mesa: change ctx->Color.ColorMask into a 32-bit bitmask
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #include "brw_draw.h"
38 #include "brw_multisample_state.h"
39 #include "brw_state.h"
40 #include "brw_wm.h"
41 #include "brw_util.h"
42
43 #include "intel_batchbuffer.h"
44 #include "intel_buffer_objects.h"
45 #include "intel_fbo.h"
46
47 #include "main/enums.h"
48 #include "main/fbobject.h"
49 #include "main/framebuffer.h"
50 #include "main/glformats.h"
51 #include "main/samplerobj.h"
52 #include "main/shaderapi.h"
53 #include "main/stencil.h"
54 #include "main/transformfeedback.h"
55 #include "main/varray.h"
56 #include "main/viewport.h"
57 #include "util/half_float.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 unsigned reloc_flags;
72 uint32_t offset;
73 };
74
75 #define __gen_address_type struct brw_address
76 #define __gen_user_data struct brw_context
77
78 static uint64_t
79 __gen_combine_address(struct brw_context *brw, void *location,
80 struct brw_address address, uint32_t delta)
81 {
82 struct intel_batchbuffer *batch = &brw->batch;
83 uint32_t offset;
84
85 if (address.bo == NULL) {
86 return address.offset + delta;
87 } else {
88 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
89 offset = (char *) location - (char *) brw->batch.state.map;
90 return brw_state_reloc(batch, offset, address.bo,
91 address.offset + delta,
92 address.reloc_flags);
93 }
94
95 assert(!brw_ptr_in_state_buffer(batch, location));
96
97 offset = (char *) location - (char *) brw->batch.batch.map;
98 return brw_batch_reloc(batch, offset, address.bo,
99 address.offset + delta,
100 address.reloc_flags);
101 }
102 }
103
104 static struct brw_address
105 rw_bo(struct brw_bo *bo, uint32_t offset)
106 {
107 return (struct brw_address) {
108 .bo = bo,
109 .offset = offset,
110 .reloc_flags = RELOC_WRITE,
111 };
112 }
113
114 static struct brw_address
115 ro_bo(struct brw_bo *bo, uint32_t offset)
116 {
117 return (struct brw_address) {
118 .bo = bo,
119 .offset = offset,
120 };
121 }
122
123 UNUSED static struct brw_address
124 ggtt_bo(struct brw_bo *bo, uint32_t offset)
125 {
126 return (struct brw_address) {
127 .bo = bo,
128 .offset = offset,
129 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
130 };
131 }
132
133 #if GEN_GEN == 4
134 static struct brw_address
135 KSP(struct brw_context *brw, uint32_t offset)
136 {
137 return ro_bo(brw->cache.bo, offset);
138 }
139 #else
140 static uint32_t
141 KSP(struct brw_context *brw, uint32_t offset)
142 {
143 return offset;
144 }
145 #endif
146
147 #include "genxml/genX_pack.h"
148
149 #define _brw_cmd_length(cmd) cmd ## _length
150 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
151 #define _brw_cmd_header(cmd) cmd ## _header
152 #define _brw_cmd_pack(cmd) cmd ## _pack
153
154 #define brw_batch_emit(brw, cmd, name) \
155 for (struct cmd name = { _brw_cmd_header(cmd) }, \
156 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
157 __builtin_expect(_dst != NULL, 1); \
158 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
159 _dst = NULL)
160
161 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
162 uint32_t *_dw = emit_dwords(brw, n); \
163 struct cmd template = { \
164 _brw_cmd_header(cmd), \
165 .DWordLength = n - _brw_cmd_length_bias(cmd), \
166 __VA_ARGS__ \
167 }; \
168 _brw_cmd_pack(cmd)(brw, _dw, &template); \
169 _dw + 1; /* Array starts at dw[1] */ \
170 })
171
172 #define brw_state_emit(brw, cmd, align, offset, name) \
173 for (struct cmd name = {}, \
174 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
175 align, offset); \
176 __builtin_expect(_dst != NULL, 1); \
177 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
178 _dst = NULL)
179
180 /**
181 * Polygon stipple packet
182 */
183 static void
184 genX(upload_polygon_stipple)(struct brw_context *brw)
185 {
186 struct gl_context *ctx = &brw->ctx;
187
188 /* _NEW_POLYGON */
189 if (!ctx->Polygon.StippleFlag)
190 return;
191
192 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
193 /* Polygon stipple is provided in OpenGL order, i.e. bottom
194 * row first. If we're rendering to a window (i.e. the
195 * default frame buffer object, 0), then we need to invert
196 * it to match our pixel layout. But if we're rendering
197 * to a FBO (i.e. any named frame buffer object), we *don't*
198 * need to invert - we already match the layout.
199 */
200 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
201 for (unsigned i = 0; i < 32; i++)
202 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
203 } else {
204 for (unsigned i = 0; i < 32; i++)
205 poly.PatternRow[i] = ctx->PolygonStipple[i];
206 }
207 }
208 }
209
210 static const struct brw_tracked_state genX(polygon_stipple) = {
211 .dirty = {
212 .mesa = _NEW_POLYGON |
213 _NEW_POLYGONSTIPPLE,
214 .brw = BRW_NEW_CONTEXT,
215 },
216 .emit = genX(upload_polygon_stipple),
217 };
218
219 /**
220 * Polygon stipple offset packet
221 */
222 static void
223 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
224 {
225 struct gl_context *ctx = &brw->ctx;
226
227 /* _NEW_POLYGON */
228 if (!ctx->Polygon.StippleFlag)
229 return;
230
231 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
232 /* _NEW_BUFFERS
233 *
234 * If we're drawing to a system window we have to invert the Y axis
235 * in order to match the OpenGL pixel coordinate system, and our
236 * offset must be matched to the window position. If we're drawing
237 * to a user-created FBO then our native pixel coordinate system
238 * works just fine, and there's no window system to worry about.
239 */
240 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
241 poly.PolygonStippleYOffset =
242 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
243 }
244 }
245 }
246
247 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
248 .dirty = {
249 .mesa = _NEW_BUFFERS |
250 _NEW_POLYGON,
251 .brw = BRW_NEW_CONTEXT,
252 },
253 .emit = genX(upload_polygon_stipple_offset),
254 };
255
256 /**
257 * Line stipple packet
258 */
259 static void
260 genX(upload_line_stipple)(struct brw_context *brw)
261 {
262 struct gl_context *ctx = &brw->ctx;
263
264 if (!ctx->Line.StippleFlag)
265 return;
266
267 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
268 line.LineStipplePattern = ctx->Line.StipplePattern;
269
270 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
271 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
272 }
273 }
274
275 static const struct brw_tracked_state genX(line_stipple) = {
276 .dirty = {
277 .mesa = _NEW_LINE,
278 .brw = BRW_NEW_CONTEXT,
279 },
280 .emit = genX(upload_line_stipple),
281 };
282
283 /* Constant single cliprect for framebuffer object or DRI2 drawing */
284 static void
285 genX(upload_drawing_rect)(struct brw_context *brw)
286 {
287 struct gl_context *ctx = &brw->ctx;
288 const struct gl_framebuffer *fb = ctx->DrawBuffer;
289 const unsigned int fb_width = _mesa_geometric_width(fb);
290 const unsigned int fb_height = _mesa_geometric_height(fb);
291
292 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
293 rect.ClippedDrawingRectangleXMax = fb_width - 1;
294 rect.ClippedDrawingRectangleYMax = fb_height - 1;
295 }
296 }
297
298 static const struct brw_tracked_state genX(drawing_rect) = {
299 .dirty = {
300 .mesa = _NEW_BUFFERS,
301 .brw = BRW_NEW_BLORP |
302 BRW_NEW_CONTEXT,
303 },
304 .emit = genX(upload_drawing_rect),
305 };
306
307 static uint32_t *
308 genX(emit_vertex_buffer_state)(struct brw_context *brw,
309 uint32_t *dw,
310 unsigned buffer_nr,
311 struct brw_bo *bo,
312 unsigned start_offset,
313 unsigned end_offset,
314 unsigned stride,
315 unsigned step_rate)
316 {
317 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
318 .VertexBufferIndex = buffer_nr,
319 .BufferPitch = stride,
320 .BufferStartingAddress = ro_bo(bo, start_offset),
321 #if GEN_GEN >= 8
322 .BufferSize = end_offset - start_offset,
323 #endif
324
325 #if GEN_GEN >= 7
326 .AddressModifyEnable = true,
327 #endif
328
329 #if GEN_GEN < 8
330 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
331 .InstanceDataStepRate = step_rate,
332 #if GEN_GEN >= 5
333 .EndAddress = ro_bo(bo, end_offset - 1),
334 #endif
335 #endif
336
337 #if GEN_GEN == 10
338 .VertexBufferMOCS = CNL_MOCS_WB,
339 #elif GEN_GEN == 9
340 .VertexBufferMOCS = SKL_MOCS_WB,
341 #elif GEN_GEN == 8
342 .VertexBufferMOCS = BDW_MOCS_WB,
343 #elif GEN_GEN == 7
344 .VertexBufferMOCS = GEN7_MOCS_L3,
345 #endif
346 };
347
348 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
349 return dw + GENX(VERTEX_BUFFER_STATE_length);
350 }
351
352 UNUSED static bool
353 is_passthru_format(uint32_t format)
354 {
355 switch (format) {
356 case ISL_FORMAT_R64_PASSTHRU:
357 case ISL_FORMAT_R64G64_PASSTHRU:
358 case ISL_FORMAT_R64G64B64_PASSTHRU:
359 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
360 return true;
361 default:
362 return false;
363 }
364 }
365
366 UNUSED static int
367 uploads_needed(uint32_t format,
368 bool is_dual_slot)
369 {
370 if (!is_passthru_format(format))
371 return 1;
372
373 if (is_dual_slot)
374 return 2;
375
376 switch (format) {
377 case ISL_FORMAT_R64_PASSTHRU:
378 case ISL_FORMAT_R64G64_PASSTHRU:
379 return 1;
380 case ISL_FORMAT_R64G64B64_PASSTHRU:
381 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
382 return 2;
383 default:
384 unreachable("not reached");
385 }
386 }
387
388 /*
389 * Returns the format that we are finally going to use when upload a vertex
390 * element. It will only change if we are using *64*PASSTHRU formats, as for
391 * gen < 8 they need to be splitted on two *32*FLOAT formats.
392 *
393 * @upload points in which upload we are. Valid values are [0,1]
394 */
395 static uint32_t
396 downsize_format_if_needed(uint32_t format,
397 int upload)
398 {
399 assert(upload == 0 || upload == 1);
400
401 if (!is_passthru_format(format))
402 return format;
403
404 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
405 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
406 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
407 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
408 * flagging that we want to fill with zeroes this second forced upload.
409 */
410 switch (format) {
411 case ISL_FORMAT_R64_PASSTHRU:
412 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
413 : ISL_FORMAT_R32_FLOAT;
414 case ISL_FORMAT_R64G64_PASSTHRU:
415 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
416 : ISL_FORMAT_R32_FLOAT;
417 case ISL_FORMAT_R64G64B64_PASSTHRU:
418 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
419 : ISL_FORMAT_R32G32_FLOAT;
420 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
421 return ISL_FORMAT_R32G32B32A32_FLOAT;
422 default:
423 unreachable("not reached");
424 }
425 }
426
427 /*
428 * Returns the number of componentes associated with a format that is used on
429 * a 64 to 32 format split. See downsize_format()
430 */
431 static int
432 upload_format_size(uint32_t upload_format)
433 {
434 switch (upload_format) {
435 case ISL_FORMAT_R32_FLOAT:
436
437 /* downsized_format has returned this one in order to flag that we are
438 * performing a second upload which we want to have filled with
439 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
440 * vertex shader input variables.
441 */
442
443 return 0;
444 case ISL_FORMAT_R32G32_FLOAT:
445 return 2;
446 case ISL_FORMAT_R32G32B32A32_FLOAT:
447 return 4;
448 default:
449 unreachable("not reached");
450 }
451 }
452
453 static void
454 genX(emit_vertices)(struct brw_context *brw)
455 {
456 const struct gen_device_info *devinfo = &brw->screen->devinfo;
457 uint32_t *dw;
458
459 brw_prepare_vertices(brw);
460 brw_prepare_shader_draw_parameters(brw);
461
462 #if GEN_GEN < 6
463 brw_emit_query_begin(brw);
464 #endif
465
466 const struct brw_vs_prog_data *vs_prog_data =
467 brw_vs_prog_data(brw->vs.base.prog_data);
468
469 #if GEN_GEN >= 8
470 struct gl_context *ctx = &brw->ctx;
471 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
472 ctx->Polygon.BackMode != GL_FILL);
473
474 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
475 unsigned vue = brw->vb.nr_enabled;
476
477 /* The element for the edge flags must always be last, so we have to
478 * insert the SGVS before it in that case.
479 */
480 if (uses_edge_flag) {
481 assert(vue > 0);
482 vue--;
483 }
484
485 WARN_ONCE(vue >= 33,
486 "Trying to insert VID/IID past 33rd vertex element, "
487 "need to reorder the vertex attrbutes.");
488
489 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
490 if (vs_prog_data->uses_vertexid) {
491 vfs.VertexIDEnable = true;
492 vfs.VertexIDComponentNumber = 2;
493 vfs.VertexIDElementOffset = vue;
494 }
495
496 if (vs_prog_data->uses_instanceid) {
497 vfs.InstanceIDEnable = true;
498 vfs.InstanceIDComponentNumber = 3;
499 vfs.InstanceIDElementOffset = vue;
500 }
501 }
502
503 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
504 vfi.InstancingEnable = true;
505 vfi.VertexElementIndex = vue;
506 }
507 } else {
508 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
509 }
510
511 /* Normally we don't need an element for the SGVS attribute because the
512 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
513 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
514 * we're using draw parameters then we need an element for the those
515 * values. Additionally if there is an edge flag element then the SGVS
516 * can't be inserted past that so we need a dummy element to ensure that
517 * the edge flag is the last one.
518 */
519 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
520 vs_prog_data->uses_baseinstance ||
521 ((vs_prog_data->uses_instanceid ||
522 vs_prog_data->uses_vertexid)
523 && uses_edge_flag));
524 #else
525 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
526 vs_prog_data->uses_baseinstance ||
527 vs_prog_data->uses_instanceid ||
528 vs_prog_data->uses_vertexid);
529 #endif
530 unsigned nr_elements =
531 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
532
533 #if GEN_GEN < 8
534 /* If any of the formats of vb.enabled needs more that one upload, we need
535 * to add it to nr_elements
536 */
537 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
538 struct brw_vertex_element *input = brw->vb.enabled[i];
539 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
540
541 if (uploads_needed(format, input->is_dual_slot) > 1)
542 nr_elements++;
543 }
544 #endif
545
546 /* If the VS doesn't read any inputs (calculating vertex position from
547 * a state variable for some reason, for example), emit a single pad
548 * VERTEX_ELEMENT struct and bail.
549 *
550 * The stale VB state stays in place, but they don't do anything unless
551 * a VE loads from them.
552 */
553 if (nr_elements == 0) {
554 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
555 1 + GENX(VERTEX_ELEMENT_STATE_length));
556 struct GENX(VERTEX_ELEMENT_STATE) elem = {
557 .Valid = true,
558 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
559 .Component0Control = VFCOMP_STORE_0,
560 .Component1Control = VFCOMP_STORE_0,
561 .Component2Control = VFCOMP_STORE_0,
562 .Component3Control = VFCOMP_STORE_1_FP,
563 };
564 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
565 return;
566 }
567
568 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
569 const bool uses_draw_params =
570 vs_prog_data->uses_basevertex ||
571 vs_prog_data->uses_baseinstance;
572 const unsigned nr_buffers = brw->vb.nr_buffers +
573 uses_draw_params + vs_prog_data->uses_drawid;
574
575 if (nr_buffers) {
576 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
577
578 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
579 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
580
581 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
582 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
583 /* Prior to Haswell and Bay Trail we have to use 4-component formats
584 * to fake 3-component ones. In particular, we do this for
585 * half-float and 8 and 16-bit integer formats. This means that the
586 * vertex element may poke over the end of the buffer by 2 bytes.
587 */
588 const unsigned padding =
589 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
590 const unsigned end = buffer->offset + buffer->size + padding;
591 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
592 buffer->offset,
593 end,
594 buffer->stride,
595 buffer->step_rate);
596 }
597
598 if (uses_draw_params) {
599 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
600 brw->draw.draw_params_bo,
601 brw->draw.draw_params_offset,
602 brw->draw.draw_params_bo->size,
603 0 /* stride */,
604 0 /* step rate */);
605 }
606
607 if (vs_prog_data->uses_drawid) {
608 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
609 brw->draw.draw_id_bo,
610 brw->draw.draw_id_offset,
611 brw->draw.draw_id_bo->size,
612 0 /* stride */,
613 0 /* step rate */);
614 }
615 }
616
617 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
618 * presumably for VertexID/InstanceID.
619 */
620 #if GEN_GEN >= 6
621 assert(nr_elements <= 34);
622 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
623 #else
624 assert(nr_elements <= 18);
625 #endif
626
627 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
628 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
629 unsigned i;
630 for (i = 0; i < brw->vb.nr_enabled; i++) {
631 const struct brw_vertex_element *input = brw->vb.enabled[i];
632 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
633 uint32_t comp0 = VFCOMP_STORE_SRC;
634 uint32_t comp1 = VFCOMP_STORE_SRC;
635 uint32_t comp2 = VFCOMP_STORE_SRC;
636 uint32_t comp3 = VFCOMP_STORE_SRC;
637 const unsigned num_uploads = GEN_GEN < 8 ?
638 uploads_needed(format, input->is_dual_slot) : 1;
639
640 #if GEN_GEN >= 8
641 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
642 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
643 * element which has edge flag enabled."
644 */
645 assert(!(is_passthru_format(format) && uses_edge_flag));
646 #endif
647
648 /* The gen4 driver expects edgeflag to come in as a float, and passes
649 * that float on to the tests in the clipper. Mesa's current vertex
650 * attribute value for EdgeFlag is stored as a float, which works out.
651 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
652 * integer ubyte. Just rewrite that to convert to a float.
653 *
654 * Gen6+ passes edgeflag as sideband along with the vertex, instead
655 * of in the VUE. We have to upload it sideband as the last vertex
656 * element according to the B-Spec.
657 */
658 #if GEN_GEN >= 6
659 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
660 gen6_edgeflag_input = input;
661 continue;
662 }
663 #endif
664
665 for (unsigned c = 0; c < num_uploads; c++) {
666 const uint32_t upload_format = GEN_GEN >= 8 ? format :
667 downsize_format_if_needed(format, c);
668 /* If we need more that one upload, the offset stride would be 128
669 * bits (16 bytes), as for previous uploads we are using the full
670 * entry. */
671 const unsigned offset = input->offset + c * 16;
672
673 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
674 upload_format_size(upload_format) : input->glarray->Size;
675
676 switch (size) {
677 case 0: comp0 = VFCOMP_STORE_0;
678 case 1: comp1 = VFCOMP_STORE_0;
679 case 2: comp2 = VFCOMP_STORE_0;
680 case 3:
681 if (GEN_GEN >= 8 && input->glarray->Doubles) {
682 comp3 = VFCOMP_STORE_0;
683 } else if (input->glarray->Integer) {
684 comp3 = VFCOMP_STORE_1_INT;
685 } else {
686 comp3 = VFCOMP_STORE_1_FP;
687 }
688
689 break;
690 }
691
692 #if GEN_GEN >= 8
693 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
694 *
695 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
696 * formats, 64-bit components are stored in the URB without any
697 * conversion. In this case, vertex elements must be written as 128
698 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
699 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
700 * component into the URB, Component 1 must be specified as
701 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
702 * order to output a 128-bit vertex element, or Components 1-3 must
703 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
704 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
705 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
706 * vertex element."
707 */
708 if (input->glarray->Doubles && !input->is_dual_slot) {
709 /* Store vertex elements which correspond to double and dvec2 vertex
710 * shader inputs as 128-bit vertex elements, instead of 256-bits.
711 */
712 comp2 = VFCOMP_NOSTORE;
713 comp3 = VFCOMP_NOSTORE;
714 }
715 #endif
716
717 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
718 .VertexBufferIndex = input->buffer,
719 .Valid = true,
720 .SourceElementFormat = upload_format,
721 .SourceElementOffset = offset,
722 .Component0Control = comp0,
723 .Component1Control = comp1,
724 .Component2Control = comp2,
725 .Component3Control = comp3,
726 #if GEN_GEN < 5
727 .DestinationElementOffset = i * 4,
728 #endif
729 };
730
731 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
732 dw += GENX(VERTEX_ELEMENT_STATE_length);
733 }
734 }
735
736 if (needs_sgvs_element) {
737 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
738 .Valid = true,
739 .Component0Control = VFCOMP_STORE_0,
740 .Component1Control = VFCOMP_STORE_0,
741 .Component2Control = VFCOMP_STORE_0,
742 .Component3Control = VFCOMP_STORE_0,
743 #if GEN_GEN < 5
744 .DestinationElementOffset = i * 4,
745 #endif
746 };
747
748 #if GEN_GEN >= 8
749 if (vs_prog_data->uses_basevertex ||
750 vs_prog_data->uses_baseinstance) {
751 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
752 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
753 elem_state.Component0Control = VFCOMP_STORE_SRC;
754 elem_state.Component1Control = VFCOMP_STORE_SRC;
755 }
756 #else
757 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
758 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
759 if (vs_prog_data->uses_basevertex)
760 elem_state.Component0Control = VFCOMP_STORE_SRC;
761
762 if (vs_prog_data->uses_baseinstance)
763 elem_state.Component1Control = VFCOMP_STORE_SRC;
764
765 if (vs_prog_data->uses_vertexid)
766 elem_state.Component2Control = VFCOMP_STORE_VID;
767
768 if (vs_prog_data->uses_instanceid)
769 elem_state.Component3Control = VFCOMP_STORE_IID;
770 #endif
771
772 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
773 dw += GENX(VERTEX_ELEMENT_STATE_length);
774 }
775
776 if (vs_prog_data->uses_drawid) {
777 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
778 .Valid = true,
779 .VertexBufferIndex = brw->vb.nr_buffers + 1,
780 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
781 .Component0Control = VFCOMP_STORE_SRC,
782 .Component1Control = VFCOMP_STORE_0,
783 .Component2Control = VFCOMP_STORE_0,
784 .Component3Control = VFCOMP_STORE_0,
785 #if GEN_GEN < 5
786 .DestinationElementOffset = i * 4,
787 #endif
788 };
789
790 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
791 dw += GENX(VERTEX_ELEMENT_STATE_length);
792 }
793
794 #if GEN_GEN >= 6
795 if (gen6_edgeflag_input) {
796 const uint32_t format =
797 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
798
799 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
800 .Valid = true,
801 .VertexBufferIndex = gen6_edgeflag_input->buffer,
802 .EdgeFlagEnable = true,
803 .SourceElementFormat = format,
804 .SourceElementOffset = gen6_edgeflag_input->offset,
805 .Component0Control = VFCOMP_STORE_SRC,
806 .Component1Control = VFCOMP_STORE_0,
807 .Component2Control = VFCOMP_STORE_0,
808 .Component3Control = VFCOMP_STORE_0,
809 };
810
811 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
812 dw += GENX(VERTEX_ELEMENT_STATE_length);
813 }
814 #endif
815
816 #if GEN_GEN >= 8
817 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
818 const struct brw_vertex_element *input = brw->vb.enabled[i];
819 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
820 unsigned element_index;
821
822 /* The edge flag element is reordered to be the last one in the code
823 * above so we need to compensate for that in the element indices used
824 * below.
825 */
826 if (input == gen6_edgeflag_input)
827 element_index = nr_elements - 1;
828 else
829 element_index = j++;
830
831 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
832 vfi.VertexElementIndex = element_index;
833 vfi.InstancingEnable = buffer->step_rate != 0;
834 vfi.InstanceDataStepRate = buffer->step_rate;
835 }
836 }
837
838 if (vs_prog_data->uses_drawid) {
839 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
840
841 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
842 vfi.VertexElementIndex = element;
843 }
844 }
845 #endif
846 }
847
848 static const struct brw_tracked_state genX(vertices) = {
849 .dirty = {
850 .mesa = _NEW_POLYGON,
851 .brw = BRW_NEW_BATCH |
852 BRW_NEW_BLORP |
853 BRW_NEW_VERTICES |
854 BRW_NEW_VS_PROG_DATA,
855 },
856 .emit = genX(emit_vertices),
857 };
858
859 static void
860 genX(emit_index_buffer)(struct brw_context *brw)
861 {
862 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
863
864 if (index_buffer == NULL)
865 return;
866
867 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
868 #if GEN_GEN < 8 && !GEN_IS_HASWELL
869 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
870 #endif
871 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
872 ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
873 #if GEN_GEN >= 8
874 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
875 ib.BufferSize = brw->ib.size;
876 #else
877 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
878 #endif
879 }
880 }
881
882 static const struct brw_tracked_state genX(index_buffer) = {
883 .dirty = {
884 .mesa = 0,
885 .brw = BRW_NEW_BATCH |
886 BRW_NEW_BLORP |
887 BRW_NEW_INDEX_BUFFER,
888 },
889 .emit = genX(emit_index_buffer),
890 };
891
892 #if GEN_IS_HASWELL || GEN_GEN >= 8
893 static void
894 genX(upload_cut_index)(struct brw_context *brw)
895 {
896 const struct gl_context *ctx = &brw->ctx;
897
898 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
899 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
900 vf.IndexedDrawCutIndexEnable = true;
901 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
902 }
903 }
904 }
905
906 const struct brw_tracked_state genX(cut_index) = {
907 .dirty = {
908 .mesa = _NEW_TRANSFORM,
909 .brw = BRW_NEW_INDEX_BUFFER,
910 },
911 .emit = genX(upload_cut_index),
912 };
913 #endif
914
915 #if GEN_GEN >= 6
916 /**
917 * Determine the appropriate attribute override value to store into the
918 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
919 * override value contains two pieces of information: the location of the
920 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
921 * flag indicating whether to "swizzle" the attribute based on the direction
922 * the triangle is facing.
923 *
924 * If an attribute is "swizzled", then the given VUE location is used for
925 * front-facing triangles, and the VUE location that immediately follows is
926 * used for back-facing triangles. We use this to implement the mapping from
927 * gl_FrontColor/gl_BackColor to gl_Color.
928 *
929 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
930 * being instructed to begin reading attribute data. It can be set to a
931 * nonzero value to prevent the SF unit from wasting time reading elements of
932 * the VUE that are not needed by the fragment shader. It is measured in
933 * 256-bit increments.
934 */
935 static void
936 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
937 const struct brw_vue_map *vue_map,
938 int urb_entry_read_offset, int fs_attr,
939 bool two_side_color, uint32_t *max_source_attr)
940 {
941 /* Find the VUE slot for this attribute. */
942 int slot = vue_map->varying_to_slot[fs_attr];
943
944 /* Viewport and Layer are stored in the VUE header. We need to override
945 * them to zero if earlier stages didn't write them, as GL requires that
946 * they read back as zero when not explicitly set.
947 */
948 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
949 attr->ComponentOverrideX = true;
950 attr->ComponentOverrideW = true;
951 attr->ConstantSource = CONST_0000;
952
953 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
954 attr->ComponentOverrideY = true;
955 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
956 attr->ComponentOverrideZ = true;
957
958 return;
959 }
960
961 /* If there was only a back color written but not front, use back
962 * as the color instead of undefined
963 */
964 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
965 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
966 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
967 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
968
969 if (slot == -1) {
970 /* This attribute does not exist in the VUE--that means that the vertex
971 * shader did not write to it. This means that either:
972 *
973 * (a) This attribute is a texture coordinate, and it is going to be
974 * replaced with point coordinates (as a consequence of a call to
975 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
976 * hardware will ignore whatever attribute override we supply.
977 *
978 * (b) This attribute is read by the fragment shader but not written by
979 * the vertex shader, so its value is undefined. Therefore the
980 * attribute override we supply doesn't matter.
981 *
982 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
983 * previous shader stage.
984 *
985 * Note that we don't have to worry about the cases where the attribute
986 * is gl_PointCoord or is undergoing point sprite coordinate
987 * replacement, because in those cases, this function isn't called.
988 *
989 * In case (c), we need to program the attribute overrides so that the
990 * primitive ID will be stored in this slot. In every other case, the
991 * attribute override we supply doesn't matter. So just go ahead and
992 * program primitive ID in every case.
993 */
994 attr->ComponentOverrideW = true;
995 attr->ComponentOverrideX = true;
996 attr->ComponentOverrideY = true;
997 attr->ComponentOverrideZ = true;
998 attr->ConstantSource = PRIM_ID;
999 return;
1000 }
1001
1002 /* Compute the location of the attribute relative to urb_entry_read_offset.
1003 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1004 * it counts for two 128-bit VUE slots.
1005 */
1006 int source_attr = slot - 2 * urb_entry_read_offset;
1007 assert(source_attr >= 0 && source_attr < 32);
1008
1009 /* If we are doing two-sided color, and the VUE slot following this one
1010 * represents a back-facing color, then we need to instruct the SF unit to
1011 * do back-facing swizzling.
1012 */
1013 bool swizzling = two_side_color &&
1014 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1015 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1016 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1017 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1018
1019 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1020 if (*max_source_attr < source_attr + swizzling)
1021 *max_source_attr = source_attr + swizzling;
1022
1023 attr->SourceAttribute = source_attr;
1024 if (swizzling)
1025 attr->SwizzleSelect = INPUTATTR_FACING;
1026 }
1027
1028
1029 static void
1030 genX(calculate_attr_overrides)(const struct brw_context *brw,
1031 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1032 uint32_t *point_sprite_enables,
1033 uint32_t *urb_entry_read_length,
1034 uint32_t *urb_entry_read_offset)
1035 {
1036 const struct gl_context *ctx = &brw->ctx;
1037
1038 /* _NEW_POINT */
1039 const struct gl_point_attrib *point = &ctx->Point;
1040
1041 /* BRW_NEW_FRAGMENT_PROGRAM */
1042 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1043
1044 /* BRW_NEW_FS_PROG_DATA */
1045 const struct brw_wm_prog_data *wm_prog_data =
1046 brw_wm_prog_data(brw->wm.base.prog_data);
1047 uint32_t max_source_attr = 0;
1048
1049 *point_sprite_enables = 0;
1050
1051 int first_slot =
1052 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1053 &brw->vue_map_geom_out);
1054
1055 /* Each URB offset packs two varying slots */
1056 assert(first_slot % 2 == 0);
1057 *urb_entry_read_offset = first_slot / 2;
1058
1059 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1060 * description of dw10 Point Sprite Texture Coordinate Enable:
1061 *
1062 * "This field must be programmed to zero when non-point primitives
1063 * are rendered."
1064 *
1065 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1066 * must be programmed to zero when rendering non-point primitives, but
1067 * the IvyBridge PRM does, and if we don't, we get garbage.
1068 *
1069 * This is not required on Haswell, as the hardware ignores this state
1070 * when drawing non-points -- although we do still need to be careful to
1071 * correctly set the attr overrides.
1072 *
1073 * _NEW_POLYGON
1074 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1075 */
1076 bool drawing_points = brw_is_drawing_points(brw);
1077
1078 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1079 int input_index = wm_prog_data->urb_setup[attr];
1080
1081 if (input_index < 0)
1082 continue;
1083
1084 /* _NEW_POINT */
1085 bool point_sprite = false;
1086 if (drawing_points) {
1087 if (point->PointSprite &&
1088 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1089 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1090 point_sprite = true;
1091 }
1092
1093 if (attr == VARYING_SLOT_PNTC)
1094 point_sprite = true;
1095
1096 if (point_sprite)
1097 *point_sprite_enables |= (1 << input_index);
1098 }
1099
1100 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1101 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1102
1103 if (!point_sprite) {
1104 genX(get_attr_override)(&attribute,
1105 &brw->vue_map_geom_out,
1106 *urb_entry_read_offset, attr,
1107 _mesa_vertex_program_two_side_enabled(ctx),
1108 &max_source_attr);
1109 }
1110
1111 /* The hardware can only do the overrides on 16 overrides at a
1112 * time, and the other up to 16 have to be lined up so that the
1113 * input index = the output index. We'll need to do some
1114 * tweaking to make sure that's the case.
1115 */
1116 if (input_index < 16)
1117 attr_overrides[input_index] = attribute;
1118 else
1119 assert(attribute.SourceAttribute == input_index);
1120 }
1121
1122 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1123 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1124 *
1125 * "This field should be set to the minimum length required to read the
1126 * maximum source attribute. The maximum source attribute is indicated
1127 * by the maximum value of the enabled Attribute # Source Attribute if
1128 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1129 * enable is not set.
1130 * read_length = ceiling((max_source_attr + 1) / 2)
1131 *
1132 * [errata] Corruption/Hang possible if length programmed larger than
1133 * recommended"
1134 *
1135 * Similar text exists for Ivy Bridge.
1136 */
1137 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1138 }
1139 #endif
1140
1141 /* ---------------------------------------------------------------------- */
1142
1143 #if GEN_GEN >= 8
1144 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1145 #elif GEN_GEN >= 6
1146 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1147 #else
1148 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1149 #endif
1150
1151 static inline void
1152 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1153 {
1154 struct gl_context *ctx = &brw->ctx;
1155
1156 /* _NEW_BUFFERS */
1157 struct intel_renderbuffer *depth_irb =
1158 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1159
1160 /* _NEW_DEPTH */
1161 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1162
1163 /* _NEW_STENCIL */
1164 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1165 const int b = stencil->_BackFace;
1166
1167 if (depth->Test && depth_irb) {
1168 ds->DepthTestEnable = true;
1169 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1170 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1171 }
1172
1173 if (brw->stencil_enabled) {
1174 ds->StencilTestEnable = true;
1175 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1176 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1177
1178 ds->StencilTestFunction =
1179 intel_translate_compare_func(stencil->Function[0]);
1180 ds->StencilFailOp =
1181 intel_translate_stencil_op(stencil->FailFunc[0]);
1182 ds->StencilPassDepthPassOp =
1183 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1184 ds->StencilPassDepthFailOp =
1185 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1186
1187 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1188
1189 if (brw->stencil_two_sided) {
1190 ds->DoubleSidedStencilEnable = true;
1191 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1192 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1193
1194 ds->BackfaceStencilTestFunction =
1195 intel_translate_compare_func(stencil->Function[b]);
1196 ds->BackfaceStencilFailOp =
1197 intel_translate_stencil_op(stencil->FailFunc[b]);
1198 ds->BackfaceStencilPassDepthPassOp =
1199 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1200 ds->BackfaceStencilPassDepthFailOp =
1201 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1202 }
1203
1204 #if GEN_GEN <= 5 || GEN_GEN >= 9
1205 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1206 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1207 #endif
1208 }
1209 }
1210
1211 #if GEN_GEN >= 6
1212 static void
1213 genX(upload_depth_stencil_state)(struct brw_context *brw)
1214 {
1215 #if GEN_GEN >= 8
1216 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1217 set_depth_stencil_bits(brw, &wmds);
1218 }
1219 #else
1220 uint32_t ds_offset;
1221 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1222 set_depth_stencil_bits(brw, &ds);
1223 }
1224
1225 /* Now upload a pointer to the indirect state */
1226 #if GEN_GEN == 6
1227 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1228 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1229 ptr.DEPTH_STENCIL_STATEChange = true;
1230 }
1231 #else
1232 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1233 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1234 }
1235 #endif
1236 #endif
1237 }
1238
1239 static const struct brw_tracked_state genX(depth_stencil_state) = {
1240 .dirty = {
1241 .mesa = _NEW_BUFFERS |
1242 _NEW_DEPTH |
1243 _NEW_STENCIL,
1244 .brw = BRW_NEW_BLORP |
1245 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1246 : BRW_NEW_BATCH |
1247 BRW_NEW_STATE_BASE_ADDRESS),
1248 },
1249 .emit = genX(upload_depth_stencil_state),
1250 };
1251 #endif
1252
1253 /* ---------------------------------------------------------------------- */
1254
1255 #if GEN_GEN <= 5
1256
1257 static void
1258 genX(upload_clip_state)(struct brw_context *brw)
1259 {
1260 struct gl_context *ctx = &brw->ctx;
1261
1262 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1263 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1264 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1265 clip.GRFRegisterCount =
1266 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1267 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1268 clip.SingleProgramFlow = true;
1269 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1270 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1271
1272 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1273 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1274 clip.DispatchGRFStartRegisterForURBData = 1;
1275 clip.VertexURBEntryReadOffset = 0;
1276
1277 /* BRW_NEW_URB_FENCE */
1278 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1279 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1280
1281 if (brw->urb.nr_clip_entries >= 10) {
1282 /* Half of the URB entries go to each thread, and it has to be an
1283 * even number.
1284 */
1285 assert(brw->urb.nr_clip_entries % 2 == 0);
1286
1287 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1288 * only 2 threads can output VUEs at a time.
1289 */
1290 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1291 } else {
1292 assert(brw->urb.nr_clip_entries >= 5);
1293 clip.MaximumNumberofThreads = 1 - 1;
1294 }
1295
1296 clip.VertexPositionSpace = VPOS_NDCSPACE;
1297 clip.UserClipFlagsMustClipEnable = true;
1298 clip.GuardbandClipTestEnable = true;
1299
1300 clip.ClipperViewportStatePointer =
1301 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1302
1303 clip.ScreenSpaceViewportXMin = -1;
1304 clip.ScreenSpaceViewportXMax = 1;
1305 clip.ScreenSpaceViewportYMin = -1;
1306 clip.ScreenSpaceViewportYMax = 1;
1307
1308 clip.ViewportXYClipTestEnable = true;
1309 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1310
1311 /* _NEW_TRANSFORM */
1312 if (GEN_GEN == 5 || GEN_IS_G4X) {
1313 clip.UserClipDistanceClipTestEnableBitmask =
1314 ctx->Transform.ClipPlanesEnabled;
1315 } else {
1316 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1317 * workaround.
1318 */
1319 clip.UserClipDistanceClipTestEnableBitmask =
1320 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1321 }
1322
1323 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1324 clip.APIMode = APIMODE_D3D;
1325 else
1326 clip.APIMode = APIMODE_OGL;
1327
1328 clip.GuardbandClipTestEnable = true;
1329
1330 clip.ClipMode = brw->clip.prog_data->clip_mode;
1331
1332 #if GEN_IS_G4X
1333 clip.NegativeWClipTestEnable = true;
1334 #endif
1335 }
1336 }
1337
1338 const struct brw_tracked_state genX(clip_state) = {
1339 .dirty = {
1340 .mesa = _NEW_TRANSFORM |
1341 _NEW_VIEWPORT,
1342 .brw = BRW_NEW_BATCH |
1343 BRW_NEW_BLORP |
1344 BRW_NEW_CLIP_PROG_DATA |
1345 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1346 BRW_NEW_PROGRAM_CACHE |
1347 BRW_NEW_URB_FENCE,
1348 },
1349 .emit = genX(upload_clip_state),
1350 };
1351
1352 #else
1353
1354 static void
1355 genX(upload_clip_state)(struct brw_context *brw)
1356 {
1357 struct gl_context *ctx = &brw->ctx;
1358
1359 /* _NEW_BUFFERS */
1360 struct gl_framebuffer *fb = ctx->DrawBuffer;
1361
1362 /* BRW_NEW_FS_PROG_DATA */
1363 struct brw_wm_prog_data *wm_prog_data =
1364 brw_wm_prog_data(brw->wm.base.prog_data);
1365
1366 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1367 clip.StatisticsEnable = !brw->meta_in_progress;
1368
1369 if (wm_prog_data->barycentric_interp_modes &
1370 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1371 clip.NonPerspectiveBarycentricEnable = true;
1372
1373 #if GEN_GEN >= 7
1374 clip.EarlyCullEnable = true;
1375 #endif
1376
1377 #if GEN_GEN == 7
1378 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1379
1380 if (ctx->Polygon.CullFlag) {
1381 switch (ctx->Polygon.CullFaceMode) {
1382 case GL_FRONT:
1383 clip.CullMode = CULLMODE_FRONT;
1384 break;
1385 case GL_BACK:
1386 clip.CullMode = CULLMODE_BACK;
1387 break;
1388 case GL_FRONT_AND_BACK:
1389 clip.CullMode = CULLMODE_BOTH;
1390 break;
1391 default:
1392 unreachable("Should not get here: invalid CullFlag");
1393 }
1394 } else {
1395 clip.CullMode = CULLMODE_NONE;
1396 }
1397 #endif
1398
1399 #if GEN_GEN < 8
1400 clip.UserClipDistanceCullTestEnableBitmask =
1401 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1402
1403 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1404 #endif
1405
1406 /* _NEW_LIGHT */
1407 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1408 clip.TriangleStripListProvokingVertexSelect = 0;
1409 clip.TriangleFanProvokingVertexSelect = 1;
1410 clip.LineStripListProvokingVertexSelect = 0;
1411 } else {
1412 clip.TriangleStripListProvokingVertexSelect = 2;
1413 clip.TriangleFanProvokingVertexSelect = 2;
1414 clip.LineStripListProvokingVertexSelect = 1;
1415 }
1416
1417 /* _NEW_TRANSFORM */
1418 clip.UserClipDistanceClipTestEnableBitmask =
1419 ctx->Transform.ClipPlanesEnabled;
1420
1421 #if GEN_GEN >= 8
1422 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1423 #endif
1424
1425 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1426 clip.APIMode = APIMODE_D3D;
1427 else
1428 clip.APIMode = APIMODE_OGL;
1429
1430 clip.GuardbandClipTestEnable = true;
1431
1432 /* BRW_NEW_VIEWPORT_COUNT */
1433 const unsigned viewport_count = brw->clip.viewport_count;
1434
1435 if (ctx->RasterDiscard) {
1436 clip.ClipMode = CLIPMODE_REJECT_ALL;
1437 #if GEN_GEN == 6
1438 perf_debug("Rasterizer discard is currently implemented via the "
1439 "clipper; having the GS not write primitives would "
1440 "likely be faster.\n");
1441 #endif
1442 } else {
1443 clip.ClipMode = CLIPMODE_NORMAL;
1444 }
1445
1446 clip.ClipEnable = true;
1447
1448 /* _NEW_POLYGON,
1449 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1450 */
1451 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1452 clip.ViewportXYClipTestEnable = true;
1453
1454 clip.MinimumPointWidth = 0.125;
1455 clip.MaximumPointWidth = 255.875;
1456 clip.MaximumVPIndex = viewport_count - 1;
1457 if (_mesa_geometric_layers(fb) == 0)
1458 clip.ForceZeroRTAIndexEnable = true;
1459 }
1460 }
1461
1462 static const struct brw_tracked_state genX(clip_state) = {
1463 .dirty = {
1464 .mesa = _NEW_BUFFERS |
1465 _NEW_LIGHT |
1466 _NEW_POLYGON |
1467 _NEW_TRANSFORM,
1468 .brw = BRW_NEW_BLORP |
1469 BRW_NEW_CONTEXT |
1470 BRW_NEW_FS_PROG_DATA |
1471 BRW_NEW_GS_PROG_DATA |
1472 BRW_NEW_VS_PROG_DATA |
1473 BRW_NEW_META_IN_PROGRESS |
1474 BRW_NEW_PRIMITIVE |
1475 BRW_NEW_RASTERIZER_DISCARD |
1476 BRW_NEW_TES_PROG_DATA |
1477 BRW_NEW_VIEWPORT_COUNT,
1478 },
1479 .emit = genX(upload_clip_state),
1480 };
1481 #endif
1482
1483 /* ---------------------------------------------------------------------- */
1484
1485 static void
1486 genX(upload_sf)(struct brw_context *brw)
1487 {
1488 struct gl_context *ctx = &brw->ctx;
1489 float point_size;
1490
1491 #if GEN_GEN <= 7
1492 /* _NEW_BUFFERS */
1493 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1494 UNUSED const bool multisampled_fbo =
1495 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1496 #endif
1497
1498 #if GEN_GEN < 6
1499 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1500
1501 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1502
1503 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1504 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1505 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1506 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1507 sf.DispatchGRFStartRegisterForURBData = 3;
1508 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1509 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1510 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1511 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1512
1513 /* STATE_PREFETCH command description describes this state as being
1514 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1515 * domain.
1516 */
1517 sf.SetupViewportStateOffset =
1518 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1519
1520 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1521
1522 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1523 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1524
1525 sf.MaximumNumberofThreads =
1526 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1527
1528 sf.SpritePointEnable = ctx->Point.PointSprite;
1529
1530 sf.DestinationOriginHorizontalBias = 0.5;
1531 sf.DestinationOriginVerticalBias = 0.5;
1532 #else
1533 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1534 sf.StatisticsEnable = true;
1535 #endif
1536 sf.ViewportTransformEnable = true;
1537
1538 #if GEN_GEN == 7
1539 /* _NEW_BUFFERS */
1540 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1541 #endif
1542
1543 #if GEN_GEN <= 7
1544 /* _NEW_POLYGON */
1545 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1546 #if GEN_GEN >= 6
1547 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1548 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1549 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1550
1551 switch (ctx->Polygon.FrontMode) {
1552 case GL_FILL:
1553 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1554 break;
1555 case GL_LINE:
1556 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1557 break;
1558 case GL_POINT:
1559 sf.FrontFaceFillMode = FILL_MODE_POINT;
1560 break;
1561 default:
1562 unreachable("not reached");
1563 }
1564
1565 switch (ctx->Polygon.BackMode) {
1566 case GL_FILL:
1567 sf.BackFaceFillMode = FILL_MODE_SOLID;
1568 break;
1569 case GL_LINE:
1570 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1571 break;
1572 case GL_POINT:
1573 sf.BackFaceFillMode = FILL_MODE_POINT;
1574 break;
1575 default:
1576 unreachable("not reached");
1577 }
1578
1579 if (multisampled_fbo && ctx->Multisample.Enabled)
1580 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1581
1582 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1583 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1584 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1585 #endif
1586
1587 sf.ScissorRectangleEnable = true;
1588
1589 if (ctx->Polygon.CullFlag) {
1590 switch (ctx->Polygon.CullFaceMode) {
1591 case GL_FRONT:
1592 sf.CullMode = CULLMODE_FRONT;
1593 break;
1594 case GL_BACK:
1595 sf.CullMode = CULLMODE_BACK;
1596 break;
1597 case GL_FRONT_AND_BACK:
1598 sf.CullMode = CULLMODE_BOTH;
1599 break;
1600 default:
1601 unreachable("not reached");
1602 }
1603 } else {
1604 sf.CullMode = CULLMODE_NONE;
1605 }
1606
1607 #if GEN_IS_HASWELL
1608 sf.LineStippleEnable = ctx->Line.StippleFlag;
1609 #endif
1610
1611 #endif
1612
1613 /* _NEW_LINE */
1614 #if GEN_GEN == 8
1615 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1616
1617 if (devinfo->is_cherryview)
1618 sf.CHVLineWidth = brw_get_line_width(brw);
1619 else
1620 sf.LineWidth = brw_get_line_width(brw);
1621 #else
1622 sf.LineWidth = brw_get_line_width(brw);
1623 #endif
1624
1625 if (ctx->Line.SmoothFlag) {
1626 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1627 #if GEN_GEN <= 7
1628 sf.AntiAliasingEnable = true;
1629 #endif
1630 }
1631
1632 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1633 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1634 /* Clamp to the hardware limits */
1635 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1636
1637 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1638 if (use_state_point_size(brw))
1639 sf.PointWidthSource = State;
1640
1641 #if GEN_GEN >= 8
1642 /* _NEW_POINT | _NEW_MULTISAMPLE */
1643 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1644 !ctx->Point.PointSprite)
1645 sf.SmoothPointEnable = true;
1646 #endif
1647
1648 #if GEN_GEN == 10
1649 /* _NEW_BUFFERS
1650 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1651 */
1652 const bool multisampled_fbo =
1653 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1654 if (multisampled_fbo)
1655 sf.SmoothPointEnable = false;
1656 #endif
1657
1658 #if GEN_IS_G4X || GEN_GEN >= 5
1659 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1660 #endif
1661
1662 /* _NEW_LIGHT */
1663 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1664 sf.TriangleStripListProvokingVertexSelect = 2;
1665 sf.TriangleFanProvokingVertexSelect = 2;
1666 sf.LineStripListProvokingVertexSelect = 1;
1667 } else {
1668 sf.TriangleFanProvokingVertexSelect = 1;
1669 }
1670
1671 #if GEN_GEN == 6
1672 /* BRW_NEW_FS_PROG_DATA */
1673 const struct brw_wm_prog_data *wm_prog_data =
1674 brw_wm_prog_data(brw->wm.base.prog_data);
1675
1676 sf.AttributeSwizzleEnable = true;
1677 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1678
1679 /*
1680 * Window coordinates in an FBO are inverted, which means point
1681 * sprite origin must be inverted, too.
1682 */
1683 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1684 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1685 } else {
1686 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1687 }
1688
1689 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1690 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1691 */
1692 uint32_t urb_entry_read_length;
1693 uint32_t urb_entry_read_offset;
1694 uint32_t point_sprite_enables;
1695 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1696 &urb_entry_read_length,
1697 &urb_entry_read_offset);
1698 sf.VertexURBEntryReadLength = urb_entry_read_length;
1699 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1700 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1701 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1702 #endif
1703 }
1704 }
1705
1706 static const struct brw_tracked_state genX(sf_state) = {
1707 .dirty = {
1708 .mesa = _NEW_LIGHT |
1709 _NEW_LINE |
1710 _NEW_POINT |
1711 _NEW_PROGRAM |
1712 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1713 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1714 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1715 .brw = BRW_NEW_BLORP |
1716 BRW_NEW_VUE_MAP_GEOM_OUT |
1717 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1718 BRW_NEW_PROGRAM_CACHE |
1719 BRW_NEW_SF_PROG_DATA |
1720 BRW_NEW_SF_VP |
1721 BRW_NEW_URB_FENCE
1722 : 0) |
1723 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1724 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1725 BRW_NEW_GS_PROG_DATA |
1726 BRW_NEW_PRIMITIVE |
1727 BRW_NEW_TES_PROG_DATA
1728 : 0) |
1729 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1730 BRW_NEW_FRAGMENT_PROGRAM
1731 : 0),
1732 },
1733 .emit = genX(upload_sf),
1734 };
1735
1736 /* ---------------------------------------------------------------------- */
1737
1738 static bool
1739 brw_color_buffer_write_enabled(struct brw_context *brw)
1740 {
1741 struct gl_context *ctx = &brw->ctx;
1742 /* BRW_NEW_FRAGMENT_PROGRAM */
1743 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1744 unsigned i;
1745
1746 /* _NEW_BUFFERS */
1747 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1748 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1749 uint64_t outputs_written = fp->info.outputs_written;
1750
1751 /* _NEW_COLOR */
1752 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1753 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1754 GET_COLORMASK(ctx->Color.ColorMask, i)) {
1755 return true;
1756 }
1757 }
1758
1759 return false;
1760 }
1761
1762 static void
1763 genX(upload_wm)(struct brw_context *brw)
1764 {
1765 struct gl_context *ctx = &brw->ctx;
1766
1767 /* BRW_NEW_FS_PROG_DATA */
1768 const struct brw_wm_prog_data *wm_prog_data =
1769 brw_wm_prog_data(brw->wm.base.prog_data);
1770
1771 UNUSED bool writes_depth =
1772 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1773 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1774 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1775
1776 #if GEN_GEN == 6
1777 /* We can't fold this into gen6_upload_wm_push_constants(), because
1778 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1779 * (3DSTATE_CONSTANT_PS [DevSNB]):
1780 *
1781 * "[DevSNB]: This packet must be followed by WM_STATE."
1782 */
1783 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1784 if (wm_prog_data->base.nr_params != 0) {
1785 wmcp.Buffer0Valid = true;
1786 /* Pointer to the WM constant buffer. Covered by the set of
1787 * state flags from gen6_upload_wm_push_constants.
1788 */
1789 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1790 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1791 }
1792 }
1793 #endif
1794
1795 #if GEN_GEN >= 6
1796 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1797 wm.LineAntialiasingRegionWidth = _10pixels;
1798 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1799
1800 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1801 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1802 #else
1803 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1804 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1805 if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1806 /* These two fields should be the same pre-gen6, which is why we
1807 * only have one hardware field to program for both dispatch
1808 * widths.
1809 */
1810 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1811 wm_prog_data->dispatch_grf_start_reg_2);
1812 }
1813
1814 if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1815 wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1816
1817 if (stage_state->sampler_count)
1818 wm.SamplerStatePointer =
1819 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1820 #if GEN_GEN == 5
1821 if (wm_prog_data->prog_offset_2)
1822 wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1823 #endif
1824
1825 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1826 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1827 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1828 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1829 wm.EarlyDepthTestEnable = true;
1830 wm.LineAntialiasingRegionWidth = _05pixels;
1831 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1832
1833 /* _NEW_POLYGON */
1834 if (ctx->Polygon.OffsetFill) {
1835 wm.GlobalDepthOffsetEnable = true;
1836 /* Something weird going on with legacy_global_depth_bias,
1837 * offset_constant, scaling and MRD. This value passes glean
1838 * but gives some odd results elsewere (eg. the
1839 * quad-offset-units test).
1840 */
1841 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1842
1843 /* This is the only value that passes glean:
1844 */
1845 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1846 }
1847
1848 wm.DepthCoefficientURBReadOffset = 1;
1849 #endif
1850
1851 /* BRW_NEW_STATS_WM */
1852 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1853
1854 #if GEN_GEN < 7
1855 if (wm_prog_data->base.use_alt_mode)
1856 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1857
1858 wm.SamplerCount = GEN_GEN == 5 ?
1859 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1860
1861 wm.BindingTableEntryCount =
1862 wm_prog_data->base.binding_table.size_bytes / 4;
1863 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1864 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1865 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1866 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1867 wm_prog_data->base.dispatch_grf_start_reg;
1868 if (GEN_GEN == 6 ||
1869 wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1870 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1871 }
1872
1873 #if GEN_GEN >= 5
1874 if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1875 wm.KernelStartPointer2 =
1876 KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1877 }
1878 #endif
1879
1880 #if GEN_GEN == 6
1881 wm.DualSourceBlendEnable =
1882 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1883 ctx->Color.Blend[0]._UsesDualSrc;
1884 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1885 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1886
1887 /* From the SNB PRM, volume 2 part 1, page 281:
1888 * "If the PS kernel does not need the Position XY Offsets
1889 * to compute a Position XY value, then this field should be
1890 * programmed to POSOFFSET_NONE."
1891 *
1892 * "SW Recommendation: If the PS kernel needs the Position Offsets
1893 * to compute a Position XY value, this field should match Position
1894 * ZW Interpolation Mode to ensure a consistent position.xyzw
1895 * computation."
1896 * We only require XY sample offsets. So, this recommendation doesn't
1897 * look useful at the moment. We might need this in future.
1898 */
1899 if (wm_prog_data->uses_pos_offset)
1900 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1901 else
1902 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1903
1904 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1905 wm_prog_data->dispatch_grf_start_reg_2;
1906 #endif
1907
1908 if (wm_prog_data->base.total_scratch) {
1909 wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1910 wm.PerThreadScratchSpace =
1911 ffs(stage_state->per_thread_scratch) - 11;
1912 }
1913
1914 wm.PixelShaderComputedDepth = writes_depth;
1915 #endif
1916
1917 /* _NEW_LINE */
1918 wm.LineStippleEnable = ctx->Line.StippleFlag;
1919
1920 /* _NEW_POLYGON */
1921 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1922
1923 #if GEN_GEN < 8
1924
1925 #if GEN_GEN >= 6
1926 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1927
1928 /* _NEW_BUFFERS */
1929 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1930
1931 if (multisampled_fbo) {
1932 /* _NEW_MULTISAMPLE */
1933 if (ctx->Multisample.Enabled)
1934 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1935 else
1936 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1937
1938 if (wm_prog_data->persample_dispatch)
1939 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1940 else
1941 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1942 } else {
1943 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1944 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1945 }
1946 #endif
1947 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1948 if (wm_prog_data->uses_kill ||
1949 _mesa_is_alpha_test_enabled(ctx) ||
1950 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1951 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1952 wm.PixelShaderKillsPixel = true;
1953 }
1954
1955 /* _NEW_BUFFERS | _NEW_COLOR */
1956 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1957 wm.PixelShaderKillsPixel ||
1958 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1959 wm.ThreadDispatchEnable = true;
1960 }
1961
1962 #if GEN_GEN >= 7
1963 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1964 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1965 #endif
1966
1967 /* The "UAV access enable" bits are unnecessary on HSW because they only
1968 * seem to have an effect on the HW-assisted coherency mechanism which we
1969 * don't need, and the rasterization-related UAV_ONLY flag and the
1970 * DISPATCH_ENABLE bit can be set independently from it.
1971 * C.f. gen8_upload_ps_extra().
1972 *
1973 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1974 * _NEW_COLOR
1975 */
1976 #if GEN_IS_HASWELL
1977 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1978 wm_prog_data->has_side_effects)
1979 wm.PSUAVonly = ON;
1980 #endif
1981 #endif
1982
1983 #if GEN_GEN >= 7
1984 /* BRW_NEW_FS_PROG_DATA */
1985 if (wm_prog_data->early_fragment_tests)
1986 wm.EarlyDepthStencilControl = EDSC_PREPS;
1987 else if (wm_prog_data->has_side_effects)
1988 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1989 #endif
1990 }
1991
1992 #if GEN_GEN <= 5
1993 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1994 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1995 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1996 }
1997
1998 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
1999 }
2000 #endif
2001 }
2002
2003 static const struct brw_tracked_state genX(wm_state) = {
2004 .dirty = {
2005 .mesa = _NEW_LINE |
2006 _NEW_POLYGON |
2007 (GEN_GEN < 8 ? _NEW_BUFFERS |
2008 _NEW_COLOR :
2009 0) |
2010 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2011 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2012 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2013 .brw = BRW_NEW_BLORP |
2014 BRW_NEW_FS_PROG_DATA |
2015 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2016 BRW_NEW_FRAGMENT_PROGRAM |
2017 BRW_NEW_PROGRAM_CACHE |
2018 BRW_NEW_SAMPLER_STATE_TABLE |
2019 BRW_NEW_STATS_WM
2020 : 0) |
2021 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2022 },
2023 .emit = genX(upload_wm),
2024 };
2025
2026 /* ---------------------------------------------------------------------- */
2027
2028 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2029 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2030 pkt.SamplerCount = \
2031 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2032 pkt.BindingTableEntryCount = \
2033 stage_prog_data->binding_table.size_bytes / 4; \
2034 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2035 \
2036 if (stage_prog_data->total_scratch) { \
2037 pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0); \
2038 pkt.PerThreadScratchSpace = \
2039 ffs(stage_state->per_thread_scratch) - 11; \
2040 } \
2041 \
2042 pkt.DispatchGRFStartRegisterForURBData = \
2043 stage_prog_data->dispatch_grf_start_reg; \
2044 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2045 pkt.prefix##URBEntryReadOffset = 0; \
2046 \
2047 pkt.StatisticsEnable = true; \
2048 pkt.Enable = true;
2049
2050 static void
2051 genX(upload_vs_state)(struct brw_context *brw)
2052 {
2053 UNUSED struct gl_context *ctx = &brw->ctx;
2054 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2055 struct brw_stage_state *stage_state = &brw->vs.base;
2056
2057 /* BRW_NEW_VS_PROG_DATA */
2058 const struct brw_vue_prog_data *vue_prog_data =
2059 brw_vue_prog_data(brw->vs.base.prog_data);
2060 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2061
2062 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2063 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2064
2065 #if GEN_GEN == 6
2066 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2067 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2068 *
2069 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2070 * command that causes the VS Function Enable to toggle. Pipeline
2071 * flush can be executed by sending a PIPE_CONTROL command with CS
2072 * stall bit set and a post sync operation.
2073 *
2074 * We've already done such a flush at the start of state upload, so we
2075 * don't need to do another one here.
2076 */
2077 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2078 if (stage_state->push_const_size != 0) {
2079 cvs.Buffer0Valid = true;
2080 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2081 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2082 }
2083 }
2084 #endif
2085
2086 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2087 gen7_emit_vs_workaround_flush(brw);
2088
2089 #if GEN_GEN >= 6
2090 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2091 #else
2092 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2093 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2094 #endif
2095 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2096
2097 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2098
2099 #if GEN_GEN < 6
2100 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2101 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2102 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2103
2104 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2105 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2106
2107 vs.MaximumNumberofThreads =
2108 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2109
2110 vs.StatisticsEnable = false;
2111 vs.SamplerStatePointer =
2112 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2113 #endif
2114
2115 #if GEN_GEN == 5
2116 /* Force single program flow on Ironlake. We cannot reliably get
2117 * all applications working without it. See:
2118 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2119 *
2120 * The most notable and reliably failing application is the Humus
2121 * demo "CelShading"
2122 */
2123 vs.SingleProgramFlow = true;
2124 vs.SamplerCount = 0; /* hardware requirement */
2125 #endif
2126
2127 #if GEN_GEN >= 8
2128 vs.SIMD8DispatchEnable =
2129 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2130
2131 vs.UserClipDistanceCullTestEnableBitmask =
2132 vue_prog_data->cull_distance_mask;
2133 #endif
2134 }
2135
2136 #if GEN_GEN == 6
2137 /* Based on my reading of the simulator, the VS constants don't get
2138 * pulled into the VS FF unit until an appropriate pipeline flush
2139 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2140 * references to them into a little FIFO. The flushes are common,
2141 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2142 * the primitive to use the wrong constants. Then the FIFO
2143 * containing the constant setup gets added to again on the next
2144 * constants change, and eventually when a flush does happen the
2145 * unit is overwhelmed by constant changes and dies.
2146 *
2147 * To avoid this, send a PIPE_CONTROL down the line that will
2148 * update the unit immediately loading the constants. The flush
2149 * type bits here were those set by the STATE_BASE_ADDRESS whose
2150 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2151 * bug reports that led to this workaround, and may be more than
2152 * what is strictly required to avoid the issue.
2153 */
2154 brw_emit_pipe_control_flush(brw,
2155 PIPE_CONTROL_DEPTH_STALL |
2156 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2157 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2158 #endif
2159 }
2160
2161 static const struct brw_tracked_state genX(vs_state) = {
2162 .dirty = {
2163 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2164 .brw = BRW_NEW_BATCH |
2165 BRW_NEW_BLORP |
2166 BRW_NEW_CONTEXT |
2167 BRW_NEW_VS_PROG_DATA |
2168 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2169 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2170 BRW_NEW_PROGRAM_CACHE |
2171 BRW_NEW_SAMPLER_STATE_TABLE |
2172 BRW_NEW_URB_FENCE
2173 : 0),
2174 },
2175 .emit = genX(upload_vs_state),
2176 };
2177
2178 /* ---------------------------------------------------------------------- */
2179
2180 static void
2181 genX(upload_cc_viewport)(struct brw_context *brw)
2182 {
2183 struct gl_context *ctx = &brw->ctx;
2184
2185 /* BRW_NEW_VIEWPORT_COUNT */
2186 const unsigned viewport_count = brw->clip.viewport_count;
2187
2188 struct GENX(CC_VIEWPORT) ccv;
2189 uint32_t cc_vp_offset;
2190 uint32_t *cc_map =
2191 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2192 32, &cc_vp_offset);
2193
2194 for (unsigned i = 0; i < viewport_count; i++) {
2195 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2196 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2197 if (ctx->Transform.DepthClamp) {
2198 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2199 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2200 } else {
2201 ccv.MinimumDepth = 0.0;
2202 ccv.MaximumDepth = 1.0;
2203 }
2204 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2205 cc_map += GENX(CC_VIEWPORT_length);
2206 }
2207
2208 #if GEN_GEN >= 7
2209 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2210 ptr.CCViewportPointer = cc_vp_offset;
2211 }
2212 #elif GEN_GEN == 6
2213 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2214 vp.CCViewportStateChange = 1;
2215 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2216 }
2217 #else
2218 brw->cc.vp_offset = cc_vp_offset;
2219 ctx->NewDriverState |= BRW_NEW_CC_VP;
2220 #endif
2221 }
2222
2223 const struct brw_tracked_state genX(cc_vp) = {
2224 .dirty = {
2225 .mesa = _NEW_TRANSFORM |
2226 _NEW_VIEWPORT,
2227 .brw = BRW_NEW_BATCH |
2228 BRW_NEW_BLORP |
2229 BRW_NEW_VIEWPORT_COUNT,
2230 },
2231 .emit = genX(upload_cc_viewport)
2232 };
2233
2234 /* ---------------------------------------------------------------------- */
2235
2236 static void
2237 set_scissor_bits(const struct gl_context *ctx, int i,
2238 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2239 struct GENX(SCISSOR_RECT) *sc)
2240 {
2241 int bbox[4];
2242
2243 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2244 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2245 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2246 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2247 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2248
2249 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2250 /* If the scissor was out of bounds and got clamped to 0 width/height
2251 * at the bounds, the subtraction of 1 from maximums could produce a
2252 * negative number and thus not clip anything. Instead, just provide
2253 * a min > max scissor inside the bounds, which produces the expected
2254 * no rendering.
2255 */
2256 sc->ScissorRectangleXMin = 1;
2257 sc->ScissorRectangleXMax = 0;
2258 sc->ScissorRectangleYMin = 1;
2259 sc->ScissorRectangleYMax = 0;
2260 } else if (render_to_fbo) {
2261 /* texmemory: Y=0=bottom */
2262 sc->ScissorRectangleXMin = bbox[0];
2263 sc->ScissorRectangleXMax = bbox[1] - 1;
2264 sc->ScissorRectangleYMin = bbox[2];
2265 sc->ScissorRectangleYMax = bbox[3] - 1;
2266 } else {
2267 /* memory: Y=0=top */
2268 sc->ScissorRectangleXMin = bbox[0];
2269 sc->ScissorRectangleXMax = bbox[1] - 1;
2270 sc->ScissorRectangleYMin = fb_height - bbox[3];
2271 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2272 }
2273 }
2274
2275 #if GEN_GEN >= 6
2276 static void
2277 genX(upload_scissor_state)(struct brw_context *brw)
2278 {
2279 struct gl_context *ctx = &brw->ctx;
2280 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2281 struct GENX(SCISSOR_RECT) scissor;
2282 uint32_t scissor_state_offset;
2283 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2284 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2285 uint32_t *scissor_map;
2286
2287 /* BRW_NEW_VIEWPORT_COUNT */
2288 const unsigned viewport_count = brw->clip.viewport_count;
2289
2290 scissor_map = brw_state_batch(
2291 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2292 32, &scissor_state_offset);
2293
2294 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2295
2296 /* The scissor only needs to handle the intersection of drawable and
2297 * scissor rect. Clipping to the boundaries of static shared buffers
2298 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2299 *
2300 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2301 * inclusive but max is exclusive.
2302 */
2303 for (unsigned i = 0; i < viewport_count; i++) {
2304 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2305 GENX(SCISSOR_RECT_pack)(
2306 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2307 }
2308
2309 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2310 ptr.ScissorRectPointer = scissor_state_offset;
2311 }
2312 }
2313
2314 static const struct brw_tracked_state genX(scissor_state) = {
2315 .dirty = {
2316 .mesa = _NEW_BUFFERS |
2317 _NEW_SCISSOR |
2318 _NEW_VIEWPORT,
2319 .brw = BRW_NEW_BATCH |
2320 BRW_NEW_BLORP |
2321 BRW_NEW_VIEWPORT_COUNT,
2322 },
2323 .emit = genX(upload_scissor_state),
2324 };
2325 #endif
2326
2327 /* ---------------------------------------------------------------------- */
2328
2329 static void
2330 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2331 float m00, float m11, float m30, float m31,
2332 float *xmin, float *xmax,
2333 float *ymin, float *ymax)
2334 {
2335 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2336 * Strips and Fans documentation:
2337 *
2338 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2339 * fixed-point "guardband" range supported by the rasterization hardware"
2340 *
2341 * and
2342 *
2343 * "In almost all circumstances, if an object’s vertices are actually
2344 * modified by this clamping (i.e., had X or Y coordinates outside of
2345 * the guardband extent the rendered object will not match the intended
2346 * result. Therefore software should take steps to ensure that this does
2347 * not happen - e.g., by clipping objects such that they do not exceed
2348 * these limits after the Drawing Rectangle is applied."
2349 *
2350 * I believe the fundamental restriction is that the rasterizer (in
2351 * the SF/WM stages) have a limit on the number of pixels that can be
2352 * rasterized. We need to ensure any coordinates beyond the rasterizer
2353 * limit are handled by the clipper. So effectively that limit becomes
2354 * the clipper's guardband size.
2355 *
2356 * It goes on to say:
2357 *
2358 * "In addition, in order to be correctly rendered, objects must have a
2359 * screenspace bounding box not exceeding 8K in the X or Y direction.
2360 * This additional restriction must also be comprehended by software,
2361 * i.e., enforced by use of clipping."
2362 *
2363 * This makes no sense. Gen7+ hardware supports 16K render targets,
2364 * and you definitely need to be able to draw polygons that fill the
2365 * surface. Our assumption is that the rasterizer was limited to 8K
2366 * on Sandybridge, which only supports 8K surfaces, and it was actually
2367 * increased to 16K on Ivybridge and later.
2368 *
2369 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2370 */
2371 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2372
2373 if (m00 != 0 && m11 != 0) {
2374 /* First, we compute the screen-space render area */
2375 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2376 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2377 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2378 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2379
2380 /* We want the guardband to be centered on that */
2381 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2382 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2383 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2384 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2385
2386 /* Now we need it in native device coordinates */
2387 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2388 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2389 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2390 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2391
2392 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2393 * flipped upside-down. X should be fine though.
2394 */
2395 assert(ndc_gb_xmin <= ndc_gb_xmax);
2396 *xmin = ndc_gb_xmin;
2397 *xmax = ndc_gb_xmax;
2398 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2399 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2400 } else {
2401 /* The viewport scales to 0, so nothing will be rendered. */
2402 *xmin = 0.0f;
2403 *xmax = 0.0f;
2404 *ymin = 0.0f;
2405 *ymax = 0.0f;
2406 }
2407 }
2408
2409 static void
2410 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2411 {
2412 struct gl_context *ctx = &brw->ctx;
2413 float y_scale, y_bias;
2414
2415 /* BRW_NEW_VIEWPORT_COUNT */
2416 const unsigned viewport_count = brw->clip.viewport_count;
2417
2418 /* _NEW_BUFFERS */
2419 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2420 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2421 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2422
2423 #if GEN_GEN >= 7
2424 #define clv sfv
2425 struct GENX(SF_CLIP_VIEWPORT) sfv;
2426 uint32_t sf_clip_vp_offset;
2427 uint32_t *sf_clip_map =
2428 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2429 64, &sf_clip_vp_offset);
2430 #else
2431 struct GENX(SF_VIEWPORT) sfv;
2432 struct GENX(CLIP_VIEWPORT) clv;
2433 uint32_t sf_vp_offset, clip_vp_offset;
2434 uint32_t *sf_map =
2435 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2436 32, &sf_vp_offset);
2437 uint32_t *clip_map =
2438 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2439 32, &clip_vp_offset);
2440 #endif
2441
2442 /* _NEW_BUFFERS */
2443 if (render_to_fbo) {
2444 y_scale = 1.0;
2445 y_bias = 0;
2446 } else {
2447 y_scale = -1.0;
2448 y_bias = (float)fb_height;
2449 }
2450
2451 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2452 /* _NEW_VIEWPORT: Guardband Clipping */
2453 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2454 _mesa_get_viewport_xform(ctx, i, scale, translate);
2455
2456 sfv.ViewportMatrixElementm00 = scale[0];
2457 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2458 sfv.ViewportMatrixElementm22 = scale[2],
2459 sfv.ViewportMatrixElementm30 = translate[0],
2460 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2461 sfv.ViewportMatrixElementm32 = translate[2],
2462 brw_calculate_guardband_size(fb_width, fb_height,
2463 sfv.ViewportMatrixElementm00,
2464 sfv.ViewportMatrixElementm11,
2465 sfv.ViewportMatrixElementm30,
2466 sfv.ViewportMatrixElementm31,
2467 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2468
2469
2470 clv.XMinClipGuardband = gb_xmin;
2471 clv.XMaxClipGuardband = gb_xmax;
2472 clv.YMinClipGuardband = gb_ymin;
2473 clv.YMaxClipGuardband = gb_ymax;
2474
2475 #if GEN_GEN < 6
2476 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2477 &sfv.ScissorRectangle);
2478 #elif GEN_GEN >= 8
2479 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2480 * The hardware will take the intersection of the drawing rectangle,
2481 * scissor rectangle, and the viewport extents. We don't need to be
2482 * smart, and can therefore just program the viewport extents.
2483 */
2484 const float viewport_Xmax =
2485 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2486 const float viewport_Ymax =
2487 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2488
2489 if (render_to_fbo) {
2490 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2491 sfv.XMaxViewPort = viewport_Xmax - 1;
2492 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2493 sfv.YMaxViewPort = viewport_Ymax - 1;
2494 } else {
2495 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2496 sfv.XMaxViewPort = viewport_Xmax - 1;
2497 sfv.YMinViewPort = fb_height - viewport_Ymax;
2498 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2499 }
2500 #endif
2501
2502 #if GEN_GEN >= 7
2503 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2504 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2505 #else
2506 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2507 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2508 sf_map += GENX(SF_VIEWPORT_length);
2509 clip_map += GENX(CLIP_VIEWPORT_length);
2510 #endif
2511 }
2512
2513 #if GEN_GEN >= 7
2514 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2515 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2516 }
2517 #elif GEN_GEN == 6
2518 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2519 vp.SFViewportStateChange = 1;
2520 vp.CLIPViewportStateChange = 1;
2521 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2522 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2523 }
2524 #else
2525 brw->sf.vp_offset = sf_vp_offset;
2526 brw->clip.vp_offset = clip_vp_offset;
2527 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2528 #endif
2529 }
2530
2531 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2532 .dirty = {
2533 .mesa = _NEW_BUFFERS |
2534 _NEW_VIEWPORT |
2535 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2536 .brw = BRW_NEW_BATCH |
2537 BRW_NEW_BLORP |
2538 BRW_NEW_VIEWPORT_COUNT,
2539 },
2540 .emit = genX(upload_sf_clip_viewport),
2541 };
2542
2543 /* ---------------------------------------------------------------------- */
2544
2545 static void
2546 genX(upload_gs_state)(struct brw_context *brw)
2547 {
2548 UNUSED struct gl_context *ctx = &brw->ctx;
2549 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2550 const struct brw_stage_state *stage_state = &brw->gs.base;
2551 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2552 /* BRW_NEW_GEOMETRY_PROGRAM */
2553 bool active = GEN_GEN >= 6 && gs_prog;
2554
2555 /* BRW_NEW_GS_PROG_DATA */
2556 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2557 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2558 brw_vue_prog_data(stage_prog_data);
2559 #if GEN_GEN >= 7
2560 const struct brw_gs_prog_data *gs_prog_data =
2561 brw_gs_prog_data(stage_prog_data);
2562 #endif
2563
2564 #if GEN_GEN == 6
2565 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2566 if (active && stage_state->push_const_size != 0) {
2567 cgs.Buffer0Valid = true;
2568 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2569 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2570 }
2571 }
2572 #endif
2573
2574 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2575 /**
2576 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2577 * Geometry > Geometry Shader > State:
2578 *
2579 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2580 * whole fixed function pipeline when the GS enable changes value in
2581 * the 3DSTATE_GS."
2582 *
2583 * The hardware architects have clarified that in this context "flush the
2584 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2585 * Stall" bit set.
2586 */
2587 if (devinfo->gt == 2 && brw->gs.enabled != active)
2588 gen7_emit_cs_stall_flush(brw);
2589 #endif
2590
2591 #if GEN_GEN >= 6
2592 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2593 #else
2594 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2595 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2596 #endif
2597
2598 #if GEN_GEN >= 6
2599 if (active) {
2600 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2601
2602 #if GEN_GEN >= 7
2603 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2604 gs.OutputTopology = gs_prog_data->output_topology;
2605 gs.ControlDataHeaderSize =
2606 gs_prog_data->control_data_header_size_hwords;
2607
2608 gs.InstanceControl = gs_prog_data->invocations - 1;
2609 gs.DispatchMode = vue_prog_data->dispatch_mode;
2610
2611 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2612
2613 gs.ControlDataFormat = gs_prog_data->control_data_format;
2614 #endif
2615
2616 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2617 * Ivy Bridge and Haswell.
2618 *
2619 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2620 * strip to be delivered to the geometry shader in an order that does
2621 * not strictly follow the OpenGL spec, but preserves triangle
2622 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2623 * the geometry shader sees triangles:
2624 *
2625 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2626 *
2627 * (Clearing the bit is even worse, because it fails to preserve
2628 * orientation).
2629 *
2630 * Triangle strips with adjacency always ordered in a way that preserves
2631 * triangle orientation but does not strictly follow the OpenGL spec,
2632 * regardless of the setting of this bit.
2633 *
2634 * On Haswell, both triangle strips and triangle strips with adjacency
2635 * are always ordered in a way that preserves triangle orientation.
2636 * Setting this bit causes the ordering to strictly follow the OpenGL
2637 * spec.
2638 *
2639 * So in either case we want to set the bit. Unfortunately on Ivy
2640 * Bridge this will get the order close to correct but not perfect.
2641 */
2642 gs.ReorderMode = TRAILING;
2643 gs.MaximumNumberofThreads =
2644 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2645 : (devinfo->max_gs_threads - 1);
2646
2647 #if GEN_GEN < 7
2648 gs.SOStatisticsEnable = true;
2649 if (gs_prog->info.has_transform_feedback_varyings)
2650 gs.SVBIPayloadEnable = true;
2651
2652 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2653 * was previously done for gen6.
2654 *
2655 * TODO: test with both disabled to see if the HW is behaving
2656 * as expected, like in gen7.
2657 */
2658 gs.SingleProgramFlow = true;
2659 gs.VectorMaskEnable = true;
2660 #endif
2661
2662 #if GEN_GEN >= 8
2663 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2664
2665 if (gs_prog_data->static_vertex_count != -1) {
2666 gs.StaticOutput = true;
2667 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2668 }
2669 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2670
2671 gs.UserClipDistanceCullTestEnableBitmask =
2672 vue_prog_data->cull_distance_mask;
2673
2674 const int urb_entry_write_offset = 1;
2675 const uint32_t urb_entry_output_length =
2676 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2677 urb_entry_write_offset;
2678
2679 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2680 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2681 #endif
2682 }
2683 #endif
2684
2685 #if GEN_GEN <= 6
2686 if (!active && brw->ff_gs.prog_active) {
2687 /* In gen6, transform feedback for the VS stage is done with an
2688 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2689 * for this.
2690 */
2691 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2692 gs.SingleProgramFlow = true;
2693 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2694 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2695
2696 #if GEN_GEN <= 5
2697 gs.GRFRegisterCount =
2698 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2699 /* BRW_NEW_URB_FENCE */
2700 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2701 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2702 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2703 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2704 #else
2705 gs.Enable = true;
2706 gs.VectorMaskEnable = true;
2707 gs.SVBIPayloadEnable = true;
2708 gs.SVBIPostIncrementEnable = true;
2709 gs.SVBIPostIncrementValue =
2710 brw->ff_gs.prog_data->svbi_postincrement_value;
2711 gs.SOStatisticsEnable = true;
2712 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2713 #endif
2714 }
2715 #endif
2716 if (!active && !brw->ff_gs.prog_active) {
2717 #if GEN_GEN < 8
2718 gs.DispatchGRFStartRegisterForURBData = 1;
2719 #if GEN_GEN >= 7
2720 gs.IncludeVertexHandles = true;
2721 #endif
2722 #endif
2723 }
2724
2725 #if GEN_GEN >= 6
2726 gs.StatisticsEnable = true;
2727 #endif
2728 #if GEN_GEN == 5 || GEN_GEN == 6
2729 gs.RenderingEnabled = true;
2730 #endif
2731 #if GEN_GEN <= 5
2732 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2733 #endif
2734 }
2735
2736 #if GEN_GEN == 6
2737 brw->gs.enabled = active;
2738 #endif
2739 }
2740
2741 static const struct brw_tracked_state genX(gs_state) = {
2742 .dirty = {
2743 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2744 .brw = BRW_NEW_BATCH |
2745 BRW_NEW_BLORP |
2746 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2747 BRW_NEW_PROGRAM_CACHE |
2748 BRW_NEW_URB_FENCE |
2749 BRW_NEW_VIEWPORT_COUNT
2750 : 0) |
2751 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2752 BRW_NEW_GEOMETRY_PROGRAM |
2753 BRW_NEW_GS_PROG_DATA
2754 : 0) |
2755 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2756 },
2757 .emit = genX(upload_gs_state),
2758 };
2759
2760 /* ---------------------------------------------------------------------- */
2761
2762 UNUSED static GLenum
2763 fix_dual_blend_alpha_to_one(GLenum function)
2764 {
2765 switch (function) {
2766 case GL_SRC1_ALPHA:
2767 return GL_ONE;
2768
2769 case GL_ONE_MINUS_SRC1_ALPHA:
2770 return GL_ZERO;
2771 }
2772
2773 return function;
2774 }
2775
2776 #define blend_factor(x) brw_translate_blend_factor(x)
2777 #define blend_eqn(x) brw_translate_blend_equation(x)
2778
2779 /**
2780 * Modify blend function to force destination alpha to 1.0
2781 *
2782 * If \c function specifies a blend function that uses destination alpha,
2783 * replace it with a function that hard-wires destination alpha to 1.0. This
2784 * is used when rendering to xRGB targets.
2785 */
2786 static GLenum
2787 brw_fix_xRGB_alpha(GLenum function)
2788 {
2789 switch (function) {
2790 case GL_DST_ALPHA:
2791 return GL_ONE;
2792
2793 case GL_ONE_MINUS_DST_ALPHA:
2794 case GL_SRC_ALPHA_SATURATE:
2795 return GL_ZERO;
2796 }
2797
2798 return function;
2799 }
2800
2801 #if GEN_GEN >= 6
2802 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2803 #else
2804 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2805 #endif
2806
2807 UNUSED static bool
2808 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2809 bool alpha_to_one)
2810 {
2811 struct gl_context *ctx = &brw->ctx;
2812
2813 /* _NEW_BUFFERS */
2814 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2815
2816 bool independent_alpha_blend = false;
2817
2818 /* Used for implementing the following bit of GL_EXT_texture_integer:
2819 * "Per-fragment operations that require floating-point color
2820 * components, including multisample alpha operations, alpha test,
2821 * blending, and dithering, have no effect when the corresponding
2822 * colors are written to an integer color buffer."
2823 */
2824 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2825
2826 const unsigned blend_enabled = GEN_GEN >= 6 ?
2827 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2828
2829 /* _NEW_COLOR */
2830 if (ctx->Color.ColorLogicOpEnabled) {
2831 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2832 : GL_UNSIGNED_NORMALIZED;
2833 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2834 rb_type != GL_UNSIGNED_NORMALIZED &&
2835 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2836 "renderbuffer\n",
2837 _mesa_enum_to_string(ctx->Color.LogicOp),
2838 _mesa_enum_to_string(rb_type));
2839 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2840 entry->LogicOpEnable = true;
2841 entry->LogicOpFunction = ctx->Color._LogicOp;
2842 }
2843 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2844 && (GEN_GEN <= 5 || !integer)) {
2845 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2846 GLenum eqA = ctx->Color.Blend[i].EquationA;
2847 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2848 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2849 GLenum srcA = ctx->Color.Blend[i].SrcA;
2850 GLenum dstA = ctx->Color.Blend[i].DstA;
2851
2852 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2853 srcRGB = dstRGB = GL_ONE;
2854
2855 if (eqA == GL_MIN || eqA == GL_MAX)
2856 srcA = dstA = GL_ONE;
2857
2858 /* Due to hardware limitations, the destination may have information
2859 * in an alpha channel even when the format specifies no alpha
2860 * channel. In order to avoid getting any incorrect blending due to
2861 * that alpha channel, coerce the blend factors to values that will
2862 * not read the alpha channel, but will instead use the correct
2863 * implicit value for alpha.
2864 */
2865 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2866 GL_TEXTURE_ALPHA_TYPE)) {
2867 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2868 srcA = brw_fix_xRGB_alpha(srcA);
2869 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2870 dstA = brw_fix_xRGB_alpha(dstA);
2871 }
2872
2873 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2874 * "If Dual Source Blending is enabled, this bit must be disabled."
2875 *
2876 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2877 * and leave it enabled anyway.
2878 */
2879 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2880 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2881 srcA = fix_dual_blend_alpha_to_one(srcA);
2882 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2883 dstA = fix_dual_blend_alpha_to_one(dstA);
2884 }
2885
2886 entry->ColorBufferBlendEnable = true;
2887 entry->DestinationBlendFactor = blend_factor(dstRGB);
2888 entry->SourceBlendFactor = blend_factor(srcRGB);
2889 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2890 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2891 entry->ColorBlendFunction = blend_eqn(eqRGB);
2892 entry->AlphaBlendFunction = blend_eqn(eqA);
2893
2894 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2895 independent_alpha_blend = true;
2896 }
2897
2898 return independent_alpha_blend;
2899 }
2900
2901 #if GEN_GEN >= 6
2902 static void
2903 genX(upload_blend_state)(struct brw_context *brw)
2904 {
2905 struct gl_context *ctx = &brw->ctx;
2906 int size;
2907
2908 /* We need at least one BLEND_STATE written, because we might do
2909 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2910 * for computed depth or alpha test), which will do an FB write
2911 * with render target 0, which will reference BLEND_STATE[0] for
2912 * alpha test enable.
2913 */
2914 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2915 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2916 nr_draw_buffers = 1;
2917
2918 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2919 #if GEN_GEN >= 8
2920 size += GENX(BLEND_STATE_length) * 4;
2921 #endif
2922
2923 uint32_t *blend_map;
2924 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2925
2926 #if GEN_GEN >= 8
2927 struct GENX(BLEND_STATE) blend = { 0 };
2928 {
2929 #else
2930 for (int i = 0; i < nr_draw_buffers; i++) {
2931 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2932 #define blend entry
2933 #endif
2934 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2935 * "If drawbuffer zero is not NONE and the buffer it references has an
2936 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2937 * operations are skipped."
2938 */
2939 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2940 /* _NEW_MULTISAMPLE */
2941 if (_mesa_is_multisample_enabled(ctx)) {
2942 if (ctx->Multisample.SampleAlphaToCoverage) {
2943 blend.AlphaToCoverageEnable = true;
2944 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2945 }
2946 if (ctx->Multisample.SampleAlphaToOne)
2947 blend.AlphaToOneEnable = true;
2948 }
2949
2950 /* _NEW_COLOR */
2951 if (ctx->Color.AlphaEnabled) {
2952 blend.AlphaTestEnable = true;
2953 blend.AlphaTestFunction =
2954 intel_translate_compare_func(ctx->Color.AlphaFunc);
2955 }
2956
2957 if (ctx->Color.DitherFlag) {
2958 blend.ColorDitherEnable = true;
2959 }
2960 }
2961
2962 #if GEN_GEN >= 8
2963 for (int i = 0; i < nr_draw_buffers; i++) {
2964 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2965 #else
2966 {
2967 #endif
2968 blend.IndependentAlphaBlendEnable =
2969 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2970 blend.IndependentAlphaBlendEnable;
2971
2972 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2973 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2974 *
2975 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2976 * clamping in the fragment shader. For its clamping of
2977 * blending, the spec says:
2978 *
2979 * "RESOLVED: For fixed-point color buffers, the inputs and
2980 * the result of the blending equation are clamped. For
2981 * floating-point color buffers, no clamping occurs."
2982 *
2983 * So, generally, we want clamping to the render target's range.
2984 * And, good news, the hardware tables for both pre- and
2985 * post-blend color clamping are either ignored, or any are
2986 * allowed, or clamping is required but RT range clamping is a
2987 * valid option.
2988 */
2989 entry.PreBlendColorClampEnable = true;
2990 entry.PostBlendColorClampEnable = true;
2991 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2992
2993 entry.WriteDisableRed = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
2994 entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
2995 entry.WriteDisableBlue = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
2996 entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
2997
2998 #if GEN_GEN >= 8
2999 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3000 #else
3001 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3002 #endif
3003 }
3004 }
3005
3006 #if GEN_GEN >= 8
3007 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3008 #endif
3009
3010 #if GEN_GEN < 7
3011 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3012 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3013 ptr.BLEND_STATEChange = true;
3014 }
3015 #else
3016 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3017 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3018 #if GEN_GEN >= 8
3019 ptr.BlendStatePointerValid = true;
3020 #endif
3021 }
3022 #endif
3023 }
3024
3025 static const struct brw_tracked_state genX(blend_state) = {
3026 .dirty = {
3027 .mesa = _NEW_BUFFERS |
3028 _NEW_COLOR |
3029 _NEW_MULTISAMPLE,
3030 .brw = BRW_NEW_BATCH |
3031 BRW_NEW_BLORP |
3032 BRW_NEW_STATE_BASE_ADDRESS,
3033 },
3034 .emit = genX(upload_blend_state),
3035 };
3036 #endif
3037
3038 /* ---------------------------------------------------------------------- */
3039
3040 #if GEN_GEN >= 7
3041 UNUSED static const uint32_t push_constant_opcodes[] = {
3042 [MESA_SHADER_VERTEX] = 21,
3043 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3044 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3045 [MESA_SHADER_GEOMETRY] = 22,
3046 [MESA_SHADER_FRAGMENT] = 23,
3047 [MESA_SHADER_COMPUTE] = 0,
3048 };
3049
3050 static void
3051 genX(upload_push_constant_packets)(struct brw_context *brw)
3052 {
3053 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3054 struct gl_context *ctx = &brw->ctx;
3055
3056 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3057
3058 struct brw_stage_state *stage_states[] = {
3059 &brw->vs.base,
3060 &brw->tcs.base,
3061 &brw->tes.base,
3062 &brw->gs.base,
3063 &brw->wm.base,
3064 };
3065
3066 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3067 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3068 gen7_emit_vs_workaround_flush(brw);
3069
3070 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3071 struct brw_stage_state *stage_state = stage_states[stage];
3072 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3073
3074 if (!stage_state->push_constants_dirty)
3075 continue;
3076
3077 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3078 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3079 if (stage_state->prog_data) {
3080 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3081 /* The Skylake PRM contains the following restriction:
3082 *
3083 * "The driver must ensure The following case does not occur
3084 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3085 * buffer 3 read length equal to zero committed followed by a
3086 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3087 * zero committed."
3088 *
3089 * To avoid this, we program the buffers in the highest slots.
3090 * This way, slot 0 is only used if slot 3 is also used.
3091 */
3092 int n = 3;
3093
3094 for (int i = 3; i >= 0; i--) {
3095 const struct brw_ubo_range *range =
3096 &stage_state->prog_data->ubo_ranges[i];
3097
3098 if (range->length == 0)
3099 continue;
3100
3101 const struct gl_uniform_block *block =
3102 prog->sh.UniformBlocks[range->block];
3103 const struct gl_buffer_binding *binding =
3104 &ctx->UniformBufferBindings[block->Binding];
3105
3106 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3107 static unsigned msg_id = 0;
3108 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3109 MESA_DEBUG_TYPE_UNDEFINED,
3110 MESA_DEBUG_SEVERITY_HIGH,
3111 "UBO %d unbound, %s shader uniform data "
3112 "will be undefined.",
3113 range->block,
3114 _mesa_shader_stage_to_string(stage));
3115 continue;
3116 }
3117
3118 assert(binding->Offset % 32 == 0);
3119
3120 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3121 intel_buffer_object(binding->BufferObject),
3122 binding->Offset, range->length * 32, false);
3123
3124 pkt.ConstantBody.ReadLength[n] = range->length;
3125 pkt.ConstantBody.Buffer[n] =
3126 ro_bo(bo, range->start * 32 + binding->Offset);
3127 n--;
3128 }
3129
3130 if (stage_state->push_const_size > 0) {
3131 assert(n >= 0);
3132 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3133 pkt.ConstantBody.Buffer[n] =
3134 ro_bo(stage_state->push_const_bo,
3135 stage_state->push_const_offset);
3136 }
3137 #else
3138 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3139 pkt.ConstantBody.Buffer[0].offset =
3140 stage_state->push_const_offset | mocs;
3141 #endif
3142 }
3143 }
3144
3145 stage_state->push_constants_dirty = false;
3146 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3147 }
3148 }
3149
3150 const struct brw_tracked_state genX(push_constant_packets) = {
3151 .dirty = {
3152 .mesa = 0,
3153 .brw = BRW_NEW_DRAW_CALL,
3154 },
3155 .emit = genX(upload_push_constant_packets),
3156 };
3157 #endif
3158
3159 #if GEN_GEN >= 6
3160 static void
3161 genX(upload_vs_push_constants)(struct brw_context *brw)
3162 {
3163 struct brw_stage_state *stage_state = &brw->vs.base;
3164
3165 /* BRW_NEW_VERTEX_PROGRAM */
3166 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3167 /* BRW_NEW_VS_PROG_DATA */
3168 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3169
3170 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3171 }
3172
3173 static const struct brw_tracked_state genX(vs_push_constants) = {
3174 .dirty = {
3175 .mesa = _NEW_PROGRAM_CONSTANTS |
3176 _NEW_TRANSFORM,
3177 .brw = BRW_NEW_BATCH |
3178 BRW_NEW_BLORP |
3179 BRW_NEW_VERTEX_PROGRAM |
3180 BRW_NEW_VS_PROG_DATA,
3181 },
3182 .emit = genX(upload_vs_push_constants),
3183 };
3184
3185 static void
3186 genX(upload_gs_push_constants)(struct brw_context *brw)
3187 {
3188 struct brw_stage_state *stage_state = &brw->gs.base;
3189
3190 /* BRW_NEW_GEOMETRY_PROGRAM */
3191 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3192
3193 /* BRW_NEW_GS_PROG_DATA */
3194 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3195
3196 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3197 }
3198
3199 static const struct brw_tracked_state genX(gs_push_constants) = {
3200 .dirty = {
3201 .mesa = _NEW_PROGRAM_CONSTANTS |
3202 _NEW_TRANSFORM,
3203 .brw = BRW_NEW_BATCH |
3204 BRW_NEW_BLORP |
3205 BRW_NEW_GEOMETRY_PROGRAM |
3206 BRW_NEW_GS_PROG_DATA,
3207 },
3208 .emit = genX(upload_gs_push_constants),
3209 };
3210
3211 static void
3212 genX(upload_wm_push_constants)(struct brw_context *brw)
3213 {
3214 struct brw_stage_state *stage_state = &brw->wm.base;
3215 /* BRW_NEW_FRAGMENT_PROGRAM */
3216 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3217 /* BRW_NEW_FS_PROG_DATA */
3218 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3219
3220 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3221 }
3222
3223 static const struct brw_tracked_state genX(wm_push_constants) = {
3224 .dirty = {
3225 .mesa = _NEW_PROGRAM_CONSTANTS,
3226 .brw = BRW_NEW_BATCH |
3227 BRW_NEW_BLORP |
3228 BRW_NEW_FRAGMENT_PROGRAM |
3229 BRW_NEW_FS_PROG_DATA,
3230 },
3231 .emit = genX(upload_wm_push_constants),
3232 };
3233 #endif
3234
3235 /* ---------------------------------------------------------------------- */
3236
3237 #if GEN_GEN >= 6
3238 static unsigned
3239 genX(determine_sample_mask)(struct brw_context *brw)
3240 {
3241 struct gl_context *ctx = &brw->ctx;
3242 float coverage = 1.0f;
3243 float coverage_invert = false;
3244 unsigned sample_mask = ~0u;
3245
3246 /* BRW_NEW_NUM_SAMPLES */
3247 unsigned num_samples = brw->num_samples;
3248
3249 if (_mesa_is_multisample_enabled(ctx)) {
3250 if (ctx->Multisample.SampleCoverage) {
3251 coverage = ctx->Multisample.SampleCoverageValue;
3252 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3253 }
3254 if (ctx->Multisample.SampleMask) {
3255 sample_mask = ctx->Multisample.SampleMaskValue;
3256 }
3257 }
3258
3259 if (num_samples > 1) {
3260 int coverage_int = (int) (num_samples * coverage + 0.5f);
3261 uint32_t coverage_bits = (1 << coverage_int) - 1;
3262 if (coverage_invert)
3263 coverage_bits ^= (1 << num_samples) - 1;
3264 return coverage_bits & sample_mask;
3265 } else {
3266 return 1;
3267 }
3268 }
3269
3270 static void
3271 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3272 unsigned num_samples)
3273 {
3274 unsigned log2_samples = ffs(num_samples) - 1;
3275
3276 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3277 multi.PixelLocation = CENTER;
3278 multi.NumberofMultisamples = log2_samples;
3279 #if GEN_GEN == 6
3280 GEN_SAMPLE_POS_4X(multi.Sample);
3281 #elif GEN_GEN == 7
3282 switch (num_samples) {
3283 case 1:
3284 GEN_SAMPLE_POS_1X(multi.Sample);
3285 break;
3286 case 2:
3287 GEN_SAMPLE_POS_2X(multi.Sample);
3288 break;
3289 case 4:
3290 GEN_SAMPLE_POS_4X(multi.Sample);
3291 break;
3292 case 8:
3293 GEN_SAMPLE_POS_8X(multi.Sample);
3294 break;
3295 default:
3296 break;
3297 }
3298 #endif
3299 }
3300 }
3301
3302 static void
3303 genX(upload_multisample_state)(struct brw_context *brw)
3304 {
3305 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3306
3307 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3308
3309 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3310 sm.SampleMask = genX(determine_sample_mask)(brw);
3311 }
3312 }
3313
3314 static const struct brw_tracked_state genX(multisample_state) = {
3315 .dirty = {
3316 .mesa = _NEW_MULTISAMPLE |
3317 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3318 .brw = BRW_NEW_BLORP |
3319 BRW_NEW_CONTEXT |
3320 BRW_NEW_NUM_SAMPLES,
3321 },
3322 .emit = genX(upload_multisample_state)
3323 };
3324 #endif
3325
3326 /* ---------------------------------------------------------------------- */
3327
3328 static void
3329 genX(upload_color_calc_state)(struct brw_context *brw)
3330 {
3331 struct gl_context *ctx = &brw->ctx;
3332
3333 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3334 #if GEN_GEN <= 5
3335 cc.IndependentAlphaBlendEnable =
3336 set_blend_entry_bits(brw, &cc, 0, false);
3337 set_depth_stencil_bits(brw, &cc);
3338
3339 if (ctx->Color.AlphaEnabled &&
3340 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3341 cc.AlphaTestEnable = true;
3342 cc.AlphaTestFunction =
3343 intel_translate_compare_func(ctx->Color.AlphaFunc);
3344 }
3345
3346 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3347
3348 cc.StatisticsEnable = brw->stats_wm;
3349
3350 cc.CCViewportStatePointer =
3351 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3352 #else
3353 /* _NEW_COLOR */
3354 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3355 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3356 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3357 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3358
3359 #if GEN_GEN < 9
3360 /* _NEW_STENCIL */
3361 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3362 cc.BackfaceStencilReferenceValue =
3363 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3364 #endif
3365
3366 #endif
3367
3368 /* _NEW_COLOR */
3369 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3370 ctx->Color.AlphaRef);
3371 }
3372
3373 #if GEN_GEN >= 6
3374 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3375 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3376 #if GEN_GEN != 7
3377 ptr.ColorCalcStatePointerValid = true;
3378 #endif
3379 }
3380 #else
3381 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3382 #endif
3383 }
3384
3385 static const struct brw_tracked_state genX(color_calc_state) = {
3386 .dirty = {
3387 .mesa = _NEW_COLOR |
3388 _NEW_STENCIL |
3389 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3390 _NEW_DEPTH
3391 : 0),
3392 .brw = BRW_NEW_BATCH |
3393 BRW_NEW_BLORP |
3394 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3395 BRW_NEW_STATS_WM
3396 : BRW_NEW_CC_STATE |
3397 BRW_NEW_STATE_BASE_ADDRESS),
3398 },
3399 .emit = genX(upload_color_calc_state),
3400 };
3401
3402
3403 /* ---------------------------------------------------------------------- */
3404
3405 #if GEN_GEN >= 7
3406 static void
3407 genX(upload_sbe)(struct brw_context *brw)
3408 {
3409 struct gl_context *ctx = &brw->ctx;
3410 /* BRW_NEW_FRAGMENT_PROGRAM */
3411 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3412 /* BRW_NEW_FS_PROG_DATA */
3413 const struct brw_wm_prog_data *wm_prog_data =
3414 brw_wm_prog_data(brw->wm.base.prog_data);
3415 #if GEN_GEN >= 8
3416 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3417 #else
3418 #define attr_overrides sbe.Attribute
3419 #endif
3420 uint32_t urb_entry_read_length;
3421 uint32_t urb_entry_read_offset;
3422 uint32_t point_sprite_enables;
3423
3424 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3425 sbe.AttributeSwizzleEnable = true;
3426 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3427
3428 /* _NEW_BUFFERS */
3429 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3430
3431 /* _NEW_POINT
3432 *
3433 * Window coordinates in an FBO are inverted, which means point
3434 * sprite origin must be inverted.
3435 */
3436 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3437 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3438 else
3439 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3440
3441 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3442 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3443 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3444 * BRW_NEW_VUE_MAP_GEOM_OUT
3445 */
3446 genX(calculate_attr_overrides)(brw,
3447 attr_overrides,
3448 &point_sprite_enables,
3449 &urb_entry_read_length,
3450 &urb_entry_read_offset);
3451
3452 /* Typically, the URB entry read length and offset should be programmed
3453 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3454 * stage which produces geometry. However, we don't know the proper
3455 * value until we call calculate_attr_overrides().
3456 *
3457 * To fit with our existing code, we override the inherited values and
3458 * specify it here directly, as we did on previous generations.
3459 */
3460 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3461 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3462 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3463 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3464
3465 #if GEN_GEN >= 8
3466 sbe.ForceVertexURBEntryReadLength = true;
3467 sbe.ForceVertexURBEntryReadOffset = true;
3468 #endif
3469
3470 #if GEN_GEN >= 9
3471 /* prepare the active component dwords */
3472 const int num_inputs = urb_entry_read_length * 2;
3473 for (int input_index = 0; input_index < num_inputs; input_index++) {
3474 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3475 }
3476 #endif
3477 }
3478
3479 #if GEN_GEN >= 8
3480 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3481 for (int i = 0; i < 16; i++)
3482 sbes.Attribute[i] = attr_overrides[i];
3483 }
3484 #endif
3485
3486 #undef attr_overrides
3487 }
3488
3489 static const struct brw_tracked_state genX(sbe_state) = {
3490 .dirty = {
3491 .mesa = _NEW_BUFFERS |
3492 _NEW_LIGHT |
3493 _NEW_POINT |
3494 _NEW_POLYGON |
3495 _NEW_PROGRAM,
3496 .brw = BRW_NEW_BLORP |
3497 BRW_NEW_CONTEXT |
3498 BRW_NEW_FRAGMENT_PROGRAM |
3499 BRW_NEW_FS_PROG_DATA |
3500 BRW_NEW_GS_PROG_DATA |
3501 BRW_NEW_TES_PROG_DATA |
3502 BRW_NEW_VUE_MAP_GEOM_OUT |
3503 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3504 : 0),
3505 },
3506 .emit = genX(upload_sbe),
3507 };
3508 #endif
3509
3510 /* ---------------------------------------------------------------------- */
3511
3512 #if GEN_GEN >= 7
3513 /**
3514 * Outputs the 3DSTATE_SO_DECL_LIST command.
3515 *
3516 * The data output is a series of 64-bit entries containing a SO_DECL per
3517 * stream. We only have one stream of rendering coming out of the GS unit, so
3518 * we only emit stream 0 (low 16 bits) SO_DECLs.
3519 */
3520 static void
3521 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3522 const struct brw_vue_map *vue_map)
3523 {
3524 struct gl_context *ctx = &brw->ctx;
3525 /* BRW_NEW_TRANSFORM_FEEDBACK */
3526 struct gl_transform_feedback_object *xfb_obj =
3527 ctx->TransformFeedback.CurrentObject;
3528 const struct gl_transform_feedback_info *linked_xfb_info =
3529 xfb_obj->program->sh.LinkedTransformFeedback;
3530 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3531 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3532 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3533 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3534 int max_decls = 0;
3535 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3536
3537 memset(so_decl, 0, sizeof(so_decl));
3538
3539 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3540 * command feels strange -- each dword pair contains a SO_DECL per stream.
3541 */
3542 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3543 const struct gl_transform_feedback_output *output =
3544 &linked_xfb_info->Outputs[i];
3545 const int buffer = output->OutputBuffer;
3546 const int varying = output->OutputRegister;
3547 const unsigned stream_id = output->StreamId;
3548 assert(stream_id < MAX_VERTEX_STREAMS);
3549
3550 buffer_mask[stream_id] |= 1 << buffer;
3551
3552 assert(vue_map->varying_to_slot[varying] >= 0);
3553
3554 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3555 * array. Instead, it simply increments DstOffset for the following
3556 * input by the number of components that should be skipped.
3557 *
3558 * Our hardware is unusual in that it requires us to program SO_DECLs
3559 * for fake "hole" components, rather than simply taking the offset
3560 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3561 * program as many size = 4 holes as we can, then a final hole to
3562 * accommodate the final 1, 2, or 3 remaining.
3563 */
3564 int skip_components = output->DstOffset - next_offset[buffer];
3565
3566 while (skip_components > 0) {
3567 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3568 .HoleFlag = 1,
3569 .OutputBufferSlot = output->OutputBuffer,
3570 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3571 };
3572 skip_components -= 4;
3573 }
3574
3575 next_offset[buffer] = output->DstOffset + output->NumComponents;
3576
3577 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3578 .OutputBufferSlot = output->OutputBuffer,
3579 .RegisterIndex = vue_map->varying_to_slot[varying],
3580 .ComponentMask =
3581 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3582 };
3583
3584 if (decls[stream_id] > max_decls)
3585 max_decls = decls[stream_id];
3586 }
3587
3588 uint32_t *dw;
3589 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3590 .StreamtoBufferSelects0 = buffer_mask[0],
3591 .StreamtoBufferSelects1 = buffer_mask[1],
3592 .StreamtoBufferSelects2 = buffer_mask[2],
3593 .StreamtoBufferSelects3 = buffer_mask[3],
3594 .NumEntries0 = decls[0],
3595 .NumEntries1 = decls[1],
3596 .NumEntries2 = decls[2],
3597 .NumEntries3 = decls[3]);
3598
3599 for (int i = 0; i < max_decls; i++) {
3600 GENX(SO_DECL_ENTRY_pack)(
3601 brw, dw + 2 + i * 2,
3602 &(struct GENX(SO_DECL_ENTRY)) {
3603 .Stream0Decl = so_decl[0][i],
3604 .Stream1Decl = so_decl[1][i],
3605 .Stream2Decl = so_decl[2][i],
3606 .Stream3Decl = so_decl[3][i],
3607 });
3608 }
3609 }
3610
3611 static void
3612 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3613 {
3614 struct gl_context *ctx = &brw->ctx;
3615 /* BRW_NEW_TRANSFORM_FEEDBACK */
3616 struct gl_transform_feedback_object *xfb_obj =
3617 ctx->TransformFeedback.CurrentObject;
3618 #if GEN_GEN < 8
3619 const struct gl_transform_feedback_info *linked_xfb_info =
3620 xfb_obj->program->sh.LinkedTransformFeedback;
3621 #else
3622 struct brw_transform_feedback_object *brw_obj =
3623 (struct brw_transform_feedback_object *) xfb_obj;
3624 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3625 #endif
3626
3627 /* Set up the up to 4 output buffers. These are the ranges defined in the
3628 * gl_transform_feedback_object.
3629 */
3630 for (int i = 0; i < 4; i++) {
3631 struct intel_buffer_object *bufferobj =
3632 intel_buffer_object(xfb_obj->Buffers[i]);
3633
3634 if (!bufferobj) {
3635 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3636 sob.SOBufferIndex = i;
3637 }
3638 continue;
3639 }
3640
3641 uint32_t start = xfb_obj->Offset[i];
3642 assert(start % 4 == 0);
3643 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3644 struct brw_bo *bo =
3645 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3646 assert(end <= bo->size);
3647
3648 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3649 sob.SOBufferIndex = i;
3650
3651 sob.SurfaceBaseAddress = rw_bo(bo, start);
3652 #if GEN_GEN < 8
3653 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3654 sob.SurfaceEndAddress = rw_bo(bo, end);
3655 #else
3656 sob.SOBufferEnable = true;
3657 sob.StreamOffsetWriteEnable = true;
3658 sob.StreamOutputBufferOffsetAddressEnable = true;
3659 sob.SOBufferMOCS = mocs_wb;
3660
3661 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3662 sob.StreamOutputBufferOffsetAddress =
3663 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3664
3665 if (brw_obj->zero_offsets) {
3666 /* Zero out the offset and write that to offset_bo */
3667 sob.StreamOffset = 0;
3668 } else {
3669 /* Use offset_bo as the "Stream Offset." */
3670 sob.StreamOffset = 0xFFFFFFFF;
3671 }
3672 #endif
3673 }
3674 }
3675
3676 #if GEN_GEN >= 8
3677 brw_obj->zero_offsets = false;
3678 #endif
3679 }
3680
3681 static bool
3682 query_active(struct gl_query_object *q)
3683 {
3684 return q && q->Active;
3685 }
3686
3687 static void
3688 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3689 const struct brw_vue_map *vue_map)
3690 {
3691 struct gl_context *ctx = &brw->ctx;
3692 /* BRW_NEW_TRANSFORM_FEEDBACK */
3693 struct gl_transform_feedback_object *xfb_obj =
3694 ctx->TransformFeedback.CurrentObject;
3695
3696 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3697 if (active) {
3698 int urb_entry_read_offset = 0;
3699 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3700 urb_entry_read_offset;
3701
3702 sos.SOFunctionEnable = true;
3703 sos.SOStatisticsEnable = true;
3704
3705 /* BRW_NEW_RASTERIZER_DISCARD */
3706 if (ctx->RasterDiscard) {
3707 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3708 sos.RenderingDisable = true;
3709 } else {
3710 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3711 "query active relies on the clipper.\n");
3712 }
3713 }
3714
3715 /* _NEW_LIGHT */
3716 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3717 sos.ReorderMode = TRAILING;
3718
3719 #if GEN_GEN < 8
3720 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3721 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3722 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3723 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3724 #else
3725 const struct gl_transform_feedback_info *linked_xfb_info =
3726 xfb_obj->program->sh.LinkedTransformFeedback;
3727 /* Set buffer pitches; 0 means unbound. */
3728 if (xfb_obj->Buffers[0])
3729 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3730 if (xfb_obj->Buffers[1])
3731 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3732 if (xfb_obj->Buffers[2])
3733 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3734 if (xfb_obj->Buffers[3])
3735 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3736 #endif
3737
3738 /* We always read the whole vertex. This could be reduced at some
3739 * point by reading less and offsetting the register index in the
3740 * SO_DECLs.
3741 */
3742 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3743 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3744 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3745 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3746 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3747 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3748 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3749 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3750 }
3751 }
3752 }
3753
3754 static void
3755 genX(upload_sol)(struct brw_context *brw)
3756 {
3757 struct gl_context *ctx = &brw->ctx;
3758 /* BRW_NEW_TRANSFORM_FEEDBACK */
3759 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3760
3761 if (active) {
3762 genX(upload_3dstate_so_buffers)(brw);
3763
3764 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3765 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3766 }
3767
3768 /* Finally, set up the SOL stage. This command must always follow updates to
3769 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3770 * MMIO register updates (current performed by the kernel at each batch
3771 * emit).
3772 */
3773 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3774 }
3775
3776 static const struct brw_tracked_state genX(sol_state) = {
3777 .dirty = {
3778 .mesa = _NEW_LIGHT,
3779 .brw = BRW_NEW_BATCH |
3780 BRW_NEW_BLORP |
3781 BRW_NEW_RASTERIZER_DISCARD |
3782 BRW_NEW_VUE_MAP_GEOM_OUT |
3783 BRW_NEW_TRANSFORM_FEEDBACK,
3784 },
3785 .emit = genX(upload_sol),
3786 };
3787 #endif
3788
3789 /* ---------------------------------------------------------------------- */
3790
3791 #if GEN_GEN >= 7
3792 static void
3793 genX(upload_ps)(struct brw_context *brw)
3794 {
3795 UNUSED const struct gl_context *ctx = &brw->ctx;
3796 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3797
3798 /* BRW_NEW_FS_PROG_DATA */
3799 const struct brw_wm_prog_data *prog_data =
3800 brw_wm_prog_data(brw->wm.base.prog_data);
3801 const struct brw_stage_state *stage_state = &brw->wm.base;
3802
3803 #if GEN_GEN < 8
3804 #endif
3805
3806 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3807 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3808 * incorrect for subspans where some of the pixels are unlit. We believe
3809 * the bit just didn't take effect in previous generations.
3810 */
3811 ps.VectorMaskEnable = GEN_GEN >= 8;
3812
3813 ps.SamplerCount =
3814 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3815
3816 /* BRW_NEW_FS_PROG_DATA */
3817 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3818
3819 if (prog_data->base.use_alt_mode)
3820 ps.FloatingPointMode = Alternate;
3821
3822 /* Haswell requires the sample mask to be set in this packet as well as
3823 * in 3DSTATE_SAMPLE_MASK; the values should match.
3824 */
3825
3826 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3827 #if GEN_IS_HASWELL
3828 ps.SampleMask = genX(determine_sample_mask(brw));
3829 #endif
3830
3831 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3832 * it implicitly scales for different GT levels (which have some # of
3833 * PSDs).
3834 *
3835 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3836 */
3837 #if GEN_GEN >= 9
3838 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3839 #elif GEN_GEN >= 8
3840 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3841 #else
3842 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3843 #endif
3844
3845 if (prog_data->base.nr_params > 0 ||
3846 prog_data->base.ubo_ranges[0].length > 0)
3847 ps.PushConstantEnable = true;
3848
3849 #if GEN_GEN < 8
3850 /* From the IVB PRM, volume 2 part 1, page 287:
3851 * "This bit is inserted in the PS payload header and made available to
3852 * the DataPort (either via the message header or via header bypass) to
3853 * indicate that oMask data (one or two phases) is included in Render
3854 * Target Write messages. If present, the oMask data is used to mask off
3855 * samples."
3856 */
3857 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3858
3859 /* The hardware wedges if you have this bit set but don't turn on any
3860 * dual source blend factors.
3861 *
3862 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3863 */
3864 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3865 (ctx->Color.BlendEnabled & 1) &&
3866 ctx->Color.Blend[0]._UsesDualSrc;
3867
3868 /* BRW_NEW_FS_PROG_DATA */
3869 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3870 #endif
3871
3872 /* From the documentation for this packet:
3873 * "If the PS kernel does not need the Position XY Offsets to
3874 * compute a Position Value, then this field should be programmed
3875 * to POSOFFSET_NONE."
3876 *
3877 * "SW Recommendation: If the PS kernel needs the Position Offsets
3878 * to compute a Position XY value, this field should match Position
3879 * ZW Interpolation Mode to ensure a consistent position.xyzw
3880 * computation."
3881 *
3882 * We only require XY sample offsets. So, this recommendation doesn't
3883 * look useful at the moment. We might need this in future.
3884 */
3885 if (prog_data->uses_pos_offset)
3886 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3887 else
3888 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3889
3890 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3891 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3892 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3893 prog_data->base.dispatch_grf_start_reg;
3894 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3895 prog_data->dispatch_grf_start_reg_2;
3896
3897 ps.KernelStartPointer0 = stage_state->prog_offset;
3898 ps.KernelStartPointer2 = stage_state->prog_offset +
3899 prog_data->prog_offset_2;
3900
3901 if (prog_data->base.total_scratch) {
3902 ps.ScratchSpaceBasePointer =
3903 rw_bo(stage_state->scratch_bo,
3904 ffs(stage_state->per_thread_scratch) - 11);
3905 }
3906 }
3907 }
3908
3909 static const struct brw_tracked_state genX(ps_state) = {
3910 .dirty = {
3911 .mesa = _NEW_MULTISAMPLE |
3912 (GEN_GEN < 8 ? _NEW_BUFFERS |
3913 _NEW_COLOR
3914 : 0),
3915 .brw = BRW_NEW_BATCH |
3916 BRW_NEW_BLORP |
3917 BRW_NEW_FS_PROG_DATA,
3918 },
3919 .emit = genX(upload_ps),
3920 };
3921 #endif
3922
3923 /* ---------------------------------------------------------------------- */
3924
3925 #if GEN_GEN >= 7
3926 static void
3927 genX(upload_hs_state)(struct brw_context *brw)
3928 {
3929 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3930 struct brw_stage_state *stage_state = &brw->tcs.base;
3931 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3932 const struct brw_vue_prog_data *vue_prog_data =
3933 brw_vue_prog_data(stage_prog_data);
3934
3935 /* BRW_NEW_TES_PROG_DATA */
3936 struct brw_tcs_prog_data *tcs_prog_data =
3937 brw_tcs_prog_data(stage_prog_data);
3938
3939 if (!tcs_prog_data) {
3940 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3941 } else {
3942 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3943 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3944
3945 hs.InstanceCount = tcs_prog_data->instances - 1;
3946 hs.IncludeVertexHandles = true;
3947
3948 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3949 }
3950 }
3951 }
3952
3953 static const struct brw_tracked_state genX(hs_state) = {
3954 .dirty = {
3955 .mesa = 0,
3956 .brw = BRW_NEW_BATCH |
3957 BRW_NEW_BLORP |
3958 BRW_NEW_TCS_PROG_DATA |
3959 BRW_NEW_TESS_PROGRAMS,
3960 },
3961 .emit = genX(upload_hs_state),
3962 };
3963
3964 static void
3965 genX(upload_ds_state)(struct brw_context *brw)
3966 {
3967 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3968 const struct brw_stage_state *stage_state = &brw->tes.base;
3969 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3970
3971 /* BRW_NEW_TES_PROG_DATA */
3972 const struct brw_tes_prog_data *tes_prog_data =
3973 brw_tes_prog_data(stage_prog_data);
3974 const struct brw_vue_prog_data *vue_prog_data =
3975 brw_vue_prog_data(stage_prog_data);
3976
3977 if (!tes_prog_data) {
3978 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3979 } else {
3980 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3981 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3982
3983 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3984 ds.ComputeWCoordinateEnable =
3985 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3986
3987 #if GEN_GEN >= 8
3988 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3989 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3990 ds.UserClipDistanceCullTestEnableBitmask =
3991 vue_prog_data->cull_distance_mask;
3992 #endif
3993 }
3994 }
3995 }
3996
3997 static const struct brw_tracked_state genX(ds_state) = {
3998 .dirty = {
3999 .mesa = 0,
4000 .brw = BRW_NEW_BATCH |
4001 BRW_NEW_BLORP |
4002 BRW_NEW_TESS_PROGRAMS |
4003 BRW_NEW_TES_PROG_DATA,
4004 },
4005 .emit = genX(upload_ds_state),
4006 };
4007
4008 /* ---------------------------------------------------------------------- */
4009
4010 static void
4011 upload_te_state(struct brw_context *brw)
4012 {
4013 /* BRW_NEW_TESS_PROGRAMS */
4014 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4015
4016 /* BRW_NEW_TES_PROG_DATA */
4017 const struct brw_tes_prog_data *tes_prog_data =
4018 brw_tes_prog_data(brw->tes.base.prog_data);
4019
4020 if (active) {
4021 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4022 te.Partitioning = tes_prog_data->partitioning;
4023 te.OutputTopology = tes_prog_data->output_topology;
4024 te.TEDomain = tes_prog_data->domain;
4025 te.TEEnable = true;
4026 te.MaximumTessellationFactorOdd = 63.0;
4027 te.MaximumTessellationFactorNotOdd = 64.0;
4028 }
4029 } else {
4030 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4031 }
4032 }
4033
4034 static const struct brw_tracked_state genX(te_state) = {
4035 .dirty = {
4036 .mesa = 0,
4037 .brw = BRW_NEW_BLORP |
4038 BRW_NEW_CONTEXT |
4039 BRW_NEW_TES_PROG_DATA |
4040 BRW_NEW_TESS_PROGRAMS,
4041 },
4042 .emit = upload_te_state,
4043 };
4044
4045 /* ---------------------------------------------------------------------- */
4046
4047 static void
4048 genX(upload_tes_push_constants)(struct brw_context *brw)
4049 {
4050 struct brw_stage_state *stage_state = &brw->tes.base;
4051 /* BRW_NEW_TESS_PROGRAMS */
4052 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4053
4054 /* BRW_NEW_TES_PROG_DATA */
4055 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4056 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4057 }
4058
4059 static const struct brw_tracked_state genX(tes_push_constants) = {
4060 .dirty = {
4061 .mesa = _NEW_PROGRAM_CONSTANTS,
4062 .brw = BRW_NEW_BATCH |
4063 BRW_NEW_BLORP |
4064 BRW_NEW_TESS_PROGRAMS |
4065 BRW_NEW_TES_PROG_DATA,
4066 },
4067 .emit = genX(upload_tes_push_constants),
4068 };
4069
4070 static void
4071 genX(upload_tcs_push_constants)(struct brw_context *brw)
4072 {
4073 struct brw_stage_state *stage_state = &brw->tcs.base;
4074 /* BRW_NEW_TESS_PROGRAMS */
4075 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4076
4077 /* BRW_NEW_TCS_PROG_DATA */
4078 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4079
4080 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4081 }
4082
4083 static const struct brw_tracked_state genX(tcs_push_constants) = {
4084 .dirty = {
4085 .mesa = _NEW_PROGRAM_CONSTANTS,
4086 .brw = BRW_NEW_BATCH |
4087 BRW_NEW_BLORP |
4088 BRW_NEW_DEFAULT_TESS_LEVELS |
4089 BRW_NEW_TESS_PROGRAMS |
4090 BRW_NEW_TCS_PROG_DATA,
4091 },
4092 .emit = genX(upload_tcs_push_constants),
4093 };
4094
4095 #endif
4096
4097 /* ---------------------------------------------------------------------- */
4098
4099 #if GEN_GEN >= 7
4100 static void
4101 genX(upload_cs_push_constants)(struct brw_context *brw)
4102 {
4103 struct brw_stage_state *stage_state = &brw->cs.base;
4104
4105 /* BRW_NEW_COMPUTE_PROGRAM */
4106 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4107
4108 if (cp) {
4109 /* BRW_NEW_CS_PROG_DATA */
4110 struct brw_cs_prog_data *cs_prog_data =
4111 brw_cs_prog_data(brw->cs.base.prog_data);
4112
4113 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4114 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4115 }
4116 }
4117
4118 const struct brw_tracked_state genX(cs_push_constants) = {
4119 .dirty = {
4120 .mesa = _NEW_PROGRAM_CONSTANTS,
4121 .brw = BRW_NEW_BATCH |
4122 BRW_NEW_BLORP |
4123 BRW_NEW_COMPUTE_PROGRAM |
4124 BRW_NEW_CS_PROG_DATA,
4125 },
4126 .emit = genX(upload_cs_push_constants),
4127 };
4128
4129 /**
4130 * Creates a new CS constant buffer reflecting the current CS program's
4131 * constants, if needed by the CS program.
4132 */
4133 static void
4134 genX(upload_cs_pull_constants)(struct brw_context *brw)
4135 {
4136 struct brw_stage_state *stage_state = &brw->cs.base;
4137
4138 /* BRW_NEW_COMPUTE_PROGRAM */
4139 struct brw_program *cp =
4140 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4141
4142 /* BRW_NEW_CS_PROG_DATA */
4143 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4144
4145 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4146 /* _NEW_PROGRAM_CONSTANTS */
4147 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4148 stage_state, prog_data);
4149 }
4150
4151 const struct brw_tracked_state genX(cs_pull_constants) = {
4152 .dirty = {
4153 .mesa = _NEW_PROGRAM_CONSTANTS,
4154 .brw = BRW_NEW_BATCH |
4155 BRW_NEW_BLORP |
4156 BRW_NEW_COMPUTE_PROGRAM |
4157 BRW_NEW_CS_PROG_DATA,
4158 },
4159 .emit = genX(upload_cs_pull_constants),
4160 };
4161
4162 static void
4163 genX(upload_cs_state)(struct brw_context *brw)
4164 {
4165 if (!brw->cs.base.prog_data)
4166 return;
4167
4168 uint32_t offset;
4169 uint32_t *desc = (uint32_t*) brw_state_batch(
4170 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4171 &offset);
4172
4173 struct brw_stage_state *stage_state = &brw->cs.base;
4174 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4175 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4176 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4177
4178 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4179 brw_emit_buffer_surface_state(
4180 brw, &stage_state->surf_offset[
4181 prog_data->binding_table.shader_time_start],
4182 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4183 brw->shader_time.bo->size, 1,
4184 RELOC_WRITE);
4185 }
4186
4187 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4188 32, &stage_state->bind_bo_offset);
4189
4190 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4191 *
4192 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4193 * the only bits that are changed are scoreboard related: Scoreboard
4194 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4195 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4196 *
4197 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4198 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4199 */
4200 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4201
4202 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4203 if (prog_data->total_scratch) {
4204 uint32_t per_thread_scratch_value;
4205
4206 if (GEN_GEN >= 8) {
4207 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4208 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4209 */
4210 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4211 } else if (GEN_IS_HASWELL) {
4212 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4213 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4214 */
4215 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4216 } else {
4217 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4218 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4219 */
4220 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4221 }
4222 vfe.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
4223 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4224 }
4225
4226 /* If brw->screen->subslice_total is greater than one, then
4227 * devinfo->max_cs_threads stores number of threads per sub-slice;
4228 * thus we need to multiply by that number by subslices to get
4229 * the actual maximum number of threads; the -1 is because the HW
4230 * has a bias of 1 (would not make sense to say the maximum number
4231 * of threads is 0).
4232 */
4233 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4234 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4235 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4236 vfe.ResetGatewayTimer =
4237 Resettingrelativetimerandlatchingtheglobaltimestamp;
4238 #if GEN_GEN < 9
4239 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4240 #endif
4241 #if GEN_GEN == 7
4242 vfe.GPGPUMode = 1;
4243 #endif
4244
4245 /* We are uploading duplicated copies of push constant uniforms for each
4246 * thread. Although the local id data needs to vary per thread, it won't
4247 * change for other uniform data. Unfortunately this duplication is
4248 * required for gen7. As of Haswell, this duplication can be avoided,
4249 * but this older mechanism with duplicated data continues to work.
4250 *
4251 * FINISHME: As of Haswell, we could make use of the
4252 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4253 * field to only store one copy of uniform data.
4254 *
4255 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4256 * which is described in the GPGPU_WALKER command and in the Broadwell
4257 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4258 * Operations => GPGPU Mode => Indirect Payload Storage.
4259 *
4260 * Note: The constant data is built in brw_upload_cs_push_constants
4261 * below.
4262 */
4263 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4264
4265 const uint32_t vfe_curbe_allocation =
4266 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4267 cs_prog_data->push.cross_thread.regs, 2);
4268 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4269 }
4270
4271 if (cs_prog_data->push.total.size > 0) {
4272 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4273 curbe.CURBETotalDataLength =
4274 ALIGN(cs_prog_data->push.total.size, 64);
4275 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4276 }
4277 }
4278
4279 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4280 memcpy(bind, stage_state->surf_offset,
4281 prog_data->binding_table.size_bytes);
4282 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4283 .KernelStartPointer = brw->cs.base.prog_offset,
4284 .SamplerStatePointer = stage_state->sampler_offset,
4285 .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4286 .BindingTablePointer = stage_state->bind_bo_offset,
4287 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4288 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4289 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4290 prog_data->total_shared),
4291 .BarrierEnable = cs_prog_data->uses_barrier,
4292 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4293 .CrossThreadConstantDataReadLength =
4294 cs_prog_data->push.cross_thread.regs,
4295 #endif
4296 };
4297
4298 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4299
4300 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4301 load.InterfaceDescriptorTotalLength =
4302 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4303 load.InterfaceDescriptorDataStartAddress = offset;
4304 }
4305 }
4306
4307 static const struct brw_tracked_state genX(cs_state) = {
4308 .dirty = {
4309 .mesa = _NEW_PROGRAM_CONSTANTS,
4310 .brw = BRW_NEW_BATCH |
4311 BRW_NEW_BLORP |
4312 BRW_NEW_CS_PROG_DATA |
4313 BRW_NEW_SAMPLER_STATE_TABLE |
4314 BRW_NEW_SURFACES,
4315 },
4316 .emit = genX(upload_cs_state)
4317 };
4318
4319 #endif
4320
4321 /* ---------------------------------------------------------------------- */
4322
4323 #if GEN_GEN >= 8
4324 static void
4325 genX(upload_raster)(struct brw_context *brw)
4326 {
4327 const struct gl_context *ctx = &brw->ctx;
4328
4329 /* _NEW_BUFFERS */
4330 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4331
4332 /* _NEW_POLYGON */
4333 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4334
4335 /* _NEW_POINT */
4336 const struct gl_point_attrib *point = &ctx->Point;
4337
4338 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4339 if (brw->polygon_front_bit == render_to_fbo)
4340 raster.FrontWinding = CounterClockwise;
4341
4342 if (polygon->CullFlag) {
4343 switch (polygon->CullFaceMode) {
4344 case GL_FRONT:
4345 raster.CullMode = CULLMODE_FRONT;
4346 break;
4347 case GL_BACK:
4348 raster.CullMode = CULLMODE_BACK;
4349 break;
4350 case GL_FRONT_AND_BACK:
4351 raster.CullMode = CULLMODE_BOTH;
4352 break;
4353 default:
4354 unreachable("not reached");
4355 }
4356 } else {
4357 raster.CullMode = CULLMODE_NONE;
4358 }
4359
4360 raster.SmoothPointEnable = point->SmoothFlag;
4361
4362 raster.DXMultisampleRasterizationEnable =
4363 _mesa_is_multisample_enabled(ctx);
4364
4365 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4366 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4367 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4368
4369 switch (polygon->FrontMode) {
4370 case GL_FILL:
4371 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4372 break;
4373 case GL_LINE:
4374 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4375 break;
4376 case GL_POINT:
4377 raster.FrontFaceFillMode = FILL_MODE_POINT;
4378 break;
4379 default:
4380 unreachable("not reached");
4381 }
4382
4383 switch (polygon->BackMode) {
4384 case GL_FILL:
4385 raster.BackFaceFillMode = FILL_MODE_SOLID;
4386 break;
4387 case GL_LINE:
4388 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4389 break;
4390 case GL_POINT:
4391 raster.BackFaceFillMode = FILL_MODE_POINT;
4392 break;
4393 default:
4394 unreachable("not reached");
4395 }
4396
4397 /* _NEW_LINE */
4398 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4399
4400 #if GEN_GEN == 10
4401 /* _NEW_BUFFERS
4402 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4403 */
4404 const bool multisampled_fbo =
4405 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4406 if (multisampled_fbo)
4407 raster.AntialiasingEnable = false;
4408 #endif
4409
4410 /* _NEW_SCISSOR */
4411 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4412
4413 /* _NEW_TRANSFORM */
4414 if (!ctx->Transform.DepthClamp) {
4415 #if GEN_GEN >= 9
4416 raster.ViewportZFarClipTestEnable = true;
4417 raster.ViewportZNearClipTestEnable = true;
4418 #else
4419 raster.ViewportZClipTestEnable = true;
4420 #endif
4421 }
4422
4423 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4424 #if GEN_GEN >= 9
4425 raster.ConservativeRasterizationEnable =
4426 ctx->IntelConservativeRasterization;
4427 #endif
4428
4429 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4430 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4431
4432 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4433 }
4434 }
4435
4436 static const struct brw_tracked_state genX(raster_state) = {
4437 .dirty = {
4438 .mesa = _NEW_BUFFERS |
4439 _NEW_LINE |
4440 _NEW_MULTISAMPLE |
4441 _NEW_POINT |
4442 _NEW_POLYGON |
4443 _NEW_SCISSOR |
4444 _NEW_TRANSFORM,
4445 .brw = BRW_NEW_BLORP |
4446 BRW_NEW_CONTEXT |
4447 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4448 },
4449 .emit = genX(upload_raster),
4450 };
4451 #endif
4452
4453 /* ---------------------------------------------------------------------- */
4454
4455 #if GEN_GEN >= 8
4456 static void
4457 genX(upload_ps_extra)(struct brw_context *brw)
4458 {
4459 UNUSED struct gl_context *ctx = &brw->ctx;
4460
4461 const struct brw_wm_prog_data *prog_data =
4462 brw_wm_prog_data(brw->wm.base.prog_data);
4463
4464 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4465 psx.PixelShaderValid = true;
4466 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4467 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4468 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4469 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4470 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4471 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4472
4473 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4474 if (prog_data->uses_sample_mask) {
4475 #if GEN_GEN >= 9
4476 if (prog_data->post_depth_coverage)
4477 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4478 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4479 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4480 else
4481 psx.InputCoverageMaskState = ICMS_NORMAL;
4482 #else
4483 psx.PixelShaderUsesInputCoverageMask = true;
4484 #endif
4485 }
4486
4487 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4488 #if GEN_GEN >= 9
4489 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4490 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4491 #endif
4492
4493 /* The stricter cross-primitive coherency guarantees that the hardware
4494 * gives us with the "Accesses UAV" bit set for at least one shader stage
4495 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4496 * are redundant within the current image, atomic counter and SSBO GL
4497 * APIs, which all have very loose ordering and coherency requirements
4498 * and generally rely on the application to insert explicit barriers when
4499 * a shader invocation is expected to see the memory writes performed by
4500 * the invocations of some previous primitive. Regardless of the value
4501 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4502 * cause an in most cases useless DC flush when the lowermost stage with
4503 * the bit set finishes execution.
4504 *
4505 * It would be nice to disable it, but in some cases we can't because on
4506 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4507 * signal (which could be set independently from the coherency mechanism
4508 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4509 * determine whether the hardware skips execution of the fragment shader
4510 * or not via the ThreadDispatchEnable signal. However if we know that
4511 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4512 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4513 * difference so we may just disable it here.
4514 *
4515 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4516 * take into account KillPixels when no depth or stencil writes are
4517 * enabled. In order for occlusion queries to work correctly with no
4518 * attachments, we need to force-enable here.
4519 *
4520 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4521 * _NEW_COLOR
4522 */
4523 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4524 !brw_color_buffer_write_enabled(brw))
4525 psx.PixelShaderHasUAV = true;
4526 }
4527 }
4528
4529 const struct brw_tracked_state genX(ps_extra) = {
4530 .dirty = {
4531 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4532 .brw = BRW_NEW_BLORP |
4533 BRW_NEW_CONTEXT |
4534 BRW_NEW_FRAGMENT_PROGRAM |
4535 BRW_NEW_FS_PROG_DATA |
4536 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4537 },
4538 .emit = genX(upload_ps_extra),
4539 };
4540 #endif
4541
4542 /* ---------------------------------------------------------------------- */
4543
4544 #if GEN_GEN >= 8
4545 static void
4546 genX(upload_ps_blend)(struct brw_context *brw)
4547 {
4548 struct gl_context *ctx = &brw->ctx;
4549
4550 /* _NEW_BUFFERS */
4551 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4552 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4553
4554 /* _NEW_COLOR */
4555 struct gl_colorbuffer_attrib *color = &ctx->Color;
4556
4557 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4558 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4559 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4560
4561 bool alpha_to_one = false;
4562
4563 if (!buffer0_is_integer) {
4564 /* _NEW_MULTISAMPLE */
4565
4566 if (_mesa_is_multisample_enabled(ctx)) {
4567 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4568 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4569 }
4570
4571 pb.AlphaTestEnable = color->AlphaEnabled;
4572 }
4573
4574 /* Used for implementing the following bit of GL_EXT_texture_integer:
4575 * "Per-fragment operations that require floating-point color
4576 * components, including multisample alpha operations, alpha test,
4577 * blending, and dithering, have no effect when the corresponding
4578 * colors are written to an integer color buffer."
4579 *
4580 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4581 * "If drawbuffer zero is not NONE and the buffer it references has an
4582 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4583 * operations are skipped."
4584 */
4585 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4586 GLenum eqRGB = color->Blend[0].EquationRGB;
4587 GLenum eqA = color->Blend[0].EquationA;
4588 GLenum srcRGB = color->Blend[0].SrcRGB;
4589 GLenum dstRGB = color->Blend[0].DstRGB;
4590 GLenum srcA = color->Blend[0].SrcA;
4591 GLenum dstA = color->Blend[0].DstA;
4592
4593 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4594 srcRGB = dstRGB = GL_ONE;
4595
4596 if (eqA == GL_MIN || eqA == GL_MAX)
4597 srcA = dstA = GL_ONE;
4598
4599 /* Due to hardware limitations, the destination may have information
4600 * in an alpha channel even when the format specifies no alpha
4601 * channel. In order to avoid getting any incorrect blending due to
4602 * that alpha channel, coerce the blend factors to values that will
4603 * not read the alpha channel, but will instead use the correct
4604 * implicit value for alpha.
4605 */
4606 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4607 GL_TEXTURE_ALPHA_TYPE)) {
4608 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4609 srcA = brw_fix_xRGB_alpha(srcA);
4610 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4611 dstA = brw_fix_xRGB_alpha(dstA);
4612 }
4613
4614 /* Alpha to One doesn't work with Dual Color Blending. Override
4615 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4616 */
4617 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4618 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4619 srcA = fix_dual_blend_alpha_to_one(srcA);
4620 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4621 dstA = fix_dual_blend_alpha_to_one(dstA);
4622 }
4623
4624 pb.ColorBufferBlendEnable = true;
4625 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4626 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4627 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4628 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4629
4630 pb.IndependentAlphaBlendEnable =
4631 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4632 }
4633 }
4634 }
4635
4636 static const struct brw_tracked_state genX(ps_blend) = {
4637 .dirty = {
4638 .mesa = _NEW_BUFFERS |
4639 _NEW_COLOR |
4640 _NEW_MULTISAMPLE,
4641 .brw = BRW_NEW_BLORP |
4642 BRW_NEW_CONTEXT |
4643 BRW_NEW_FRAGMENT_PROGRAM,
4644 },
4645 .emit = genX(upload_ps_blend)
4646 };
4647 #endif
4648
4649 /* ---------------------------------------------------------------------- */
4650
4651 #if GEN_GEN >= 8
4652 static void
4653 genX(emit_vf_topology)(struct brw_context *brw)
4654 {
4655 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4656 vftopo.PrimitiveTopologyType = brw->primitive;
4657 }
4658 }
4659
4660 static const struct brw_tracked_state genX(vf_topology) = {
4661 .dirty = {
4662 .mesa = 0,
4663 .brw = BRW_NEW_BLORP |
4664 BRW_NEW_PRIMITIVE,
4665 },
4666 .emit = genX(emit_vf_topology),
4667 };
4668 #endif
4669
4670 /* ---------------------------------------------------------------------- */
4671
4672 #if GEN_GEN >= 7
4673 static void
4674 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4675 struct brw_bo *bo,
4676 uint32_t offset_in_bytes,
4677 uint32_t report_id)
4678 {
4679 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4680 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4681 mi_rpc.ReportID = report_id;
4682 }
4683 }
4684 #endif
4685
4686 /* ---------------------------------------------------------------------- */
4687
4688 /**
4689 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4690 */
4691 static void
4692 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4693 struct brw_stage_state *stage_state)
4694 {
4695 #if GEN_GEN >= 7
4696 static const uint16_t packet_headers[] = {
4697 [MESA_SHADER_VERTEX] = 43,
4698 [MESA_SHADER_TESS_CTRL] = 44,
4699 [MESA_SHADER_TESS_EVAL] = 45,
4700 [MESA_SHADER_GEOMETRY] = 46,
4701 [MESA_SHADER_FRAGMENT] = 47,
4702 };
4703
4704 /* Ivybridge requires a workaround flush before VS packets. */
4705 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4706 stage_state->stage == MESA_SHADER_VERTEX) {
4707 gen7_emit_vs_workaround_flush(brw);
4708 }
4709
4710 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4711 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4712 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4713 }
4714 #endif
4715 }
4716
4717 UNUSED static bool
4718 has_component(mesa_format format, int i)
4719 {
4720 if (_mesa_is_format_color_format(format))
4721 return _mesa_format_has_color_component(format, i);
4722
4723 /* depth and stencil have only one component */
4724 return i == 0;
4725 }
4726
4727 /**
4728 * Upload SAMPLER_BORDER_COLOR_STATE.
4729 */
4730 static void
4731 genX(upload_default_color)(struct brw_context *brw,
4732 const struct gl_sampler_object *sampler,
4733 mesa_format format, GLenum base_format,
4734 bool is_integer_format, bool is_stencil_sampling,
4735 uint32_t *sdc_offset)
4736 {
4737 union gl_color_union color;
4738
4739 switch (base_format) {
4740 case GL_DEPTH_COMPONENT:
4741 /* GL specs that border color for depth textures is taken from the
4742 * R channel, while the hardware uses A. Spam R into all the
4743 * channels for safety.
4744 */
4745 color.ui[0] = sampler->BorderColor.ui[0];
4746 color.ui[1] = sampler->BorderColor.ui[0];
4747 color.ui[2] = sampler->BorderColor.ui[0];
4748 color.ui[3] = sampler->BorderColor.ui[0];
4749 break;
4750 case GL_ALPHA:
4751 color.ui[0] = 0u;
4752 color.ui[1] = 0u;
4753 color.ui[2] = 0u;
4754 color.ui[3] = sampler->BorderColor.ui[3];
4755 break;
4756 case GL_INTENSITY:
4757 color.ui[0] = sampler->BorderColor.ui[0];
4758 color.ui[1] = sampler->BorderColor.ui[0];
4759 color.ui[2] = sampler->BorderColor.ui[0];
4760 color.ui[3] = sampler->BorderColor.ui[0];
4761 break;
4762 case GL_LUMINANCE:
4763 color.ui[0] = sampler->BorderColor.ui[0];
4764 color.ui[1] = sampler->BorderColor.ui[0];
4765 color.ui[2] = sampler->BorderColor.ui[0];
4766 color.ui[3] = float_as_int(1.0);
4767 break;
4768 case GL_LUMINANCE_ALPHA:
4769 color.ui[0] = sampler->BorderColor.ui[0];
4770 color.ui[1] = sampler->BorderColor.ui[0];
4771 color.ui[2] = sampler->BorderColor.ui[0];
4772 color.ui[3] = sampler->BorderColor.ui[3];
4773 break;
4774 default:
4775 color.ui[0] = sampler->BorderColor.ui[0];
4776 color.ui[1] = sampler->BorderColor.ui[1];
4777 color.ui[2] = sampler->BorderColor.ui[2];
4778 color.ui[3] = sampler->BorderColor.ui[3];
4779 break;
4780 }
4781
4782 /* In some cases we use an RGBA surface format for GL RGB textures,
4783 * where we've initialized the A channel to 1.0. We also have to set
4784 * the border color alpha to 1.0 in that case.
4785 */
4786 if (base_format == GL_RGB)
4787 color.ui[3] = float_as_int(1.0);
4788
4789 int alignment = 32;
4790 if (GEN_GEN >= 8) {
4791 alignment = 64;
4792 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4793 alignment = 512;
4794 }
4795
4796 uint32_t *sdc = brw_state_batch(
4797 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4798 alignment, sdc_offset);
4799
4800 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4801
4802 #define ASSIGN(dst, src) \
4803 do { \
4804 dst = src; \
4805 } while (0)
4806
4807 #define ASSIGNu16(dst, src) \
4808 do { \
4809 dst = (uint16_t)src; \
4810 } while (0)
4811
4812 #define ASSIGNu8(dst, src) \
4813 do { \
4814 dst = (uint8_t)src; \
4815 } while (0)
4816
4817 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4818 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4819 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4820 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4821 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4822
4823 #if GEN_GEN >= 8
4824 /* On Broadwell, the border color is represented as four 32-bit floats,
4825 * integers, or unsigned values, interpreted according to the surface
4826 * format. This matches the sampler->BorderColor union exactly; just
4827 * memcpy the values.
4828 */
4829 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4830 #elif GEN_IS_HASWELL
4831 if (is_integer_format || is_stencil_sampling) {
4832 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4833 const int bits_per_channel =
4834 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4835
4836 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4837 * "If any color channel is missing from the surface format,
4838 * corresponding border color should be programmed as zero and if
4839 * alpha channel is missing, corresponding Alpha border color should
4840 * be programmed as 1."
4841 */
4842 unsigned c[4] = { 0, 0, 0, 1 };
4843 for (int i = 0; i < 4; i++) {
4844 if (has_component(format, i))
4845 c[i] = color.ui[i];
4846 }
4847
4848 switch (bits_per_channel) {
4849 case 8:
4850 /* Copy RGBA in order. */
4851 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4852 break;
4853 case 10:
4854 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4855 case 16:
4856 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4857 break;
4858 case 32:
4859 if (base_format == GL_RG) {
4860 /* Careful inspection of the tables reveals that for RG32 formats,
4861 * the green channel needs to go where blue normally belongs.
4862 */
4863 state.BorderColor32bitRed = c[0];
4864 state.BorderColor32bitBlue = c[1];
4865 state.BorderColor32bitAlpha = 1;
4866 } else {
4867 /* Copy RGBA in order. */
4868 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4869 }
4870 break;
4871 default:
4872 assert(!"Invalid number of bits per channel in integer format.");
4873 break;
4874 }
4875 } else {
4876 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4877 }
4878 #elif GEN_GEN == 5 || GEN_GEN == 6
4879 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4880 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4881 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4882
4883 #define MESA_FLOAT_TO_HALF(dst, src) \
4884 dst = _mesa_float_to_half(src);
4885
4886 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4887
4888 #undef MESA_FLOAT_TO_HALF
4889
4890 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4891 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4892 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4893 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4894
4895 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4896 #elif GEN_GEN == 4
4897 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4898 #else
4899 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4900 #endif
4901
4902 #undef ASSIGN
4903 #undef BORDER_COLOR_ATTR
4904
4905 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4906 }
4907
4908 static uint32_t
4909 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4910 {
4911 switch (wrap) {
4912 case GL_REPEAT:
4913 return TCM_WRAP;
4914 case GL_CLAMP:
4915 #if GEN_GEN >= 8
4916 /* GL_CLAMP is the weird mode where coordinates are clamped to
4917 * [0.0, 1.0], so linear filtering of coordinates outside of
4918 * [0.0, 1.0] give you half edge texel value and half border
4919 * color.
4920 *
4921 * Gen8+ supports this natively.
4922 */
4923 return TCM_HALF_BORDER;
4924 #else
4925 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4926 * and set clamp_border here, which gets the result desired.
4927 * We just use clamp(_to_edge) for nearest, because for nearest
4928 * clamping to 1.0 gives border color instead of the desired
4929 * edge texels.
4930 */
4931 if (using_nearest)
4932 return TCM_CLAMP;
4933 else
4934 return TCM_CLAMP_BORDER;
4935 #endif
4936 case GL_CLAMP_TO_EDGE:
4937 return TCM_CLAMP;
4938 case GL_CLAMP_TO_BORDER:
4939 return TCM_CLAMP_BORDER;
4940 case GL_MIRRORED_REPEAT:
4941 return TCM_MIRROR;
4942 case GL_MIRROR_CLAMP_TO_EDGE:
4943 return TCM_MIRROR_ONCE;
4944 default:
4945 return TCM_WRAP;
4946 }
4947 }
4948
4949 /**
4950 * Return true if the given wrap mode requires the border color to exist.
4951 */
4952 static bool
4953 wrap_mode_needs_border_color(unsigned wrap_mode)
4954 {
4955 #if GEN_GEN >= 8
4956 return wrap_mode == TCM_CLAMP_BORDER ||
4957 wrap_mode == TCM_HALF_BORDER;
4958 #else
4959 return wrap_mode == TCM_CLAMP_BORDER;
4960 #endif
4961 }
4962
4963 /**
4964 * Sets the sampler state for a single unit based off of the sampler key
4965 * entry.
4966 */
4967 static void
4968 genX(update_sampler_state)(struct brw_context *brw,
4969 GLenum target, bool tex_cube_map_seamless,
4970 GLfloat tex_unit_lod_bias,
4971 mesa_format format, GLenum base_format,
4972 const struct gl_texture_object *texObj,
4973 const struct gl_sampler_object *sampler,
4974 uint32_t *sampler_state,
4975 uint32_t batch_offset_for_sampler_state)
4976 {
4977 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4978
4979 /* Select min and mip filters. */
4980 switch (sampler->MinFilter) {
4981 case GL_NEAREST:
4982 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4983 samp_st.MipModeFilter = MIPFILTER_NONE;
4984 break;
4985 case GL_LINEAR:
4986 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4987 samp_st.MipModeFilter = MIPFILTER_NONE;
4988 break;
4989 case GL_NEAREST_MIPMAP_NEAREST:
4990 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4991 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4992 break;
4993 case GL_LINEAR_MIPMAP_NEAREST:
4994 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4995 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4996 break;
4997 case GL_NEAREST_MIPMAP_LINEAR:
4998 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4999 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5000 break;
5001 case GL_LINEAR_MIPMAP_LINEAR:
5002 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5003 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5004 break;
5005 default:
5006 unreachable("not reached");
5007 }
5008
5009 /* Select mag filter. */
5010 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5011 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5012
5013 /* Enable anisotropic filtering if desired. */
5014 samp_st.MaximumAnisotropy = RATIO21;
5015
5016 if (sampler->MaxAnisotropy > 1.0f) {
5017 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5018 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5019 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5020 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5021
5022 if (sampler->MaxAnisotropy > 2.0f) {
5023 samp_st.MaximumAnisotropy =
5024 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5025 }
5026 }
5027
5028 /* Set address rounding bits if not using nearest filtering. */
5029 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5030 samp_st.UAddressMinFilterRoundingEnable = true;
5031 samp_st.VAddressMinFilterRoundingEnable = true;
5032 samp_st.RAddressMinFilterRoundingEnable = true;
5033 }
5034
5035 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5036 samp_st.UAddressMagFilterRoundingEnable = true;
5037 samp_st.VAddressMagFilterRoundingEnable = true;
5038 samp_st.RAddressMagFilterRoundingEnable = true;
5039 }
5040
5041 bool either_nearest =
5042 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5043 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
5044 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
5045 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
5046
5047 if (target == GL_TEXTURE_CUBE_MAP ||
5048 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5049 /* Cube maps must use the same wrap mode for all three coordinate
5050 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5051 *
5052 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5053 * integer formats. Fall back to CLAMP for now.
5054 */
5055 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5056 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5057 wrap_s = TCM_CUBE;
5058 wrap_t = TCM_CUBE;
5059 wrap_r = TCM_CUBE;
5060 } else {
5061 wrap_s = TCM_CLAMP;
5062 wrap_t = TCM_CLAMP;
5063 wrap_r = TCM_CLAMP;
5064 }
5065 } else if (target == GL_TEXTURE_1D) {
5066 /* There's a bug in 1D texture sampling - it actually pays
5067 * attention to the wrap_t value, though it should not.
5068 * Override the wrap_t value here to GL_REPEAT to keep
5069 * any nonexistent border pixels from floating in.
5070 */
5071 wrap_t = TCM_WRAP;
5072 }
5073
5074 samp_st.TCXAddressControlMode = wrap_s;
5075 samp_st.TCYAddressControlMode = wrap_t;
5076 samp_st.TCZAddressControlMode = wrap_r;
5077
5078 samp_st.ShadowFunction =
5079 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5080 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5081
5082 #if GEN_GEN >= 7
5083 /* Set shadow function. */
5084 samp_st.AnisotropicAlgorithm =
5085 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5086 EWAApproximation : LEGACY;
5087 #endif
5088
5089 #if GEN_GEN >= 6
5090 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5091 #endif
5092
5093 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5094 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5095 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5096 samp_st.TextureLODBias =
5097 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5098
5099 #if GEN_GEN == 6
5100 samp_st.BaseMipLevel =
5101 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5102 samp_st.MinandMagStateNotEqual =
5103 samp_st.MinModeFilter != samp_st.MagModeFilter;
5104 #endif
5105
5106 /* Upload the border color if necessary. If not, just point it at
5107 * offset 0 (the start of the batch) - the color should be ignored,
5108 * but that address won't fault in case something reads it anyway.
5109 */
5110 uint32_t border_color_offset = 0;
5111 if (wrap_mode_needs_border_color(wrap_s) ||
5112 wrap_mode_needs_border_color(wrap_t) ||
5113 wrap_mode_needs_border_color(wrap_r)) {
5114 genX(upload_default_color)(brw, sampler, format, base_format,
5115 texObj->_IsIntegerFormat,
5116 texObj->StencilSampling,
5117 &border_color_offset);
5118 }
5119 #if GEN_GEN < 6
5120 samp_st.BorderColorPointer =
5121 ro_bo(brw->batch.state.bo, border_color_offset);
5122 #else
5123 samp_st.BorderColorPointer = border_color_offset;
5124 #endif
5125
5126 #if GEN_GEN >= 8
5127 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5128 #else
5129 samp_st.LODPreClampEnable = true;
5130 #endif
5131
5132 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5133 }
5134
5135 static void
5136 update_sampler_state(struct brw_context *brw,
5137 int unit,
5138 uint32_t *sampler_state,
5139 uint32_t batch_offset_for_sampler_state)
5140 {
5141 struct gl_context *ctx = &brw->ctx;
5142 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5143 const struct gl_texture_object *texObj = texUnit->_Current;
5144 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5145
5146 /* These don't use samplers at all. */
5147 if (texObj->Target == GL_TEXTURE_BUFFER)
5148 return;
5149
5150 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5151 genX(update_sampler_state)(brw, texObj->Target,
5152 ctx->Texture.CubeMapSeamless,
5153 texUnit->LodBias,
5154 firstImage->TexFormat, firstImage->_BaseFormat,
5155 texObj, sampler,
5156 sampler_state, batch_offset_for_sampler_state);
5157 }
5158
5159 static void
5160 genX(upload_sampler_state_table)(struct brw_context *brw,
5161 struct gl_program *prog,
5162 struct brw_stage_state *stage_state)
5163 {
5164 struct gl_context *ctx = &brw->ctx;
5165 uint32_t sampler_count = stage_state->sampler_count;
5166
5167 GLbitfield SamplersUsed = prog->SamplersUsed;
5168
5169 if (sampler_count == 0)
5170 return;
5171
5172 /* SAMPLER_STATE is 4 DWords on all platforms. */
5173 const int dwords = GENX(SAMPLER_STATE_length);
5174 const int size_in_bytes = dwords * sizeof(uint32_t);
5175
5176 uint32_t *sampler_state = brw_state_batch(brw,
5177 sampler_count * size_in_bytes,
5178 32, &stage_state->sampler_offset);
5179 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5180
5181 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5182
5183 for (unsigned s = 0; s < sampler_count; s++) {
5184 if (SamplersUsed & (1 << s)) {
5185 const unsigned unit = prog->SamplerUnits[s];
5186 if (ctx->Texture.Unit[unit]._Current) {
5187 update_sampler_state(brw, unit, sampler_state,
5188 batch_offset_for_sampler_state);
5189 }
5190 }
5191
5192 sampler_state += dwords;
5193 batch_offset_for_sampler_state += size_in_bytes;
5194 }
5195
5196 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5197 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5198 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5199 } else {
5200 /* Flag that the sampler state table pointer has changed; later atoms
5201 * will handle it.
5202 */
5203 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5204 }
5205 }
5206
5207 static void
5208 genX(upload_fs_samplers)(struct brw_context *brw)
5209 {
5210 /* BRW_NEW_FRAGMENT_PROGRAM */
5211 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5212 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5213 }
5214
5215 static const struct brw_tracked_state genX(fs_samplers) = {
5216 .dirty = {
5217 .mesa = _NEW_TEXTURE,
5218 .brw = BRW_NEW_BATCH |
5219 BRW_NEW_BLORP |
5220 BRW_NEW_FRAGMENT_PROGRAM,
5221 },
5222 .emit = genX(upload_fs_samplers),
5223 };
5224
5225 static void
5226 genX(upload_vs_samplers)(struct brw_context *brw)
5227 {
5228 /* BRW_NEW_VERTEX_PROGRAM */
5229 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5230 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5231 }
5232
5233 static const struct brw_tracked_state genX(vs_samplers) = {
5234 .dirty = {
5235 .mesa = _NEW_TEXTURE,
5236 .brw = BRW_NEW_BATCH |
5237 BRW_NEW_BLORP |
5238 BRW_NEW_VERTEX_PROGRAM,
5239 },
5240 .emit = genX(upload_vs_samplers),
5241 };
5242
5243 #if GEN_GEN >= 6
5244 static void
5245 genX(upload_gs_samplers)(struct brw_context *brw)
5246 {
5247 /* BRW_NEW_GEOMETRY_PROGRAM */
5248 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5249 if (!gs)
5250 return;
5251
5252 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5253 }
5254
5255
5256 static const struct brw_tracked_state genX(gs_samplers) = {
5257 .dirty = {
5258 .mesa = _NEW_TEXTURE,
5259 .brw = BRW_NEW_BATCH |
5260 BRW_NEW_BLORP |
5261 BRW_NEW_GEOMETRY_PROGRAM,
5262 },
5263 .emit = genX(upload_gs_samplers),
5264 };
5265 #endif
5266
5267 #if GEN_GEN >= 7
5268 static void
5269 genX(upload_tcs_samplers)(struct brw_context *brw)
5270 {
5271 /* BRW_NEW_TESS_PROGRAMS */
5272 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5273 if (!tcs)
5274 return;
5275
5276 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5277 }
5278
5279 static const struct brw_tracked_state genX(tcs_samplers) = {
5280 .dirty = {
5281 .mesa = _NEW_TEXTURE,
5282 .brw = BRW_NEW_BATCH |
5283 BRW_NEW_BLORP |
5284 BRW_NEW_TESS_PROGRAMS,
5285 },
5286 .emit = genX(upload_tcs_samplers),
5287 };
5288 #endif
5289
5290 #if GEN_GEN >= 7
5291 static void
5292 genX(upload_tes_samplers)(struct brw_context *brw)
5293 {
5294 /* BRW_NEW_TESS_PROGRAMS */
5295 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5296 if (!tes)
5297 return;
5298
5299 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5300 }
5301
5302 static const struct brw_tracked_state genX(tes_samplers) = {
5303 .dirty = {
5304 .mesa = _NEW_TEXTURE,
5305 .brw = BRW_NEW_BATCH |
5306 BRW_NEW_BLORP |
5307 BRW_NEW_TESS_PROGRAMS,
5308 },
5309 .emit = genX(upload_tes_samplers),
5310 };
5311 #endif
5312
5313 #if GEN_GEN >= 7
5314 static void
5315 genX(upload_cs_samplers)(struct brw_context *brw)
5316 {
5317 /* BRW_NEW_COMPUTE_PROGRAM */
5318 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5319 if (!cs)
5320 return;
5321
5322 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5323 }
5324
5325 const struct brw_tracked_state genX(cs_samplers) = {
5326 .dirty = {
5327 .mesa = _NEW_TEXTURE,
5328 .brw = BRW_NEW_BATCH |
5329 BRW_NEW_BLORP |
5330 BRW_NEW_COMPUTE_PROGRAM,
5331 },
5332 .emit = genX(upload_cs_samplers),
5333 };
5334 #endif
5335
5336 /* ---------------------------------------------------------------------- */
5337
5338 #if GEN_GEN <= 5
5339
5340 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5341 {
5342 struct gl_context *ctx = &brw->ctx;
5343
5344 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5345 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5346 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5347 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5348 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5349 }
5350 }
5351
5352 static const struct brw_tracked_state genX(blend_constant_color) = {
5353 .dirty = {
5354 .mesa = _NEW_COLOR,
5355 .brw = BRW_NEW_CONTEXT |
5356 BRW_NEW_BLORP,
5357 },
5358 .emit = genX(upload_blend_constant_color)
5359 };
5360 #endif
5361
5362 /* ---------------------------------------------------------------------- */
5363
5364 void
5365 genX(init_atoms)(struct brw_context *brw)
5366 {
5367 #if GEN_GEN < 6
5368 static const struct brw_tracked_state *render_atoms[] =
5369 {
5370 /* Once all the programs are done, we know how large urb entry
5371 * sizes need to be and can decide if we need to change the urb
5372 * layout.
5373 */
5374 &brw_curbe_offsets,
5375 &brw_recalculate_urb_fence,
5376
5377 &genX(cc_vp),
5378 &genX(color_calc_state),
5379
5380 /* Surface state setup. Must come before the VS/WM unit. The binding
5381 * table upload must be last.
5382 */
5383 &brw_vs_pull_constants,
5384 &brw_wm_pull_constants,
5385 &brw_renderbuffer_surfaces,
5386 &brw_renderbuffer_read_surfaces,
5387 &brw_texture_surfaces,
5388 &brw_vs_binding_table,
5389 &brw_wm_binding_table,
5390
5391 &genX(fs_samplers),
5392 &genX(vs_samplers),
5393
5394 /* These set up state for brw_psp_urb_cbs */
5395 &genX(wm_state),
5396 &genX(sf_clip_viewport),
5397 &genX(sf_state),
5398 &genX(vs_state), /* always required, enabled or not */
5399 &genX(clip_state),
5400 &genX(gs_state),
5401
5402 /* Command packets:
5403 */
5404 &brw_binding_table_pointers,
5405 &genX(blend_constant_color),
5406
5407 &brw_depthbuffer,
5408
5409 &genX(polygon_stipple),
5410 &genX(polygon_stipple_offset),
5411
5412 &genX(line_stipple),
5413
5414 &brw_psp_urb_cbs,
5415
5416 &genX(drawing_rect),
5417 &brw_indices, /* must come before brw_vertices */
5418 &genX(index_buffer),
5419 &genX(vertices),
5420
5421 &brw_constant_buffer
5422 };
5423 #elif GEN_GEN == 6
5424 static const struct brw_tracked_state *render_atoms[] =
5425 {
5426 &genX(sf_clip_viewport),
5427
5428 /* Command packets: */
5429
5430 &genX(cc_vp),
5431
5432 &gen6_urb,
5433 &genX(blend_state), /* must do before cc unit */
5434 &genX(color_calc_state), /* must do before cc unit */
5435 &genX(depth_stencil_state), /* must do before cc unit */
5436
5437 &genX(vs_push_constants), /* Before vs_state */
5438 &genX(gs_push_constants), /* Before gs_state */
5439 &genX(wm_push_constants), /* Before wm_state */
5440
5441 /* Surface state setup. Must come before the VS/WM unit. The binding
5442 * table upload must be last.
5443 */
5444 &brw_vs_pull_constants,
5445 &brw_vs_ubo_surfaces,
5446 &brw_gs_pull_constants,
5447 &brw_gs_ubo_surfaces,
5448 &brw_wm_pull_constants,
5449 &brw_wm_ubo_surfaces,
5450 &gen6_renderbuffer_surfaces,
5451 &brw_renderbuffer_read_surfaces,
5452 &brw_texture_surfaces,
5453 &gen6_sol_surface,
5454 &brw_vs_binding_table,
5455 &gen6_gs_binding_table,
5456 &brw_wm_binding_table,
5457
5458 &genX(fs_samplers),
5459 &genX(vs_samplers),
5460 &genX(gs_samplers),
5461 &gen6_sampler_state,
5462 &genX(multisample_state),
5463
5464 &genX(vs_state),
5465 &genX(gs_state),
5466 &genX(clip_state),
5467 &genX(sf_state),
5468 &genX(wm_state),
5469
5470 &genX(scissor_state),
5471
5472 &gen6_binding_table_pointers,
5473
5474 &brw_depthbuffer,
5475
5476 &genX(polygon_stipple),
5477 &genX(polygon_stipple_offset),
5478
5479 &genX(line_stipple),
5480
5481 &genX(drawing_rect),
5482
5483 &brw_indices, /* must come before brw_vertices */
5484 &genX(index_buffer),
5485 &genX(vertices),
5486 };
5487 #elif GEN_GEN == 7
5488 static const struct brw_tracked_state *render_atoms[] =
5489 {
5490 /* Command packets: */
5491
5492 &genX(cc_vp),
5493 &genX(sf_clip_viewport),
5494
5495 &gen7_l3_state,
5496 &gen7_push_constant_space,
5497 &gen7_urb,
5498 &genX(blend_state), /* must do before cc unit */
5499 &genX(color_calc_state), /* must do before cc unit */
5500 &genX(depth_stencil_state), /* must do before cc unit */
5501
5502 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5503 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5504 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5505 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5506 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5507
5508 &genX(vs_push_constants), /* Before vs_state */
5509 &genX(tcs_push_constants),
5510 &genX(tes_push_constants),
5511 &genX(gs_push_constants), /* Before gs_state */
5512 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5513
5514 /* Surface state setup. Must come before the VS/WM unit. The binding
5515 * table upload must be last.
5516 */
5517 &brw_vs_pull_constants,
5518 &brw_vs_ubo_surfaces,
5519 &brw_tcs_pull_constants,
5520 &brw_tcs_ubo_surfaces,
5521 &brw_tes_pull_constants,
5522 &brw_tes_ubo_surfaces,
5523 &brw_gs_pull_constants,
5524 &brw_gs_ubo_surfaces,
5525 &brw_wm_pull_constants,
5526 &brw_wm_ubo_surfaces,
5527 &gen6_renderbuffer_surfaces,
5528 &brw_renderbuffer_read_surfaces,
5529 &brw_texture_surfaces,
5530
5531 &genX(push_constant_packets),
5532
5533 &brw_vs_binding_table,
5534 &brw_tcs_binding_table,
5535 &brw_tes_binding_table,
5536 &brw_gs_binding_table,
5537 &brw_wm_binding_table,
5538
5539 &genX(fs_samplers),
5540 &genX(vs_samplers),
5541 &genX(tcs_samplers),
5542 &genX(tes_samplers),
5543 &genX(gs_samplers),
5544 &genX(multisample_state),
5545
5546 &genX(vs_state),
5547 &genX(hs_state),
5548 &genX(te_state),
5549 &genX(ds_state),
5550 &genX(gs_state),
5551 &genX(sol_state),
5552 &genX(clip_state),
5553 &genX(sbe_state),
5554 &genX(sf_state),
5555 &genX(wm_state),
5556 &genX(ps_state),
5557
5558 &genX(scissor_state),
5559
5560 &gen7_depthbuffer,
5561
5562 &genX(polygon_stipple),
5563 &genX(polygon_stipple_offset),
5564
5565 &genX(line_stipple),
5566
5567 &genX(drawing_rect),
5568
5569 &brw_indices, /* must come before brw_vertices */
5570 &genX(index_buffer),
5571 &genX(vertices),
5572
5573 #if GEN_IS_HASWELL
5574 &genX(cut_index),
5575 #endif
5576 };
5577 #elif GEN_GEN >= 8
5578 static const struct brw_tracked_state *render_atoms[] =
5579 {
5580 &genX(cc_vp),
5581 &genX(sf_clip_viewport),
5582
5583 &gen7_l3_state,
5584 &gen7_push_constant_space,
5585 &gen7_urb,
5586 &genX(blend_state),
5587 &genX(color_calc_state),
5588
5589 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5590 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5591 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5592 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5593 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5594
5595 &genX(vs_push_constants), /* Before vs_state */
5596 &genX(tcs_push_constants),
5597 &genX(tes_push_constants),
5598 &genX(gs_push_constants), /* Before gs_state */
5599 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5600
5601 /* Surface state setup. Must come before the VS/WM unit. The binding
5602 * table upload must be last.
5603 */
5604 &brw_vs_pull_constants,
5605 &brw_vs_ubo_surfaces,
5606 &brw_tcs_pull_constants,
5607 &brw_tcs_ubo_surfaces,
5608 &brw_tes_pull_constants,
5609 &brw_tes_ubo_surfaces,
5610 &brw_gs_pull_constants,
5611 &brw_gs_ubo_surfaces,
5612 &brw_wm_pull_constants,
5613 &brw_wm_ubo_surfaces,
5614 &gen6_renderbuffer_surfaces,
5615 &brw_renderbuffer_read_surfaces,
5616 &brw_texture_surfaces,
5617
5618 &genX(push_constant_packets),
5619
5620 &brw_vs_binding_table,
5621 &brw_tcs_binding_table,
5622 &brw_tes_binding_table,
5623 &brw_gs_binding_table,
5624 &brw_wm_binding_table,
5625
5626 &genX(fs_samplers),
5627 &genX(vs_samplers),
5628 &genX(tcs_samplers),
5629 &genX(tes_samplers),
5630 &genX(gs_samplers),
5631 &genX(multisample_state),
5632
5633 &genX(vs_state),
5634 &genX(hs_state),
5635 &genX(te_state),
5636 &genX(ds_state),
5637 &genX(gs_state),
5638 &genX(sol_state),
5639 &genX(clip_state),
5640 &genX(raster_state),
5641 &genX(sbe_state),
5642 &genX(sf_state),
5643 &genX(ps_blend),
5644 &genX(ps_extra),
5645 &genX(ps_state),
5646 &genX(depth_stencil_state),
5647 &genX(wm_state),
5648
5649 &genX(scissor_state),
5650
5651 &gen7_depthbuffer,
5652
5653 &genX(polygon_stipple),
5654 &genX(polygon_stipple_offset),
5655
5656 &genX(line_stipple),
5657
5658 &genX(drawing_rect),
5659
5660 &genX(vf_topology),
5661
5662 &brw_indices,
5663 &genX(index_buffer),
5664 &genX(vertices),
5665
5666 &genX(cut_index),
5667 &gen8_pma_fix,
5668 };
5669 #endif
5670
5671 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5672 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5673 render_atoms, ARRAY_SIZE(render_atoms));
5674
5675 #if GEN_GEN >= 7
5676 static const struct brw_tracked_state *compute_atoms[] =
5677 {
5678 &gen7_l3_state,
5679 &brw_cs_image_surfaces,
5680 &genX(cs_push_constants),
5681 &genX(cs_pull_constants),
5682 &brw_cs_ubo_surfaces,
5683 &brw_cs_texture_surfaces,
5684 &brw_cs_work_groups_surface,
5685 &genX(cs_samplers),
5686 &genX(cs_state),
5687 };
5688
5689 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5690 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5691 compute_atoms, ARRAY_SIZE(compute_atoms));
5692
5693 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5694 #endif
5695 }