
264 if (!ctx->Line.StippleFlag)
265 return;
266
267 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
268 line.LineStipplePattern = ctx->Line.StipplePattern;
269
270 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
271 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
272 }
273 }
274
275 static const struct brw_tracked_state genX(line_stipple) = {
276 .dirty = {
277 .mesa = _NEW_LINE,
278 .brw = BRW_NEW_CONTEXT,
279 },
280 .emit = genX(upload_line_stipple),
281 };
282
283 /* Constant single cliprect for framebuffer object or DRI2 drawing */
284 static void
285 genX(upload_drawing_rect)(struct brw_context *brw)
286 {
287 struct gl_context *ctx = &brw->ctx;
288 const struct gl_framebuffer *fb = ctx->DrawBuffer;
289 const unsigned int fb_width = _mesa_geometric_width(fb);
290 const unsigned int fb_height = _mesa_geometric_height(fb);
291
292 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
293 rect.ClippedDrawingRectangleXMax = fb_width - 1;
294 rect.ClippedDrawingRectangleYMax = fb_height - 1;
295 }
296 }
297
298 static const struct brw_tracked_state genX(drawing_rect) = {
299 .dirty = {
300 .mesa = _NEW_BUFFERS,
301 .brw = BRW_NEW_BLORP |
302 BRW_NEW_CONTEXT,
303 },
304 .emit = genX(upload_drawing_rect),
305 };
306
307 static uint32_t *
308 genX(emit_vertex_buffer_state)(struct brw_context *brw,
309 uint32_t *dw,
310 unsigned buffer_nr,
311 struct brw_bo *bo,
312 unsigned start_offset,
313 unsigned end_offset,
314 unsigned stride,
315 unsigned step_rate)
316 {
317 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
318 .VertexBufferIndex = buffer_nr,
319 .BufferPitch = stride,
320 .BufferStartingAddress = ro_bo(bo, start_offset),
321 #if GEN_GEN >= 8
322 .BufferSize = end_offset - start_offset,
323 #endif
324
325 #if GEN_GEN >= 7
326 .AddressModifyEnable = true,
327 #endif
328
329 #if GEN_GEN < 8
330 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
331 .InstanceDataStepRate = step_rate,
332 #if GEN_GEN >= 5
333 .EndAddress = ro_bo(bo, end_offset - 1),
334 #endif
335 #endif
336
337 #if GEN_GEN == 11
338 .VertexBufferMOCS = ICL_MOCS_WB,
339 #elif GEN_GEN == 10
340 .VertexBufferMOCS = CNL_MOCS_WB,
341 #elif GEN_GEN == 9
342 .VertexBufferMOCS = SKL_MOCS_WB,
343 #elif GEN_GEN == 8
344 .VertexBufferMOCS = BDW_MOCS_WB,
345 #elif GEN_GEN == 7
346 .VertexBufferMOCS = GEN7_MOCS_L3,
347 #endif
348 };
349
350 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
351 return dw + GENX(VERTEX_BUFFER_STATE_length);
352 }
353
354 UNUSED static bool
355 is_passthru_format(uint32_t format)
356 {
357 switch (format) {
358 case ISL_FORMAT_R64_PASSTHRU:
359 case ISL_FORMAT_R64G64_PASSTHRU:
360 case ISL_FORMAT_R64G64B64_PASSTHRU:
361 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
362 return true;
363 default:
364 return false;
365 }
366 }
367
368 UNUSED static int
369 uploads_needed(uint32_t format,
370 bool is_dual_slot)
371 {
372 if (!is_passthru_format(format))
373 return 1;
374
375 if (is_dual_slot)
376 return 2;
377
378 switch (format) {
379 case ISL_FORMAT_R64_PASSTHRU:
380 case ISL_FORMAT_R64G64_PASSTHRU:
381 return 1;
382 case ISL_FORMAT_R64G64B64_PASSTHRU:
383 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
384 return 2;
385 default:
386 unreachable("not reached");
387 }
388 }
389
390 /*
391 * Returns the format that we are finally going to use when upload a vertex
392 * element. It will only change if we are using *64*PASSTHRU formats, as for
393 * gen < 8 they need to be splitted on two *32*FLOAT formats.
394 *
395 * @upload points in which upload we are. Valid values are [0,1]
396 */
397 static uint32_t
398 downsize_format_if_needed(uint32_t format,
399 int upload)
400 {
401 assert(upload == 0 || upload == 1);
402
403 if (!is_passthru_format(format))
404 return format;
405
406 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
407 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
408 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
409 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
410 * flagging that we want to fill with zeroes this second forced upload.
411 */
412 switch (format) {
413 case ISL_FORMAT_R64_PASSTHRU:
414 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
415 : ISL_FORMAT_R32_FLOAT;
416 case ISL_FORMAT_R64G64_PASSTHRU:
417 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
418 : ISL_FORMAT_R32_FLOAT;
419 case ISL_FORMAT_R64G64B64_PASSTHRU:
420 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
421 : ISL_FORMAT_R32G32_FLOAT;
422 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
423 return ISL_FORMAT_R32G32B32A32_FLOAT;
424 default:
425 unreachable("not reached");
426 }
427 }
428
429 /*
430 * Returns the number of componentes associated with a format that is used on
431 * a 64 to 32 format split. See downsize_format()
432 */
433 static int
434 upload_format_size(uint32_t upload_format)
435 {
436 switch (upload_format) {
437 case ISL_FORMAT_R32_FLOAT:
438
439 /* downsized_format has returned this one in order to flag that we are
440 * performing a second upload which we want to have filled with
441 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
442 * vertex shader input variables.
443 */
444
445 return 0;
446 case ISL_FORMAT_R32G32_FLOAT:
447 return 2;
448 case ISL_FORMAT_R32G32B32A32_FLOAT:
449 return 4;
450 default:
451 unreachable("not reached");
452 }
453 }
454
455 static void
456 genX(emit_vertices)(struct brw_context *brw)
457 {
458 const struct gen_device_info *devinfo = &brw->screen->devinfo;
459 uint32_t *dw;
460
461 brw_prepare_vertices(brw);
462 brw_prepare_shader_draw_parameters(brw);
463
464 #if GEN_GEN < 6
465 brw_emit_query_begin(brw);
466 #endif
467
468 const struct brw_vs_prog_data *vs_prog_data =
469 brw_vs_prog_data(brw->vs.base.prog_data);
470
471 #if GEN_GEN >= 8
472 struct gl_context *ctx = &brw->ctx;
473 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
474 ctx->Polygon.BackMode != GL_FILL);
475
476 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
477 unsigned vue = brw->vb.nr_enabled;
478
479 /* The element for the edge flags must always be last, so we have to
480 * insert the SGVS before it in that case.
481 */
482 if (uses_edge_flag) {
483 assert(vue > 0);
484 vue--;
485 }
486
487 WARN_ONCE(vue >= 33,
488 "Trying to insert VID/IID past 33rd vertex element, "
489 "need to reorder the vertex attrbutes.");
490
491 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
492 if (vs_prog_data->uses_vertexid) {
493 vfs.VertexIDEnable = true;
494 vfs.VertexIDComponentNumber = 2;
495 vfs.VertexIDElementOffset = vue;
496 }
497
498 if (vs_prog_data->uses_instanceid) {
499 vfs.InstanceIDEnable = true;
500 vfs.InstanceIDComponentNumber = 3;
501 vfs.InstanceIDElementOffset = vue;
502 }
503 }
504
505 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
506 vfi.InstancingEnable = true;
507 vfi.VertexElementIndex = vue;
508 }
509 } else {
510 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
511 }
512 #endif
513
514 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
515 vs_prog_data->uses_baseinstance ||
516 vs_prog_data->uses_instanceid ||
517 vs_prog_data->uses_vertexid);
518
519 unsigned nr_elements =
520 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
521
522 #if GEN_GEN < 8
523 /* If any of the formats of vb.enabled needs more that one upload, we need
524 * to add it to nr_elements
525 */
526 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
527 struct brw_vertex_element *input = brw->vb.enabled[i];
528 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
529
530 if (uploads_needed(format, input->is_dual_slot) > 1)
531 nr_elements++;
532 }
533 #endif
534
535 /* If the VS doesn't read any inputs (calculating vertex position from
536 * a state variable for some reason, for example), emit a single pad
537 * VERTEX_ELEMENT struct and bail.
538 *
539 * The stale VB state stays in place, but they don't do anything unless
540 * a VE loads from them.
541 */
542 if (nr_elements == 0) {
543 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
544 1 + GENX(VERTEX_ELEMENT_STATE_length));
545 struct GENX(VERTEX_ELEMENT_STATE) elem = {
546 .Valid = true,
547 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
548 .Component0Control = VFCOMP_STORE_0,
549 .Component1Control = VFCOMP_STORE_0,
550 .Component2Control = VFCOMP_STORE_0,
551 .Component3Control = VFCOMP_STORE_1_FP,
552 };
553 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
554 return;
555 }
556
557 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
558 const bool uses_draw_params =
559 vs_prog_data->uses_basevertex ||
560 vs_prog_data->uses_baseinstance;
561 const unsigned nr_buffers = brw->vb.nr_buffers +
562 uses_draw_params + vs_prog_data->uses_drawid;
563
564 if (nr_buffers) {
565 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
566
567 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
568 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
569
570 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
571 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
572 /* Prior to Haswell and Bay Trail we have to use 4-component formats
573 * to fake 3-component ones. In particular, we do this for
574 * half-float and 8 and 16-bit integer formats. This means that the
575 * vertex element may poke over the end of the buffer by 2 bytes.
576 */
577 const unsigned padding =
578 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
579 const unsigned end = buffer->offset + buffer->size + padding;
580 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
581 buffer->offset,
582 end,
583 buffer->stride,
584 buffer->step_rate);
585 }
586
587 if (uses_draw_params) {
588 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
589 brw->draw.draw_params_bo,
590 brw->draw.draw_params_offset,
591 brw->draw.draw_params_bo->size,
592 0 /* stride */,
593 0 /* step rate */);
594 }
595
596 if (vs_prog_data->uses_drawid) {
597 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
598 brw->draw.draw_id_bo,
599 brw->draw.draw_id_offset,
600 brw->draw.draw_id_bo->size,
601 0 /* stride */,
602 0 /* step rate */);
603 }
604 }
605
606 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
607 * presumably for VertexID/InstanceID.
608 */
609 #if GEN_GEN >= 6
610 assert(nr_elements <= 34);
611 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
612 #else
613 assert(nr_elements <= 18);
614 #endif
615
616 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
617 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
618 unsigned i;
619 for (i = 0; i < brw->vb.nr_enabled; i++) {
620 const struct brw_vertex_element *input = brw->vb.enabled[i];
621 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
622 uint32_t comp0 = VFCOMP_STORE_SRC;
623 uint32_t comp1 = VFCOMP_STORE_SRC;
624 uint32_t comp2 = VFCOMP_STORE_SRC;
625 uint32_t comp3 = VFCOMP_STORE_SRC;
626 const unsigned num_uploads = GEN_GEN < 8 ?
627 uploads_needed(format, input->is_dual_slot) : 1;
628
629 #if GEN_GEN >= 8
630 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
631 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
632 * element which has edge flag enabled."
633 */
634 assert(!(is_passthru_format(format) && uses_edge_flag));
635 #endif
636
637 /* The gen4 driver expects edgeflag to come in as a float, and passes
638 * that float on to the tests in the clipper. Mesa's current vertex
639 * attribute value for EdgeFlag is stored as a float, which works out.
640 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
641 * integer ubyte. Just rewrite that to convert to a float.
642 *
643 * Gen6+ passes edgeflag as sideband along with the vertex, instead
644 * of in the VUE. We have to upload it sideband as the last vertex
645 * element according to the B-Spec.
646 */
647 #if GEN_GEN >= 6
648 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
649 gen6_edgeflag_input = input;
650 continue;
651 }
652 #endif
653
654 for (unsigned c = 0; c < num_uploads; c++) {
655 const uint32_t upload_format = GEN_GEN >= 8 ? format :
656 downsize_format_if_needed(format, c);
657 /* If we need more that one upload, the offset stride would be 128
658 * bits (16 bytes), as for previous uploads we are using the full
659 * entry. */
660 const unsigned offset = input->offset + c * 16;
661
662 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
663 upload_format_size(upload_format) : input->glarray->Size;
664
665 switch (size) {
666 case 0: comp0 = VFCOMP_STORE_0;
667 case 1: comp1 = VFCOMP_STORE_0;
668 case 2: comp2 = VFCOMP_STORE_0;
669 case 3:
670 if (GEN_GEN >= 8 && input->glarray->Doubles) {
671 comp3 = VFCOMP_STORE_0;
672 } else if (input->glarray->Integer) {
673 comp3 = VFCOMP_STORE_1_INT;
674 } else {
675 comp3 = VFCOMP_STORE_1_FP;
676 }
677
678 break;
679 }
680
681 #if GEN_GEN >= 8
682 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
683 *
684 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
685 * formats, 64-bit components are stored in the URB without any
686 * conversion. In this case, vertex elements must be written as 128
687 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
688 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
689 * component into the URB, Component 1 must be specified as
690 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
691 * order to output a 128-bit vertex element, or Components 1-3 must
692 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
693 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
694 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
695 * vertex element."
696 */
697 if (input->glarray->Doubles && !input->is_dual_slot) {
698 /* Store vertex elements which correspond to double and dvec2 vertex
699 * shader inputs as 128-bit vertex elements, instead of 256-bits.
700 */
701 comp2 = VFCOMP_NOSTORE;
702 comp3 = VFCOMP_NOSTORE;
703 }
704 #endif
705
706 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
707 .VertexBufferIndex = input->buffer,
708 .Valid = true,
709 .SourceElementFormat = upload_format,
710 .SourceElementOffset = offset,
711 .Component0Control = comp0,
712 .Component1Control = comp1,
713 .Component2Control = comp2,
714 .Component3Control = comp3,
715 #if GEN_GEN < 5
716 .DestinationElementOffset = i * 4,
717 #endif
718 };
719
720 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
721 dw += GENX(VERTEX_ELEMENT_STATE_length);
722 }
723 }
724
725 if (needs_sgvs_element) {
726 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
727 .Valid = true,
728 .Component0Control = VFCOMP_STORE_0,
729 .Component1Control = VFCOMP_STORE_0,
730 .Component2Control = VFCOMP_STORE_0,
731 .Component3Control = VFCOMP_STORE_0,
732 #if GEN_GEN < 5
733 .DestinationElementOffset = i * 4,
734 #endif
735 };
736
737 #if GEN_GEN >= 8
738 if (vs_prog_data->uses_basevertex ||
739 vs_prog_data->uses_baseinstance) {
740 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
741 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
742 elem_state.Component0Control = VFCOMP_STORE_SRC;
743 elem_state.Component1Control = VFCOMP_STORE_SRC;
744 }
745 #else
746 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
747 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
748 if (vs_prog_data->uses_basevertex)
749 elem_state.Component0Control = VFCOMP_STORE_SRC;
750
751 if (vs_prog_data->uses_baseinstance)
752 elem_state.Component1Control = VFCOMP_STORE_SRC;
753
754 if (vs_prog_data->uses_vertexid)
755 elem_state.Component2Control = VFCOMP_STORE_VID;
756
757 if (vs_prog_data->uses_instanceid)
758 elem_state.Component3Control = VFCOMP_STORE_IID;
759 #endif
760
761 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
762 dw += GENX(VERTEX_ELEMENT_STATE_length);
763 }
764
765 if (vs_prog_data->uses_drawid) {
766 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
767 .Valid = true,
768 .VertexBufferIndex = brw->vb.nr_buffers + 1,
769 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
770 .Component0Control = VFCOMP_STORE_SRC,
771 .Component1Control = VFCOMP_STORE_0,
772 .Component2Control = VFCOMP_STORE_0,
773 .Component3Control = VFCOMP_STORE_0,
774 #if GEN_GEN < 5
775 .DestinationElementOffset = i * 4,
776 #endif
777 };
778
779 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
780 dw += GENX(VERTEX_ELEMENT_STATE_length);
781 }
782
783 #if GEN_GEN >= 6
784 if (gen6_edgeflag_input) {
785 const uint32_t format =
786 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
787
788 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
789 .Valid = true,
790 .VertexBufferIndex = gen6_edgeflag_input->buffer,
791 .EdgeFlagEnable = true,
792 .SourceElementFormat = format,
793 .SourceElementOffset = gen6_edgeflag_input->offset,
794 .Component0Control = VFCOMP_STORE_SRC,
795 .Component1Control = VFCOMP_STORE_0,
796 .Component2Control = VFCOMP_STORE_0,
797 .Component3Control = VFCOMP_STORE_0,
798 };
799
800 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
801 dw += GENX(VERTEX_ELEMENT_STATE_length);
802 }
803 #endif
804
805 #if GEN_GEN >= 8
806 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
807 const struct brw_vertex_element *input = brw->vb.enabled[i];
808 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
809 unsigned element_index;
810
811 /* The edge flag element is reordered to be the last one in the code
812 * above so we need to compensate for that in the element indices used
813 * below.
814 */
815 if (input == gen6_edgeflag_input)
816 element_index = nr_elements - 1;
817 else
818 element_index = j++;
819
820 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
821 vfi.VertexElementIndex = element_index;
822 vfi.InstancingEnable = buffer->step_rate != 0;
823 vfi.InstanceDataStepRate = buffer->step_rate;
824 }
825 }
826
827 if (vs_prog_data->uses_drawid) {
828 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
829
830 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
831 vfi.VertexElementIndex = element;
832 }
833 }
834 #endif
835 }
836
837 static const struct brw_tracked_state genX(vertices) = {
838 .dirty = {
839 .mesa = _NEW_POLYGON,
840 .brw = BRW_NEW_BATCH |
841 BRW_NEW_BLORP |
842 BRW_NEW_VERTICES |
843 BRW_NEW_VS_PROG_DATA,
844 },
845 .emit = genX(emit_vertices),
846 };
847
848 static void
849 genX(emit_index_buffer)(struct brw_context *brw)
850 {
851 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
852
853 if (index_buffer == NULL)
854 return;
855
856 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
857 #if GEN_GEN < 8 && !GEN_IS_HASWELL
858 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
859 #endif
860 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
861 ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
862 #if GEN_GEN >= 8
863 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
864 ib.BufferSize = brw->ib.size;
865 #else
866 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
867 #endif
868 }
869 }
870
871 static const struct brw_tracked_state genX(index_buffer) = {
872 .dirty = {
873 .mesa = 0,
874 .brw = BRW_NEW_BATCH |
875 BRW_NEW_BLORP |
876 BRW_NEW_INDEX_BUFFER,
877 },
878 .emit = genX(emit_index_buffer),
879 };
880
881 #if GEN_IS_HASWELL || GEN_GEN >= 8
882 static void
883 genX(upload_cut_index)(struct brw_context *brw)
884 {
885 const struct gl_context *ctx = &brw->ctx;
886
887 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
888 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
889 vf.IndexedDrawCutIndexEnable = true;
890 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
891 }
892 }
893 }
894
895 const struct brw_tracked_state genX(cut_index) = {
896 .dirty = {
897 .mesa = _NEW_TRANSFORM,
898 .brw = BRW_NEW_INDEX_BUFFER,
899 },
900 .emit = genX(upload_cut_index),
901 };
902 #endif
903
904 #if GEN_GEN >= 6
905 /**
906 * Determine the appropriate attribute override value to store into the
907 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
908 * override value contains two pieces of information: the location of the
909 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
910 * flag indicating whether to "swizzle" the attribute based on the direction
911 * the triangle is facing.
912 *
913 * If an attribute is "swizzled", then the given VUE location is used for
914 * front-facing triangles, and the VUE location that immediately follows is
915 * used for back-facing triangles. We use this to implement the mapping from
916 * gl_FrontColor/gl_BackColor to gl_Color.
917 *
918 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
919 * being instructed to begin reading attribute data. It can be set to a
920 * nonzero value to prevent the SF unit from wasting time reading elements of
921 * the VUE that are not needed by the fragment shader. It is measured in
922 * 256-bit increments.
923 */
924 static void
925 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
926 const struct brw_vue_map *vue_map,
927 int urb_entry_read_offset, int fs_attr,
928 bool two_side_color, uint32_t *max_source_attr)
929 {
930 /* Find the VUE slot for this attribute. */
931 int slot = vue_map->varying_to_slot[fs_attr];
932
933 /* Viewport and Layer are stored in the VUE header. We need to override
934 * them to zero if earlier stages didn't write them, as GL requires that
935 * they read back as zero when not explicitly set.
936 */
937 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
938 attr->ComponentOverrideX = true;
939 attr->ComponentOverrideW = true;
940 attr->ConstantSource = CONST_0000;
941
942 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
943 attr->ComponentOverrideY = true;
944 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
945 attr->ComponentOverrideZ = true;
946
947 return;
948 }
949
950 /* If there was only a back color written but not front, use back
951 * as the color instead of undefined
952 */
953 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
954 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
955 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
956 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
957
958 if (slot == -1) {
959 /* This attribute does not exist in the VUE--that means that the vertex
960 * shader did not write to it. This means that either:
961 *
962 * (a) This attribute is a texture coordinate, and it is going to be
963 * replaced with point coordinates (as a consequence of a call to
964 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
965 * hardware will ignore whatever attribute override we supply.
966 *
967 * (b) This attribute is read by the fragment shader but not written by
968 * the vertex shader, so its value is undefined. Therefore the
969 * attribute override we supply doesn't matter.
970 *
971 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
972 * previous shader stage.
973 *
974 * Note that we don't have to worry about the cases where the attribute
975 * is gl_PointCoord or is undergoing point sprite coordinate
976 * replacement, because in those cases, this function isn't called.
977 *
978 * In case (c), we need to program the attribute overrides so that the
979 * primitive ID will be stored in this slot. In every other case, the
980 * attribute override we supply doesn't matter. So just go ahead and
981 * program primitive ID in every case.
982 */
983 attr->ComponentOverrideW = true;
984 attr->ComponentOverrideX = true;
985 attr->ComponentOverrideY = true;
986 attr->ComponentOverrideZ = true;
987 attr->ConstantSource = PRIM_ID;
988 return;
989 }
990
991 /* Compute the location of the attribute relative to urb_entry_read_offset.
992 * Each increment of urb_entry_read_offset represents a 256-bit value, so
993 * it counts for two 128-bit VUE slots.
994 */
995 int source_attr = slot - 2 * urb_entry_read_offset;
996 assert(source_attr >= 0 && source_attr < 32);
997
998 /* If we are doing two-sided color, and the VUE slot following this one
999 * represents a back-facing color, then we need to instruct the SF unit to
1000 * do back-facing swizzling.
1001 */
1002 bool swizzling = two_side_color &&
1003 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1004 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1005 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1006 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1007
1008 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1009 if (*max_source_attr < source_attr + swizzling)
1010 *max_source_attr = source_attr + swizzling;
1011
1012 attr->SourceAttribute = source_attr;
1013 if (swizzling)
1014 attr->SwizzleSelect = INPUTATTR_FACING;
1015 }
1016
1017
1018 static void
1019 genX(calculate_attr_overrides)(const struct brw_context *brw,
1020 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1021 uint32_t *point_sprite_enables,
1022 uint32_t *urb_entry_read_length,
1023 uint32_t *urb_entry_read_offset)
1024 {
1025 const struct gl_context *ctx = &brw->ctx;
1026
1027 /* _NEW_POINT */
1028 const struct gl_point_attrib *point = &ctx->Point;
1029
1030 /* BRW_NEW_FRAGMENT_PROGRAM */
1031 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1032
1033 /* BRW_NEW_FS_PROG_DATA */
1034 const struct brw_wm_prog_data *wm_prog_data =
1035 brw_wm_prog_data(brw->wm.base.prog_data);
1036 uint32_t max_source_attr = 0;
1037
1038 *point_sprite_enables = 0;
1039
1040 int first_slot =
1041 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1042 &brw->vue_map_geom_out);
1043
1044 /* Each URB offset packs two varying slots */
1045 assert(first_slot % 2 == 0);
1046 *urb_entry_read_offset = first_slot / 2;
1047
1048 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1049 * description of dw10 Point Sprite Texture Coordinate Enable:
1050 *
1051 * "This field must be programmed to zero when non-point primitives
1052 * are rendered."
1053 *
1054 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1055 * must be programmed to zero when rendering non-point primitives, but
1056 * the IvyBridge PRM does, and if we don't, we get garbage.
1057 *
1058 * This is not required on Haswell, as the hardware ignores this state
1059 * when drawing non-points -- although we do still need to be careful to
1060 * correctly set the attr overrides.
1061 *
1062 * _NEW_POLYGON
1063 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1064 */
1065 bool drawing_points = brw_is_drawing_points(brw);
1066
1067 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1068 int input_index = wm_prog_data->urb_setup[attr];
1069
1070 if (input_index < 0)
1071 continue;
1072
1073 /* _NEW_POINT */
1074 bool point_sprite = false;
1075 if (drawing_points) {
1076 if (point->PointSprite &&
1077 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1078 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1079 point_sprite = true;
1080 }
1081
1082 if (attr == VARYING_SLOT_PNTC)
1083 point_sprite = true;
1084
1085 if (point_sprite)
1086 *point_sprite_enables |= (1 << input_index);
1087 }
1088
1089 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1090 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1091
1092 if (!point_sprite) {
1093 genX(get_attr_override)(&attribute,
1094 &brw->vue_map_geom_out,
1095 *urb_entry_read_offset, attr,
1096 _mesa_vertex_program_two_side_enabled(ctx),
1097 &max_source_attr);
1098 }
1099
1100 /* The hardware can only do the overrides on 16 overrides at a
1101 * time, and the other up to 16 have to be lined up so that the
1102 * input index = the output index. We'll need to do some
1103 * tweaking to make sure that's the case.
1104 */
1105 if (input_index < 16)
1106 attr_overrides[input_index] = attribute;
1107 else
1108 assert(attribute.SourceAttribute == input_index);
1109 }
1110
1111 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1112 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1113 *
1114 * "This field should be set to the minimum length required to read the
1115 * maximum source attribute. The maximum source attribute is indicated
1116 * by the maximum value of the enabled Attribute # Source Attribute if
1117 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1118 * enable is not set.
1119 * read_length = ceiling((max_source_attr + 1) / 2)
1120 *
1121 * [errata] Corruption/Hang possible if length programmed larger than
1122 * recommended"
1123 *
1124 * Similar text exists for Ivy Bridge.
1125 */
1126 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1127 }
1128 #endif
1129
1130 /* ---------------------------------------------------------------------- */
1131
1132 #if GEN_GEN >= 8
1133 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1134 #elif GEN_GEN >= 6
1135 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1136 #else
1137 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1138 #endif
1139
1140 static inline void
1141 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1142 {
1143 struct gl_context *ctx = &brw->ctx;
1144
1145 /* _NEW_BUFFERS */
1146 struct intel_renderbuffer *depth_irb =
1147 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1148
1149 /* _NEW_DEPTH */
1150 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1151
1152 /* _NEW_STENCIL */
1153 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1154 const int b = stencil->_BackFace;
1155
1156 if (depth->Test && depth_irb) {
1157 ds->DepthTestEnable = true;
1158 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1159 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1160 }
1161
1162 if (brw->stencil_enabled) {
1163 ds->StencilTestEnable = true;
1164 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1165 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1166
1167 ds->StencilTestFunction =
1168 intel_translate_compare_func(stencil->Function[0]);
1169 ds->StencilFailOp =
1170 intel_translate_stencil_op(stencil->FailFunc[0]);
1171 ds->StencilPassDepthPassOp =
1172 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1173 ds->StencilPassDepthFailOp =
1174 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1175
1176 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1177
1178 if (brw->stencil_two_sided) {
1179 ds->DoubleSidedStencilEnable = true;
1180 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1181 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1182
1183 ds->BackfaceStencilTestFunction =
1184 intel_translate_compare_func(stencil->Function[b]);
1185 ds->BackfaceStencilFailOp =
1186 intel_translate_stencil_op(stencil->FailFunc[b]);
1187 ds->BackfaceStencilPassDepthPassOp =
1188 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1189 ds->BackfaceStencilPassDepthFailOp =
1190 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1191 }
1192
1193 #if GEN_GEN <= 5 || GEN_GEN >= 9
1194 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1195 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1196 #endif
1197 }
1198 }
1199
1200 #if GEN_GEN >= 6
1201 static void
1202 genX(upload_depth_stencil_state)(struct brw_context *brw)
1203 {
1204 #if GEN_GEN >= 8
1205 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1206 set_depth_stencil_bits(brw, &wmds);
1207 }
1208 #else
1209 uint32_t ds_offset;
1210 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1211 set_depth_stencil_bits(brw, &ds);
1212 }
1213
1214 /* Now upload a pointer to the indirect state */
1215 #if GEN_GEN == 6
1216 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1217 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1218 ptr.DEPTH_STENCIL_STATEChange = true;
1219 }
1220 #else
1221 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1222 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1223 }
1224 #endif
1225 #endif
1226 }
1227
1228 static const struct brw_tracked_state genX(depth_stencil_state) = {
1229 .dirty = {
1230 .mesa = _NEW_BUFFERS |
1231 _NEW_DEPTH |
1232 _NEW_STENCIL,
1233 .brw = BRW_NEW_BLORP |
1234 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1235 : BRW_NEW_BATCH |
1236 BRW_NEW_STATE_BASE_ADDRESS),
1237 },
1238 .emit = genX(upload_depth_stencil_state),
1239 };
1240 #endif
1241
1242 /* ---------------------------------------------------------------------- */
1243
1244 #if GEN_GEN <= 5
1245
1246 static void
1247 genX(upload_clip_state)(struct brw_context *brw)
1248 {
1249 struct gl_context *ctx = &brw->ctx;
1250
1251 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1252 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1253 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1254 clip.GRFRegisterCount =
1255 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1256 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1257 clip.SingleProgramFlow = true;
1258 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1259 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1260
1261 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1262 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1263 clip.DispatchGRFStartRegisterForURBData = 1;
1264 clip.VertexURBEntryReadOffset = 0;
1265
1266 /* BRW_NEW_URB_FENCE */
1267 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1268 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1269
1270 if (brw->urb.nr_clip_entries >= 10) {
1271 /* Half of the URB entries go to each thread, and it has to be an
1272 * even number.
1273 */
1274 assert(brw->urb.nr_clip_entries % 2 == 0);
1275
1276 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1277 * only 2 threads can output VUEs at a time.
1278 */
1279 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1280 } else {
1281 assert(brw->urb.nr_clip_entries >= 5);
1282 clip.MaximumNumberofThreads = 1 - 1;
1283 }
1284
1285 clip.VertexPositionSpace = VPOS_NDCSPACE;
1286 clip.UserClipFlagsMustClipEnable = true;
1287 clip.GuardbandClipTestEnable = true;
1288
1289 clip.ClipperViewportStatePointer =
1290 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1291
1292 clip.ScreenSpaceViewportXMin = -1;
1293 clip.ScreenSpaceViewportXMax = 1;
1294 clip.ScreenSpaceViewportYMin = -1;
1295 clip.ScreenSpaceViewportYMax = 1;
1296
1297 clip.ViewportXYClipTestEnable = true;
1298 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1299
1300 /* _NEW_TRANSFORM */
1301 if (GEN_GEN == 5 || GEN_IS_G4X) {
1302 clip.UserClipDistanceClipTestEnableBitmask =
1303 ctx->Transform.ClipPlanesEnabled;
1304 } else {
1305 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1306 * workaround.
1307 */
1308 clip.UserClipDistanceClipTestEnableBitmask =
1309 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1310 }
1311
1312 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1313 clip.APIMode = APIMODE_D3D;
1314 else
1315 clip.APIMode = APIMODE_OGL;
1316
1317 clip.GuardbandClipTestEnable = true;
1318
1319 clip.ClipMode = brw->clip.prog_data->clip_mode;
1320
1321 #if GEN_IS_G4X
1322 clip.NegativeWClipTestEnable = true;
1323 #endif
1324 }
1325 }
1326
1327 const struct brw_tracked_state genX(clip_state) = {
1328 .dirty = {
1329 .mesa = _NEW_TRANSFORM |
1330 _NEW_VIEWPORT,
1331 .brw = BRW_NEW_BATCH |
1332 BRW_NEW_BLORP |
1333 BRW_NEW_CLIP_PROG_DATA |
1334 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1335 BRW_NEW_PROGRAM_CACHE |
1336 BRW_NEW_URB_FENCE,
1337 },
1338 .emit = genX(upload_clip_state),
1339 };
1340
1341 #else
1342
1343 static void
1344 genX(upload_clip_state)(struct brw_context *brw)
1345 {
1346 struct gl_context *ctx = &brw->ctx;
1347
1348 /* _NEW_BUFFERS */
1349 struct gl_framebuffer *fb = ctx->DrawBuffer;
1350
1351 /* BRW_NEW_FS_PROG_DATA */
1352 struct brw_wm_prog_data *wm_prog_data =
1353 brw_wm_prog_data(brw->wm.base.prog_data);
1354
1355 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1356 clip.StatisticsEnable = !brw->meta_in_progress;
1357
1358 if (wm_prog_data->barycentric_interp_modes &
1359 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1360 clip.NonPerspectiveBarycentricEnable = true;
1361
1362 #if GEN_GEN >= 7
1363 clip.EarlyCullEnable = true;
1364 #endif
1365
1366 #if GEN_GEN == 7
1367 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1368
1369 if (ctx->Polygon.CullFlag) {
1370 switch (ctx->Polygon.CullFaceMode) {
1371 case GL_FRONT:
1372 clip.CullMode = CULLMODE_FRONT;
1373 break;
1374 case GL_BACK:
1375 clip.CullMode = CULLMODE_BACK;
1376 break;
1377 case GL_FRONT_AND_BACK:
1378 clip.CullMode = CULLMODE_BOTH;
1379 break;
1380 default:
1381 unreachable("Should not get here: invalid CullFlag");
1382 }
1383 } else {
1384 clip.CullMode = CULLMODE_NONE;
1385 }
1386 #endif
1387
1388 #if GEN_GEN < 8
1389 clip.UserClipDistanceCullTestEnableBitmask =
1390 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1391
1392 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1393 #endif
1394
1395 /* _NEW_LIGHT */
1396 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1397 clip.TriangleStripListProvokingVertexSelect = 0;
1398 clip.TriangleFanProvokingVertexSelect = 1;
1399 clip.LineStripListProvokingVertexSelect = 0;
1400 } else {
1401 clip.TriangleStripListProvokingVertexSelect = 2;
1402 clip.TriangleFanProvokingVertexSelect = 2;
1403 clip.LineStripListProvokingVertexSelect = 1;
1404 }
1405
1406 /* _NEW_TRANSFORM */
1407 clip.UserClipDistanceClipTestEnableBitmask =
1408 ctx->Transform.ClipPlanesEnabled;
1409
1410 #if GEN_GEN >= 8
1411 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1412 #endif
1413
1414 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1415 clip.APIMode = APIMODE_D3D;
1416 else
1417 clip.APIMode = APIMODE_OGL;
1418
1419 clip.GuardbandClipTestEnable = true;
1420
1421 /* BRW_NEW_VIEWPORT_COUNT */
1422 const unsigned viewport_count = brw->clip.viewport_count;
1423
1424 if (ctx->RasterDiscard) {
1425 clip.ClipMode = CLIPMODE_REJECT_ALL;
1426 #if GEN_GEN == 6
1427 perf_debug("Rasterizer discard is currently implemented via the "
1428 "clipper; having the GS not write primitives would "
1429 "likely be faster.\n");
1430 #endif
1431 } else {
1432 clip.ClipMode = CLIPMODE_NORMAL;
1433 }
1434
1435 clip.ClipEnable = true;
1436
1437 /* _NEW_POLYGON,
1438 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1439 */
1440 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1441 clip.ViewportXYClipTestEnable = true;
1442
1443 clip.MinimumPointWidth = 0.125;
1444 clip.MaximumPointWidth = 255.875;
1445 clip.MaximumVPIndex = viewport_count - 1;
1446 if (_mesa_geometric_layers(fb) == 0)
1447 clip.ForceZeroRTAIndexEnable = true;
1448 }
1449 }
1450
1451 static const struct brw_tracked_state genX(clip_state) = {
1452 .dirty = {
1453 .mesa = _NEW_BUFFERS |
1454 _NEW_LIGHT |
1455 _NEW_POLYGON |
1456 _NEW_TRANSFORM,
1457 .brw = BRW_NEW_BLORP |
1458 BRW_NEW_CONTEXT |
1459 BRW_NEW_FS_PROG_DATA |
1460 BRW_NEW_GS_PROG_DATA |
1461 BRW_NEW_VS_PROG_DATA |
1462 BRW_NEW_META_IN_PROGRESS |
1463 BRW_NEW_PRIMITIVE |
1464 BRW_NEW_RASTERIZER_DISCARD |
1465 BRW_NEW_TES_PROG_DATA |
1466 BRW_NEW_VIEWPORT_COUNT,
1467 },
1468 .emit = genX(upload_clip_state),
1469 };
1470 #endif
1471
1472 /* ---------------------------------------------------------------------- */
1473
1474 static void
1475 genX(upload_sf)(struct brw_context *brw)
1476 {
1477 struct gl_context *ctx = &brw->ctx;
1478 float point_size;
1479
1480 #if GEN_GEN <= 7
1481 /* _NEW_BUFFERS */
1482 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1483 UNUSED const bool multisampled_fbo =
1484 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1485 #endif
1486
1487 #if GEN_GEN < 6
1488 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1489
1490 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1491
1492 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1493 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1494 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1495 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1496 sf.DispatchGRFStartRegisterForURBData = 3;
1497 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1498 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1499 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1500 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1501
1502 /* STATE_PREFETCH command description describes this state as being
1503 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1504 * domain.
1505 */
1506 sf.SetupViewportStateOffset =
1507 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1508
1509 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1510
1511 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1512 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1513
1514 sf.MaximumNumberofThreads =
1515 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1516
1517 sf.SpritePointEnable = ctx->Point.PointSprite;
1518
1519 sf.DestinationOriginHorizontalBias = 0.5;
1520 sf.DestinationOriginVerticalBias = 0.5;
1521 #else
1522 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1523 sf.StatisticsEnable = true;
1524 #endif
1525 sf.ViewportTransformEnable = true;
1526
1527 #if GEN_GEN == 7
1528 /* _NEW_BUFFERS */
1529 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1530 #endif
1531
1532 #if GEN_GEN <= 7
1533 /* _NEW_POLYGON */
1534 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1535 #if GEN_GEN >= 6
1536 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1537 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1538 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1539
1540 switch (ctx->Polygon.FrontMode) {
1541 case GL_FILL:
1542 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1543 break;
1544 case GL_LINE:
1545 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1546 break;
1547 case GL_POINT:
1548 sf.FrontFaceFillMode = FILL_MODE_POINT;
1549 break;
1550 default:
1551 unreachable("not reached");
1552 }
1553
1554 switch (ctx->Polygon.BackMode) {
1555 case GL_FILL:
1556 sf.BackFaceFillMode = FILL_MODE_SOLID;
1557 break;
1558 case GL_LINE:
1559 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1560 break;
1561 case GL_POINT:
1562 sf.BackFaceFillMode = FILL_MODE_POINT;
1563 break;
1564 default:
1565 unreachable("not reached");
1566 }
1567
1568 if (multisampled_fbo && ctx->Multisample.Enabled)
1569 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1570
1571 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1572 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1573 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1574 #endif
1575
1576 sf.ScissorRectangleEnable = true;
1577
1578 if (ctx->Polygon.CullFlag) {
1579 switch (ctx->Polygon.CullFaceMode) {
1580 case GL_FRONT:
1581 sf.CullMode = CULLMODE_FRONT;
1582 break;
1583 case GL_BACK:
1584 sf.CullMode = CULLMODE_BACK;
1585 break;
1586 case GL_FRONT_AND_BACK:
1587 sf.CullMode = CULLMODE_BOTH;
1588 break;
1589 default:
1590 unreachable("not reached");
1591 }
1592 } else {
1593 sf.CullMode = CULLMODE_NONE;
1594 }
1595
1596 #if GEN_IS_HASWELL
1597 sf.LineStippleEnable = ctx->Line.StippleFlag;
1598 #endif
1599
1600 #endif
1601
1602 /* _NEW_LINE */
1603 #if GEN_GEN == 8
1604 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1605
1606 if (devinfo->is_cherryview)
1607 sf.CHVLineWidth = brw_get_line_width(brw);
1608 else
1609 sf.LineWidth = brw_get_line_width(brw);
1610 #else
1611 sf.LineWidth = brw_get_line_width(brw);
1612 #endif
1613
1614 if (ctx->Line.SmoothFlag) {
1615 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1616 #if GEN_GEN <= 7
1617 sf.AntiAliasingEnable = true;
1618 #endif
1619 }
1620
1621 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1622 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1623 /* Clamp to the hardware limits */
1624 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1625
1626 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1627 if (use_state_point_size(brw))
1628 sf.PointWidthSource = State;
1629
1630 #if GEN_GEN >= 8
1631 /* _NEW_POINT | _NEW_MULTISAMPLE */
1632 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1633 !ctx->Point.PointSprite)
1634 sf.SmoothPointEnable = true;
1635 #endif
1636
1637 #if GEN_GEN == 10
1638 /* _NEW_BUFFERS
1639 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1640 */
1641 const bool multisampled_fbo =
1642 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1643 if (multisampled_fbo)
1644 sf.SmoothPointEnable = false;
1645 #endif
1646
1647 #if GEN_IS_G4X || GEN_GEN >= 5
1648 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1649 #endif
1650
1651 /* _NEW_LIGHT */
1652 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1653 sf.TriangleStripListProvokingVertexSelect = 2;
1654 sf.TriangleFanProvokingVertexSelect = 2;
1655 sf.LineStripListProvokingVertexSelect = 1;
1656 } else {
1657 sf.TriangleFanProvokingVertexSelect = 1;
1658 }
1659
1660 #if GEN_GEN == 6
1661 /* BRW_NEW_FS_PROG_DATA */
1662 const struct brw_wm_prog_data *wm_prog_data =
1663 brw_wm_prog_data(brw->wm.base.prog_data);
1664
1665 sf.AttributeSwizzleEnable = true;
1666 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1667
1668 /*
1669 * Window coordinates in an FBO are inverted, which means point
1670 * sprite origin must be inverted, too.
1671 */
1672 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1673 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1674 } else {
1675 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1676 }
1677
1678 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1679 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1680 */
1681 uint32_t urb_entry_read_length;
1682 uint32_t urb_entry_read_offset;
1683 uint32_t point_sprite_enables;
1684 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1685 &urb_entry_read_length,
1686 &urb_entry_read_offset);
1687 sf.VertexURBEntryReadLength = urb_entry_read_length;
1688 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1689 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1690 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1691 #endif
1692 }
1693 }
1694
1695 static const struct brw_tracked_state genX(sf_state) = {
1696 .dirty = {
1697 .mesa = _NEW_LIGHT |
1698 _NEW_LINE |
1699 _NEW_POINT |
1700 _NEW_PROGRAM |
1701 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1702 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1703 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1704 .brw = BRW_NEW_BLORP |
1705 BRW_NEW_VUE_MAP_GEOM_OUT |
1706 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1707 BRW_NEW_PROGRAM_CACHE |
1708 BRW_NEW_SF_PROG_DATA |
1709 BRW_NEW_SF_VP |
1710 BRW_NEW_URB_FENCE
1711 : 0) |
1712 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1713 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1714 BRW_NEW_GS_PROG_DATA |
1715 BRW_NEW_PRIMITIVE |
1716 BRW_NEW_TES_PROG_DATA
1717 : 0) |
1718 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1719 BRW_NEW_FRAGMENT_PROGRAM
1720 : 0),
1721 },
1722 .emit = genX(upload_sf),
1723 };
1724
1725 /* ---------------------------------------------------------------------- */
1726
1727 static bool
1728 brw_color_buffer_write_enabled(struct brw_context *brw)
1729 {
1730 struct gl_context *ctx = &brw->ctx;
1731 /* BRW_NEW_FRAGMENT_PROGRAM */
1732 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1733 unsigned i;
1734
1735 /* _NEW_BUFFERS */
1736 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1737 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1738 uint64_t outputs_written = fp->info.outputs_written;
1739
1740 /* _NEW_COLOR */
1741 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1742 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1743 GET_COLORMASK(ctx->Color.ColorMask, i)) {
1744 return true;
1745 }
1746 }
1747
1748 return false;
1749 }
1750
1751 static void
1752 genX(upload_wm)(struct brw_context *brw)
1753 {
1754 struct gl_context *ctx = &brw->ctx;
1755
1756 /* BRW_NEW_FS_PROG_DATA */
1757 const struct brw_wm_prog_data *wm_prog_data =
1758 brw_wm_prog_data(brw->wm.base.prog_data);
1759
1760 UNUSED bool writes_depth =
1761 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1762 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1763 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1764
1765 #if GEN_GEN == 6
1766 /* We can't fold this into gen6_upload_wm_push_constants(), because
1767 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1768 * (3DSTATE_CONSTANT_PS [DevSNB]):
1769 *
1770 * "[DevSNB]: This packet must be followed by WM_STATE."
1771 */
1772 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1773 if (wm_prog_data->base.nr_params != 0) {
1774 wmcp.Buffer0Valid = true;
1775 /* Pointer to the WM constant buffer. Covered by the set of
1776 * state flags from gen6_upload_wm_push_constants.
1777 */
1778 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1779 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1780 }
1781 }
1782 #endif
1783
1784 #if GEN_GEN >= 6
1785 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1786 wm.LineAntialiasingRegionWidth = _10pixels;
1787 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1788
1789 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1790 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1791 #else
1792 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1793 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1794 if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1795 /* These two fields should be the same pre-gen6, which is why we
1796 * only have one hardware field to program for both dispatch
1797 * widths.
1798 */
1799 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1800 wm_prog_data->dispatch_grf_start_reg_2);
1801 }
1802
1803 if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1804 wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1805
1806 if (stage_state->sampler_count)
1807 wm.SamplerStatePointer =
1808 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1809 #if GEN_GEN == 5
1810 if (wm_prog_data->prog_offset_2)
1811 wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1812 #endif
1813
1814 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1815 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1816 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1817 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1818 wm.EarlyDepthTestEnable = true;
1819 wm.LineAntialiasingRegionWidth = _05pixels;
1820 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1821
1822 /* _NEW_POLYGON */
1823 if (ctx->Polygon.OffsetFill) {
1824 wm.GlobalDepthOffsetEnable = true;
1825 /* Something weird going on with legacy_global_depth_bias,
1826 * offset_constant, scaling and MRD. This value passes glean
1827 * but gives some odd results elsewere (eg. the
1828 * quad-offset-units test).
1829 */
1830 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1831
1832 /* This is the only value that passes glean:
1833 */
1834 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1835 }
1836
1837 wm.DepthCoefficientURBReadOffset = 1;
1838 #endif
1839
1840 /* BRW_NEW_STATS_WM */
1841 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1842
1843 #if GEN_GEN < 7
1844 if (wm_prog_data->base.use_alt_mode)
1845 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1846
1847 wm.SamplerCount = GEN_GEN == 5 ?
1848 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1849
1850 wm.BindingTableEntryCount =
1851 wm_prog_data->base.binding_table.size_bytes / 4;
1852 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1853 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1854 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1855 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1856 wm_prog_data->base.dispatch_grf_start_reg;
1857 if (GEN_GEN == 6 ||
1858 wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1859 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1860 }
1861
1862 #if GEN_GEN >= 5
1863 if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1864 wm.KernelStartPointer2 =
1865 KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1866 }
1867 #endif
1868
1869 #if GEN_GEN == 6
1870 wm.DualSourceBlendEnable =
1871 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1872 ctx->Color.Blend[0]._UsesDualSrc;
1873 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1874 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1875
1876 /* From the SNB PRM, volume 2 part 1, page 281:
1877 * "If the PS kernel does not need the Position XY Offsets
1878 * to compute a Position XY value, then this field should be
1879 * programmed to POSOFFSET_NONE."
1880 *
1881 * "SW Recommendation: If the PS kernel needs the Position Offsets
1882 * to compute a Position XY value, this field should match Position
1883 * ZW Interpolation Mode to ensure a consistent position.xyzw
1884 * computation."
1885 * We only require XY sample offsets. So, this recommendation doesn't
1886 * look useful at the moment. We might need this in future.
1887 */
1888 if (wm_prog_data->uses_pos_offset)
1889 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1890 else
1891 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1892
1893 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1894 wm_prog_data->dispatch_grf_start_reg_2;
1895 #endif
1896
1897 if (wm_prog_data->base.total_scratch) {
1898 wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1899 wm.PerThreadScratchSpace =
1900 ffs(stage_state->per_thread_scratch) - 11;
1901 }
1902
1903 wm.PixelShaderComputedDepth = writes_depth;
1904 #endif
1905
1906 /* _NEW_LINE */
1907 wm.LineStippleEnable = ctx->Line.StippleFlag;
1908
1909 /* _NEW_POLYGON */
1910 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1911
1912 #if GEN_GEN < 8
1913
1914 #if GEN_GEN >= 6
1915 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1916
1917 /* _NEW_BUFFERS */
1918 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1919
1920 if (multisampled_fbo) {
1921 /* _NEW_MULTISAMPLE */
1922 if (ctx->Multisample.Enabled)
1923 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1924 else
1925 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1926
1927 if (wm_prog_data->persample_dispatch)
1928 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1929 else
1930 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1931 } else {
1932 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1933 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1934 }
1935 #endif
1936 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1937 if (wm_prog_data->uses_kill ||
1938 _mesa_is_alpha_test_enabled(ctx) ||
1939 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1940 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1941 wm.PixelShaderKillsPixel = true;
1942 }
1943
1944 /* _NEW_BUFFERS | _NEW_COLOR */
1945 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1946 wm.PixelShaderKillsPixel ||
1947 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1948 wm.ThreadDispatchEnable = true;
1949 }
1950
1951 #if GEN_GEN >= 7
1952 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1953 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1954 #endif
1955
1956 /* The "UAV access enable" bits are unnecessary on HSW because they only
1957 * seem to have an effect on the HW-assisted coherency mechanism which we
1958 * don't need, and the rasterization-related UAV_ONLY flag and the
1959 * DISPATCH_ENABLE bit can be set independently from it.
1960 * C.f. gen8_upload_ps_extra().
1961 *
1962 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1963 * _NEW_COLOR
1964 */
1965 #if GEN_IS_HASWELL
1966 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1967 wm_prog_data->has_side_effects)
1968 wm.PSUAVonly = ON;
1969 #endif
1970 #endif
1971
1972 #if GEN_GEN >= 7
1973 /* BRW_NEW_FS_PROG_DATA */
1974 if (wm_prog_data->early_fragment_tests)
1975 wm.EarlyDepthStencilControl = EDSC_PREPS;
1976 else if (wm_prog_data->has_side_effects)
1977 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1978 #endif
1979 }
1980
1981 #if GEN_GEN <= 5
1982 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1983 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1984 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1985 }
1986
1987 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
1988 }
1989 #endif
1990 }
1991
1992 static const struct brw_tracked_state genX(wm_state) = {
1993 .dirty = {
1994 .mesa = _NEW_LINE |
1995 _NEW_POLYGON |
1996 (GEN_GEN < 8 ? _NEW_BUFFERS |
1997 _NEW_COLOR :
1998 0) |
1999 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2000 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2001 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2002 .brw = BRW_NEW_BLORP |
2003 BRW_NEW_FS_PROG_DATA |
2004 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2005 BRW_NEW_FRAGMENT_PROGRAM |
2006 BRW_NEW_PROGRAM_CACHE |
2007 BRW_NEW_SAMPLER_STATE_TABLE |
2008 BRW_NEW_STATS_WM
2009 : 0) |
2010 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2011 },
2012 .emit = genX(upload_wm),
2013 };
2014
2015 /* ---------------------------------------------------------------------- */
2016
2017 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2018 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2019 pkt.SamplerCount = \
2020 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2021 pkt.BindingTableEntryCount = \
2022 stage_prog_data->binding_table.size_bytes / 4; \
2023 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2024 \
2025 if (stage_prog_data->total_scratch) { \
2026 pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0); \
2027 pkt.PerThreadScratchSpace = \
2028 ffs(stage_state->per_thread_scratch) - 11; \
2029 } \
2030 \
2031 pkt.DispatchGRFStartRegisterForURBData = \
2032 stage_prog_data->dispatch_grf_start_reg; \
2033 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2034 pkt.prefix##URBEntryReadOffset = 0; \
2035 \
2036 pkt.StatisticsEnable = true; \
2037 pkt.Enable = true;
2038
2039 static void
2040 genX(upload_vs_state)(struct brw_context *brw)
2041 {
2042 UNUSED struct gl_context *ctx = &brw->ctx;
2043 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2044 struct brw_stage_state *stage_state = &brw->vs.base;
2045
2046 /* BRW_NEW_VS_PROG_DATA */
2047 const struct brw_vue_prog_data *vue_prog_data =
2048 brw_vue_prog_data(brw->vs.base.prog_data);
2049 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2050
2051 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2052 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2053
2054 #if GEN_GEN == 6
2055 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2056 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2057 *
2058 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2059 * command that causes the VS Function Enable to toggle. Pipeline
2060 * flush can be executed by sending a PIPE_CONTROL command with CS
2061 * stall bit set and a post sync operation.
2062 *
2063 * We've already done such a flush at the start of state upload, so we
2064 * don't need to do another one here.
2065 */
2066 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2067 if (stage_state->push_const_size != 0) {
2068 cvs.Buffer0Valid = true;
2069 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2070 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2071 }
2072 }
2073 #endif
2074
2075 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2076 gen7_emit_vs_workaround_flush(brw);
2077
2078 #if GEN_GEN >= 6
2079 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2080 #else
2081 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2082 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2083 #endif
2084 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2085
2086 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2087
2088 #if GEN_GEN < 6
2089 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2090 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2091 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2092
2093 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2094 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2095
2096 vs.MaximumNumberofThreads =
2097 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2098
2099 vs.StatisticsEnable = false;
2100 vs.SamplerStatePointer =
2101 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2102 #endif
2103
2104 #if GEN_GEN == 5
2105 /* Force single program flow on Ironlake. We cannot reliably get
2106 * all applications working without it. See:
2107 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2108 *
2109 * The most notable and reliably failing application is the Humus
2110 * demo "CelShading"
2111 */
2112 vs.SingleProgramFlow = true;
2113 vs.SamplerCount = 0; /* hardware requirement */
2114 #endif
2115
2116 #if GEN_GEN >= 8
2117 vs.SIMD8DispatchEnable =
2118 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2119
2120 vs.UserClipDistanceCullTestEnableBitmask =
2121 vue_prog_data->cull_distance_mask;
2122 #endif
2123 }
2124
2125 #if GEN_GEN == 6
2126 /* Based on my reading of the simulator, the VS constants don't get
2127 * pulled into the VS FF unit until an appropriate pipeline flush
2128 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2129 * references to them into a little FIFO. The flushes are common,
2130 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2131 * the primitive to use the wrong constants. Then the FIFO
2132 * containing the constant setup gets added to again on the next
2133 * constants change, and eventually when a flush does happen the
2134 * unit is overwhelmed by constant changes and dies.
2135 *
2136 * To avoid this, send a PIPE_CONTROL down the line that will
2137 * update the unit immediately loading the constants. The flush
2138 * type bits here were those set by the STATE_BASE_ADDRESS whose
2139 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2140 * bug reports that led to this workaround, and may be more than
2141 * what is strictly required to avoid the issue.
2142 */
2143 brw_emit_pipe_control_flush(brw,
2144 PIPE_CONTROL_DEPTH_STALL |
2145 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2146 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2147 #endif
2148 }
2149
2150 static const struct brw_tracked_state genX(vs_state) = {
2151 .dirty = {
2152 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2153 .brw = BRW_NEW_BATCH |
2154 BRW_NEW_BLORP |
2155 BRW_NEW_CONTEXT |
2156 BRW_NEW_VS_PROG_DATA |
2157 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2158 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2159 BRW_NEW_PROGRAM_CACHE |
2160 BRW_NEW_SAMPLER_STATE_TABLE |
2161 BRW_NEW_URB_FENCE
2162 : 0),
2163 },
2164 .emit = genX(upload_vs_state),
2165 };
2166
2167 /* ---------------------------------------------------------------------- */
2168
2169 static void
2170 genX(upload_cc_viewport)(struct brw_context *brw)
2171 {
2172 struct gl_context *ctx = &brw->ctx;
2173
2174 /* BRW_NEW_VIEWPORT_COUNT */
2175 const unsigned viewport_count = brw->clip.viewport_count;
2176
2177 struct GENX(CC_VIEWPORT) ccv;
2178 uint32_t cc_vp_offset;
2179 uint32_t *cc_map =
2180 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2181 32, &cc_vp_offset);
2182
2183 for (unsigned i = 0; i < viewport_count; i++) {
2184 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2185 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2186 if (ctx->Transform.DepthClamp) {
2187 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2188 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2189 } else {
2190 ccv.MinimumDepth = 0.0;
2191 ccv.MaximumDepth = 1.0;
2192 }
2193 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2194 cc_map += GENX(CC_VIEWPORT_length);
2195 }
2196
2197 #if GEN_GEN >= 7
2198 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2199 ptr.CCViewportPointer = cc_vp_offset;
2200 }
2201 #elif GEN_GEN == 6
2202 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2203 vp.CCViewportStateChange = 1;
2204 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2205 }
2206 #else
2207 brw->cc.vp_offset = cc_vp_offset;
2208 ctx->NewDriverState |= BRW_NEW_CC_VP;
2209 #endif
2210 }
2211
2212 const struct brw_tracked_state genX(cc_vp) = {
2213 .dirty = {
2214 .mesa = _NEW_TRANSFORM |
2215 _NEW_VIEWPORT,
2216 .brw = BRW_NEW_BATCH |
2217 BRW_NEW_BLORP |
2218 BRW_NEW_VIEWPORT_COUNT,
2219 },
2220 .emit = genX(upload_cc_viewport)
2221 };
2222
2223 /* ---------------------------------------------------------------------- */
2224
2225 static void
2226 set_scissor_bits(const struct gl_context *ctx, int i,
2227 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2228 struct GENX(SCISSOR_RECT) *sc)
2229 {
2230 int bbox[4];
2231
2232 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2233 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2234 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2235 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2236 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2237
2238 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2239 /* If the scissor was out of bounds and got clamped to 0 width/height
2240 * at the bounds, the subtraction of 1 from maximums could produce a
2241 * negative number and thus not clip anything. Instead, just provide
2242 * a min > max scissor inside the bounds, which produces the expected
2243 * no rendering.
2244 */
2245 sc->ScissorRectangleXMin = 1;
2246 sc->ScissorRectangleXMax = 0;
2247 sc->ScissorRectangleYMin = 1;
2248 sc->ScissorRectangleYMax = 0;
2249 } else if (render_to_fbo) {
2250 /* texmemory: Y=0=bottom */
2251 sc->ScissorRectangleXMin = bbox[0];
2252 sc->ScissorRectangleXMax = bbox[1] - 1;
2253 sc->ScissorRectangleYMin = bbox[2];
2254 sc->ScissorRectangleYMax = bbox[3] - 1;
2255 } else {
2256 /* memory: Y=0=top */
2257 sc->ScissorRectangleXMin = bbox[0];
2258 sc->ScissorRectangleXMax = bbox[1] - 1;
2259 sc->ScissorRectangleYMin = fb_height - bbox[3];
2260 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2261 }
2262 }
2263
2264 #if GEN_GEN >= 6
2265 static void
2266 genX(upload_scissor_state)(struct brw_context *brw)
2267 {
2268 struct gl_context *ctx = &brw->ctx;
2269 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2270 struct GENX(SCISSOR_RECT) scissor;
2271 uint32_t scissor_state_offset;
2272 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2273 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2274 uint32_t *scissor_map;
2275
2276 /* BRW_NEW_VIEWPORT_COUNT */
2277 const unsigned viewport_count = brw->clip.viewport_count;
2278
2279 scissor_map = brw_state_batch(
2280 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2281 32, &scissor_state_offset);
2282
2283 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2284
2285 /* The scissor only needs to handle the intersection of drawable and
2286 * scissor rect. Clipping to the boundaries of static shared buffers
2287 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2288 *
2289 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2290 * inclusive but max is exclusive.
2291 */
2292 for (unsigned i = 0; i < viewport_count; i++) {
2293 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2294 GENX(SCISSOR_RECT_pack)(
2295 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2296 }
2297
2298 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2299 ptr.ScissorRectPointer = scissor_state_offset;
2300 }
2301 }
2302
2303 static const struct brw_tracked_state genX(scissor_state) = {
2304 .dirty = {
2305 .mesa = _NEW_BUFFERS |
2306 _NEW_SCISSOR |
2307 _NEW_VIEWPORT,
2308 .brw = BRW_NEW_BATCH |
2309 BRW_NEW_BLORP |
2310 BRW_NEW_VIEWPORT_COUNT,
2311 },
2312 .emit = genX(upload_scissor_state),
2313 };
2314 #endif
2315
2316 /* ---------------------------------------------------------------------- */
2317
2318 static void
2319 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2320 float m00, float m11, float m30, float m31,
2321 float *xmin, float *xmax,
2322 float *ymin, float *ymax)
2323 {
2324 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2325 * Strips and Fans documentation:
2326 *
2327 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2328 * fixed-point "guardband" range supported by the rasterization hardware"
2329 *
2330 * and
2331 *
2332 * "In almost all circumstances, if an object’s vertices are actually
2333 * modified by this clamping (i.e., had X or Y coordinates outside of
2334 * the guardband extent the rendered object will not match the intended
2335 * result. Therefore software should take steps to ensure that this does
2336 * not happen - e.g., by clipping objects such that they do not exceed
2337 * these limits after the Drawing Rectangle is applied."
2338 *
2339 * I believe the fundamental restriction is that the rasterizer (in
2340 * the SF/WM stages) have a limit on the number of pixels that can be
2341 * rasterized. We need to ensure any coordinates beyond the rasterizer
2342 * limit are handled by the clipper. So effectively that limit becomes
2343 * the clipper's guardband size.
2344 *
2345 * It goes on to say:
2346 *
2347 * "In addition, in order to be correctly rendered, objects must have a
2348 * screenspace bounding box not exceeding 8K in the X or Y direction.
2349 * This additional restriction must also be comprehended by software,
2350 * i.e., enforced by use of clipping."
2351 *
2352 * This makes no sense. Gen7+ hardware supports 16K render targets,
2353 * and you definitely need to be able to draw polygons that fill the
2354 * surface. Our assumption is that the rasterizer was limited to 8K
2355 * on Sandybridge, which only supports 8K surfaces, and it was actually
2356 * increased to 16K on Ivybridge and later.
2357 *
2358 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2359 */
2360 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2361
2362 if (m00 != 0 && m11 != 0) {
2363 /* First, we compute the screen-space render area */
2364 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2365 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2366 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2367 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2368
2369 /* We want the guardband to be centered on that */
2370 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2371 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2372 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2373 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2374
2375 /* Now we need it in native device coordinates */
2376 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2377 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2378 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2379 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2380
2381 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2382 * flipped upside-down. X should be fine though.
2383 */
2384 assert(ndc_gb_xmin <= ndc_gb_xmax);
2385 *xmin = ndc_gb_xmin;
2386 *xmax = ndc_gb_xmax;
2387 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2388 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2389 } else {
2390 /* The viewport scales to 0, so nothing will be rendered. */
2391 *xmin = 0.0f;
2392 *xmax = 0.0f;
2393 *ymin = 0.0f;
2394 *ymax = 0.0f;
2395 }
2396 }
2397
2398 static void
2399 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2400 {
2401 struct gl_context *ctx = &brw->ctx;
2402 float y_scale, y_bias;
2403
2404 /* BRW_NEW_VIEWPORT_COUNT */
2405 const unsigned viewport_count = brw->clip.viewport_count;
2406
2407 /* _NEW_BUFFERS */
2408 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2409 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2410 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2411
2412 #if GEN_GEN >= 7
2413 #define clv sfv
2414 struct GENX(SF_CLIP_VIEWPORT) sfv;
2415 uint32_t sf_clip_vp_offset;
2416 uint32_t *sf_clip_map =
2417 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2418 64, &sf_clip_vp_offset);
2419 #else
2420 struct GENX(SF_VIEWPORT) sfv;
2421 struct GENX(CLIP_VIEWPORT) clv;
2422 uint32_t sf_vp_offset, clip_vp_offset;
2423 uint32_t *sf_map =
2424 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2425 32, &sf_vp_offset);
2426 uint32_t *clip_map =
2427 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2428 32, &clip_vp_offset);
2429 #endif
2430
2431 /* _NEW_BUFFERS */
2432 if (render_to_fbo) {
2433 y_scale = 1.0;
2434 y_bias = 0;
2435 } else {
2436 y_scale = -1.0;
2437 y_bias = (float)fb_height;
2438 }
2439
2440 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2441 /* _NEW_VIEWPORT: Guardband Clipping */
2442 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2443 _mesa_get_viewport_xform(ctx, i, scale, translate);
2444
2445 sfv.ViewportMatrixElementm00 = scale[0];
2446 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2447 sfv.ViewportMatrixElementm22 = scale[2],
2448 sfv.ViewportMatrixElementm30 = translate[0],
2449 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2450 sfv.ViewportMatrixElementm32 = translate[2],
2451 brw_calculate_guardband_size(fb_width, fb_height,
2452 sfv.ViewportMatrixElementm00,
2453 sfv.ViewportMatrixElementm11,
2454 sfv.ViewportMatrixElementm30,
2455 sfv.ViewportMatrixElementm31,
2456 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2457
2458
2459 clv.XMinClipGuardband = gb_xmin;
2460 clv.XMaxClipGuardband = gb_xmax;
2461 clv.YMinClipGuardband = gb_ymin;
2462 clv.YMaxClipGuardband = gb_ymax;
2463
2464 #if GEN_GEN < 6
2465 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2466 &sfv.ScissorRectangle);
2467 #elif GEN_GEN >= 8
2468 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2469 * The hardware will take the intersection of the drawing rectangle,
2470 * scissor rectangle, and the viewport extents. We don't need to be
2471 * smart, and can therefore just program the viewport extents.
2472 */
2473 const float viewport_Xmax =
2474 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2475 const float viewport_Ymax =
2476 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2477
2478 if (render_to_fbo) {
2479 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2480 sfv.XMaxViewPort = viewport_Xmax - 1;
2481 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2482 sfv.YMaxViewPort = viewport_Ymax - 1;
2483 } else {
2484 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2485 sfv.XMaxViewPort = viewport_Xmax - 1;
2486 sfv.YMinViewPort = fb_height - viewport_Ymax;
2487 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2488 }
2489 #endif
2490
2491 #if GEN_GEN >= 7
2492 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2493 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2494 #else
2495 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2496 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2497 sf_map += GENX(SF_VIEWPORT_length);
2498 clip_map += GENX(CLIP_VIEWPORT_length);
2499 #endif
2500 }
2501
2502 #if GEN_GEN >= 7
2503 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2504 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2505 }
2506 #elif GEN_GEN == 6
2507 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2508 vp.SFViewportStateChange = 1;
2509 vp.CLIPViewportStateChange = 1;
2510 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2511 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2512 }
2513 #else
2514 brw->sf.vp_offset = sf_vp_offset;
2515 brw->clip.vp_offset = clip_vp_offset;
2516 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2517 #endif
2518 }
2519
2520 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2521 .dirty = {
2522 .mesa = _NEW_BUFFERS |
2523 _NEW_VIEWPORT |
2524 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2525 .brw = BRW_NEW_BATCH |
2526 BRW_NEW_BLORP |
2527 BRW_NEW_VIEWPORT_COUNT,
2528 },
2529 .emit = genX(upload_sf_clip_viewport),
2530 };
2531
2532 /* ---------------------------------------------------------------------- */
2533
2534 static void
2535 genX(upload_gs_state)(struct brw_context *brw)
2536 {
2537 UNUSED struct gl_context *ctx = &brw->ctx;
2538 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2539 const struct brw_stage_state *stage_state = &brw->gs.base;
2540 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2541 /* BRW_NEW_GEOMETRY_PROGRAM */
2542 bool active = GEN_GEN >= 6 && gs_prog;
2543
2544 /* BRW_NEW_GS_PROG_DATA */
2545 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2546 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2547 brw_vue_prog_data(stage_prog_data);
2548 #if GEN_GEN >= 7
2549 const struct brw_gs_prog_data *gs_prog_data =
2550 brw_gs_prog_data(stage_prog_data);
2551 #endif
2552
2553 #if GEN_GEN == 6
2554 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2555 if (active && stage_state->push_const_size != 0) {
2556 cgs.Buffer0Valid = true;
2557 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2558 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2559 }
2560 }
2561 #endif
2562
2563 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2564 /**
2565 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2566 * Geometry > Geometry Shader > State:
2567 *
2568 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2569 * whole fixed function pipeline when the GS enable changes value in
2570 * the 3DSTATE_GS."
2571 *
2572 * The hardware architects have clarified that in this context "flush the
2573 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2574 * Stall" bit set.
2575 */
2576 if (devinfo->gt == 2 && brw->gs.enabled != active)
2577 gen7_emit_cs_stall_flush(brw);
2578 #endif
2579
2580 #if GEN_GEN >= 6
2581 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2582 #else
2583 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2584 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2585 #endif
2586
2587 #if GEN_GEN >= 6
2588 if (active) {
2589 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2590
2591 #if GEN_GEN >= 7
2592 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2593 gs.OutputTopology = gs_prog_data->output_topology;
2594 gs.ControlDataHeaderSize =
2595 gs_prog_data->control_data_header_size_hwords;
2596
2597 gs.InstanceControl = gs_prog_data->invocations - 1;
2598 gs.DispatchMode = vue_prog_data->dispatch_mode;
2599
2600 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2601
2602 gs.ControlDataFormat = gs_prog_data->control_data_format;
2603 #endif
2604
2605 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2606 * Ivy Bridge and Haswell.
2607 *
2608 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2609 * strip to be delivered to the geometry shader in an order that does
2610 * not strictly follow the OpenGL spec, but preserves triangle
2611 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2612 * the geometry shader sees triangles:
2613 *
2614 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2615 *
2616 * (Clearing the bit is even worse, because it fails to preserve
2617 * orientation).
2618 *
2619 * Triangle strips with adjacency always ordered in a way that preserves
2620 * triangle orientation but does not strictly follow the OpenGL spec,
2621 * regardless of the setting of this bit.
2622 *
2623 * On Haswell, both triangle strips and triangle strips with adjacency
2624 * are always ordered in a way that preserves triangle orientation.
2625 * Setting this bit causes the ordering to strictly follow the OpenGL
2626 * spec.
2627 *
2628 * So in either case we want to set the bit. Unfortunately on Ivy
2629 * Bridge this will get the order close to correct but not perfect.
2630 */
2631 gs.ReorderMode = TRAILING;
2632 gs.MaximumNumberofThreads =
2633 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2634 : (devinfo->max_gs_threads - 1);
2635
2636 #if GEN_GEN < 7
2637 gs.SOStatisticsEnable = true;
2638 if (gs_prog->info.has_transform_feedback_varyings)
2639 gs.SVBIPayloadEnable = true;
2640
2641 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2642 * was previously done for gen6.
2643 *
2644 * TODO: test with both disabled to see if the HW is behaving
2645 * as expected, like in gen7.
2646 */
2647 gs.SingleProgramFlow = true;
2648 gs.VectorMaskEnable = true;
2649 #endif
2650
2651 #if GEN_GEN >= 8
2652 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2653
2654 if (gs_prog_data->static_vertex_count != -1) {
2655 gs.StaticOutput = true;
2656 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2657 }
2658 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2659
2660 gs.UserClipDistanceCullTestEnableBitmask =
2661 vue_prog_data->cull_distance_mask;
2662
2663 const int urb_entry_write_offset = 1;
2664 const uint32_t urb_entry_output_length =
2665 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2666 urb_entry_write_offset;
2667
2668 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2669 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2670 #endif
2671 }
2672 #endif
2673
2674 #if GEN_GEN <= 6
2675 if (!active && brw->ff_gs.prog_active) {
2676 /* In gen6, transform feedback for the VS stage is done with an
2677 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2678 * for this.
2679 */
2680 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2681 gs.SingleProgramFlow = true;
2682 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2683 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2684
2685 #if GEN_GEN <= 5
2686 gs.GRFRegisterCount =
2687 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2688 /* BRW_NEW_URB_FENCE */
2689 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2690 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2691 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2692 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2693 #else
2694 gs.Enable = true;
2695 gs.VectorMaskEnable = true;
2696 gs.SVBIPayloadEnable = true;
2697 gs.SVBIPostIncrementEnable = true;
2698 gs.SVBIPostIncrementValue =
2699 brw->ff_gs.prog_data->svbi_postincrement_value;
2700 gs.SOStatisticsEnable = true;
2701 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2702 #endif
2703 }
2704 #endif
2705 if (!active && !brw->ff_gs.prog_active) {
2706 #if GEN_GEN < 8
2707 gs.DispatchGRFStartRegisterForURBData = 1;
2708 #if GEN_GEN >= 7
2709 gs.IncludeVertexHandles = true;
2710 #endif
2711 #endif
2712 }
2713
2714 #if GEN_GEN >= 6
2715 gs.StatisticsEnable = true;
2716 #endif
2717 #if GEN_GEN == 5 || GEN_GEN == 6
2718 gs.RenderingEnabled = true;
2719 #endif
2720 #if GEN_GEN <= 5
2721 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2722 #endif
2723 }
2724
2725 #if GEN_GEN == 6
2726 brw->gs.enabled = active;
2727 #endif
2728 }
2729
2730 static const struct brw_tracked_state genX(gs_state) = {
2731 .dirty = {
2732 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2733 .brw = BRW_NEW_BATCH |
2734 BRW_NEW_BLORP |
2735 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2736 BRW_NEW_PROGRAM_CACHE |
2737 BRW_NEW_URB_FENCE |
2738 BRW_NEW_VIEWPORT_COUNT
2739 : 0) |
2740 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2741 BRW_NEW_GEOMETRY_PROGRAM |
2742 BRW_NEW_GS_PROG_DATA
2743 : 0) |
2744 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2745 },
2746 .emit = genX(upload_gs_state),
2747 };
2748
2749 /* ---------------------------------------------------------------------- */
2750
2751 UNUSED static GLenum
2752 fix_dual_blend_alpha_to_one(GLenum function)
2753 {
2754 switch (function) {
2755 case GL_SRC1_ALPHA:
2756 return GL_ONE;
2757
2758 case GL_ONE_MINUS_SRC1_ALPHA:
2759 return GL_ZERO;
2760 }
2761
2762 return function;
2763 }
2764
2765 #define blend_factor(x) brw_translate_blend_factor(x)
2766 #define blend_eqn(x) brw_translate_blend_equation(x)
2767
2768 /**
2769 * Modify blend function to force destination alpha to 1.0
2770 *
2771 * If \c function specifies a blend function that uses destination alpha,
2772 * replace it with a function that hard-wires destination alpha to 1.0. This
2773 * is used when rendering to xRGB targets.
2774 */
2775 static GLenum
2776 brw_fix_xRGB_alpha(GLenum function)
2777 {
2778 switch (function) {
2779 case GL_DST_ALPHA:
2780 return GL_ONE;
2781
2782 case GL_ONE_MINUS_DST_ALPHA:
2783 case GL_SRC_ALPHA_SATURATE:
2784 return GL_ZERO;
2785 }
2786
2787 return function;
2788 }
2789
2790 #if GEN_GEN >= 6
2791 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2792 #else
2793 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2794 #endif
2795
2796 UNUSED static bool
2797 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2798 bool alpha_to_one)
2799 {
2800 struct gl_context *ctx = &brw->ctx;
2801
2802 /* _NEW_BUFFERS */
2803 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2804
2805 bool independent_alpha_blend = false;
2806
2807 /* Used for implementing the following bit of GL_EXT_texture_integer:
2808 * "Per-fragment operations that require floating-point color
2809 * components, including multisample alpha operations, alpha test,
2810 * blending, and dithering, have no effect when the corresponding
2811 * colors are written to an integer color buffer."
2812 */
2813 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2814
2815 const unsigned blend_enabled = GEN_GEN >= 6 ?
2816 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2817
2818 /* _NEW_COLOR */
2819 if (ctx->Color.ColorLogicOpEnabled) {
2820 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2821 : GL_UNSIGNED_NORMALIZED;
2822 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2823 rb_type != GL_UNSIGNED_NORMALIZED &&
2824 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2825 "renderbuffer\n",
2826 _mesa_enum_to_string(ctx->Color.LogicOp),
2827 _mesa_enum_to_string(rb_type));
2828 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2829 entry->LogicOpEnable = true;
2830 entry->LogicOpFunction = ctx->Color._LogicOp;
2831 }
2832 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2833 && (GEN_GEN <= 5 || !integer)) {
2834 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2835 GLenum eqA = ctx->Color.Blend[i].EquationA;
2836 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2837 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2838 GLenum srcA = ctx->Color.Blend[i].SrcA;
2839 GLenum dstA = ctx->Color.Blend[i].DstA;
2840
2841 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2842 srcRGB = dstRGB = GL_ONE;
2843
2844 if (eqA == GL_MIN || eqA == GL_MAX)
2845 srcA = dstA = GL_ONE;
2846
2847 /* Due to hardware limitations, the destination may have information
2848 * in an alpha channel even when the format specifies no alpha
2849 * channel. In order to avoid getting any incorrect blending due to
2850 * that alpha channel, coerce the blend factors to values that will
2851 * not read the alpha channel, but will instead use the correct
2852 * implicit value for alpha.
2853 */
2854 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2855 GL_TEXTURE_ALPHA_TYPE)) {
2856 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2857 srcA = brw_fix_xRGB_alpha(srcA);
2858 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2859 dstA = brw_fix_xRGB_alpha(dstA);
2860 }
2861
2862 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2863 * "If Dual Source Blending is enabled, this bit must be disabled."
2864 *
2865 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2866 * and leave it enabled anyway.
2867 */
2868 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2869 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2870 srcA = fix_dual_blend_alpha_to_one(srcA);
2871 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2872 dstA = fix_dual_blend_alpha_to_one(dstA);
2873 }
2874
2875 entry->ColorBufferBlendEnable = true;
2876 entry->DestinationBlendFactor = blend_factor(dstRGB);
2877 entry->SourceBlendFactor = blend_factor(srcRGB);
2878 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2879 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2880 entry->ColorBlendFunction = blend_eqn(eqRGB);
2881 entry->AlphaBlendFunction = blend_eqn(eqA);
2882
2883 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2884 independent_alpha_blend = true;
2885 }
2886
2887 return independent_alpha_blend;
2888 }
2889
2890 #if GEN_GEN >= 6
2891 static void
2892 genX(upload_blend_state)(struct brw_context *brw)
2893 {
2894 struct gl_context *ctx = &brw->ctx;
2895 int size;
2896
2897 /* We need at least one BLEND_STATE written, because we might do
2898 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2899 * for computed depth or alpha test), which will do an FB write
2900 * with render target 0, which will reference BLEND_STATE[0] for
2901 * alpha test enable.
2902 */
2903 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2904 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2905 nr_draw_buffers = 1;
2906
2907 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2908 #if GEN_GEN >= 8
2909 size += GENX(BLEND_STATE_length) * 4;
2910 #endif
2911
2912 uint32_t *blend_map;
2913 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2914
2915 #if GEN_GEN >= 8
2916 struct GENX(BLEND_STATE) blend = { 0 };
2917 {
2918 #else
2919 for (int i = 0; i < nr_draw_buffers; i++) {
2920 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2921 #define blend entry
2922 #endif
2923 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2924 * "If drawbuffer zero is not NONE and the buffer it references has an
2925 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2926 * operations are skipped."
2927 */
2928 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2929 /* _NEW_MULTISAMPLE */
2930 if (_mesa_is_multisample_enabled(ctx)) {
2931 if (ctx->Multisample.SampleAlphaToCoverage) {
2932 blend.AlphaToCoverageEnable = true;
2933 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2934 }
2935 if (ctx->Multisample.SampleAlphaToOne)
2936 blend.AlphaToOneEnable = true;
2937 }
2938
2939 /* _NEW_COLOR */
2940 if (ctx->Color.AlphaEnabled) {
2941 blend.AlphaTestEnable = true;
2942 blend.AlphaTestFunction =
2943 intel_translate_compare_func(ctx->Color.AlphaFunc);
2944 }
2945
2946 if (ctx->Color.DitherFlag) {
2947 blend.ColorDitherEnable = true;
2948 }
2949 }
2950
2951 #if GEN_GEN >= 8
2952 for (int i = 0; i < nr_draw_buffers; i++) {
2953 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2954 #else
2955 {
2956 #endif
2957 blend.IndependentAlphaBlendEnable =
2958 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2959 blend.IndependentAlphaBlendEnable;
2960
2961 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2962 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2963 *
2964 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2965 * clamping in the fragment shader. For its clamping of
2966 * blending, the spec says:
2967 *
2968 * "RESOLVED: For fixed-point color buffers, the inputs and
2969 * the result of the blending equation are clamped. For
2970 * floating-point color buffers, no clamping occurs."
2971 *
2972 * So, generally, we want clamping to the render target's range.
2973 * And, good news, the hardware tables for both pre- and
2974 * post-blend color clamping are either ignored, or any are
2975 * allowed, or clamping is required but RT range clamping is a
2976 * valid option.
2977 */
2978 entry.PreBlendColorClampEnable = true;
2979 entry.PostBlendColorClampEnable = true;
2980 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2981
2982 entry.WriteDisableRed = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
2983 entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
2984 entry.WriteDisableBlue = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
2985 entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
2986
2987 #if GEN_GEN >= 8
2988 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2989 #else
2990 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2991 #endif
2992 }
2993 }
2994
2995 #if GEN_GEN >= 8
2996 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2997 #endif
2998
2999 #if GEN_GEN < 7
3000 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3001 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3002 ptr.BLEND_STATEChange = true;
3003 }
3004 #else
3005 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3006 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3007 #if GEN_GEN >= 8
3008 ptr.BlendStatePointerValid = true;
3009 #endif
3010 }
3011 #endif
3012 }
3013
3014 static const struct brw_tracked_state genX(blend_state) = {
3015 .dirty = {
3016 .mesa = _NEW_BUFFERS |
3017 _NEW_COLOR |
3018 _NEW_MULTISAMPLE,
3019 .brw = BRW_NEW_BATCH |
3020 BRW_NEW_BLORP |
3021 BRW_NEW_STATE_BASE_ADDRESS,
3022 },
3023 .emit = genX(upload_blend_state),
3024 };
3025 #endif
3026
3027 /* ---------------------------------------------------------------------- */
3028
3029 #if GEN_GEN >= 7
3030 UNUSED static const uint32_t push_constant_opcodes[] = {
3031 [MESA_SHADER_VERTEX] = 21,
3032 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3033 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3034 [MESA_SHADER_GEOMETRY] = 22,
3035 [MESA_SHADER_FRAGMENT] = 23,
3036 [MESA_SHADER_COMPUTE] = 0,
3037 };
3038
3039 static void
3040 genX(upload_push_constant_packets)(struct brw_context *brw)
3041 {
3042 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3043 struct gl_context *ctx = &brw->ctx;
3044
3045 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3046
3047 struct brw_stage_state *stage_states[] = {
3048 &brw->vs.base,
3049 &brw->tcs.base,
3050 &brw->tes.base,
3051 &brw->gs.base,
3052 &brw->wm.base,
3053 };
3054
3055 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3056 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3057 gen7_emit_vs_workaround_flush(brw);
3058
3059 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3060 struct brw_stage_state *stage_state = stage_states[stage];
3061 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3062
3063 if (!stage_state->push_constants_dirty)
3064 continue;
3065
3066 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3067 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3068 if (stage_state->prog_data) {
3069 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3070 /* The Skylake PRM contains the following restriction:
3071 *
3072 * "The driver must ensure The following case does not occur
3073 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3074 * buffer 3 read length equal to zero committed followed by a
3075 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3076 * zero committed."
3077 *
3078 * To avoid this, we program the buffers in the highest slots.
3079 * This way, slot 0 is only used if slot 3 is also used.
3080 */
3081 int n = 3;
3082
3083 for (int i = 3; i >= 0; i--) {
3084 const struct brw_ubo_range *range =
3085 &stage_state->prog_data->ubo_ranges[i];
3086
3087 if (range->length == 0)
3088 continue;
3089
3090 const struct gl_uniform_block *block =
3091 prog->sh.UniformBlocks[range->block];
3092 const struct gl_buffer_binding *binding =
3093 &ctx->UniformBufferBindings[block->Binding];
3094
3095 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3096 static unsigned msg_id = 0;
3097 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3098 MESA_DEBUG_TYPE_UNDEFINED,
3099 MESA_DEBUG_SEVERITY_HIGH,
3100 "UBO %d unbound, %s shader uniform data "
3101 "will be undefined.",
3102 range->block,
3103 _mesa_shader_stage_to_string(stage));
3104 continue;
3105 }
3106
3107 assert(binding->Offset % 32 == 0);
3108
3109 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3110 intel_buffer_object(binding->BufferObject),
3111 binding->Offset, range->length * 32, false);
3112
3113 pkt.ConstantBody.ReadLength[n] = range->length;
3114 pkt.ConstantBody.Buffer[n] =
3115 ro_bo(bo, range->start * 32 + binding->Offset);
3116 n--;
3117 }
3118
3119 if (stage_state->push_const_size > 0) {
3120 assert(n >= 0);
3121 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3122 pkt.ConstantBody.Buffer[n] =
3123 ro_bo(stage_state->push_const_bo,
3124 stage_state->push_const_offset);
3125 }
3126 #else
3127 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3128 pkt.ConstantBody.Buffer[0].offset =
3129 stage_state->push_const_offset | mocs;
3130 #endif
3131 }
3132 }
3133
3134 stage_state->push_constants_dirty = false;
3135 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3136 }
3137 }
3138
3139 const struct brw_tracked_state genX(push_constant_packets) = {
3140 .dirty = {
3141 .mesa = 0,
3142 .brw = BRW_NEW_DRAW_CALL,
3143 },
3144 .emit = genX(upload_push_constant_packets),
3145 };
3146 #endif
3147
3148 #if GEN_GEN >= 6
3149 static void
3150 genX(upload_vs_push_constants)(struct brw_context *brw)
3151 {
3152 struct brw_stage_state *stage_state = &brw->vs.base;
3153
3154 /* BRW_NEW_VERTEX_PROGRAM */
3155 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3156 /* BRW_NEW_VS_PROG_DATA */
3157 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3158
3159 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3160 }
3161
3162 static const struct brw_tracked_state genX(vs_push_constants) = {
3163 .dirty = {
3164 .mesa = _NEW_PROGRAM_CONSTANTS |
3165 _NEW_TRANSFORM,
3166 .brw = BRW_NEW_BATCH |
3167 BRW_NEW_BLORP |
3168 BRW_NEW_VERTEX_PROGRAM |
3169 BRW_NEW_VS_PROG_DATA,
3170 },
3171 .emit = genX(upload_vs_push_constants),
3172 };
3173
3174 static void
3175 genX(upload_gs_push_constants)(struct brw_context *brw)
3176 {
3177 struct brw_stage_state *stage_state = &brw->gs.base;
3178
3179 /* BRW_NEW_GEOMETRY_PROGRAM */
3180 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3181
3182 /* BRW_NEW_GS_PROG_DATA */
3183 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3184
3185 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3186 }
3187
3188 static const struct brw_tracked_state genX(gs_push_constants) = {
3189 .dirty = {
3190 .mesa = _NEW_PROGRAM_CONSTANTS |
3191 _NEW_TRANSFORM,
3192 .brw = BRW_NEW_BATCH |
3193 BRW_NEW_BLORP |
3194 BRW_NEW_GEOMETRY_PROGRAM |
3195 BRW_NEW_GS_PROG_DATA,
3196 },
3197 .emit = genX(upload_gs_push_constants),
3198 };
3199
3200 static void
3201 genX(upload_wm_push_constants)(struct brw_context *brw)
3202 {
3203 struct brw_stage_state *stage_state = &brw->wm.base;
3204 /* BRW_NEW_FRAGMENT_PROGRAM */
3205 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3206 /* BRW_NEW_FS_PROG_DATA */
3207 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3208
3209 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3210 }
3211
3212 static const struct brw_tracked_state genX(wm_push_constants) = {
3213 .dirty = {
3214 .mesa = _NEW_PROGRAM_CONSTANTS,
3215 .brw = BRW_NEW_BATCH |
3216 BRW_NEW_BLORP |
3217 BRW_NEW_FRAGMENT_PROGRAM |
3218 BRW_NEW_FS_PROG_DATA,
3219 },
3220 .emit = genX(upload_wm_push_constants),
3221 };
3222 #endif
3223
3224 /* ---------------------------------------------------------------------- */
3225
3226 #if GEN_GEN >= 6
3227 static unsigned
3228 genX(determine_sample_mask)(struct brw_context *brw)
3229 {
3230 struct gl_context *ctx = &brw->ctx;
3231 float coverage = 1.0f;
3232 float coverage_invert = false;
3233 unsigned sample_mask = ~0u;
3234
3235 /* BRW_NEW_NUM_SAMPLES */
3236 unsigned num_samples = brw->num_samples;
3237
3238 if (_mesa_is_multisample_enabled(ctx)) {
3239 if (ctx->Multisample.SampleCoverage) {
3240 coverage = ctx->Multisample.SampleCoverageValue;
3241 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3242 }
3243 if (ctx->Multisample.SampleMask) {
3244 sample_mask = ctx->Multisample.SampleMaskValue;
3245 }
3246 }
3247
3248 if (num_samples > 1) {
3249 int coverage_int = (int) (num_samples * coverage + 0.5f);
3250 uint32_t coverage_bits = (1 << coverage_int) - 1;
3251 if (coverage_invert)
3252 coverage_bits ^= (1 << num_samples) - 1;
3253 return coverage_bits & sample_mask;
3254 } else {
3255 return 1;
3256 }
3257 }
3258
3259 static void
3260 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3261 unsigned num_samples)
3262 {
3263 unsigned log2_samples = ffs(num_samples) - 1;
3264
3265 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3266 multi.PixelLocation = CENTER;
3267 multi.NumberofMultisamples = log2_samples;
3268 #if GEN_GEN == 6
3269 GEN_SAMPLE_POS_4X(multi.Sample);
3270 #elif GEN_GEN == 7
3271 switch (num_samples) {
3272 case 1:
3273 GEN_SAMPLE_POS_1X(multi.Sample);
3274 break;
3275 case 2:
3276 GEN_SAMPLE_POS_2X(multi.Sample);
3277 break;
3278 case 4:
3279 GEN_SAMPLE_POS_4X(multi.Sample);
3280 break;
3281 case 8:
3282 GEN_SAMPLE_POS_8X(multi.Sample);
3283 break;
3284 default:
3285 break;
3286 }
3287 #endif
3288 }
3289 }
3290
3291 static void
3292 genX(upload_multisample_state)(struct brw_context *brw)
3293 {
3294 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3295
3296 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3297
3298 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3299 sm.SampleMask = genX(determine_sample_mask)(brw);
3300 }
3301 }
3302
3303 static const struct brw_tracked_state genX(multisample_state) = {
3304 .dirty = {
3305 .mesa = _NEW_MULTISAMPLE |
3306 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3307 .brw = BRW_NEW_BLORP |
3308 BRW_NEW_CONTEXT |
3309 BRW_NEW_NUM_SAMPLES,
3310 },
3311 .emit = genX(upload_multisample_state)
3312 };
3313 #endif
3314
3315 /* ---------------------------------------------------------------------- */
3316
3317 static void
3318 genX(upload_color_calc_state)(struct brw_context *brw)
3319 {
3320 struct gl_context *ctx = &brw->ctx;
3321
3322 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3323 #if GEN_GEN <= 5
3324 cc.IndependentAlphaBlendEnable =
3325 set_blend_entry_bits(brw, &cc, 0, false);
3326 set_depth_stencil_bits(brw, &cc);
3327
3328 if (ctx->Color.AlphaEnabled &&
3329 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3330 cc.AlphaTestEnable = true;
3331 cc.AlphaTestFunction =
3332 intel_translate_compare_func(ctx->Color.AlphaFunc);
3333 }
3334
3335 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3336
3337 cc.StatisticsEnable = brw->stats_wm;
3338
3339 cc.CCViewportStatePointer =
3340 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3341 #else
3342 /* _NEW_COLOR */
3343 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3344 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3345 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3346 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3347
3348 #if GEN_GEN < 9
3349 /* _NEW_STENCIL */
3350 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3351 cc.BackfaceStencilReferenceValue =
3352 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3353 #endif
3354
3355 #endif
3356
3357 /* _NEW_COLOR */
3358 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3359 ctx->Color.AlphaRef);
3360 }
3361
3362 #if GEN_GEN >= 6
3363 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3364 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3365 #if GEN_GEN != 7
3366 ptr.ColorCalcStatePointerValid = true;
3367 #endif
3368 }
3369 #else
3370 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3371 #endif
3372 }
3373
3374 static const struct brw_tracked_state genX(color_calc_state) = {
3375 .dirty = {
3376 .mesa = _NEW_COLOR |
3377 _NEW_STENCIL |
3378 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3379 _NEW_DEPTH
3380 : 0),
3381 .brw = BRW_NEW_BATCH |
3382 BRW_NEW_BLORP |
3383 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3384 BRW_NEW_STATS_WM
3385 : BRW_NEW_CC_STATE |
3386 BRW_NEW_STATE_BASE_ADDRESS),
3387 },
3388 .emit = genX(upload_color_calc_state),
3389 };
3390
3391
3392 /* ---------------------------------------------------------------------- */
3393
3394 #if GEN_GEN >= 7
3395 static void
3396 genX(upload_sbe)(struct brw_context *brw)
3397 {
3398 struct gl_context *ctx = &brw->ctx;
3399 /* BRW_NEW_FRAGMENT_PROGRAM */
3400 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3401 /* BRW_NEW_FS_PROG_DATA */
3402 const struct brw_wm_prog_data *wm_prog_data =
3403 brw_wm_prog_data(brw->wm.base.prog_data);
3404 #if GEN_GEN >= 8
3405 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3406 #else
3407 #define attr_overrides sbe.Attribute
3408 #endif
3409 uint32_t urb_entry_read_length;
3410 uint32_t urb_entry_read_offset;
3411 uint32_t point_sprite_enables;
3412
3413 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3414 sbe.AttributeSwizzleEnable = true;
3415 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3416
3417 /* _NEW_BUFFERS */
3418 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3419
3420 /* _NEW_POINT
3421 *
3422 * Window coordinates in an FBO are inverted, which means point
3423 * sprite origin must be inverted.
3424 */
3425 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3426 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3427 else
3428 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3429
3430 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3431 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3432 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3433 * BRW_NEW_VUE_MAP_GEOM_OUT
3434 */
3435 genX(calculate_attr_overrides)(brw,
3436 attr_overrides,
3437 &point_sprite_enables,
3438 &urb_entry_read_length,
3439 &urb_entry_read_offset);
3440
3441 /* Typically, the URB entry read length and offset should be programmed
3442 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3443 * stage which produces geometry. However, we don't know the proper
3444 * value until we call calculate_attr_overrides().
3445 *
3446 * To fit with our existing code, we override the inherited values and
3447 * specify it here directly, as we did on previous generations.
3448 */
3449 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3450 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3451 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3452 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3453
3454 #if GEN_GEN >= 8
3455 sbe.ForceVertexURBEntryReadLength = true;
3456 sbe.ForceVertexURBEntryReadOffset = true;
3457 #endif
3458
3459 #if GEN_GEN >= 9
3460 /* prepare the active component dwords */
3461 const int num_inputs = urb_entry_read_length * 2;
3462 for (int input_index = 0; input_index < num_inputs; input_index++) {
3463 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3464 }
3465 #endif
3466 }
3467
3468 #if GEN_GEN >= 8
3469 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3470 for (int i = 0; i < 16; i++)
3471 sbes.Attribute[i] = attr_overrides[i];
3472 }
3473 #endif
3474
3475 #undef attr_overrides
3476 }
3477
3478 static const struct brw_tracked_state genX(sbe_state) = {
3479 .dirty = {
3480 .mesa = _NEW_BUFFERS |
3481 _NEW_LIGHT |
3482 _NEW_POINT |
3483 _NEW_POLYGON |
3484 _NEW_PROGRAM,
3485 .brw = BRW_NEW_BLORP |
3486 BRW_NEW_CONTEXT |
3487 BRW_NEW_FRAGMENT_PROGRAM |
3488 BRW_NEW_FS_PROG_DATA |
3489 BRW_NEW_GS_PROG_DATA |
3490 BRW_NEW_TES_PROG_DATA |
3491 BRW_NEW_VUE_MAP_GEOM_OUT |
3492 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3493 : 0),
3494 },
3495 .emit = genX(upload_sbe),
3496 };
3497 #endif
3498
3499 /* ---------------------------------------------------------------------- */
3500
3501 #if GEN_GEN >= 7
3502 /**
3503 * Outputs the 3DSTATE_SO_DECL_LIST command.
3504 *
3505 * The data output is a series of 64-bit entries containing a SO_DECL per
3506 * stream. We only have one stream of rendering coming out of the GS unit, so
3507 * we only emit stream 0 (low 16 bits) SO_DECLs.
3508 */
3509 static void
3510 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3511 const struct brw_vue_map *vue_map)
3512 {
3513 struct gl_context *ctx = &brw->ctx;
3514 /* BRW_NEW_TRANSFORM_FEEDBACK */
3515 struct gl_transform_feedback_object *xfb_obj =
3516 ctx->TransformFeedback.CurrentObject;
3517 const struct gl_transform_feedback_info *linked_xfb_info =
3518 xfb_obj->program->sh.LinkedTransformFeedback;
3519 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3520 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3521 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3522 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3523 int max_decls = 0;
3524 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3525
3526 memset(so_decl, 0, sizeof(so_decl));
3527
3528 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3529 * command feels strange -- each dword pair contains a SO_DECL per stream.
3530 */
3531 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3532 const struct gl_transform_feedback_output *output =
3533 &linked_xfb_info->Outputs[i];
3534 const int buffer = output->OutputBuffer;
3535 const int varying = output->OutputRegister;
3536 const unsigned stream_id = output->StreamId;
3537 assert(stream_id < MAX_VERTEX_STREAMS);
3538
3539 buffer_mask[stream_id] |= 1 << buffer;
3540
3541 assert(vue_map->varying_to_slot[varying] >= 0);
3542
3543 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3544 * array. Instead, it simply increments DstOffset for the following
3545 * input by the number of components that should be skipped.
3546 *
3547 * Our hardware is unusual in that it requires us to program SO_DECLs
3548 * for fake "hole" components, rather than simply taking the offset
3549 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3550 * program as many size = 4 holes as we can, then a final hole to
3551 * accommodate the final 1, 2, or 3 remaining.
3552 */
3553 int skip_components = output->DstOffset - next_offset[buffer];
3554
3555 while (skip_components > 0) {
3556 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3557 .HoleFlag = 1,
3558 .OutputBufferSlot = output->OutputBuffer,
3559 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3560 };
3561 skip_components -= 4;
3562 }
3563
3564 next_offset[buffer] = output->DstOffset + output->NumComponents;
3565
3566 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3567 .OutputBufferSlot = output->OutputBuffer,
3568 .RegisterIndex = vue_map->varying_to_slot[varying],
3569 .ComponentMask =
3570 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3571 };
3572
3573 if (decls[stream_id] > max_decls)
3574 max_decls = decls[stream_id];
3575 }
3576
3577 uint32_t *dw;
3578 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3579 .StreamtoBufferSelects0 = buffer_mask[0],
3580 .StreamtoBufferSelects1 = buffer_mask[1],
3581 .StreamtoBufferSelects2 = buffer_mask[2],
3582 .StreamtoBufferSelects3 = buffer_mask[3],
3583 .NumEntries0 = decls[0],
3584 .NumEntries1 = decls[1],
3585 .NumEntries2 = decls[2],
3586 .NumEntries3 = decls[3]);
3587
3588 for (int i = 0; i < max_decls; i++) {
3589 GENX(SO_DECL_ENTRY_pack)(
3590 brw, dw + 2 + i * 2,
3591 &(struct GENX(SO_DECL_ENTRY)) {
3592 .Stream0Decl = so_decl[0][i],
3593 .Stream1Decl = so_decl[1][i],
3594 .Stream2Decl = so_decl[2][i],
3595 .Stream3Decl = so_decl[3][i],
3596 });
3597 }
3598 }
3599
3600 static void
3601 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3602 {
3603 struct gl_context *ctx = &brw->ctx;
3604 /* BRW_NEW_TRANSFORM_FEEDBACK */
3605 struct gl_transform_feedback_object *xfb_obj =
3606 ctx->TransformFeedback.CurrentObject;
3607 #if GEN_GEN < 8
3608 const struct gl_transform_feedback_info *linked_xfb_info =
3609 xfb_obj->program->sh.LinkedTransformFeedback;
3610 #else
3611 struct brw_transform_feedback_object *brw_obj =
3612 (struct brw_transform_feedback_object *) xfb_obj;
3613 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3614 #endif
3615
3616 /* Set up the up to 4 output buffers. These are the ranges defined in the
3617 * gl_transform_feedback_object.
3618 */
3619 for (int i = 0; i < 4; i++) {
3620 struct intel_buffer_object *bufferobj =
3621 intel_buffer_object(xfb_obj->Buffers[i]);
3622
3623 if (!bufferobj) {
3624 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3625 sob.SOBufferIndex = i;
3626 }
3627 continue;
3628 }
3629
3630 uint32_t start = xfb_obj->Offset[i];
3631 assert(start % 4 == 0);
3632 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3633 struct brw_bo *bo =
3634 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3635 assert(end <= bo->size);
3636
3637 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3638 sob.SOBufferIndex = i;
3639
3640 sob.SurfaceBaseAddress = rw_bo(bo, start);
3641 #if GEN_GEN < 8
3642 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3643 sob.SurfaceEndAddress = rw_bo(bo, end);
3644 #else
3645 sob.SOBufferEnable = true;
3646 sob.StreamOffsetWriteEnable = true;
3647 sob.StreamOutputBufferOffsetAddressEnable = true;
3648 sob.SOBufferMOCS = mocs_wb;
3649
3650 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3651 sob.StreamOutputBufferOffsetAddress =
3652 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3653
3654 if (brw_obj->zero_offsets) {
3655 /* Zero out the offset and write that to offset_bo */
3656 sob.StreamOffset = 0;
3657 } else {
3658 /* Use offset_bo as the "Stream Offset." */
3659 sob.StreamOffset = 0xFFFFFFFF;
3660 }
3661 #endif
3662 }
3663 }
3664
3665 #if GEN_GEN >= 8
3666 brw_obj->zero_offsets = false;
3667 #endif
3668 }
3669
3670 static bool
3671 query_active(struct gl_query_object *q)
3672 {
3673 return q && q->Active;
3674 }
3675
3676 static void
3677 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3678 const struct brw_vue_map *vue_map)
3679 {
3680 struct gl_context *ctx = &brw->ctx;
3681 /* BRW_NEW_TRANSFORM_FEEDBACK */
3682 struct gl_transform_feedback_object *xfb_obj =
3683 ctx->TransformFeedback.CurrentObject;
3684
3685 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3686 if (active) {
3687 int urb_entry_read_offset = 0;
3688 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3689 urb_entry_read_offset;
3690
3691 sos.SOFunctionEnable = true;
3692 sos.SOStatisticsEnable = true;
3693
3694 /* BRW_NEW_RASTERIZER_DISCARD */
3695 if (ctx->RasterDiscard) {
3696 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3697 sos.RenderingDisable = true;
3698 } else {
3699 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3700 "query active relies on the clipper.\n");
3701 }
3702 }
3703
3704 /* _NEW_LIGHT */
3705 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3706 sos.ReorderMode = TRAILING;
3707
3708 #if GEN_GEN < 8
3709 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3710 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3711 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3712 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3713 #else
3714 const struct gl_transform_feedback_info *linked_xfb_info =
3715 xfb_obj->program->sh.LinkedTransformFeedback;
3716 /* Set buffer pitches; 0 means unbound. */
3717 if (xfb_obj->Buffers[0])
3718 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3719 if (xfb_obj->Buffers[1])
3720 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3721 if (xfb_obj->Buffers[2])
3722 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3723 if (xfb_obj->Buffers[3])
3724 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3725 #endif
3726
3727 /* We always read the whole vertex. This could be reduced at some
3728 * point by reading less and offsetting the register index in the
3729 * SO_DECLs.
3730 */
3731 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3732 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3733 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3734 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3735 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3736 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3737 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3738 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3739 }
3740 }
3741 }
3742
3743 static void
3744 genX(upload_sol)(struct brw_context *brw)
3745 {
3746 struct gl_context *ctx = &brw->ctx;
3747 /* BRW_NEW_TRANSFORM_FEEDBACK */
3748 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3749
3750 if (active) {
3751 genX(upload_3dstate_so_buffers)(brw);
3752
3753 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3754 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3755 }
3756
3757 /* Finally, set up the SOL stage. This command must always follow updates to
3758 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3759 * MMIO register updates (current performed by the kernel at each batch
3760 * emit).
3761 */
3762 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3763 }
3764
3765 static const struct brw_tracked_state genX(sol_state) = {
3766 .dirty = {
3767 .mesa = _NEW_LIGHT,
3768 .brw = BRW_NEW_BATCH |
3769 BRW_NEW_BLORP |
3770 BRW_NEW_RASTERIZER_DISCARD |
3771 BRW_NEW_VUE_MAP_GEOM_OUT |
3772 BRW_NEW_TRANSFORM_FEEDBACK,
3773 },
3774 .emit = genX(upload_sol),
3775 };
3776 #endif
3777
3778 /* ---------------------------------------------------------------------- */
3779
3780 #if GEN_GEN >= 7
3781 static void
3782 genX(upload_ps)(struct brw_context *brw)
3783 {
3784 UNUSED const struct gl_context *ctx = &brw->ctx;
3785 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3786
3787 /* BRW_NEW_FS_PROG_DATA */
3788 const struct brw_wm_prog_data *prog_data =
3789 brw_wm_prog_data(brw->wm.base.prog_data);
3790 const struct brw_stage_state *stage_state = &brw->wm.base;
3791
3792 #if GEN_GEN < 8
3793 #endif
3794
3795 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3796 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3797 * incorrect for subspans where some of the pixels are unlit. We believe
3798 * the bit just didn't take effect in previous generations.
3799 */
3800 ps.VectorMaskEnable = GEN_GEN >= 8;
3801
3802 ps.SamplerCount =
3803 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3804
3805 /* BRW_NEW_FS_PROG_DATA */
3806 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3807
3808 if (prog_data->base.use_alt_mode)
3809 ps.FloatingPointMode = Alternate;
3810
3811 /* Haswell requires the sample mask to be set in this packet as well as
3812 * in 3DSTATE_SAMPLE_MASK; the values should match.
3813 */
3814
3815 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3816 #if GEN_IS_HASWELL
3817 ps.SampleMask = genX(determine_sample_mask(brw));
3818 #endif
3819
3820 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64
3821 * for pre Gen11 and 128 for gen11+; On gen11+ If a programmed value is
3822 * k, it implies 2(k+1) threads. It implicitly scales for different GT
3823 * levels (which have some # of PSDs).
3824 *
3825 * In Gen8 the format is U8-2 whereas in Gen9+ it is U9-1.
3826 */
3827 #if GEN_GEN >= 9
3828 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3829 #elif GEN_GEN >= 8
3830 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3831 #else
3832 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3833 #endif
3834
3835 if (prog_data->base.nr_params > 0 ||
3836 prog_data->base.ubo_ranges[0].length > 0)
3837 ps.PushConstantEnable = true;
3838
3839 #if GEN_GEN < 8
3840 /* From the IVB PRM, volume 2 part 1, page 287:
3841 * "This bit is inserted in the PS payload header and made available to
3842 * the DataPort (either via the message header or via header bypass) to
3843 * indicate that oMask data (one or two phases) is included in Render
3844 * Target Write messages. If present, the oMask data is used to mask off
3845 * samples."
3846 */
3847 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3848
3849 /* The hardware wedges if you have this bit set but don't turn on any
3850 * dual source blend factors.
3851 *
3852 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3853 */
3854 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3855 (ctx->Color.BlendEnabled & 1) &&
3856 ctx->Color.Blend[0]._UsesDualSrc;
3857
3858 /* BRW_NEW_FS_PROG_DATA */
3859 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3860 #endif
3861
3862 /* From the documentation for this packet:
3863 * "If the PS kernel does not need the Position XY Offsets to
3864 * compute a Position Value, then this field should be programmed
3865 * to POSOFFSET_NONE."
3866 *
3867 * "SW Recommendation: If the PS kernel needs the Position Offsets
3868 * to compute a Position XY value, this field should match Position
3869 * ZW Interpolation Mode to ensure a consistent position.xyzw
3870 * computation."
3871 *
3872 * We only require XY sample offsets. So, this recommendation doesn't
3873 * look useful at the moment. We might need this in future.
3874 */
3875 if (prog_data->uses_pos_offset)
3876 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3877 else
3878 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3879
3880 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3881 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3882 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3883 prog_data->base.dispatch_grf_start_reg;
3884 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3885 prog_data->dispatch_grf_start_reg_2;
3886
3887 ps.KernelStartPointer0 = stage_state->prog_offset;
3888 ps.KernelStartPointer2 = stage_state->prog_offset +
3889 prog_data->prog_offset_2;
3890
3891 if (prog_data->base.total_scratch) {
3892 ps.ScratchSpaceBasePointer =
3893 rw_bo(stage_state->scratch_bo,
3894 ffs(stage_state->per_thread_scratch) - 11);
3895 }
3896 }
3897 }
3898
3899 static const struct brw_tracked_state genX(ps_state) = {
3900 .dirty = {
3901 .mesa = _NEW_MULTISAMPLE |
3902 (GEN_GEN < 8 ? _NEW_BUFFERS |
3903 _NEW_COLOR
3904 : 0),
3905 .brw = BRW_NEW_BATCH |
3906 BRW_NEW_BLORP |
3907 BRW_NEW_FS_PROG_DATA,
3908 },
3909 .emit = genX(upload_ps),
3910 };
3911 #endif
3912
3913 /* ---------------------------------------------------------------------- */
3914
3915 #if GEN_GEN >= 7
3916 static void
3917 genX(upload_hs_state)(struct brw_context *brw)
3918 {
3919 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3920 struct brw_stage_state *stage_state = &brw->tcs.base;
3921 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3922 const struct brw_vue_prog_data *vue_prog_data =
3923 brw_vue_prog_data(stage_prog_data);
3924
3925 /* BRW_NEW_TES_PROG_DATA */
3926 struct brw_tcs_prog_data *tcs_prog_data =
3927 brw_tcs_prog_data(stage_prog_data);
3928
3929 if (!tcs_prog_data) {
3930 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3931 } else {
3932 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3933 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3934
3935 hs.InstanceCount = tcs_prog_data->instances - 1;
3936 hs.IncludeVertexHandles = true;
3937
3938 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3939 }
3940 }
3941 }
3942
3943 static const struct brw_tracked_state genX(hs_state) = {
3944 .dirty = {
3945 .mesa = 0,
3946 .brw = BRW_NEW_BATCH |
3947 BRW_NEW_BLORP |
3948 BRW_NEW_TCS_PROG_DATA |
3949 BRW_NEW_TESS_PROGRAMS,
3950 },
3951 .emit = genX(upload_hs_state),
3952 };
3953
3954 static void
3955 genX(upload_ds_state)(struct brw_context *brw)
3956 {
3957 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3958 const struct brw_stage_state *stage_state = &brw->tes.base;
3959 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3960
3961 /* BRW_NEW_TES_PROG_DATA */
3962 const struct brw_tes_prog_data *tes_prog_data =
3963 brw_tes_prog_data(stage_prog_data);
3964 const struct brw_vue_prog_data *vue_prog_data =
3965 brw_vue_prog_data(stage_prog_data);
3966
3967 if (!tes_prog_data) {
3968 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3969 } else {
3970 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3971 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3972
3973 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3974 ds.ComputeWCoordinateEnable =
3975 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3976
3977 #if GEN_GEN >= 8
3978 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3979 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3980 ds.UserClipDistanceCullTestEnableBitmask =
3981 vue_prog_data->cull_distance_mask;
3982 #endif
3983 }
3984 }
3985 }
3986
3987 static const struct brw_tracked_state genX(ds_state) = {
3988 .dirty = {
3989 .mesa = 0,
3990 .brw = BRW_NEW_BATCH |
3991 BRW_NEW_BLORP |
3992 BRW_NEW_TESS_PROGRAMS |
3993 BRW_NEW_TES_PROG_DATA,
3994 },
3995 .emit = genX(upload_ds_state),
3996 };
3997
3998 /* ---------------------------------------------------------------------- */
3999
4000 static void
4001 upload_te_state(struct brw_context *brw)
4002 {
4003 /* BRW_NEW_TESS_PROGRAMS */
4004 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4005
4006 /* BRW_NEW_TES_PROG_DATA */
4007 const struct brw_tes_prog_data *tes_prog_data =
4008 brw_tes_prog_data(brw->tes.base.prog_data);
4009
4010 if (active) {
4011 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4012 te.Partitioning = tes_prog_data->partitioning;
4013 te.OutputTopology = tes_prog_data->output_topology;
4014 te.TEDomain = tes_prog_data->domain;
4015 te.TEEnable = true;
4016 te.MaximumTessellationFactorOdd = 63.0;
4017 te.MaximumTessellationFactorNotOdd = 64.0;
4018 }
4019 } else {
4020 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4021 }
4022 }
4023
4024 static const struct brw_tracked_state genX(te_state) = {
4025 .dirty = {
4026 .mesa = 0,
4027 .brw = BRW_NEW_BLORP |
4028 BRW_NEW_CONTEXT |
4029 BRW_NEW_TES_PROG_DATA |
4030 BRW_NEW_TESS_PROGRAMS,
4031 },
4032 .emit = upload_te_state,
4033 };
4034
4035 /* ---------------------------------------------------------------------- */
4036
4037 static void
4038 genX(upload_tes_push_constants)(struct brw_context *brw)
4039 {
4040 struct brw_stage_state *stage_state = &brw->tes.base;
4041 /* BRW_NEW_TESS_PROGRAMS */
4042 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4043
4044 /* BRW_NEW_TES_PROG_DATA */
4045 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4046 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4047 }
4048
4049 static const struct brw_tracked_state genX(tes_push_constants) = {
4050 .dirty = {
4051 .mesa = _NEW_PROGRAM_CONSTANTS,
4052 .brw = BRW_NEW_BATCH |
4053 BRW_NEW_BLORP |
4054 BRW_NEW_TESS_PROGRAMS |
4055 BRW_NEW_TES_PROG_DATA,
4056 },
4057 .emit = genX(upload_tes_push_constants),
4058 };
4059
4060 static void
4061 genX(upload_tcs_push_constants)(struct brw_context *brw)
4062 {
4063 struct brw_stage_state *stage_state = &brw->tcs.base;
4064 /* BRW_NEW_TESS_PROGRAMS */
4065 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4066
4067 /* BRW_NEW_TCS_PROG_DATA */
4068 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4069
4070 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4071 }
4072
4073 static const struct brw_tracked_state genX(tcs_push_constants) = {
4074 .dirty = {
4075 .mesa = _NEW_PROGRAM_CONSTANTS,
4076 .brw = BRW_NEW_BATCH |
4077 BRW_NEW_BLORP |
4078 BRW_NEW_DEFAULT_TESS_LEVELS |
4079 BRW_NEW_TESS_PROGRAMS |
4080 BRW_NEW_TCS_PROG_DATA,
4081 },
4082 .emit = genX(upload_tcs_push_constants),
4083 };
4084
4085 #endif
4086
4087 /* ---------------------------------------------------------------------- */
4088
4089 #if GEN_GEN >= 7
4090 static void
4091 genX(upload_cs_push_constants)(struct brw_context *brw)
4092 {
4093 struct brw_stage_state *stage_state = &brw->cs.base;
4094
4095 /* BRW_NEW_COMPUTE_PROGRAM */
4096 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4097
4098 if (cp) {
4099 /* BRW_NEW_CS_PROG_DATA */
4100 struct brw_cs_prog_data *cs_prog_data =
4101 brw_cs_prog_data(brw->cs.base.prog_data);
4102
4103 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4104 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4105 }
4106 }
4107
4108 const struct brw_tracked_state genX(cs_push_constants) = {
4109 .dirty = {
4110 .mesa = _NEW_PROGRAM_CONSTANTS,
4111 .brw = BRW_NEW_BATCH |
4112 BRW_NEW_BLORP |
4113 BRW_NEW_COMPUTE_PROGRAM |
4114 BRW_NEW_CS_PROG_DATA,
4115 },
4116 .emit = genX(upload_cs_push_constants),
4117 };
4118
4119 /**
4120 * Creates a new CS constant buffer reflecting the current CS program's
4121 * constants, if needed by the CS program.
4122 */
4123 static void
4124 genX(upload_cs_pull_constants)(struct brw_context *brw)
4125 {
4126 struct brw_stage_state *stage_state = &brw->cs.base;
4127
4128 /* BRW_NEW_COMPUTE_PROGRAM */
4129 struct brw_program *cp =
4130 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4131
4132 /* BRW_NEW_CS_PROG_DATA */
4133 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4134
4135 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4136 /* _NEW_PROGRAM_CONSTANTS */
4137 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4138 stage_state, prog_data);
4139 }
4140
4141 const struct brw_tracked_state genX(cs_pull_constants) = {
4142 .dirty = {
4143 .mesa = _NEW_PROGRAM_CONSTANTS,
4144 .brw = BRW_NEW_BATCH |
4145 BRW_NEW_BLORP |
4146 BRW_NEW_COMPUTE_PROGRAM |
4147 BRW_NEW_CS_PROG_DATA,
4148 },
4149 .emit = genX(upload_cs_pull_constants),
4150 };
4151
4152 static void
4153 genX(upload_cs_state)(struct brw_context *brw)
4154 {
4155 if (!brw->cs.base.prog_data)
4156 return;
4157
4158 uint32_t offset;
4159 uint32_t *desc = (uint32_t*) brw_state_batch(
4160 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4161 &offset);
4162
4163 struct brw_stage_state *stage_state = &brw->cs.base;
4164 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4165 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4166 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4167
4168 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4169 brw_emit_buffer_surface_state(
4170 brw, &stage_state->surf_offset[
4171 prog_data->binding_table.shader_time_start],
4172 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4173 brw->shader_time.bo->size, 1,
4174 RELOC_WRITE);
4175 }
4176
4177 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4178 32, &stage_state->bind_bo_offset);
4179
4180 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4181 *
4182 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4183 * the only bits that are changed are scoreboard related: Scoreboard
4184 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4185 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4186 *
4187 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4188 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4189 */
4190 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4191
4192 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4193 if (prog_data->total_scratch) {
4194 uint32_t per_thread_scratch_value;
4195
4196 if (GEN_GEN >= 8) {
4197 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4198 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4199 */
4200 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4201 } else if (GEN_IS_HASWELL) {
4202 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4203 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4204 */
4205 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4206 } else {
4207 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4208 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4209 */
4210 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4211 }
4212 vfe.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
4213 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4214 }
4215
4216 /* If brw->screen->subslice_total is greater than one, then
4217 * devinfo->max_cs_threads stores number of threads per sub-slice;
4218 * thus we need to multiply by that number by subslices to get
4219 * the actual maximum number of threads; the -1 is because the HW
4220 * has a bias of 1 (would not make sense to say the maximum number
4221 * of threads is 0).
4222 */
4223 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4224 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4225 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4226 #if GEN_GEN < 11
4227 vfe.ResetGatewayTimer =
4228 Resettingrelativetimerandlatchingtheglobaltimestamp;
4229 #endif
4230 #if GEN_GEN < 9
4231 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4232 #endif
4233 #if GEN_GEN == 7
4234 vfe.GPGPUMode = 1;
4235 #endif
4236
4237 /* We are uploading duplicated copies of push constant uniforms for each
4238 * thread. Although the local id data needs to vary per thread, it won't
4239 * change for other uniform data. Unfortunately this duplication is
4240 * required for gen7. As of Haswell, this duplication can be avoided,
4241 * but this older mechanism with duplicated data continues to work.
4242 *
4243 * FINISHME: As of Haswell, we could make use of the
4244 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4245 * field to only store one copy of uniform data.
4246 *
4247 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4248 * which is described in the GPGPU_WALKER command and in the Broadwell
4249 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4250 * Operations => GPGPU Mode => Indirect Payload Storage.
4251 *
4252 * Note: The constant data is built in brw_upload_cs_push_constants
4253 * below.
4254 */
4255 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4256
4257 const uint32_t vfe_curbe_allocation =
4258 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4259 cs_prog_data->push.cross_thread.regs, 2);
4260 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4261 }
4262
4263 if (cs_prog_data->push.total.size > 0) {
4264 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4265 curbe.CURBETotalDataLength =
4266 ALIGN(cs_prog_data->push.total.size, 64);
4267 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4268 }
4269 }
4270
4271 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4272 memcpy(bind, stage_state->surf_offset,
4273 prog_data->binding_table.size_bytes);
4274 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4275 .KernelStartPointer = brw->cs.base.prog_offset,
4276 .SamplerStatePointer = stage_state->sampler_offset,
4277 .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4278 .BindingTablePointer = stage_state->bind_bo_offset,
4279 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4280 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4281 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4282 prog_data->total_shared),
4283 .BarrierEnable = cs_prog_data->uses_barrier,
4284 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4285 .CrossThreadConstantDataReadLength =
4286 cs_prog_data->push.cross_thread.regs,
4287 #endif
4288 };
4289
4290 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4291
4292 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4293 load.InterfaceDescriptorTotalLength =
4294 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4295 load.InterfaceDescriptorDataStartAddress = offset;
4296 }
4297 }
4298
4299 static const struct brw_tracked_state genX(cs_state) = {
4300 .dirty = {
4301 .mesa = _NEW_PROGRAM_CONSTANTS,
4302 .brw = BRW_NEW_BATCH |
4303 BRW_NEW_BLORP |
4304 BRW_NEW_CS_PROG_DATA |
4305 BRW_NEW_SAMPLER_STATE_TABLE |
4306 BRW_NEW_SURFACES,
4307 },
4308 .emit = genX(upload_cs_state)
4309 };
4310
4311 #endif
4312
4313 /* ---------------------------------------------------------------------- */
4314
4315 #if GEN_GEN >= 8
4316 static void
4317 genX(upload_raster)(struct brw_context *brw)
4318 {
4319 const struct gl_context *ctx = &brw->ctx;
4320
4321 /* _NEW_BUFFERS */
4322 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4323
4324 /* _NEW_POLYGON */
4325 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4326
4327 /* _NEW_POINT */
4328 const struct gl_point_attrib *point = &ctx->Point;
4329
4330 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4331 if (brw->polygon_front_bit == render_to_fbo)
4332 raster.FrontWinding = CounterClockwise;
4333
4334 if (polygon->CullFlag) {
4335 switch (polygon->CullFaceMode) {
4336 case GL_FRONT:
4337 raster.CullMode = CULLMODE_FRONT;
4338 break;
4339 case GL_BACK:
4340 raster.CullMode = CULLMODE_BACK;
4341 break;
4342 case GL_FRONT_AND_BACK:
4343 raster.CullMode = CULLMODE_BOTH;
4344 break;
4345 default:
4346 unreachable("not reached");
4347 }
4348 } else {
4349 raster.CullMode = CULLMODE_NONE;
4350 }
4351
4352 raster.SmoothPointEnable = point->SmoothFlag;
4353
4354 raster.DXMultisampleRasterizationEnable =
4355 _mesa_is_multisample_enabled(ctx);
4356
4357 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4358 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4359 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4360
4361 switch (polygon->FrontMode) {
4362 case GL_FILL:
4363 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4364 break;
4365 case GL_LINE:
4366 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4367 break;
4368 case GL_POINT:
4369 raster.FrontFaceFillMode = FILL_MODE_POINT;
4370 break;
4371 default:
4372 unreachable("not reached");
4373 }
4374
4375 switch (polygon->BackMode) {
4376 case GL_FILL:
4377 raster.BackFaceFillMode = FILL_MODE_SOLID;
4378 break;
4379 case GL_LINE:
4380 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4381 break;
4382 case GL_POINT:
4383 raster.BackFaceFillMode = FILL_MODE_POINT;
4384 break;
4385 default:
4386 unreachable("not reached");
4387 }
4388
4389 /* _NEW_LINE */
4390 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4391
4392 #if GEN_GEN == 10
4393 /* _NEW_BUFFERS
4394 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4395 */
4396 const bool multisampled_fbo =
4397 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4398 if (multisampled_fbo)
4399 raster.AntialiasingEnable = false;
4400 #endif
4401
4402 /* _NEW_SCISSOR */
4403 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4404
4405 /* _NEW_TRANSFORM */
4406 if (!ctx->Transform.DepthClamp) {
4407 #if GEN_GEN >= 9
4408 raster.ViewportZFarClipTestEnable = true;
4409 raster.ViewportZNearClipTestEnable = true;
4410 #else
4411 raster.ViewportZClipTestEnable = true;
4412 #endif
4413 }
4414
4415 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4416 #if GEN_GEN >= 9
4417 raster.ConservativeRasterizationEnable =
4418 ctx->IntelConservativeRasterization;
4419 #endif
4420
4421 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4422 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4423
4424 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4425 }
4426 }
4427
4428 static const struct brw_tracked_state genX(raster_state) = {
4429 .dirty = {
4430 .mesa = _NEW_BUFFERS |
4431 _NEW_LINE |
4432 _NEW_MULTISAMPLE |
4433 _NEW_POINT |
4434 _NEW_POLYGON |
4435 _NEW_SCISSOR |
4436 _NEW_TRANSFORM,
4437 .brw = BRW_NEW_BLORP |
4438 BRW_NEW_CONTEXT |
4439 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4440 },
4441 .emit = genX(upload_raster),
4442 };
4443 #endif
4444
4445 /* ---------------------------------------------------------------------- */
4446
4447 #if GEN_GEN >= 8
4448 static void
4449 genX(upload_ps_extra)(struct brw_context *brw)
4450 {
4451 UNUSED struct gl_context *ctx = &brw->ctx;
4452
4453 const struct brw_wm_prog_data *prog_data =
4454 brw_wm_prog_data(brw->wm.base.prog_data);
4455
4456 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4457 psx.PixelShaderValid = true;
4458 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4459 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4460 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4461 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4462 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4463 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4464
4465 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4466 if (prog_data->uses_sample_mask) {
4467 #if GEN_GEN >= 9
4468 if (prog_data->post_depth_coverage)
4469 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4470 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4471 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4472 else
4473 psx.InputCoverageMaskState = ICMS_NORMAL;
4474 #else
4475 psx.PixelShaderUsesInputCoverageMask = true;
4476 #endif
4477 }
4478
4479 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4480 #if GEN_GEN >= 9
4481 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4482 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4483 #endif
4484
4485 /* The stricter cross-primitive coherency guarantees that the hardware
4486 * gives us with the "Accesses UAV" bit set for at least one shader stage
4487 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4488 * are redundant within the current image, atomic counter and SSBO GL
4489 * APIs, which all have very loose ordering and coherency requirements
4490 * and generally rely on the application to insert explicit barriers when
4491 * a shader invocation is expected to see the memory writes performed by
4492 * the invocations of some previous primitive. Regardless of the value
4493 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4494 * cause an in most cases useless DC flush when the lowermost stage with
4495 * the bit set finishes execution.
4496 *
4497 * It would be nice to disable it, but in some cases we can't because on
4498 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4499 * signal (which could be set independently from the coherency mechanism
4500 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4501 * determine whether the hardware skips execution of the fragment shader
4502 * or not via the ThreadDispatchEnable signal. However if we know that
4503 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4504 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4505 * difference so we may just disable it here.
4506 *
4507 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4508 * take into account KillPixels when no depth or stencil writes are
4509 * enabled. In order for occlusion queries to work correctly with no
4510 * attachments, we need to force-enable here.
4511 *
4512 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4513 * _NEW_COLOR
4514 */
4515 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4516 !brw_color_buffer_write_enabled(brw))
4517 psx.PixelShaderHasUAV = true;
4518 }
4519 }
4520
4521 const struct brw_tracked_state genX(ps_extra) = {
4522 .dirty = {
4523 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4524 .brw = BRW_NEW_BLORP |
4525 BRW_NEW_CONTEXT |
4526 BRW_NEW_FRAGMENT_PROGRAM |
4527 BRW_NEW_FS_PROG_DATA |
4528 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4529 },
4530 .emit = genX(upload_ps_extra),
4531 };
4532 #endif
4533
4534 /* ---------------------------------------------------------------------- */
4535
4536 #if GEN_GEN >= 8
4537 static void
4538 genX(upload_ps_blend)(struct brw_context *brw)
4539 {
4540 struct gl_context *ctx = &brw->ctx;
4541
4542 /* _NEW_BUFFERS */
4543 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4544 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4545
4546 /* _NEW_COLOR */
4547 struct gl_colorbuffer_attrib *color = &ctx->Color;
4548
4549 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4550 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4551 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4552
4553 bool alpha_to_one = false;
4554
4555 if (!buffer0_is_integer) {
4556 /* _NEW_MULTISAMPLE */
4557
4558 if (_mesa_is_multisample_enabled(ctx)) {
4559 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4560 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4561 }
4562
4563 pb.AlphaTestEnable = color->AlphaEnabled;
4564 }
4565
4566 /* Used for implementing the following bit of GL_EXT_texture_integer:
4567 * "Per-fragment operations that require floating-point color
4568 * components, including multisample alpha operations, alpha test,
4569 * blending, and dithering, have no effect when the corresponding
4570 * colors are written to an integer color buffer."
4571 *
4572 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4573 * "If drawbuffer zero is not NONE and the buffer it references has an
4574 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4575 * operations are skipped."
4576 */
4577 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4578 GLenum eqRGB = color->Blend[0].EquationRGB;
4579 GLenum eqA = color->Blend[0].EquationA;
4580 GLenum srcRGB = color->Blend[0].SrcRGB;
4581 GLenum dstRGB = color->Blend[0].DstRGB;
4582 GLenum srcA = color->Blend[0].SrcA;
4583 GLenum dstA = color->Blend[0].DstA;
4584
4585 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4586 srcRGB = dstRGB = GL_ONE;
4587
4588 if (eqA == GL_MIN || eqA == GL_MAX)
4589 srcA = dstA = GL_ONE;
4590
4591 /* Due to hardware limitations, the destination may have information
4592 * in an alpha channel even when the format specifies no alpha
4593 * channel. In order to avoid getting any incorrect blending due to
4594 * that alpha channel, coerce the blend factors to values that will
4595 * not read the alpha channel, but will instead use the correct
4596 * implicit value for alpha.
4597 */
4598 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4599 GL_TEXTURE_ALPHA_TYPE)) {
4600 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4601 srcA = brw_fix_xRGB_alpha(srcA);
4602 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4603 dstA = brw_fix_xRGB_alpha(dstA);
4604 }
4605
4606 /* Alpha to One doesn't work with Dual Color Blending. Override
4607 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4608 */
4609 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4610 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4611 srcA = fix_dual_blend_alpha_to_one(srcA);
4612 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4613 dstA = fix_dual_blend_alpha_to_one(dstA);
4614 }
4615
4616 pb.ColorBufferBlendEnable = true;
4617 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4618 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4619 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4620 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4621
4622 pb.IndependentAlphaBlendEnable =
4623 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4624 }
4625 }
4626 }
4627
4628 static const struct brw_tracked_state genX(ps_blend) = {
4629 .dirty = {
4630 .mesa = _NEW_BUFFERS |
4631 _NEW_COLOR |
4632 _NEW_MULTISAMPLE,
4633 .brw = BRW_NEW_BLORP |
4634 BRW_NEW_CONTEXT |
4635 BRW_NEW_FRAGMENT_PROGRAM,
4636 },
4637 .emit = genX(upload_ps_blend)
4638 };
4639 #endif
4640
4641 /* ---------------------------------------------------------------------- */
4642
4643 #if GEN_GEN >= 8
4644 static void
4645 genX(emit_vf_topology)(struct brw_context *brw)
4646 {
4647 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4648 vftopo.PrimitiveTopologyType = brw->primitive;
4649 }
4650 }
4651
4652 static const struct brw_tracked_state genX(vf_topology) = {
4653 .dirty = {
4654 .mesa = 0,
4655 .brw = BRW_NEW_BLORP |
4656 BRW_NEW_PRIMITIVE,
4657 },
4658 .emit = genX(emit_vf_topology),
4659 };
4660 #endif
4661
4662 /* ---------------------------------------------------------------------- */
4663
4664 #if GEN_GEN >= 7
4665 static void
4666 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4667 struct brw_bo *bo,
4668 uint32_t offset_in_bytes,
4669 uint32_t report_id)
4670 {
4671 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4672 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4673 mi_rpc.ReportID = report_id;
4674 }
4675 }
4676 #endif
4677
4678 /* ---------------------------------------------------------------------- */
4679
4680 /**
4681 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4682 */
4683 static void
4684 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4685 struct brw_stage_state *stage_state)
4686 {
4687 #if GEN_GEN >= 7
4688 static const uint16_t packet_headers[] = {
4689 [MESA_SHADER_VERTEX] = 43,
4690 [MESA_SHADER_TESS_CTRL] = 44,
4691 [MESA_SHADER_TESS_EVAL] = 45,
4692 [MESA_SHADER_GEOMETRY] = 46,
4693 [MESA_SHADER_FRAGMENT] = 47,
4694 };
4695
4696 /* Ivybridge requires a workaround flush before VS packets. */
4697 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4698 stage_state->stage == MESA_SHADER_VERTEX) {
4699 gen7_emit_vs_workaround_flush(brw);
4700 }
4701
4702 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4703 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4704 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4705 }
4706 #endif
4707 }
4708
4709 UNUSED static bool
4710 has_component(mesa_format format, int i)
4711 {
4712 if (_mesa_is_format_color_format(format))
4713 return _mesa_format_has_color_component(format, i);
4714
4715 /* depth and stencil have only one component */
4716 return i == 0;
4717 }
4718
4719 /**
4720 * Upload SAMPLER_BORDER_COLOR_STATE.
4721 */
4722 static void
4723 genX(upload_default_color)(struct brw_context *brw,
4724 const struct gl_sampler_object *sampler,
4725 mesa_format format, GLenum base_format,
4726 bool is_integer_format, bool is_stencil_sampling,
4727 uint32_t *sdc_offset)
4728 {
4729 union gl_color_union color;
4730
4731 switch (base_format) {
4732 case GL_DEPTH_COMPONENT:
4733 /* GL specs that border color for depth textures is taken from the
4734 * R channel, while the hardware uses A. Spam R into all the
4735 * channels for safety.
4736 */
4737 color.ui[0] = sampler->BorderColor.ui[0];
4738 color.ui[1] = sampler->BorderColor.ui[0];
4739 color.ui[2] = sampler->BorderColor.ui[0];
4740 color.ui[3] = sampler->BorderColor.ui[0];
4741 break;
4742 case GL_ALPHA:
4743 color.ui[0] = 0u;
4744 color.ui[1] = 0u;
4745 color.ui[2] = 0u;
4746 color.ui[3] = sampler->BorderColor.ui[3];
4747 break;
4748 case GL_INTENSITY:
4749 color.ui[0] = sampler->BorderColor.ui[0];
4750 color.ui[1] = sampler->BorderColor.ui[0];
4751 color.ui[2] = sampler->BorderColor.ui[0];
4752 color.ui[3] = sampler->BorderColor.ui[0];
4753 break;
4754 case GL_LUMINANCE:
4755 color.ui[0] = sampler->BorderColor.ui[0];
4756 color.ui[1] = sampler->BorderColor.ui[0];
4757 color.ui[2] = sampler->BorderColor.ui[0];
4758 color.ui[3] = float_as_int(1.0);
4759 break;
4760 case GL_LUMINANCE_ALPHA:
4761 color.ui[0] = sampler->BorderColor.ui[0];
4762 color.ui[1] = sampler->BorderColor.ui[0];
4763 color.ui[2] = sampler->BorderColor.ui[0];
4764 color.ui[3] = sampler->BorderColor.ui[3];
4765 break;
4766 default:
4767 color.ui[0] = sampler->BorderColor.ui[0];
4768 color.ui[1] = sampler->BorderColor.ui[1];
4769 color.ui[2] = sampler->BorderColor.ui[2];
4770 color.ui[3] = sampler->BorderColor.ui[3];
4771 break;
4772 }
4773
4774 /* In some cases we use an RGBA surface format for GL RGB textures,
4775 * where we've initialized the A channel to 1.0. We also have to set
4776 * the border color alpha to 1.0 in that case.
4777 */
4778 if (base_format == GL_RGB)
4779 color.ui[3] = float_as_int(1.0);
4780
4781 int alignment = 32;
4782 if (GEN_GEN >= 8) {
4783 alignment = 64;
4784 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4785 alignment = 512;
4786 }
4787
4788 uint32_t *sdc = brw_state_batch(
4789 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4790 alignment, sdc_offset);
4791
4792 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4793
4794 #define ASSIGN(dst, src) \
4795 do { \
4796 dst = src; \
4797 } while (0)
4798
4799 #define ASSIGNu16(dst, src) \
4800 do { \
4801 dst = (uint16_t)src; \
4802 } while (0)
4803
4804 #define ASSIGNu8(dst, src) \
4805 do { \
4806 dst = (uint8_t)src; \
4807 } while (0)
4808
4809 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4810 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4811 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4812 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4813 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4814
4815 #if GEN_GEN >= 8
4816 /* On Broadwell, the border color is represented as four 32-bit floats,
4817 * integers, or unsigned values, interpreted according to the surface
4818 * format. This matches the sampler->BorderColor union exactly; just
4819 * memcpy the values.
4820 */
4821 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4822 #elif GEN_IS_HASWELL
4823 if (is_integer_format || is_stencil_sampling) {
4824 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4825 const int bits_per_channel =
4826 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4827
4828 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4829 * "If any color channel is missing from the surface format,
4830 * corresponding border color should be programmed as zero and if
4831 * alpha channel is missing, corresponding Alpha border color should
4832 * be programmed as 1."
4833 */
4834 unsigned c[4] = { 0, 0, 0, 1 };
4835 for (int i = 0; i < 4; i++) {
4836 if (has_component(format, i))
4837 c[i] = color.ui[i];
4838 }
4839
4840 switch (bits_per_channel) {
4841 case 8:
4842 /* Copy RGBA in order. */
4843 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4844 break;
4845 case 10:
4846 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4847 case 16:
4848 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4849 break;
4850 case 32:
4851 if (base_format == GL_RG) {
4852 /* Careful inspection of the tables reveals that for RG32 formats,
4853 * the green channel needs to go where blue normally belongs.
4854 */
4855 state.BorderColor32bitRed = c[0];
4856 state.BorderColor32bitBlue = c[1];
4857 state.BorderColor32bitAlpha = 1;
4858 } else {
4859 /* Copy RGBA in order. */
4860 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4861 }
4862 break;
4863 default:
4864 assert(!"Invalid number of bits per channel in integer format.");
4865 break;
4866 }
4867 } else {
4868 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4869 }
4870 #elif GEN_GEN == 5 || GEN_GEN == 6
4871 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4872 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4873 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4874
4875 #define MESA_FLOAT_TO_HALF(dst, src) \
4876 dst = _mesa_float_to_half(src);
4877
4878 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4879
4880 #undef MESA_FLOAT_TO_HALF
4881
4882 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4883 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4884 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4885 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4886
4887 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4888 #elif GEN_GEN == 4
4889 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4890 #else
4891 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4892 #endif
4893
4894 #undef ASSIGN
4895 #undef BORDER_COLOR_ATTR
4896
4897 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4898 }
4899
4900 static uint32_t
4901 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4902 {
4903 switch (wrap) {
4904 case GL_REPEAT:
4905 return TCM_WRAP;
4906 case GL_CLAMP:
4907 #if GEN_GEN >= 8
4908 /* GL_CLAMP is the weird mode where coordinates are clamped to
4909 * [0.0, 1.0], so linear filtering of coordinates outside of
4910 * [0.0, 1.0] give you half edge texel value and half border
4911 * color.
4912 *
4913 * Gen8+ supports this natively.
4914 */
4915 return TCM_HALF_BORDER;
4916 #else
4917 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4918 * and set clamp_border here, which gets the result desired.
4919 * We just use clamp(_to_edge) for nearest, because for nearest
4920 * clamping to 1.0 gives border color instead of the desired
4921 * edge texels.
4922 */
4923 if (using_nearest)
4924 return TCM_CLAMP;
4925 else
4926 return TCM_CLAMP_BORDER;
4927 #endif
4928 case GL_CLAMP_TO_EDGE:
4929 return TCM_CLAMP;
4930 case GL_CLAMP_TO_BORDER:
4931 return TCM_CLAMP_BORDER;
4932 case GL_MIRRORED_REPEAT:
4933 return TCM_MIRROR;
4934 case GL_MIRROR_CLAMP_TO_EDGE:
4935 return TCM_MIRROR_ONCE;
4936 default:
4937 return TCM_WRAP;
4938 }
4939 }
4940
4941 /**
4942 * Return true if the given wrap mode requires the border color to exist.
4943 */
4944 static bool
4945 wrap_mode_needs_border_color(unsigned wrap_mode)
4946 {
4947 #if GEN_GEN >= 8
4948 return wrap_mode == TCM_CLAMP_BORDER ||
4949 wrap_mode == TCM_HALF_BORDER;
4950 #else
4951 return wrap_mode == TCM_CLAMP_BORDER;
4952 #endif
4953 }
4954
4955 /**
4956 * Sets the sampler state for a single unit based off of the sampler key
4957 * entry.
4958 */
4959 static void
4960 genX(update_sampler_state)(struct brw_context *brw,
4961 GLenum target, bool tex_cube_map_seamless,
4962 GLfloat tex_unit_lod_bias,
4963 mesa_format format, GLenum base_format,
4964 const struct gl_texture_object *texObj,
4965 const struct gl_sampler_object *sampler,
4966 uint32_t *sampler_state,
4967 uint32_t batch_offset_for_sampler_state)
4968 {
4969 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4970
4971 /* Select min and mip filters. */
4972 switch (sampler->MinFilter) {
4973 case GL_NEAREST:
4974 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4975 samp_st.MipModeFilter = MIPFILTER_NONE;
4976 break;
4977 case GL_LINEAR:
4978 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4979 samp_st.MipModeFilter = MIPFILTER_NONE;
4980 break;
4981 case GL_NEAREST_MIPMAP_NEAREST:
4982 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4983 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4984 break;
4985 case GL_LINEAR_MIPMAP_NEAREST:
4986 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4987 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4988 break;
4989 case GL_NEAREST_MIPMAP_LINEAR:
4990 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4991 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4992 break;
4993 case GL_LINEAR_MIPMAP_LINEAR:
4994 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4995 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4996 break;
4997 default:
4998 unreachable("not reached");
4999 }
5000
5001 /* Select mag filter. */
5002 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5003 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5004
5005 /* Enable anisotropic filtering if desired. */
5006 samp_st.MaximumAnisotropy = RATIO21;
5007
5008 if (sampler->MaxAnisotropy > 1.0f) {
5009 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5010 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5011 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5012 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5013
5014 if (sampler->MaxAnisotropy > 2.0f) {
5015 samp_st.MaximumAnisotropy =
5016 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5017 }
5018 }
5019
5020 /* Set address rounding bits if not using nearest filtering. */
5021 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5022 samp_st.UAddressMinFilterRoundingEnable = true;
5023 samp_st.VAddressMinFilterRoundingEnable = true;
5024 samp_st.RAddressMinFilterRoundingEnable = true;
5025 }
5026
5027 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5028 samp_st.UAddressMagFilterRoundingEnable = true;
5029 samp_st.VAddressMagFilterRoundingEnable = true;
5030 samp_st.RAddressMagFilterRoundingEnable = true;
5031 }
5032
5033 bool either_nearest =
5034 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5035 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
5036 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
5037 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
5038
5039 if (target == GL_TEXTURE_CUBE_MAP ||
5040 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5041 /* Cube maps must use the same wrap mode for all three coordinate
5042 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5043 *
5044 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5045 * integer formats. Fall back to CLAMP for now.
5046 */
5047 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5048 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5049 wrap_s = TCM_CUBE;
5050 wrap_t = TCM_CUBE;
5051 wrap_r = TCM_CUBE;
5052 } else {
5053 wrap_s = TCM_CLAMP;
5054 wrap_t = TCM_CLAMP;
5055 wrap_r = TCM_CLAMP;
5056 }
5057 } else if (target == GL_TEXTURE_1D) {
5058 /* There's a bug in 1D texture sampling - it actually pays
5059 * attention to the wrap_t value, though it should not.
5060 * Override the wrap_t value here to GL_REPEAT to keep
5061 * any nonexistent border pixels from floating in.
5062 */
5063 wrap_t = TCM_WRAP;
5064 }
5065
5066 samp_st.TCXAddressControlMode = wrap_s;
5067 samp_st.TCYAddressControlMode = wrap_t;
5068 samp_st.TCZAddressControlMode = wrap_r;
5069
5070 samp_st.ShadowFunction =
5071 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5072 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5073
5074 #if GEN_GEN >= 7
5075 /* Set shadow function. */
5076 samp_st.AnisotropicAlgorithm =
5077 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5078 EWAApproximation : LEGACY;
5079 #endif
5080
5081 #if GEN_GEN >= 6
5082 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5083 #endif
5084
5085 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5086 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5087 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5088 samp_st.TextureLODBias =
5089 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5090
5091 #if GEN_GEN == 6
5092 samp_st.BaseMipLevel =
5093 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5094 samp_st.MinandMagStateNotEqual =
5095 samp_st.MinModeFilter != samp_st.MagModeFilter;
5096 #endif
5097
5098 /* Upload the border color if necessary. If not, just point it at
5099 * offset 0 (the start of the batch) - the color should be ignored,
5100 * but that address won't fault in case something reads it anyway.
5101 */
5102 uint32_t border_color_offset = 0;
5103 if (wrap_mode_needs_border_color(wrap_s) ||
5104 wrap_mode_needs_border_color(wrap_t) ||
5105 wrap_mode_needs_border_color(wrap_r)) {
5106 genX(upload_default_color)(brw, sampler, format, base_format,
5107 texObj->_IsIntegerFormat,
5108 texObj->StencilSampling,
5109 &border_color_offset);
5110 }
5111 #if GEN_GEN < 6
5112 samp_st.BorderColorPointer =
5113 ro_bo(brw->batch.state.bo, border_color_offset);
5114 #else
5115 samp_st.BorderColorPointer = border_color_offset;
5116 #endif
5117
5118 #if GEN_GEN >= 8
5119 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5120 #else
5121 samp_st.LODPreClampEnable = true;
5122 #endif
5123
5124 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5125 }
5126
5127 static void
5128 update_sampler_state(struct brw_context *brw,
5129 int unit,
5130 uint32_t *sampler_state,
5131 uint32_t batch_offset_for_sampler_state)
5132 {
5133 struct gl_context *ctx = &brw->ctx;
5134 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5135 const struct gl_texture_object *texObj = texUnit->_Current;
5136 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5137
5138 /* These don't use samplers at all. */
5139 if (texObj->Target == GL_TEXTURE_BUFFER)
5140 return;
5141
5142 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5143 genX(update_sampler_state)(brw, texObj->Target,
5144 ctx->Texture.CubeMapSeamless,
5145 texUnit->LodBias,
5146 firstImage->TexFormat, firstImage->_BaseFormat,
5147 texObj, sampler,
5148 sampler_state, batch_offset_for_sampler_state);
5149 }
5150
5151 static void
5152 genX(upload_sampler_state_table)(struct brw_context *brw,
5153 struct gl_program *prog,
5154 struct brw_stage_state *stage_state)
5155 {
5156 struct gl_context *ctx = &brw->ctx;
5157 uint32_t sampler_count = stage_state->sampler_count;
5158
5159 GLbitfield SamplersUsed = prog->SamplersUsed;
5160
5161 if (sampler_count == 0)
5162 return;
5163
5164 /* SAMPLER_STATE is 4 DWords on all platforms. */
5165 const int dwords = GENX(SAMPLER_STATE_length);
5166 const int size_in_bytes = dwords * sizeof(uint32_t);
5167
5168 uint32_t *sampler_state = brw_state_batch(brw,
5169 sampler_count * size_in_bytes,
5170 32, &stage_state->sampler_offset);
5171 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5172
5173 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5174
5175 for (unsigned s = 0; s < sampler_count; s++) {
5176 if (SamplersUsed & (1 << s)) {
5177 const unsigned unit = prog->SamplerUnits[s];
5178 if (ctx->Texture.Unit[unit]._Current) {
5179 update_sampler_state(brw, unit, sampler_state,
5180 batch_offset_for_sampler_state);
5181 }
5182 }
5183
5184 sampler_state += dwords;
5185 batch_offset_for_sampler_state += size_in_bytes;
5186 }
5187
5188 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5189 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5190 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5191 } else {
5192 /* Flag that the sampler state table pointer has changed; later atoms
5193 * will handle it.
5194 */
5195 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5196 }
5197 }
5198
5199 static void
5200 genX(upload_fs_samplers)(struct brw_context *brw)
5201 {
5202 /* BRW_NEW_FRAGMENT_PROGRAM */
5203 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5204 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5205 }
5206
5207 static const struct brw_tracked_state genX(fs_samplers) = {
5208 .dirty = {
5209 .mesa = _NEW_TEXTURE,
5210 .brw = BRW_NEW_BATCH |
5211 BRW_NEW_BLORP |
5212 BRW_NEW_FRAGMENT_PROGRAM,
5213 },
5214 .emit = genX(upload_fs_samplers),
5215 };
5216
5217 static void
5218 genX(upload_vs_samplers)(struct brw_context *brw)
5219 {
5220 /* BRW_NEW_VERTEX_PROGRAM */
5221 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5222 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5223 }
5224
5225 static const struct brw_tracked_state genX(vs_samplers) = {
5226 .dirty = {
5227 .mesa = _NEW_TEXTURE,
5228 .brw = BRW_NEW_BATCH |
5229 BRW_NEW_BLORP |
5230 BRW_NEW_VERTEX_PROGRAM,
5231 },
5232 .emit = genX(upload_vs_samplers),
5233 };
5234
5235 #if GEN_GEN >= 6
5236 static void
5237 genX(upload_gs_samplers)(struct brw_context *brw)
5238 {
5239 /* BRW_NEW_GEOMETRY_PROGRAM */
5240 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5241 if (!gs)
5242 return;
5243
5244 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5245 }
5246
5247
5248 static const struct brw_tracked_state genX(gs_samplers) = {
5249 .dirty = {
5250 .mesa = _NEW_TEXTURE,
5251 .brw = BRW_NEW_BATCH |
5252 BRW_NEW_BLORP |
5253 BRW_NEW_GEOMETRY_PROGRAM,
5254 },
5255 .emit = genX(upload_gs_samplers),
5256 };
5257 #endif
5258
5259 #if GEN_GEN >= 7
5260 static void
5261 genX(upload_tcs_samplers)(struct brw_context *brw)
5262 {
5263 /* BRW_NEW_TESS_PROGRAMS */
5264 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5265 if (!tcs)
5266 return;
5267
5268 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5269 }
5270
5271 static const struct brw_tracked_state genX(tcs_samplers) = {
5272 .dirty = {
5273 .mesa = _NEW_TEXTURE,
5274 .brw = BRW_NEW_BATCH |
5275 BRW_NEW_BLORP |
5276 BRW_NEW_TESS_PROGRAMS,
5277 },
5278 .emit = genX(upload_tcs_samplers),
5279 };
5280 #endif
5281
5282 #if GEN_GEN >= 7
5283 static void
5284 genX(upload_tes_samplers)(struct brw_context *brw)
5285 {
5286 /* BRW_NEW_TESS_PROGRAMS */
5287 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5288 if (!tes)
5289 return;
5290
5291 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5292 }
5293
5294 static const struct brw_tracked_state genX(tes_samplers) = {
5295 .dirty = {
5296 .mesa = _NEW_TEXTURE,
5297 .brw = BRW_NEW_BATCH |
5298 BRW_NEW_BLORP |
5299 BRW_NEW_TESS_PROGRAMS,
5300 },
5301 .emit = genX(upload_tes_samplers),
5302 };
5303 #endif
5304
5305 #if GEN_GEN >= 7
5306 static void
5307 genX(upload_cs_samplers)(struct brw_context *brw)
5308 {
5309 /* BRW_NEW_COMPUTE_PROGRAM */
5310 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5311 if (!cs)
5312 return;
5313
5314 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5315 }
5316
5317 const struct brw_tracked_state genX(cs_samplers) = {
5318 .dirty = {
5319 .mesa = _NEW_TEXTURE,
5320 .brw = BRW_NEW_BATCH |
5321 BRW_NEW_BLORP |
5322 BRW_NEW_COMPUTE_PROGRAM,
5323 },
5324 .emit = genX(upload_cs_samplers),
5325 };
5326 #endif
5327
5328 /* ---------------------------------------------------------------------- */
5329
5330 #if GEN_GEN <= 5
5331
5332 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5333 {
5334 struct gl_context *ctx = &brw->ctx;
5335
5336 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5337 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5338 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5339 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5340 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5341 }
5342 }
5343
5344 static const struct brw_tracked_state genX(blend_constant_color) = {
5345 .dirty = {
5346 .mesa = _NEW_COLOR,
5347 .brw = BRW_NEW_CONTEXT |
5348 BRW_NEW_BLORP,
5349 },
5350 .emit = genX(upload_blend_constant_color)
5351 };
5352 #endif
5353
5354 /* ---------------------------------------------------------------------- */
5355
5356 void
5357 genX(init_atoms)(struct brw_context *brw)
5358 {
5359 #if GEN_GEN < 6
5360 static const struct brw_tracked_state *render_atoms[] =
5361 {
5362 /* Once all the programs are done, we know how large urb entry
5363 * sizes need to be and can decide if we need to change the urb
5364 * layout.
5365 */
5366 &brw_curbe_offsets,
5367 &brw_recalculate_urb_fence,
5368
5369 &genX(cc_vp),
5370 &genX(color_calc_state),
5371
5372 /* Surface state setup. Must come before the VS/WM unit. The binding
5373 * table upload must be last.
5374 */
5375 &brw_vs_pull_constants,
5376 &brw_wm_pull_constants,
5377 &brw_renderbuffer_surfaces,
5378 &brw_renderbuffer_read_surfaces,
5379 &brw_texture_surfaces,
5380 &brw_vs_binding_table,
5381 &brw_wm_binding_table,
5382
5383 &genX(fs_samplers),
5384 &genX(vs_samplers),
5385
5386 /* These set up state for brw_psp_urb_cbs */
5387 &genX(wm_state),
5388 &genX(sf_clip_viewport),
5389 &genX(sf_state),
5390 &genX(vs_state), /* always required, enabled or not */
5391 &genX(clip_state),
5392 &genX(gs_state),
5393
5394 /* Command packets:
5395 */
5396 &brw_binding_table_pointers,
5397 &genX(blend_constant_color),
5398
5399 &brw_depthbuffer,
5400
5401 &genX(polygon_stipple),
5402 &genX(polygon_stipple_offset),
5403
5404 &genX(line_stipple),
5405
5406 &brw_psp_urb_cbs,
5407
5408 &genX(drawing_rect),
5409 &brw_indices, /* must come before brw_vertices */
5410 &genX(index_buffer),
5411 &genX(vertices),
5412
5413 &brw_constant_buffer
5414 };
5415 #elif GEN_GEN == 6
5416 static const struct brw_tracked_state *render_atoms[] =
5417 {
5418 &genX(sf_clip_viewport),
5419
5420 /* Command packets: */
5421
5422 &genX(cc_vp),
5423
5424 &gen6_urb,
5425 &genX(blend_state), /* must do before cc unit */
5426 &genX(color_calc_state), /* must do before cc unit */
5427 &genX(depth_stencil_state), /* must do before cc unit */
5428
5429 &genX(vs_push_constants), /* Before vs_state */
5430 &genX(gs_push_constants), /* Before gs_state */
5431 &genX(wm_push_constants), /* Before wm_state */
5432
5433 /* Surface state setup. Must come before the VS/WM unit. The binding
5434 * table upload must be last.
5435 */
5436 &brw_vs_pull_constants,
5437 &brw_vs_ubo_surfaces,
5438 &brw_gs_pull_constants,
5439 &brw_gs_ubo_surfaces,
5440 &brw_wm_pull_constants,
5441 &brw_wm_ubo_surfaces,
5442 &gen6_renderbuffer_surfaces,
5443 &brw_renderbuffer_read_surfaces,
5444 &brw_texture_surfaces,
5445 &gen6_sol_surface,
5446 &brw_vs_binding_table,
5447 &gen6_gs_binding_table,
5448 &brw_wm_binding_table,
5449
5450 &genX(fs_samplers),
5451 &genX(vs_samplers),
5452 &genX(gs_samplers),
5453 &gen6_sampler_state,
5454 &genX(multisample_state),
5455
5456 &genX(vs_state),
5457 &genX(gs_state),
5458 &genX(clip_state),
5459 &genX(sf_state),
5460 &genX(wm_state),
5461
5462 &genX(scissor_state),
5463
5464 &gen6_binding_table_pointers,
5465
5466 &brw_depthbuffer,
5467
5468 &genX(polygon_stipple),
5469 &genX(polygon_stipple_offset),
5470
5471 &genX(line_stipple),
5472
5473 &genX(drawing_rect),
5474
5475 &brw_indices, /* must come before brw_vertices */
5476 &genX(index_buffer),
5477 &genX(vertices),
5478 };
5479 #elif GEN_GEN == 7
5480 static const struct brw_tracked_state *render_atoms[] =
5481 {
5482 /* Command packets: */
5483
5484 &genX(cc_vp),
5485 &genX(sf_clip_viewport),
5486
5487 &gen7_l3_state,
5488 &gen7_push_constant_space,
5489 &gen7_urb,
5490 &genX(blend_state), /* must do before cc unit */
5491 &genX(color_calc_state), /* must do before cc unit */
5492 &genX(depth_stencil_state), /* must do before cc unit */
5493
5494 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5495 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5496 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5497 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5498 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5499
5500 &genX(vs_push_constants), /* Before vs_state */
5501 &genX(tcs_push_constants),
5502 &genX(tes_push_constants),
5503 &genX(gs_push_constants), /* Before gs_state */
5504 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5505
5506 /* Surface state setup. Must come before the VS/WM unit. The binding
5507 * table upload must be last.
5508 */
5509 &brw_vs_pull_constants,
5510 &brw_vs_ubo_surfaces,
5511 &brw_tcs_pull_constants,
5512 &brw_tcs_ubo_surfaces,
5513 &brw_tes_pull_constants,
5514 &brw_tes_ubo_surfaces,
5515 &brw_gs_pull_constants,
5516 &brw_gs_ubo_surfaces,
5517 &brw_wm_pull_constants,
5518 &brw_wm_ubo_surfaces,
5519 &gen6_renderbuffer_surfaces,
5520 &brw_renderbuffer_read_surfaces,
5521 &brw_texture_surfaces,
5522
5523 &genX(push_constant_packets),
5524
5525 &brw_vs_binding_table,
5526 &brw_tcs_binding_table,
5527 &brw_tes_binding_table,
5528 &brw_gs_binding_table,
5529 &brw_wm_binding_table,
5530
5531 &genX(fs_samplers),
5532 &genX(vs_samplers),
5533 &genX(tcs_samplers),
5534 &genX(tes_samplers),
5535 &genX(gs_samplers),
5536 &genX(multisample_state),
5537
5538 &genX(vs_state),
5539 &genX(hs_state),
5540 &genX(te_state),
5541 &genX(ds_state),
5542 &genX(gs_state),
5543 &genX(sol_state),
5544 &genX(clip_state),
5545 &genX(sbe_state),
5546 &genX(sf_state),
5547 &genX(wm_state),
5548 &genX(ps_state),
5549
5550 &genX(scissor_state),
5551
5552 &gen7_depthbuffer,
5553
5554 &genX(polygon_stipple),
5555 &genX(polygon_stipple_offset),
5556
5557 &genX(line_stipple),
5558
5559 &genX(drawing_rect),
5560
5561 &brw_indices, /* must come before brw_vertices */
5562 &genX(index_buffer),
5563 &genX(vertices),
5564
5565 #if GEN_IS_HASWELL
5566 &genX(cut_index),
5567 #endif
5568 };
5569 #elif GEN_GEN >= 8
5570 static const struct brw_tracked_state *render_atoms[] =
5571 {
5572 &genX(cc_vp),
5573 &genX(sf_clip_viewport),
5574
5575 &gen7_l3_state,
5576 &gen7_push_constant_space,
5577 &gen7_urb,
5578 &genX(blend_state),
5579 &genX(color_calc_state),
5580
5581 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5582 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5583 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5584 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5585 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5586
5587 &genX(vs_push_constants), /* Before vs_state */
5588 &genX(tcs_push_constants),
5589 &genX(tes_push_constants),
5590 &genX(gs_push_constants), /* Before gs_state */
5591 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5592
5593 /* Surface state setup. Must come before the VS/WM unit. The binding
5594 * table upload must be last.
5595 */
5596 &brw_vs_pull_constants,
5597 &brw_vs_ubo_surfaces,
5598 &brw_tcs_pull_constants,
5599 &brw_tcs_ubo_surfaces,
5600 &brw_tes_pull_constants,
5601 &brw_tes_ubo_surfaces,
5602 &brw_gs_pull_constants,
5603 &brw_gs_ubo_surfaces,
5604 &brw_wm_pull_constants,
5605 &brw_wm_ubo_surfaces,
5606 &gen6_renderbuffer_surfaces,
5607 &brw_renderbuffer_read_surfaces,
5608 &brw_texture_surfaces,
5609
5610 &genX(push_constant_packets),
5611
5612 &brw_vs_binding_table,
5613 &brw_tcs_binding_table,
5614 &brw_tes_binding_table,
5615 &brw_gs_binding_table,
5616 &brw_wm_binding_table,
5617
5618 &genX(fs_samplers),
5619 &genX(vs_samplers),
5620 &genX(tcs_samplers),
5621 &genX(tes_samplers),
5622 &genX(gs_samplers),
5623 &genX(multisample_state),
5624
5625 &genX(vs_state),
5626 &genX(hs_state),
5627 &genX(te_state),
5628 &genX(ds_state),
5629 &genX(gs_state),
5630 &genX(sol_state),
5631 &genX(clip_state),
5632 &genX(raster_state),
5633 &genX(sbe_state),
5634 &genX(sf_state),
5635 &genX(ps_blend),
5636 &genX(ps_extra),
5637 &genX(ps_state),
5638 &genX(depth_stencil_state),
5639 &genX(wm_state),
5640
5641 &genX(scissor_state),
5642
5643 &gen7_depthbuffer,
5644
5645 &genX(polygon_stipple),
5646 &genX(polygon_stipple_offset),
5647
5648 &genX(line_stipple),
5649
5650 &genX(drawing_rect),
5651
5652 &genX(vf_topology),
5653
5654 &brw_indices,
5655 &genX(index_buffer),
5656 &genX(vertices),
5657
5658 &genX(cut_index),
5659 &gen8_pma_fix,
5660 };
5661 #endif
5662
5663 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5664 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5665 render_atoms, ARRAY_SIZE(render_atoms));
5666
5667 #if GEN_GEN >= 7
5668 static const struct brw_tracked_state *compute_atoms[] =
5669 {
5670 &gen7_l3_state,
5671 &brw_cs_image_surfaces,
5672 &genX(cs_push_constants),
5673 &genX(cs_pull_constants),
5674 &brw_cs_ubo_surfaces,
5675 &brw_cs_texture_surfaces,
5676 &brw_cs_work_groups_surface,
5677 &genX(cs_samplers),
5678 &genX(cs_state),
5679 };
5680
5681 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5682 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5683 compute_atoms, ARRAY_SIZE(compute_atoms));
5684
5685 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5686 #endif
5687 }