ecffa2e8e86008289a96d99e3435d8747ced2903
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "dev/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "genX_boilerplate.h"
37
38 #include "brw_context.h"
39 #include "brw_draw.h"
40 #include "brw_multisample_state.h"
41 #include "brw_state.h"
42 #include "brw_wm.h"
43 #include "brw_util.h"
44
45 #include "intel_batchbuffer.h"
46 #include "intel_buffer_objects.h"
47 #include "intel_fbo.h"
48
49 #include "main/enums.h"
50 #include "main/fbobject.h"
51 #include "main/framebuffer.h"
52 #include "main/glformats.h"
53 #include "main/samplerobj.h"
54 #include "main/shaderapi.h"
55 #include "main/stencil.h"
56 #include "main/transformfeedback.h"
57 #include "main/varray.h"
58 #include "main/viewport.h"
59 #include "util/half_float.h"
60
61 #if GEN_GEN == 4
62 static struct brw_address
63 KSP(struct brw_context *brw, uint32_t offset)
64 {
65 return ro_bo(brw->cache.bo, offset);
66 }
67 #else
68 static uint32_t
69 KSP(UNUSED struct brw_context *brw, uint32_t offset)
70 {
71 return offset;
72 }
73 #endif
74
75 #if GEN_GEN >= 7
76 MAYBE_UNUSED static void
77 emit_lrm(struct brw_context *brw, uint32_t reg, struct brw_address addr)
78 {
79 brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_MEM), lrm) {
80 lrm.RegisterAddress = reg;
81 lrm.MemoryAddress = addr;
82 }
83 }
84 #endif
85
86 MAYBE_UNUSED static void
87 emit_lri(struct brw_context *brw, uint32_t reg, uint32_t imm)
88 {
89 brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_IMM), lri) {
90 lri.RegisterOffset = reg;
91 lri.DataDWord = imm;
92 }
93 }
94
95 #if GEN_IS_HASWELL || GEN_GEN >= 8
96 MAYBE_UNUSED static void
97 emit_lrr(struct brw_context *brw, uint32_t dst, uint32_t src)
98 {
99 brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_REG), lrr) {
100 lrr.SourceRegisterAddress = src;
101 lrr.DestinationRegisterAddress = dst;
102 }
103 }
104 #endif
105
106 /**
107 * Polygon stipple packet
108 */
109 static void
110 genX(upload_polygon_stipple)(struct brw_context *brw)
111 {
112 struct gl_context *ctx = &brw->ctx;
113
114 /* _NEW_POLYGON */
115 if (!ctx->Polygon.StippleFlag)
116 return;
117
118 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
119 /* Polygon stipple is provided in OpenGL order, i.e. bottom
120 * row first. If we're rendering to a window (i.e. the
121 * default frame buffer object, 0), then we need to invert
122 * it to match our pixel layout. But if we're rendering
123 * to a FBO (i.e. any named frame buffer object), we *don't*
124 * need to invert - we already match the layout.
125 */
126 if (ctx->DrawBuffer->FlipY) {
127 for (unsigned i = 0; i < 32; i++)
128 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
129 } else {
130 for (unsigned i = 0; i < 32; i++)
131 poly.PatternRow[i] = ctx->PolygonStipple[i];
132 }
133 }
134 }
135
136 static const struct brw_tracked_state genX(polygon_stipple) = {
137 .dirty = {
138 .mesa = _NEW_POLYGON |
139 _NEW_POLYGONSTIPPLE,
140 .brw = BRW_NEW_CONTEXT,
141 },
142 .emit = genX(upload_polygon_stipple),
143 };
144
145 /**
146 * Polygon stipple offset packet
147 */
148 static void
149 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
150 {
151 struct gl_context *ctx = &brw->ctx;
152
153 /* _NEW_POLYGON */
154 if (!ctx->Polygon.StippleFlag)
155 return;
156
157 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
158 /* _NEW_BUFFERS
159 *
160 * If we're drawing to a system window we have to invert the Y axis
161 * in order to match the OpenGL pixel coordinate system, and our
162 * offset must be matched to the window position. If we're drawing
163 * to a user-created FBO then our native pixel coordinate system
164 * works just fine, and there's no window system to worry about.
165 */
166 if (ctx->DrawBuffer->FlipY) {
167 poly.PolygonStippleYOffset =
168 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
169 }
170 }
171 }
172
173 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
174 .dirty = {
175 .mesa = _NEW_BUFFERS |
176 _NEW_POLYGON,
177 .brw = BRW_NEW_CONTEXT,
178 },
179 .emit = genX(upload_polygon_stipple_offset),
180 };
181
182 /**
183 * Line stipple packet
184 */
185 static void
186 genX(upload_line_stipple)(struct brw_context *brw)
187 {
188 struct gl_context *ctx = &brw->ctx;
189
190 if (!ctx->Line.StippleFlag)
191 return;
192
193 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
194 line.LineStipplePattern = ctx->Line.StipplePattern;
195
196 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
197 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
198 }
199 }
200
201 static const struct brw_tracked_state genX(line_stipple) = {
202 .dirty = {
203 .mesa = _NEW_LINE,
204 .brw = BRW_NEW_CONTEXT,
205 },
206 .emit = genX(upload_line_stipple),
207 };
208
209 /* Constant single cliprect for framebuffer object or DRI2 drawing */
210 static void
211 genX(upload_drawing_rect)(struct brw_context *brw)
212 {
213 struct gl_context *ctx = &brw->ctx;
214 const struct gl_framebuffer *fb = ctx->DrawBuffer;
215 const unsigned int fb_width = _mesa_geometric_width(fb);
216 const unsigned int fb_height = _mesa_geometric_height(fb);
217
218 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
219 rect.ClippedDrawingRectangleXMax = fb_width - 1;
220 rect.ClippedDrawingRectangleYMax = fb_height - 1;
221 }
222 }
223
224 static const struct brw_tracked_state genX(drawing_rect) = {
225 .dirty = {
226 .mesa = _NEW_BUFFERS,
227 .brw = BRW_NEW_BLORP |
228 BRW_NEW_CONTEXT,
229 },
230 .emit = genX(upload_drawing_rect),
231 };
232
233 static uint32_t *
234 genX(emit_vertex_buffer_state)(struct brw_context *brw,
235 uint32_t *dw,
236 unsigned buffer_nr,
237 struct brw_bo *bo,
238 unsigned start_offset,
239 MAYBE_UNUSED unsigned end_offset,
240 unsigned stride,
241 MAYBE_UNUSED unsigned step_rate)
242 {
243 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
244 .VertexBufferIndex = buffer_nr,
245 .BufferPitch = stride,
246
247 /* The VF cache designers apparently cut corners, and made the cache
248 * only consider the bottom 32 bits of memory addresses. If you happen
249 * to have two vertex buffers which get placed exactly 4 GiB apart and
250 * use them in back-to-back draw calls, you can get collisions. To work
251 * around this problem, we restrict vertex buffers to the low 32 bits of
252 * the address space.
253 */
254 .BufferStartingAddress = ro_32_bo(bo, start_offset),
255 #if GEN_GEN >= 8
256 .BufferSize = end_offset - start_offset,
257 #endif
258
259 #if GEN_GEN >= 7
260 .AddressModifyEnable = true,
261 #endif
262
263 #if GEN_GEN < 8
264 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
265 .InstanceDataStepRate = step_rate,
266 #if GEN_GEN >= 5
267 .EndAddress = ro_bo(bo, end_offset - 1),
268 #endif
269 #endif
270
271 #if GEN_GEN == 11
272 .MOCS = ICL_MOCS_WB,
273 #elif GEN_GEN == 10
274 .MOCS = CNL_MOCS_WB,
275 #elif GEN_GEN == 9
276 .MOCS = SKL_MOCS_WB,
277 #elif GEN_GEN == 8
278 .MOCS = BDW_MOCS_WB,
279 #elif GEN_GEN == 7
280 .MOCS = GEN7_MOCS_L3,
281 #endif
282 };
283
284 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
285 return dw + GENX(VERTEX_BUFFER_STATE_length);
286 }
287
288 UNUSED static bool
289 is_passthru_format(uint32_t format)
290 {
291 switch (format) {
292 case ISL_FORMAT_R64_PASSTHRU:
293 case ISL_FORMAT_R64G64_PASSTHRU:
294 case ISL_FORMAT_R64G64B64_PASSTHRU:
295 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
296 return true;
297 default:
298 return false;
299 }
300 }
301
302 UNUSED static int
303 uploads_needed(uint32_t format,
304 bool is_dual_slot)
305 {
306 if (!is_passthru_format(format))
307 return 1;
308
309 if (is_dual_slot)
310 return 2;
311
312 switch (format) {
313 case ISL_FORMAT_R64_PASSTHRU:
314 case ISL_FORMAT_R64G64_PASSTHRU:
315 return 1;
316 case ISL_FORMAT_R64G64B64_PASSTHRU:
317 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
318 return 2;
319 default:
320 unreachable("not reached");
321 }
322 }
323
324 /*
325 * Returns the format that we are finally going to use when upload a vertex
326 * element. It will only change if we are using *64*PASSTHRU formats, as for
327 * gen < 8 they need to be splitted on two *32*FLOAT formats.
328 *
329 * @upload points in which upload we are. Valid values are [0,1]
330 */
331 static uint32_t
332 downsize_format_if_needed(uint32_t format,
333 int upload)
334 {
335 assert(upload == 0 || upload == 1);
336
337 if (!is_passthru_format(format))
338 return format;
339
340 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
341 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
342 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
343 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
344 * flagging that we want to fill with zeroes this second forced upload.
345 */
346 switch (format) {
347 case ISL_FORMAT_R64_PASSTHRU:
348 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
349 : ISL_FORMAT_R32_FLOAT;
350 case ISL_FORMAT_R64G64_PASSTHRU:
351 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
352 : ISL_FORMAT_R32_FLOAT;
353 case ISL_FORMAT_R64G64B64_PASSTHRU:
354 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
355 : ISL_FORMAT_R32G32_FLOAT;
356 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
357 return ISL_FORMAT_R32G32B32A32_FLOAT;
358 default:
359 unreachable("not reached");
360 }
361 }
362
363 /*
364 * Returns the number of componentes associated with a format that is used on
365 * a 64 to 32 format split. See downsize_format()
366 */
367 static int
368 upload_format_size(uint32_t upload_format)
369 {
370 switch (upload_format) {
371 case ISL_FORMAT_R32_FLOAT:
372
373 /* downsized_format has returned this one in order to flag that we are
374 * performing a second upload which we want to have filled with
375 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
376 * vertex shader input variables.
377 */
378
379 return 0;
380 case ISL_FORMAT_R32G32_FLOAT:
381 return 2;
382 case ISL_FORMAT_R32G32B32A32_FLOAT:
383 return 4;
384 default:
385 unreachable("not reached");
386 }
387 }
388
389 static UNUSED uint16_t
390 pinned_bo_high_bits(struct brw_bo *bo)
391 {
392 return (bo->kflags & EXEC_OBJECT_PINNED) ? bo->gtt_offset >> 32ull : 0;
393 }
394
395 /* The VF cache designers apparently cut corners, and made the cache key's
396 * <VertexBufferIndex, Memory Address> tuple only consider the bottom 32 bits
397 * of the address. If you happen to have two vertex buffers which get placed
398 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
399 * collisions. (These collisions can happen within a single batch.)
400 *
401 * In the soft-pin world, we'd like to assign addresses up front, and never
402 * move buffers. So, we need to do a VF cache invalidate if the buffer for
403 * a particular VB slot has different [48:32] address bits than the last one.
404 *
405 * In the relocation world, we have no idea what the addresses will be, so
406 * we can't apply this workaround. Instead, we tell the kernel to move it
407 * to the low 4GB regardless.
408 *
409 * This HW issue is gone on Gen11+.
410 */
411 static void
412 vf_invalidate_for_vb_48bit_transitions(struct brw_context *brw)
413 {
414 #if GEN_GEN >= 8 && GEN_GEN < 11
415 bool need_invalidate = false;
416
417 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
418 uint16_t high_bits = pinned_bo_high_bits(brw->vb.buffers[i].bo);
419
420 if (high_bits != brw->vb.last_bo_high_bits[i]) {
421 need_invalidate = true;
422 brw->vb.last_bo_high_bits[i] = high_bits;
423 }
424 }
425
426 if (brw->draw.draw_params_bo) {
427 uint16_t high_bits = pinned_bo_high_bits(brw->draw.draw_params_bo);
428
429 if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers] != high_bits) {
430 need_invalidate = true;
431 brw->vb.last_bo_high_bits[brw->vb.nr_buffers] = high_bits;
432 }
433 }
434
435 if (brw->draw.derived_draw_params_bo) {
436 uint16_t high_bits = pinned_bo_high_bits(brw->draw.derived_draw_params_bo);
437
438 if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] != high_bits) {
439 need_invalidate = true;
440 brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] = high_bits;
441 }
442 }
443
444 if (need_invalidate) {
445 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE | PIPE_CONTROL_CS_STALL);
446 }
447 #endif
448 }
449
450 static void
451 vf_invalidate_for_ib_48bit_transition(struct brw_context *brw)
452 {
453 #if GEN_GEN >= 8
454 uint16_t high_bits = pinned_bo_high_bits(brw->ib.bo);
455
456 if (high_bits != brw->ib.last_bo_high_bits) {
457 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE);
458 brw->ib.last_bo_high_bits = high_bits;
459 }
460 #endif
461 }
462
463 static void
464 genX(emit_vertices)(struct brw_context *brw)
465 {
466 const struct gen_device_info *devinfo = &brw->screen->devinfo;
467 uint32_t *dw;
468
469 brw_prepare_vertices(brw);
470 brw_prepare_shader_draw_parameters(brw);
471
472 #if GEN_GEN < 6
473 brw_emit_query_begin(brw);
474 #endif
475
476 const struct brw_vs_prog_data *vs_prog_data =
477 brw_vs_prog_data(brw->vs.base.prog_data);
478
479 #if GEN_GEN >= 8
480 struct gl_context *ctx = &brw->ctx;
481 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
482 ctx->Polygon.BackMode != GL_FILL);
483
484 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
485 unsigned vue = brw->vb.nr_enabled;
486
487 /* The element for the edge flags must always be last, so we have to
488 * insert the SGVS before it in that case.
489 */
490 if (uses_edge_flag) {
491 assert(vue > 0);
492 vue--;
493 }
494
495 WARN_ONCE(vue >= 33,
496 "Trying to insert VID/IID past 33rd vertex element, "
497 "need to reorder the vertex attrbutes.");
498
499 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
500 if (vs_prog_data->uses_vertexid) {
501 vfs.VertexIDEnable = true;
502 vfs.VertexIDComponentNumber = 2;
503 vfs.VertexIDElementOffset = vue;
504 }
505
506 if (vs_prog_data->uses_instanceid) {
507 vfs.InstanceIDEnable = true;
508 vfs.InstanceIDComponentNumber = 3;
509 vfs.InstanceIDElementOffset = vue;
510 }
511 }
512
513 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
514 vfi.InstancingEnable = true;
515 vfi.VertexElementIndex = vue;
516 }
517 } else {
518 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
519 }
520 #endif
521
522 const bool uses_draw_params =
523 vs_prog_data->uses_firstvertex ||
524 vs_prog_data->uses_baseinstance;
525
526 const bool uses_derived_draw_params =
527 vs_prog_data->uses_drawid ||
528 vs_prog_data->uses_is_indexed_draw;
529
530 const bool needs_sgvs_element = (uses_draw_params ||
531 vs_prog_data->uses_instanceid ||
532 vs_prog_data->uses_vertexid);
533
534 unsigned nr_elements =
535 brw->vb.nr_enabled + needs_sgvs_element + uses_derived_draw_params;
536
537 #if GEN_GEN < 8
538 /* If any of the formats of vb.enabled needs more that one upload, we need
539 * to add it to nr_elements
540 */
541 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
542 struct brw_vertex_element *input = brw->vb.enabled[i];
543 const struct gl_array_attributes *glattrib = input->glattrib;
544 uint32_t format = brw_get_vertex_surface_type(brw, &glattrib->Format);
545
546 if (uploads_needed(format, input->is_dual_slot) > 1)
547 nr_elements++;
548 }
549 #endif
550
551 /* If the VS doesn't read any inputs (calculating vertex position from
552 * a state variable for some reason, for example), emit a single pad
553 * VERTEX_ELEMENT struct and bail.
554 *
555 * The stale VB state stays in place, but they don't do anything unless
556 * a VE loads from them.
557 */
558 if (nr_elements == 0) {
559 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
560 1 + GENX(VERTEX_ELEMENT_STATE_length));
561 struct GENX(VERTEX_ELEMENT_STATE) elem = {
562 .Valid = true,
563 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
564 .Component0Control = VFCOMP_STORE_0,
565 .Component1Control = VFCOMP_STORE_0,
566 .Component2Control = VFCOMP_STORE_0,
567 .Component3Control = VFCOMP_STORE_1_FP,
568 };
569 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
570 return;
571 }
572
573 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
574 const unsigned nr_buffers = brw->vb.nr_buffers +
575 uses_draw_params + uses_derived_draw_params;
576
577 vf_invalidate_for_vb_48bit_transitions(brw);
578
579 if (nr_buffers) {
580 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
581
582 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
583 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
584
585 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
586 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
587 /* Prior to Haswell and Bay Trail we have to use 4-component formats
588 * to fake 3-component ones. In particular, we do this for
589 * half-float and 8 and 16-bit integer formats. This means that the
590 * vertex element may poke over the end of the buffer by 2 bytes.
591 */
592 const unsigned padding =
593 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
594 const unsigned end = buffer->offset + buffer->size + padding;
595 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
596 buffer->offset,
597 end,
598 buffer->stride,
599 buffer->step_rate);
600 }
601
602 if (uses_draw_params) {
603 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
604 brw->draw.draw_params_bo,
605 brw->draw.draw_params_offset,
606 brw->draw.draw_params_bo->size,
607 0 /* stride */,
608 0 /* step rate */);
609 }
610
611 if (uses_derived_draw_params) {
612 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
613 brw->draw.derived_draw_params_bo,
614 brw->draw.derived_draw_params_offset,
615 brw->draw.derived_draw_params_bo->size,
616 0 /* stride */,
617 0 /* step rate */);
618 }
619 }
620
621 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
622 * presumably for VertexID/InstanceID.
623 */
624 #if GEN_GEN >= 6
625 assert(nr_elements <= 34);
626 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
627 #else
628 assert(nr_elements <= 18);
629 #endif
630
631 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
632 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
633 unsigned i;
634 for (i = 0; i < brw->vb.nr_enabled; i++) {
635 const struct brw_vertex_element *input = brw->vb.enabled[i];
636 const struct gl_array_attributes *glattrib = input->glattrib;
637 uint32_t format = brw_get_vertex_surface_type(brw, &glattrib->Format);
638 uint32_t comp0 = VFCOMP_STORE_SRC;
639 uint32_t comp1 = VFCOMP_STORE_SRC;
640 uint32_t comp2 = VFCOMP_STORE_SRC;
641 uint32_t comp3 = VFCOMP_STORE_SRC;
642 const unsigned num_uploads = GEN_GEN < 8 ?
643 uploads_needed(format, input->is_dual_slot) : 1;
644
645 #if GEN_GEN >= 8
646 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
647 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
648 * element which has edge flag enabled."
649 */
650 assert(!(is_passthru_format(format) && uses_edge_flag));
651 #endif
652
653 /* The gen4 driver expects edgeflag to come in as a float, and passes
654 * that float on to the tests in the clipper. Mesa's current vertex
655 * attribute value for EdgeFlag is stored as a float, which works out.
656 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
657 * integer ubyte. Just rewrite that to convert to a float.
658 *
659 * Gen6+ passes edgeflag as sideband along with the vertex, instead
660 * of in the VUE. We have to upload it sideband as the last vertex
661 * element according to the B-Spec.
662 */
663 #if GEN_GEN >= 6
664 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
665 gen6_edgeflag_input = input;
666 continue;
667 }
668 #endif
669
670 for (unsigned c = 0; c < num_uploads; c++) {
671 const uint32_t upload_format = GEN_GEN >= 8 ? format :
672 downsize_format_if_needed(format, c);
673 /* If we need more that one upload, the offset stride would be 128
674 * bits (16 bytes), as for previous uploads we are using the full
675 * entry. */
676 const unsigned offset = input->offset + c * 16;
677
678 const struct gl_array_attributes *glattrib = input->glattrib;
679 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
680 upload_format_size(upload_format) : glattrib->Format.Size;
681
682 switch (size) {
683 case 0: comp0 = VFCOMP_STORE_0;
684 case 1: comp1 = VFCOMP_STORE_0;
685 case 2: comp2 = VFCOMP_STORE_0;
686 case 3:
687 if (GEN_GEN >= 8 && glattrib->Format.Doubles) {
688 comp3 = VFCOMP_STORE_0;
689 } else if (glattrib->Format.Integer) {
690 comp3 = VFCOMP_STORE_1_INT;
691 } else {
692 comp3 = VFCOMP_STORE_1_FP;
693 }
694
695 break;
696 }
697
698 #if GEN_GEN >= 8
699 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
700 *
701 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
702 * formats, 64-bit components are stored in the URB without any
703 * conversion. In this case, vertex elements must be written as 128
704 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
705 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
706 * component into the URB, Component 1 must be specified as
707 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
708 * order to output a 128-bit vertex element, or Components 1-3 must
709 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
710 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
711 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
712 * vertex element."
713 */
714 if (glattrib->Format.Doubles && !input->is_dual_slot) {
715 /* Store vertex elements which correspond to double and dvec2 vertex
716 * shader inputs as 128-bit vertex elements, instead of 256-bits.
717 */
718 comp2 = VFCOMP_NOSTORE;
719 comp3 = VFCOMP_NOSTORE;
720 }
721 #endif
722
723 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
724 .VertexBufferIndex = input->buffer,
725 .Valid = true,
726 .SourceElementFormat = upload_format,
727 .SourceElementOffset = offset,
728 .Component0Control = comp0,
729 .Component1Control = comp1,
730 .Component2Control = comp2,
731 .Component3Control = comp3,
732 #if GEN_GEN < 5
733 .DestinationElementOffset = i * 4,
734 #endif
735 };
736
737 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
738 dw += GENX(VERTEX_ELEMENT_STATE_length);
739 }
740 }
741
742 if (needs_sgvs_element) {
743 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
744 .Valid = true,
745 .Component0Control = VFCOMP_STORE_0,
746 .Component1Control = VFCOMP_STORE_0,
747 .Component2Control = VFCOMP_STORE_0,
748 .Component3Control = VFCOMP_STORE_0,
749 #if GEN_GEN < 5
750 .DestinationElementOffset = i * 4,
751 #endif
752 };
753
754 #if GEN_GEN >= 8
755 if (uses_draw_params) {
756 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
757 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
758 elem_state.Component0Control = VFCOMP_STORE_SRC;
759 elem_state.Component1Control = VFCOMP_STORE_SRC;
760 }
761 #else
762 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
763 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
764 if (uses_draw_params) {
765 elem_state.Component0Control = VFCOMP_STORE_SRC;
766 elem_state.Component1Control = VFCOMP_STORE_SRC;
767 }
768
769 if (vs_prog_data->uses_vertexid)
770 elem_state.Component2Control = VFCOMP_STORE_VID;
771
772 if (vs_prog_data->uses_instanceid)
773 elem_state.Component3Control = VFCOMP_STORE_IID;
774 #endif
775
776 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
777 dw += GENX(VERTEX_ELEMENT_STATE_length);
778 }
779
780 if (uses_derived_draw_params) {
781 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
782 .Valid = true,
783 .VertexBufferIndex = brw->vb.nr_buffers + 1,
784 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
785 .Component0Control = VFCOMP_STORE_SRC,
786 .Component1Control = VFCOMP_STORE_SRC,
787 .Component2Control = VFCOMP_STORE_0,
788 .Component3Control = VFCOMP_STORE_0,
789 #if GEN_GEN < 5
790 .DestinationElementOffset = i * 4,
791 #endif
792 };
793
794 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
795 dw += GENX(VERTEX_ELEMENT_STATE_length);
796 }
797
798 #if GEN_GEN >= 6
799 if (gen6_edgeflag_input) {
800 const struct gl_array_attributes *glattrib = gen6_edgeflag_input->glattrib;
801 const uint32_t format = brw_get_vertex_surface_type(brw, &glattrib->Format);
802
803 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
804 .Valid = true,
805 .VertexBufferIndex = gen6_edgeflag_input->buffer,
806 .EdgeFlagEnable = true,
807 .SourceElementFormat = format,
808 .SourceElementOffset = gen6_edgeflag_input->offset,
809 .Component0Control = VFCOMP_STORE_SRC,
810 .Component1Control = VFCOMP_STORE_0,
811 .Component2Control = VFCOMP_STORE_0,
812 .Component3Control = VFCOMP_STORE_0,
813 };
814
815 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
816 dw += GENX(VERTEX_ELEMENT_STATE_length);
817 }
818 #endif
819
820 #if GEN_GEN >= 8
821 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
822 const struct brw_vertex_element *input = brw->vb.enabled[i];
823 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
824 unsigned element_index;
825
826 /* The edge flag element is reordered to be the last one in the code
827 * above so we need to compensate for that in the element indices used
828 * below.
829 */
830 if (input == gen6_edgeflag_input)
831 element_index = nr_elements - 1;
832 else
833 element_index = j++;
834
835 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
836 vfi.VertexElementIndex = element_index;
837 vfi.InstancingEnable = buffer->step_rate != 0;
838 vfi.InstanceDataStepRate = buffer->step_rate;
839 }
840 }
841
842 if (vs_prog_data->uses_drawid) {
843 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
844
845 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
846 vfi.VertexElementIndex = element;
847 }
848 }
849 #endif
850 }
851
852 static const struct brw_tracked_state genX(vertices) = {
853 .dirty = {
854 .mesa = _NEW_POLYGON,
855 .brw = BRW_NEW_BATCH |
856 BRW_NEW_BLORP |
857 BRW_NEW_VERTEX_PROGRAM |
858 BRW_NEW_VERTICES |
859 BRW_NEW_VS_PROG_DATA,
860 },
861 .emit = genX(emit_vertices),
862 };
863
864 static void
865 genX(emit_index_buffer)(struct brw_context *brw)
866 {
867 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
868
869 if (index_buffer == NULL)
870 return;
871
872 vf_invalidate_for_ib_48bit_transition(brw);
873
874 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
875 #if GEN_GEN < 8 && !GEN_IS_HASWELL
876 assert(brw->ib.enable_cut_index == brw->prim_restart.enable_cut_index);
877 ib.CutIndexEnable = brw->ib.enable_cut_index;
878 #endif
879 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
880
881 /* The VF cache designers apparently cut corners, and made the cache
882 * only consider the bottom 32 bits of memory addresses. If you happen
883 * to have two index buffers which get placed exactly 4 GiB apart and
884 * use them in back-to-back draw calls, you can get collisions. To work
885 * around this problem, we restrict index buffers to the low 32 bits of
886 * the address space.
887 */
888 ib.BufferStartingAddress = ro_32_bo(brw->ib.bo, 0);
889 #if GEN_GEN >= 8
890 ib.MOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
891 ib.BufferSize = brw->ib.size;
892 #else
893 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
894 #endif
895 }
896 }
897
898 static const struct brw_tracked_state genX(index_buffer) = {
899 .dirty = {
900 .mesa = 0,
901 .brw = BRW_NEW_BATCH |
902 BRW_NEW_BLORP |
903 BRW_NEW_INDEX_BUFFER,
904 },
905 .emit = genX(emit_index_buffer),
906 };
907
908 #if GEN_IS_HASWELL || GEN_GEN >= 8
909 static void
910 genX(upload_cut_index)(struct brw_context *brw)
911 {
912 const struct gl_context *ctx = &brw->ctx;
913
914 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
915 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
916 vf.IndexedDrawCutIndexEnable = true;
917 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
918 }
919 }
920 }
921
922 const struct brw_tracked_state genX(cut_index) = {
923 .dirty = {
924 .mesa = _NEW_TRANSFORM,
925 .brw = BRW_NEW_INDEX_BUFFER,
926 },
927 .emit = genX(upload_cut_index),
928 };
929 #endif
930
931 static void
932 genX(upload_vf_statistics)(struct brw_context *brw)
933 {
934 brw_batch_emit(brw, GENX(3DSTATE_VF_STATISTICS), vf) {
935 vf.StatisticsEnable = true;
936 }
937 }
938
939 const struct brw_tracked_state genX(vf_statistics) = {
940 .dirty = {
941 .mesa = 0,
942 .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT,
943 },
944 .emit = genX(upload_vf_statistics),
945 };
946
947 #if GEN_GEN >= 6
948 /**
949 * Determine the appropriate attribute override value to store into the
950 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
951 * override value contains two pieces of information: the location of the
952 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
953 * flag indicating whether to "swizzle" the attribute based on the direction
954 * the triangle is facing.
955 *
956 * If an attribute is "swizzled", then the given VUE location is used for
957 * front-facing triangles, and the VUE location that immediately follows is
958 * used for back-facing triangles. We use this to implement the mapping from
959 * gl_FrontColor/gl_BackColor to gl_Color.
960 *
961 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
962 * being instructed to begin reading attribute data. It can be set to a
963 * nonzero value to prevent the SF unit from wasting time reading elements of
964 * the VUE that are not needed by the fragment shader. It is measured in
965 * 256-bit increments.
966 */
967 static void
968 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
969 const struct brw_vue_map *vue_map,
970 int urb_entry_read_offset, int fs_attr,
971 bool two_side_color, uint32_t *max_source_attr)
972 {
973 /* Find the VUE slot for this attribute. */
974 int slot = vue_map->varying_to_slot[fs_attr];
975
976 /* Viewport and Layer are stored in the VUE header. We need to override
977 * them to zero if earlier stages didn't write them, as GL requires that
978 * they read back as zero when not explicitly set.
979 */
980 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
981 attr->ComponentOverrideX = true;
982 attr->ComponentOverrideW = true;
983 attr->ConstantSource = CONST_0000;
984
985 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
986 attr->ComponentOverrideY = true;
987 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
988 attr->ComponentOverrideZ = true;
989
990 return;
991 }
992
993 /* If there was only a back color written but not front, use back
994 * as the color instead of undefined
995 */
996 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
997 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
998 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
999 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
1000
1001 if (slot == -1) {
1002 /* This attribute does not exist in the VUE--that means that the vertex
1003 * shader did not write to it. This means that either:
1004 *
1005 * (a) This attribute is a texture coordinate, and it is going to be
1006 * replaced with point coordinates (as a consequence of a call to
1007 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
1008 * hardware will ignore whatever attribute override we supply.
1009 *
1010 * (b) This attribute is read by the fragment shader but not written by
1011 * the vertex shader, so its value is undefined. Therefore the
1012 * attribute override we supply doesn't matter.
1013 *
1014 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
1015 * previous shader stage.
1016 *
1017 * Note that we don't have to worry about the cases where the attribute
1018 * is gl_PointCoord or is undergoing point sprite coordinate
1019 * replacement, because in those cases, this function isn't called.
1020 *
1021 * In case (c), we need to program the attribute overrides so that the
1022 * primitive ID will be stored in this slot. In every other case, the
1023 * attribute override we supply doesn't matter. So just go ahead and
1024 * program primitive ID in every case.
1025 */
1026 attr->ComponentOverrideW = true;
1027 attr->ComponentOverrideX = true;
1028 attr->ComponentOverrideY = true;
1029 attr->ComponentOverrideZ = true;
1030 attr->ConstantSource = PRIM_ID;
1031 return;
1032 }
1033
1034 /* Compute the location of the attribute relative to urb_entry_read_offset.
1035 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1036 * it counts for two 128-bit VUE slots.
1037 */
1038 int source_attr = slot - 2 * urb_entry_read_offset;
1039 assert(source_attr >= 0 && source_attr < 32);
1040
1041 /* If we are doing two-sided color, and the VUE slot following this one
1042 * represents a back-facing color, then we need to instruct the SF unit to
1043 * do back-facing swizzling.
1044 */
1045 bool swizzling = two_side_color &&
1046 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1047 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1048 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1049 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1050
1051 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1052 if (*max_source_attr < source_attr + swizzling)
1053 *max_source_attr = source_attr + swizzling;
1054
1055 attr->SourceAttribute = source_attr;
1056 if (swizzling)
1057 attr->SwizzleSelect = INPUTATTR_FACING;
1058 }
1059
1060
1061 static void
1062 genX(calculate_attr_overrides)(const struct brw_context *brw,
1063 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1064 uint32_t *point_sprite_enables,
1065 uint32_t *urb_entry_read_length,
1066 uint32_t *urb_entry_read_offset)
1067 {
1068 const struct gl_context *ctx = &brw->ctx;
1069
1070 /* _NEW_POINT */
1071 const struct gl_point_attrib *point = &ctx->Point;
1072
1073 /* BRW_NEW_FRAGMENT_PROGRAM */
1074 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1075
1076 /* BRW_NEW_FS_PROG_DATA */
1077 const struct brw_wm_prog_data *wm_prog_data =
1078 brw_wm_prog_data(brw->wm.base.prog_data);
1079 uint32_t max_source_attr = 0;
1080
1081 *point_sprite_enables = 0;
1082
1083 int first_slot =
1084 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1085 &brw->vue_map_geom_out);
1086
1087 /* Each URB offset packs two varying slots */
1088 assert(first_slot % 2 == 0);
1089 *urb_entry_read_offset = first_slot / 2;
1090
1091 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1092 * description of dw10 Point Sprite Texture Coordinate Enable:
1093 *
1094 * "This field must be programmed to zero when non-point primitives
1095 * are rendered."
1096 *
1097 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1098 * must be programmed to zero when rendering non-point primitives, but
1099 * the IvyBridge PRM does, and if we don't, we get garbage.
1100 *
1101 * This is not required on Haswell, as the hardware ignores this state
1102 * when drawing non-points -- although we do still need to be careful to
1103 * correctly set the attr overrides.
1104 *
1105 * _NEW_POLYGON
1106 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1107 */
1108 bool drawing_points = brw_is_drawing_points(brw);
1109
1110 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1111 int input_index = wm_prog_data->urb_setup[attr];
1112
1113 if (input_index < 0)
1114 continue;
1115
1116 /* _NEW_POINT */
1117 bool point_sprite = false;
1118 if (drawing_points) {
1119 if (point->PointSprite &&
1120 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1121 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1122 point_sprite = true;
1123 }
1124
1125 if (attr == VARYING_SLOT_PNTC)
1126 point_sprite = true;
1127
1128 if (point_sprite)
1129 *point_sprite_enables |= (1 << input_index);
1130 }
1131
1132 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1133 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1134
1135 if (!point_sprite) {
1136 genX(get_attr_override)(&attribute,
1137 &brw->vue_map_geom_out,
1138 *urb_entry_read_offset, attr,
1139 _mesa_vertex_program_two_side_enabled(ctx),
1140 &max_source_attr);
1141 }
1142
1143 /* The hardware can only do the overrides on 16 overrides at a
1144 * time, and the other up to 16 have to be lined up so that the
1145 * input index = the output index. We'll need to do some
1146 * tweaking to make sure that's the case.
1147 */
1148 if (input_index < 16)
1149 attr_overrides[input_index] = attribute;
1150 else
1151 assert(attribute.SourceAttribute == input_index);
1152 }
1153
1154 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1155 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1156 *
1157 * "This field should be set to the minimum length required to read the
1158 * maximum source attribute. The maximum source attribute is indicated
1159 * by the maximum value of the enabled Attribute # Source Attribute if
1160 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1161 * enable is not set.
1162 * read_length = ceiling((max_source_attr + 1) / 2)
1163 *
1164 * [errata] Corruption/Hang possible if length programmed larger than
1165 * recommended"
1166 *
1167 * Similar text exists for Ivy Bridge.
1168 */
1169 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1170 }
1171 #endif
1172
1173 /* ---------------------------------------------------------------------- */
1174
1175 #if GEN_GEN >= 8
1176 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1177 #elif GEN_GEN >= 6
1178 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1179 #else
1180 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1181 #endif
1182
1183 static inline void
1184 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1185 {
1186 struct gl_context *ctx = &brw->ctx;
1187
1188 /* _NEW_BUFFERS */
1189 struct intel_renderbuffer *depth_irb =
1190 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1191
1192 /* _NEW_DEPTH */
1193 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1194
1195 /* _NEW_STENCIL */
1196 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1197 const int b = stencil->_BackFace;
1198
1199 if (depth->Test && depth_irb) {
1200 ds->DepthTestEnable = true;
1201 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1202 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1203 }
1204
1205 if (brw->stencil_enabled) {
1206 ds->StencilTestEnable = true;
1207 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1208 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1209
1210 ds->StencilTestFunction =
1211 intel_translate_compare_func(stencil->Function[0]);
1212 ds->StencilFailOp =
1213 intel_translate_stencil_op(stencil->FailFunc[0]);
1214 ds->StencilPassDepthPassOp =
1215 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1216 ds->StencilPassDepthFailOp =
1217 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1218
1219 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1220
1221 if (brw->stencil_two_sided) {
1222 ds->DoubleSidedStencilEnable = true;
1223 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1224 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1225
1226 ds->BackfaceStencilTestFunction =
1227 intel_translate_compare_func(stencil->Function[b]);
1228 ds->BackfaceStencilFailOp =
1229 intel_translate_stencil_op(stencil->FailFunc[b]);
1230 ds->BackfaceStencilPassDepthPassOp =
1231 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1232 ds->BackfaceStencilPassDepthFailOp =
1233 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1234 }
1235
1236 #if GEN_GEN <= 5 || GEN_GEN >= 9
1237 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1238 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1239 #endif
1240 }
1241 }
1242
1243 #if GEN_GEN >= 6
1244 static void
1245 genX(upload_depth_stencil_state)(struct brw_context *brw)
1246 {
1247 #if GEN_GEN >= 8
1248 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1249 set_depth_stencil_bits(brw, &wmds);
1250 }
1251 #else
1252 uint32_t ds_offset;
1253 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1254 set_depth_stencil_bits(brw, &ds);
1255 }
1256
1257 /* Now upload a pointer to the indirect state */
1258 #if GEN_GEN == 6
1259 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1260 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1261 ptr.DEPTH_STENCIL_STATEChange = true;
1262 }
1263 #else
1264 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1265 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1266 }
1267 #endif
1268 #endif
1269 }
1270
1271 static const struct brw_tracked_state genX(depth_stencil_state) = {
1272 .dirty = {
1273 .mesa = _NEW_BUFFERS |
1274 _NEW_DEPTH |
1275 _NEW_STENCIL,
1276 .brw = BRW_NEW_BLORP |
1277 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1278 : BRW_NEW_BATCH |
1279 BRW_NEW_STATE_BASE_ADDRESS),
1280 },
1281 .emit = genX(upload_depth_stencil_state),
1282 };
1283 #endif
1284
1285 /* ---------------------------------------------------------------------- */
1286
1287 #if GEN_GEN <= 5
1288
1289 static void
1290 genX(upload_clip_state)(struct brw_context *brw)
1291 {
1292 struct gl_context *ctx = &brw->ctx;
1293
1294 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1295 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1296 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1297 clip.GRFRegisterCount =
1298 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1299 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1300 clip.SingleProgramFlow = true;
1301 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1302 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1303
1304 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1305 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1306 clip.DispatchGRFStartRegisterForURBData = 1;
1307 clip.VertexURBEntryReadOffset = 0;
1308
1309 /* BRW_NEW_URB_FENCE */
1310 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1311 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1312
1313 if (brw->urb.nr_clip_entries >= 10) {
1314 /* Half of the URB entries go to each thread, and it has to be an
1315 * even number.
1316 */
1317 assert(brw->urb.nr_clip_entries % 2 == 0);
1318
1319 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1320 * only 2 threads can output VUEs at a time.
1321 */
1322 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1323 } else {
1324 assert(brw->urb.nr_clip_entries >= 5);
1325 clip.MaximumNumberofThreads = 1 - 1;
1326 }
1327
1328 clip.VertexPositionSpace = VPOS_NDCSPACE;
1329 clip.UserClipFlagsMustClipEnable = true;
1330 clip.GuardbandClipTestEnable = true;
1331
1332 clip.ClipperViewportStatePointer =
1333 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1334
1335 clip.ScreenSpaceViewportXMin = -1;
1336 clip.ScreenSpaceViewportXMax = 1;
1337 clip.ScreenSpaceViewportYMin = -1;
1338 clip.ScreenSpaceViewportYMax = 1;
1339
1340 clip.ViewportXYClipTestEnable = true;
1341 clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1342 ctx->Transform.DepthClampFar);
1343
1344 /* _NEW_TRANSFORM */
1345 if (GEN_GEN == 5 || GEN_IS_G4X) {
1346 clip.UserClipDistanceClipTestEnableBitmask =
1347 ctx->Transform.ClipPlanesEnabled;
1348 } else {
1349 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1350 * workaround.
1351 */
1352 clip.UserClipDistanceClipTestEnableBitmask =
1353 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1354 }
1355
1356 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1357 clip.APIMode = APIMODE_D3D;
1358 else
1359 clip.APIMode = APIMODE_OGL;
1360
1361 clip.GuardbandClipTestEnable = true;
1362
1363 clip.ClipMode = brw->clip.prog_data->clip_mode;
1364
1365 #if GEN_IS_G4X
1366 clip.NegativeWClipTestEnable = true;
1367 #endif
1368 }
1369 }
1370
1371 const struct brw_tracked_state genX(clip_state) = {
1372 .dirty = {
1373 .mesa = _NEW_TRANSFORM |
1374 _NEW_VIEWPORT,
1375 .brw = BRW_NEW_BATCH |
1376 BRW_NEW_BLORP |
1377 BRW_NEW_CLIP_PROG_DATA |
1378 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1379 BRW_NEW_PROGRAM_CACHE |
1380 BRW_NEW_URB_FENCE,
1381 },
1382 .emit = genX(upload_clip_state),
1383 };
1384
1385 #else
1386
1387 static void
1388 genX(upload_clip_state)(struct brw_context *brw)
1389 {
1390 struct gl_context *ctx = &brw->ctx;
1391
1392 /* _NEW_BUFFERS */
1393 struct gl_framebuffer *fb = ctx->DrawBuffer;
1394
1395 /* BRW_NEW_FS_PROG_DATA */
1396 struct brw_wm_prog_data *wm_prog_data =
1397 brw_wm_prog_data(brw->wm.base.prog_data);
1398
1399 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1400 clip.StatisticsEnable = !brw->meta_in_progress;
1401
1402 if (wm_prog_data->barycentric_interp_modes &
1403 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1404 clip.NonPerspectiveBarycentricEnable = true;
1405
1406 #if GEN_GEN >= 7
1407 clip.EarlyCullEnable = true;
1408 #endif
1409
1410 #if GEN_GEN == 7
1411 clip.FrontWinding = brw->polygon_front_bit != fb->FlipY;
1412
1413 if (ctx->Polygon.CullFlag) {
1414 switch (ctx->Polygon.CullFaceMode) {
1415 case GL_FRONT:
1416 clip.CullMode = CULLMODE_FRONT;
1417 break;
1418 case GL_BACK:
1419 clip.CullMode = CULLMODE_BACK;
1420 break;
1421 case GL_FRONT_AND_BACK:
1422 clip.CullMode = CULLMODE_BOTH;
1423 break;
1424 default:
1425 unreachable("Should not get here: invalid CullFlag");
1426 }
1427 } else {
1428 clip.CullMode = CULLMODE_NONE;
1429 }
1430 #endif
1431
1432 #if GEN_GEN < 8
1433 clip.UserClipDistanceCullTestEnableBitmask =
1434 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1435
1436 clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1437 ctx->Transform.DepthClampFar);
1438 #endif
1439
1440 /* _NEW_LIGHT */
1441 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1442 clip.TriangleStripListProvokingVertexSelect = 0;
1443 clip.TriangleFanProvokingVertexSelect = 1;
1444 clip.LineStripListProvokingVertexSelect = 0;
1445 } else {
1446 clip.TriangleStripListProvokingVertexSelect = 2;
1447 clip.TriangleFanProvokingVertexSelect = 2;
1448 clip.LineStripListProvokingVertexSelect = 1;
1449 }
1450
1451 /* _NEW_TRANSFORM */
1452 clip.UserClipDistanceClipTestEnableBitmask =
1453 ctx->Transform.ClipPlanesEnabled;
1454
1455 #if GEN_GEN >= 8
1456 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1457 #endif
1458
1459 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1460 clip.APIMode = APIMODE_D3D;
1461 else
1462 clip.APIMode = APIMODE_OGL;
1463
1464 clip.GuardbandClipTestEnable = true;
1465
1466 /* BRW_NEW_VIEWPORT_COUNT */
1467 const unsigned viewport_count = brw->clip.viewport_count;
1468
1469 if (ctx->RasterDiscard) {
1470 clip.ClipMode = CLIPMODE_REJECT_ALL;
1471 #if GEN_GEN == 6
1472 perf_debug("Rasterizer discard is currently implemented via the "
1473 "clipper; having the GS not write primitives would "
1474 "likely be faster.\n");
1475 #endif
1476 } else {
1477 clip.ClipMode = CLIPMODE_NORMAL;
1478 }
1479
1480 clip.ClipEnable = true;
1481
1482 /* _NEW_POLYGON,
1483 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1484 */
1485 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1486 clip.ViewportXYClipTestEnable = true;
1487
1488 clip.MinimumPointWidth = 0.125;
1489 clip.MaximumPointWidth = 255.875;
1490 clip.MaximumVPIndex = viewport_count - 1;
1491 if (_mesa_geometric_layers(fb) == 0)
1492 clip.ForceZeroRTAIndexEnable = true;
1493 }
1494 }
1495
1496 static const struct brw_tracked_state genX(clip_state) = {
1497 .dirty = {
1498 .mesa = _NEW_BUFFERS |
1499 _NEW_LIGHT |
1500 _NEW_POLYGON |
1501 _NEW_TRANSFORM,
1502 .brw = BRW_NEW_BLORP |
1503 BRW_NEW_CONTEXT |
1504 BRW_NEW_FS_PROG_DATA |
1505 BRW_NEW_GS_PROG_DATA |
1506 BRW_NEW_VS_PROG_DATA |
1507 BRW_NEW_META_IN_PROGRESS |
1508 BRW_NEW_PRIMITIVE |
1509 BRW_NEW_RASTERIZER_DISCARD |
1510 BRW_NEW_TES_PROG_DATA |
1511 BRW_NEW_VIEWPORT_COUNT,
1512 },
1513 .emit = genX(upload_clip_state),
1514 };
1515 #endif
1516
1517 /* ---------------------------------------------------------------------- */
1518
1519 static void
1520 genX(upload_sf)(struct brw_context *brw)
1521 {
1522 struct gl_context *ctx = &brw->ctx;
1523 float point_size;
1524
1525 #if GEN_GEN <= 7
1526 /* _NEW_BUFFERS */
1527 bool flip_y = ctx->DrawBuffer->FlipY;
1528 UNUSED const bool multisampled_fbo =
1529 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1530 #endif
1531
1532 #if GEN_GEN < 6
1533 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1534
1535 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1536
1537 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1538 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1539 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1540 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1541 sf.DispatchGRFStartRegisterForURBData = 3;
1542 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1543 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1544 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1545 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1546
1547 /* STATE_PREFETCH command description describes this state as being
1548 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1549 * domain.
1550 */
1551 sf.SetupViewportStateOffset =
1552 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1553
1554 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1555
1556 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1557 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1558
1559 sf.MaximumNumberofThreads =
1560 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1561
1562 sf.SpritePointEnable = ctx->Point.PointSprite;
1563
1564 sf.DestinationOriginHorizontalBias = 0.5;
1565 sf.DestinationOriginVerticalBias = 0.5;
1566 #else
1567 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1568 sf.StatisticsEnable = true;
1569 #endif
1570 sf.ViewportTransformEnable = true;
1571
1572 #if GEN_GEN == 7
1573 /* _NEW_BUFFERS */
1574 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1575 #endif
1576
1577 #if GEN_GEN <= 7
1578 /* _NEW_POLYGON */
1579 sf.FrontWinding = brw->polygon_front_bit != flip_y;
1580 #if GEN_GEN >= 6
1581 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1582 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1583 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1584
1585 switch (ctx->Polygon.FrontMode) {
1586 case GL_FILL:
1587 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1588 break;
1589 case GL_LINE:
1590 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1591 break;
1592 case GL_POINT:
1593 sf.FrontFaceFillMode = FILL_MODE_POINT;
1594 break;
1595 default:
1596 unreachable("not reached");
1597 }
1598
1599 switch (ctx->Polygon.BackMode) {
1600 case GL_FILL:
1601 sf.BackFaceFillMode = FILL_MODE_SOLID;
1602 break;
1603 case GL_LINE:
1604 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1605 break;
1606 case GL_POINT:
1607 sf.BackFaceFillMode = FILL_MODE_POINT;
1608 break;
1609 default:
1610 unreachable("not reached");
1611 }
1612
1613 if (multisampled_fbo && ctx->Multisample.Enabled)
1614 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1615
1616 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1617 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1618 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1619 #endif
1620
1621 sf.ScissorRectangleEnable = true;
1622
1623 if (ctx->Polygon.CullFlag) {
1624 switch (ctx->Polygon.CullFaceMode) {
1625 case GL_FRONT:
1626 sf.CullMode = CULLMODE_FRONT;
1627 break;
1628 case GL_BACK:
1629 sf.CullMode = CULLMODE_BACK;
1630 break;
1631 case GL_FRONT_AND_BACK:
1632 sf.CullMode = CULLMODE_BOTH;
1633 break;
1634 default:
1635 unreachable("not reached");
1636 }
1637 } else {
1638 sf.CullMode = CULLMODE_NONE;
1639 }
1640
1641 #if GEN_IS_HASWELL
1642 sf.LineStippleEnable = ctx->Line.StippleFlag;
1643 #endif
1644
1645 #endif
1646
1647 /* _NEW_LINE */
1648 #if GEN_GEN == 8
1649 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1650
1651 if (devinfo->is_cherryview)
1652 sf.CHVLineWidth = brw_get_line_width(brw);
1653 else
1654 sf.LineWidth = brw_get_line_width(brw);
1655 #else
1656 sf.LineWidth = brw_get_line_width(brw);
1657 #endif
1658
1659 if (ctx->Line.SmoothFlag) {
1660 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1661 #if GEN_GEN <= 7
1662 sf.AntiAliasingEnable = true;
1663 #endif
1664 }
1665
1666 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1667 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1668 /* Clamp to the hardware limits */
1669 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1670
1671 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1672 if (use_state_point_size(brw))
1673 sf.PointWidthSource = State;
1674
1675 #if GEN_GEN >= 8
1676 /* _NEW_POINT | _NEW_MULTISAMPLE */
1677 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1678 !ctx->Point.PointSprite)
1679 sf.SmoothPointEnable = true;
1680 #endif
1681
1682 #if GEN_GEN == 10
1683 /* _NEW_BUFFERS
1684 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1685 */
1686 const bool multisampled_fbo =
1687 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1688 if (multisampled_fbo)
1689 sf.SmoothPointEnable = false;
1690 #endif
1691
1692 #if GEN_IS_G4X || GEN_GEN >= 5
1693 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1694 #endif
1695
1696 /* _NEW_LIGHT */
1697 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1698 sf.TriangleStripListProvokingVertexSelect = 2;
1699 sf.TriangleFanProvokingVertexSelect = 2;
1700 sf.LineStripListProvokingVertexSelect = 1;
1701 } else {
1702 sf.TriangleFanProvokingVertexSelect = 1;
1703 }
1704
1705 #if GEN_GEN == 6
1706 /* BRW_NEW_FS_PROG_DATA */
1707 const struct brw_wm_prog_data *wm_prog_data =
1708 brw_wm_prog_data(brw->wm.base.prog_data);
1709
1710 sf.AttributeSwizzleEnable = true;
1711 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1712
1713 /*
1714 * Window coordinates in an FBO are inverted, which means point
1715 * sprite origin must be inverted, too.
1716 */
1717 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y) {
1718 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1719 } else {
1720 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1721 }
1722
1723 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1724 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1725 */
1726 uint32_t urb_entry_read_length;
1727 uint32_t urb_entry_read_offset;
1728 uint32_t point_sprite_enables;
1729 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1730 &urb_entry_read_length,
1731 &urb_entry_read_offset);
1732 sf.VertexURBEntryReadLength = urb_entry_read_length;
1733 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1734 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1735 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1736 #endif
1737 }
1738 }
1739
1740 static const struct brw_tracked_state genX(sf_state) = {
1741 .dirty = {
1742 .mesa = _NEW_LIGHT |
1743 _NEW_LINE |
1744 _NEW_POINT |
1745 _NEW_PROGRAM |
1746 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1747 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1748 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1749 .brw = BRW_NEW_BLORP |
1750 BRW_NEW_VUE_MAP_GEOM_OUT |
1751 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1752 BRW_NEW_PROGRAM_CACHE |
1753 BRW_NEW_SF_PROG_DATA |
1754 BRW_NEW_SF_VP |
1755 BRW_NEW_URB_FENCE
1756 : 0) |
1757 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1758 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1759 BRW_NEW_GS_PROG_DATA |
1760 BRW_NEW_PRIMITIVE |
1761 BRW_NEW_TES_PROG_DATA
1762 : 0) |
1763 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1764 BRW_NEW_FRAGMENT_PROGRAM
1765 : 0),
1766 },
1767 .emit = genX(upload_sf),
1768 };
1769
1770 /* ---------------------------------------------------------------------- */
1771
1772 static bool
1773 brw_color_buffer_write_enabled(struct brw_context *brw)
1774 {
1775 struct gl_context *ctx = &brw->ctx;
1776 /* BRW_NEW_FRAGMENT_PROGRAM */
1777 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1778 unsigned i;
1779
1780 /* _NEW_BUFFERS */
1781 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1782 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1783 uint64_t outputs_written = fp->info.outputs_written;
1784
1785 /* _NEW_COLOR */
1786 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1787 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1788 GET_COLORMASK(ctx->Color.ColorMask, i)) {
1789 return true;
1790 }
1791 }
1792
1793 return false;
1794 }
1795
1796 static void
1797 genX(upload_wm)(struct brw_context *brw)
1798 {
1799 struct gl_context *ctx = &brw->ctx;
1800
1801 /* BRW_NEW_FS_PROG_DATA */
1802 const struct brw_wm_prog_data *wm_prog_data =
1803 brw_wm_prog_data(brw->wm.base.prog_data);
1804
1805 UNUSED bool writes_depth =
1806 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1807 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1808 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1809
1810 #if GEN_GEN == 6
1811 /* We can't fold this into gen6_upload_wm_push_constants(), because
1812 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1813 * (3DSTATE_CONSTANT_PS [DevSNB]):
1814 *
1815 * "[DevSNB]: This packet must be followed by WM_STATE."
1816 */
1817 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1818 if (wm_prog_data->base.nr_params != 0) {
1819 wmcp.Buffer0Valid = true;
1820 /* Pointer to the WM constant buffer. Covered by the set of
1821 * state flags from gen6_upload_wm_push_constants.
1822 */
1823 wmcp.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
1824 wmcp.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1825 }
1826 }
1827 #endif
1828
1829 #if GEN_GEN >= 6
1830 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1831 #else
1832 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1833 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1834 #endif
1835
1836 #if GEN_GEN <= 6
1837 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1838 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1839 wm._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1840 #endif
1841
1842 #if GEN_GEN == 4
1843 /* On gen4, we only have one shader kernel */
1844 if (brw_wm_state_has_ksp(wm, 0)) {
1845 assert(brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0) == 0);
1846 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1847 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1848 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1849 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1850 }
1851 #elif GEN_GEN == 5
1852 /* On gen5, we have multiple shader kernels but only one GRF start
1853 * register for all kernels
1854 */
1855 wm.KernelStartPointer0 = stage_state->prog_offset +
1856 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1857 wm.KernelStartPointer1 = stage_state->prog_offset +
1858 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1859 wm.KernelStartPointer2 = stage_state->prog_offset +
1860 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1861
1862 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1863 wm.GRFRegisterCount1 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 1);
1864 wm.GRFRegisterCount2 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 2);
1865
1866 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1867 wm_prog_data->base.dispatch_grf_start_reg;
1868
1869 /* Dispatch GRF Start should be the same for all shaders on gen5 */
1870 if (brw_wm_state_has_ksp(wm, 1)) {
1871 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1872 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1));
1873 }
1874 if (brw_wm_state_has_ksp(wm, 2)) {
1875 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1876 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2));
1877 }
1878 #elif GEN_GEN == 6
1879 /* On gen6, we have multiple shader kernels and we no longer specify a
1880 * register count for each one.
1881 */
1882 wm.KernelStartPointer0 = stage_state->prog_offset +
1883 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1884 wm.KernelStartPointer1 = stage_state->prog_offset +
1885 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1886 wm.KernelStartPointer2 = stage_state->prog_offset +
1887 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1888
1889 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1890 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1891 wm.DispatchGRFStartRegisterForConstantSetupData1 =
1892 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1);
1893 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1894 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2);
1895 #endif
1896
1897 #if GEN_GEN <= 5
1898 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1899 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1900 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1901 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1902 wm.SetupURBEntryReadOffset = 0;
1903 wm.EarlyDepthTestEnable = true;
1904 #endif
1905
1906 #if GEN_GEN >= 6
1907 wm.LineAntialiasingRegionWidth = _10pixels;
1908 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1909
1910 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1911 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1912 #else
1913 if (stage_state->sampler_count)
1914 wm.SamplerStatePointer =
1915 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1916
1917 wm.LineAntialiasingRegionWidth = _05pixels;
1918 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1919
1920 /* _NEW_POLYGON */
1921 if (ctx->Polygon.OffsetFill) {
1922 wm.GlobalDepthOffsetEnable = true;
1923 /* Something weird going on with legacy_global_depth_bias,
1924 * offset_constant, scaling and MRD. This value passes glean
1925 * but gives some odd results elsewere (eg. the
1926 * quad-offset-units test).
1927 */
1928 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1929
1930 /* This is the only value that passes glean:
1931 */
1932 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1933 }
1934
1935 wm.DepthCoefficientURBReadOffset = 1;
1936 #endif
1937
1938 /* BRW_NEW_STATS_WM */
1939 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1940
1941 #if GEN_GEN < 7
1942 if (wm_prog_data->base.use_alt_mode)
1943 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1944
1945 /* WA_1606682166 */
1946 wm.SamplerCount = (GEN_GEN == 5 || GEN_GEN == 11) ?
1947 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1948
1949 wm.BindingTableEntryCount =
1950 wm_prog_data->base.binding_table.size_bytes / 4;
1951 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1952
1953 #if GEN_GEN == 6
1954 wm.DualSourceBlendEnable =
1955 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1956 ctx->Color.Blend[0]._UsesDualSrc;
1957 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1958 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1959
1960 /* From the SNB PRM, volume 2 part 1, page 281:
1961 * "If the PS kernel does not need the Position XY Offsets
1962 * to compute a Position XY value, then this field should be
1963 * programmed to POSOFFSET_NONE."
1964 *
1965 * "SW Recommendation: If the PS kernel needs the Position Offsets
1966 * to compute a Position XY value, this field should match Position
1967 * ZW Interpolation Mode to ensure a consistent position.xyzw
1968 * computation."
1969 * We only require XY sample offsets. So, this recommendation doesn't
1970 * look useful at the moment. We might need this in future.
1971 */
1972 if (wm_prog_data->uses_pos_offset)
1973 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1974 else
1975 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1976 #endif
1977
1978 if (wm_prog_data->base.total_scratch) {
1979 wm.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
1980 wm.PerThreadScratchSpace =
1981 ffs(stage_state->per_thread_scratch) - 11;
1982 }
1983
1984 wm.PixelShaderComputedDepth = writes_depth;
1985 #endif
1986
1987 /* _NEW_LINE */
1988 wm.LineStippleEnable = ctx->Line.StippleFlag;
1989
1990 /* _NEW_POLYGON */
1991 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1992
1993 #if GEN_GEN < 8
1994
1995 #if GEN_GEN >= 6
1996 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1997
1998 /* _NEW_BUFFERS */
1999 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
2000
2001 if (multisampled_fbo) {
2002 /* _NEW_MULTISAMPLE */
2003 if (ctx->Multisample.Enabled)
2004 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
2005 else
2006 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2007
2008 if (wm_prog_data->persample_dispatch)
2009 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2010 else
2011 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
2012 } else {
2013 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2014 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2015 }
2016 #endif
2017 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2018 if (wm_prog_data->uses_kill ||
2019 _mesa_is_alpha_test_enabled(ctx) ||
2020 _mesa_is_alpha_to_coverage_enabled(ctx) ||
2021 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
2022 wm.PixelShaderKillsPixel = true;
2023 }
2024
2025 /* _NEW_BUFFERS | _NEW_COLOR */
2026 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
2027 wm.PixelShaderKillsPixel ||
2028 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
2029 wm.ThreadDispatchEnable = true;
2030 }
2031
2032 #if GEN_GEN >= 7
2033 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2034 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2035 #endif
2036
2037 /* The "UAV access enable" bits are unnecessary on HSW because they only
2038 * seem to have an effect on the HW-assisted coherency mechanism which we
2039 * don't need, and the rasterization-related UAV_ONLY flag and the
2040 * DISPATCH_ENABLE bit can be set independently from it.
2041 * C.f. gen8_upload_ps_extra().
2042 *
2043 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
2044 * _NEW_COLOR
2045 */
2046 #if GEN_IS_HASWELL
2047 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
2048 wm_prog_data->has_side_effects)
2049 wm.PSUAVonly = ON;
2050 #endif
2051 #endif
2052
2053 #if GEN_GEN >= 7
2054 /* BRW_NEW_FS_PROG_DATA */
2055 if (wm_prog_data->early_fragment_tests)
2056 wm.EarlyDepthStencilControl = EDSC_PREPS;
2057 else if (wm_prog_data->has_side_effects)
2058 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2059 #endif
2060 }
2061
2062 #if GEN_GEN <= 5
2063 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
2064 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
2065 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
2066 }
2067
2068 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2069 }
2070 #endif
2071 }
2072
2073 static const struct brw_tracked_state genX(wm_state) = {
2074 .dirty = {
2075 .mesa = _NEW_LINE |
2076 _NEW_POLYGON |
2077 (GEN_GEN < 8 ? _NEW_BUFFERS |
2078 _NEW_COLOR :
2079 0) |
2080 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2081 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2082 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2083 .brw = BRW_NEW_BLORP |
2084 BRW_NEW_FS_PROG_DATA |
2085 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2086 BRW_NEW_FRAGMENT_PROGRAM |
2087 BRW_NEW_PROGRAM_CACHE |
2088 BRW_NEW_SAMPLER_STATE_TABLE |
2089 BRW_NEW_STATS_WM
2090 : 0) |
2091 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2092 },
2093 .emit = genX(upload_wm),
2094 };
2095
2096 /* ---------------------------------------------------------------------- */
2097
2098 /* We restrict scratch buffers to the bottom 32 bits of the address space
2099 * by using rw_32_bo().
2100 *
2101 * General State Base Address is a bit broken. If the address + size as
2102 * seen by STATE_BASE_ADDRESS overflows 48 bits, the GPU appears to treat
2103 * all accesses to the buffer as being out of bounds and returns zero.
2104 */
2105
2106 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2107 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2108 /* WA_1606682166 */ \
2109 pkt.SamplerCount = \
2110 GEN_GEN == 11 ? \
2111 0 : \
2112 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2113 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to \
2114 * disable prefetching of binding tables in A0 and B0 steppings. \
2115 * TODO: Revisit this WA on C0 stepping. \
2116 */ \
2117 pkt.BindingTableEntryCount = \
2118 GEN_GEN == 11 ? \
2119 0 : \
2120 stage_prog_data->binding_table.size_bytes / 4; \
2121 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2122 \
2123 if (stage_prog_data->total_scratch) { \
2124 pkt.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0); \
2125 pkt.PerThreadScratchSpace = \
2126 ffs(stage_state->per_thread_scratch) - 11; \
2127 } \
2128 \
2129 pkt.DispatchGRFStartRegisterForURBData = \
2130 stage_prog_data->dispatch_grf_start_reg; \
2131 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2132 pkt.prefix##URBEntryReadOffset = 0; \
2133 \
2134 pkt.StatisticsEnable = true; \
2135 pkt.Enable = true;
2136
2137 static void
2138 genX(upload_vs_state)(struct brw_context *brw)
2139 {
2140 UNUSED struct gl_context *ctx = &brw->ctx;
2141 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2142 struct brw_stage_state *stage_state = &brw->vs.base;
2143
2144 /* BRW_NEW_VS_PROG_DATA */
2145 const struct brw_vue_prog_data *vue_prog_data =
2146 brw_vue_prog_data(brw->vs.base.prog_data);
2147 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2148
2149 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2150 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2151 assert(GEN_GEN < 11 ||
2152 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
2153
2154 #if GEN_GEN == 6
2155 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2156 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2157 *
2158 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2159 * command that causes the VS Function Enable to toggle. Pipeline
2160 * flush can be executed by sending a PIPE_CONTROL command with CS
2161 * stall bit set and a post sync operation.
2162 *
2163 * We've already done such a flush at the start of state upload, so we
2164 * don't need to do another one here.
2165 */
2166 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2167 if (stage_state->push_const_size != 0) {
2168 cvs.Buffer0Valid = true;
2169 cvs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2170 cvs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2171 }
2172 }
2173 #endif
2174
2175 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2176 gen7_emit_vs_workaround_flush(brw);
2177
2178 #if GEN_GEN >= 6
2179 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2180 #else
2181 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2182 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2183 #endif
2184 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2185
2186 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2187
2188 #if GEN_GEN < 6
2189 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2190 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2191 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2192
2193 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2194 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2195
2196 vs.MaximumNumberofThreads =
2197 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2198
2199 vs.StatisticsEnable = false;
2200 vs.SamplerStatePointer =
2201 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2202 #endif
2203
2204 #if GEN_GEN == 5
2205 /* Force single program flow on Ironlake. We cannot reliably get
2206 * all applications working without it. See:
2207 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2208 *
2209 * The most notable and reliably failing application is the Humus
2210 * demo "CelShading"
2211 */
2212 vs.SingleProgramFlow = true;
2213 vs.SamplerCount = 0; /* hardware requirement */
2214 #endif
2215
2216 #if GEN_GEN >= 8
2217 vs.SIMD8DispatchEnable =
2218 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2219
2220 vs.UserClipDistanceCullTestEnableBitmask =
2221 vue_prog_data->cull_distance_mask;
2222 #endif
2223 }
2224
2225 #if GEN_GEN == 6
2226 /* Based on my reading of the simulator, the VS constants don't get
2227 * pulled into the VS FF unit until an appropriate pipeline flush
2228 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2229 * references to them into a little FIFO. The flushes are common,
2230 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2231 * the primitive to use the wrong constants. Then the FIFO
2232 * containing the constant setup gets added to again on the next
2233 * constants change, and eventually when a flush does happen the
2234 * unit is overwhelmed by constant changes and dies.
2235 *
2236 * To avoid this, send a PIPE_CONTROL down the line that will
2237 * update the unit immediately loading the constants. The flush
2238 * type bits here were those set by the STATE_BASE_ADDRESS whose
2239 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2240 * bug reports that led to this workaround, and may be more than
2241 * what is strictly required to avoid the issue.
2242 */
2243 brw_emit_pipe_control_flush(brw,
2244 PIPE_CONTROL_DEPTH_STALL |
2245 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2246 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2247 #endif
2248 }
2249
2250 static const struct brw_tracked_state genX(vs_state) = {
2251 .dirty = {
2252 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2253 .brw = BRW_NEW_BATCH |
2254 BRW_NEW_BLORP |
2255 BRW_NEW_CONTEXT |
2256 BRW_NEW_VS_PROG_DATA |
2257 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2258 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2259 BRW_NEW_PROGRAM_CACHE |
2260 BRW_NEW_SAMPLER_STATE_TABLE |
2261 BRW_NEW_URB_FENCE
2262 : 0),
2263 },
2264 .emit = genX(upload_vs_state),
2265 };
2266
2267 /* ---------------------------------------------------------------------- */
2268
2269 static void
2270 genX(upload_cc_viewport)(struct brw_context *brw)
2271 {
2272 struct gl_context *ctx = &brw->ctx;
2273
2274 /* BRW_NEW_VIEWPORT_COUNT */
2275 const unsigned viewport_count = brw->clip.viewport_count;
2276
2277 struct GENX(CC_VIEWPORT) ccv;
2278 uint32_t cc_vp_offset;
2279 uint32_t *cc_map =
2280 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2281 32, &cc_vp_offset);
2282
2283 for (unsigned i = 0; i < viewport_count; i++) {
2284 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2285 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2286 if (ctx->Transform.DepthClampNear && ctx->Transform.DepthClampFar) {
2287 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2288 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2289 } else if (ctx->Transform.DepthClampNear) {
2290 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2291 ccv.MaximumDepth = 0.0;
2292 } else if (ctx->Transform.DepthClampFar) {
2293 ccv.MinimumDepth = 0.0;
2294 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2295 } else {
2296 ccv.MinimumDepth = 0.0;
2297 ccv.MaximumDepth = 1.0;
2298 }
2299 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2300 cc_map += GENX(CC_VIEWPORT_length);
2301 }
2302
2303 #if GEN_GEN >= 7
2304 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2305 ptr.CCViewportPointer = cc_vp_offset;
2306 }
2307 #elif GEN_GEN == 6
2308 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2309 vp.CCViewportStateChange = 1;
2310 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2311 }
2312 #else
2313 brw->cc.vp_offset = cc_vp_offset;
2314 ctx->NewDriverState |= BRW_NEW_CC_VP;
2315 #endif
2316 }
2317
2318 const struct brw_tracked_state genX(cc_vp) = {
2319 .dirty = {
2320 .mesa = _NEW_TRANSFORM |
2321 _NEW_VIEWPORT,
2322 .brw = BRW_NEW_BATCH |
2323 BRW_NEW_BLORP |
2324 BRW_NEW_VIEWPORT_COUNT,
2325 },
2326 .emit = genX(upload_cc_viewport)
2327 };
2328
2329 /* ---------------------------------------------------------------------- */
2330
2331 static void
2332 set_scissor_bits(const struct gl_context *ctx, int i,
2333 bool flip_y, unsigned fb_width, unsigned fb_height,
2334 struct GENX(SCISSOR_RECT) *sc)
2335 {
2336 int bbox[4];
2337
2338 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2339 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2340 bbox[2] = CLAMP(ctx->ViewportArray[i].Y, 0, fb_height);
2341 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2342 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2343
2344 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2345 /* If the scissor was out of bounds and got clamped to 0 width/height
2346 * at the bounds, the subtraction of 1 from maximums could produce a
2347 * negative number and thus not clip anything. Instead, just provide
2348 * a min > max scissor inside the bounds, which produces the expected
2349 * no rendering.
2350 */
2351 sc->ScissorRectangleXMin = 1;
2352 sc->ScissorRectangleXMax = 0;
2353 sc->ScissorRectangleYMin = 1;
2354 sc->ScissorRectangleYMax = 0;
2355 } else if (!flip_y) {
2356 /* texmemory: Y=0=bottom */
2357 sc->ScissorRectangleXMin = bbox[0];
2358 sc->ScissorRectangleXMax = bbox[1] - 1;
2359 sc->ScissorRectangleYMin = bbox[2];
2360 sc->ScissorRectangleYMax = bbox[3] - 1;
2361 } else {
2362 /* memory: Y=0=top */
2363 sc->ScissorRectangleXMin = bbox[0];
2364 sc->ScissorRectangleXMax = bbox[1] - 1;
2365 sc->ScissorRectangleYMin = fb_height - bbox[3];
2366 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2367 }
2368 }
2369
2370 #if GEN_GEN >= 6
2371 static void
2372 genX(upload_scissor_state)(struct brw_context *brw)
2373 {
2374 struct gl_context *ctx = &brw->ctx;
2375 const bool flip_y = ctx->DrawBuffer->FlipY;
2376 struct GENX(SCISSOR_RECT) scissor;
2377 uint32_t scissor_state_offset;
2378 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2379 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2380 uint32_t *scissor_map;
2381
2382 /* BRW_NEW_VIEWPORT_COUNT */
2383 const unsigned viewport_count = brw->clip.viewport_count;
2384
2385 scissor_map = brw_state_batch(
2386 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2387 32, &scissor_state_offset);
2388
2389 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2390
2391 /* The scissor only needs to handle the intersection of drawable and
2392 * scissor rect. Clipping to the boundaries of static shared buffers
2393 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2394 *
2395 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2396 * inclusive but max is exclusive.
2397 */
2398 for (unsigned i = 0; i < viewport_count; i++) {
2399 set_scissor_bits(ctx, i, flip_y, fb_width, fb_height, &scissor);
2400 GENX(SCISSOR_RECT_pack)(
2401 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2402 }
2403
2404 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2405 ptr.ScissorRectPointer = scissor_state_offset;
2406 }
2407 }
2408
2409 static const struct brw_tracked_state genX(scissor_state) = {
2410 .dirty = {
2411 .mesa = _NEW_BUFFERS |
2412 _NEW_SCISSOR |
2413 _NEW_VIEWPORT,
2414 .brw = BRW_NEW_BATCH |
2415 BRW_NEW_BLORP |
2416 BRW_NEW_VIEWPORT_COUNT,
2417 },
2418 .emit = genX(upload_scissor_state),
2419 };
2420 #endif
2421
2422 /* ---------------------------------------------------------------------- */
2423
2424 static void
2425 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2426 float m00, float m11, float m30, float m31,
2427 float *xmin, float *xmax,
2428 float *ymin, float *ymax)
2429 {
2430 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2431 * Strips and Fans documentation:
2432 *
2433 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2434 * fixed-point "guardband" range supported by the rasterization hardware"
2435 *
2436 * and
2437 *
2438 * "In almost all circumstances, if an object’s vertices are actually
2439 * modified by this clamping (i.e., had X or Y coordinates outside of
2440 * the guardband extent the rendered object will not match the intended
2441 * result. Therefore software should take steps to ensure that this does
2442 * not happen - e.g., by clipping objects such that they do not exceed
2443 * these limits after the Drawing Rectangle is applied."
2444 *
2445 * I believe the fundamental restriction is that the rasterizer (in
2446 * the SF/WM stages) have a limit on the number of pixels that can be
2447 * rasterized. We need to ensure any coordinates beyond the rasterizer
2448 * limit are handled by the clipper. So effectively that limit becomes
2449 * the clipper's guardband size.
2450 *
2451 * It goes on to say:
2452 *
2453 * "In addition, in order to be correctly rendered, objects must have a
2454 * screenspace bounding box not exceeding 8K in the X or Y direction.
2455 * This additional restriction must also be comprehended by software,
2456 * i.e., enforced by use of clipping."
2457 *
2458 * This makes no sense. Gen7+ hardware supports 16K render targets,
2459 * and you definitely need to be able to draw polygons that fill the
2460 * surface. Our assumption is that the rasterizer was limited to 8K
2461 * on Sandybridge, which only supports 8K surfaces, and it was actually
2462 * increased to 16K on Ivybridge and later.
2463 *
2464 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2465 */
2466 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2467
2468 /* Workaround: prevent gpu hangs on SandyBridge
2469 * by disabling guardband clipping for odd dimensions.
2470 */
2471 if (GEN_GEN == 6 && (fb_width & 1 || fb_height & 1)) {
2472 *xmin = -1.0f;
2473 *xmax = 1.0f;
2474 *ymin = -1.0f;
2475 *ymax = 1.0f;
2476 return;
2477 }
2478
2479 if (m00 != 0 && m11 != 0) {
2480 /* First, we compute the screen-space render area */
2481 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2482 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2483 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2484 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2485
2486 /* We want the guardband to be centered on that */
2487 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2488 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2489 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2490 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2491
2492 /* Now we need it in native device coordinates */
2493 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2494 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2495 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2496 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2497
2498 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2499 * flipped upside-down. X should be fine though.
2500 */
2501 assert(ndc_gb_xmin <= ndc_gb_xmax);
2502 *xmin = ndc_gb_xmin;
2503 *xmax = ndc_gb_xmax;
2504 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2505 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2506 } else {
2507 /* The viewport scales to 0, so nothing will be rendered. */
2508 *xmin = 0.0f;
2509 *xmax = 0.0f;
2510 *ymin = 0.0f;
2511 *ymax = 0.0f;
2512 }
2513 }
2514
2515 static void
2516 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2517 {
2518 struct gl_context *ctx = &brw->ctx;
2519 float y_scale, y_bias;
2520
2521 /* BRW_NEW_VIEWPORT_COUNT */
2522 const unsigned viewport_count = brw->clip.viewport_count;
2523
2524 /* _NEW_BUFFERS */
2525 const bool flip_y = ctx->DrawBuffer->FlipY;
2526 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2527 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2528
2529 #if GEN_GEN >= 7
2530 #define clv sfv
2531 struct GENX(SF_CLIP_VIEWPORT) sfv;
2532 uint32_t sf_clip_vp_offset;
2533 uint32_t *sf_clip_map =
2534 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2535 64, &sf_clip_vp_offset);
2536 #else
2537 struct GENX(SF_VIEWPORT) sfv;
2538 struct GENX(CLIP_VIEWPORT) clv;
2539 uint32_t sf_vp_offset, clip_vp_offset;
2540 uint32_t *sf_map =
2541 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2542 32, &sf_vp_offset);
2543 uint32_t *clip_map =
2544 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2545 32, &clip_vp_offset);
2546 #endif
2547
2548 /* _NEW_BUFFERS */
2549 if (flip_y) {
2550 y_scale = -1.0;
2551 y_bias = (float)fb_height;
2552 } else {
2553 y_scale = 1.0;
2554 y_bias = 0;
2555 }
2556
2557 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2558 /* _NEW_VIEWPORT: Guardband Clipping */
2559 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2560 _mesa_get_viewport_xform(ctx, i, scale, translate);
2561
2562 sfv.ViewportMatrixElementm00 = scale[0];
2563 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2564 sfv.ViewportMatrixElementm22 = scale[2],
2565 sfv.ViewportMatrixElementm30 = translate[0],
2566 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2567 sfv.ViewportMatrixElementm32 = translate[2],
2568 brw_calculate_guardband_size(fb_width, fb_height,
2569 sfv.ViewportMatrixElementm00,
2570 sfv.ViewportMatrixElementm11,
2571 sfv.ViewportMatrixElementm30,
2572 sfv.ViewportMatrixElementm31,
2573 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2574
2575
2576 clv.XMinClipGuardband = gb_xmin;
2577 clv.XMaxClipGuardband = gb_xmax;
2578 clv.YMinClipGuardband = gb_ymin;
2579 clv.YMaxClipGuardband = gb_ymax;
2580
2581 #if GEN_GEN < 6
2582 set_scissor_bits(ctx, i, flip_y, fb_width, fb_height,
2583 &sfv.ScissorRectangle);
2584 #elif GEN_GEN >= 8
2585 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2586 * The hardware will take the intersection of the drawing rectangle,
2587 * scissor rectangle, and the viewport extents. However, emitting
2588 * 3DSTATE_DRAWING_RECTANGLE is expensive since it requires a full
2589 * pipeline stall so we're better off just being a little more clever
2590 * with our viewport so we can emit it once at context creation time.
2591 */
2592 const float viewport_Xmin = MAX2(ctx->ViewportArray[i].X, 0);
2593 const float viewport_Ymin = MAX2(ctx->ViewportArray[i].Y, 0);
2594 const float viewport_Xmax =
2595 MIN2(ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width, fb_width);
2596 const float viewport_Ymax =
2597 MIN2(ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height, fb_height);
2598
2599 if (flip_y) {
2600 sfv.XMinViewPort = viewport_Xmin;
2601 sfv.XMaxViewPort = viewport_Xmax - 1;
2602 sfv.YMinViewPort = fb_height - viewport_Ymax;
2603 sfv.YMaxViewPort = fb_height - viewport_Ymin - 1;
2604 } else {
2605 sfv.XMinViewPort = viewport_Xmin;
2606 sfv.XMaxViewPort = viewport_Xmax - 1;
2607 sfv.YMinViewPort = viewport_Ymin;
2608 sfv.YMaxViewPort = viewport_Ymax - 1;
2609 }
2610 #endif
2611
2612 #if GEN_GEN >= 7
2613 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2614 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2615 #else
2616 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2617 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2618 sf_map += GENX(SF_VIEWPORT_length);
2619 clip_map += GENX(CLIP_VIEWPORT_length);
2620 #endif
2621 }
2622
2623 #if GEN_GEN >= 7
2624 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2625 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2626 }
2627 #elif GEN_GEN == 6
2628 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2629 vp.SFViewportStateChange = 1;
2630 vp.CLIPViewportStateChange = 1;
2631 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2632 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2633 }
2634 #else
2635 brw->sf.vp_offset = sf_vp_offset;
2636 brw->clip.vp_offset = clip_vp_offset;
2637 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2638 #endif
2639 }
2640
2641 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2642 .dirty = {
2643 .mesa = _NEW_BUFFERS |
2644 _NEW_VIEWPORT |
2645 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2646 .brw = BRW_NEW_BATCH |
2647 BRW_NEW_BLORP |
2648 BRW_NEW_VIEWPORT_COUNT,
2649 },
2650 .emit = genX(upload_sf_clip_viewport),
2651 };
2652
2653 /* ---------------------------------------------------------------------- */
2654
2655 static void
2656 genX(upload_gs_state)(struct brw_context *brw)
2657 {
2658 UNUSED struct gl_context *ctx = &brw->ctx;
2659 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2660 const struct brw_stage_state *stage_state = &brw->gs.base;
2661 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2662 /* BRW_NEW_GEOMETRY_PROGRAM */
2663 bool active = GEN_GEN >= 6 && gs_prog;
2664
2665 /* BRW_NEW_GS_PROG_DATA */
2666 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2667 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2668 brw_vue_prog_data(stage_prog_data);
2669 #if GEN_GEN >= 7
2670 const struct brw_gs_prog_data *gs_prog_data =
2671 brw_gs_prog_data(stage_prog_data);
2672 #endif
2673
2674 #if GEN_GEN == 6
2675 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2676 if (active && stage_state->push_const_size != 0) {
2677 cgs.Buffer0Valid = true;
2678 cgs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2679 cgs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2680 }
2681 }
2682 #endif
2683
2684 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2685 /**
2686 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2687 * Geometry > Geometry Shader > State:
2688 *
2689 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2690 * whole fixed function pipeline when the GS enable changes value in
2691 * the 3DSTATE_GS."
2692 *
2693 * The hardware architects have clarified that in this context "flush the
2694 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2695 * Stall" bit set.
2696 */
2697 if (devinfo->gt == 2 && brw->gs.enabled != active)
2698 gen7_emit_cs_stall_flush(brw);
2699 #endif
2700
2701 #if GEN_GEN >= 6
2702 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2703 #else
2704 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2705 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2706 #endif
2707
2708 #if GEN_GEN >= 6
2709 if (active) {
2710 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2711
2712 #if GEN_GEN >= 7
2713 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2714 gs.OutputTopology = gs_prog_data->output_topology;
2715 gs.ControlDataHeaderSize =
2716 gs_prog_data->control_data_header_size_hwords;
2717
2718 gs.InstanceControl = gs_prog_data->invocations - 1;
2719 gs.DispatchMode = vue_prog_data->dispatch_mode;
2720
2721 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2722
2723 gs.ControlDataFormat = gs_prog_data->control_data_format;
2724 #endif
2725
2726 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2727 * Ivy Bridge and Haswell.
2728 *
2729 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2730 * strip to be delivered to the geometry shader in an order that does
2731 * not strictly follow the OpenGL spec, but preserves triangle
2732 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2733 * the geometry shader sees triangles:
2734 *
2735 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2736 *
2737 * (Clearing the bit is even worse, because it fails to preserve
2738 * orientation).
2739 *
2740 * Triangle strips with adjacency always ordered in a way that preserves
2741 * triangle orientation but does not strictly follow the OpenGL spec,
2742 * regardless of the setting of this bit.
2743 *
2744 * On Haswell, both triangle strips and triangle strips with adjacency
2745 * are always ordered in a way that preserves triangle orientation.
2746 * Setting this bit causes the ordering to strictly follow the OpenGL
2747 * spec.
2748 *
2749 * So in either case we want to set the bit. Unfortunately on Ivy
2750 * Bridge this will get the order close to correct but not perfect.
2751 */
2752 gs.ReorderMode = TRAILING;
2753 gs.MaximumNumberofThreads =
2754 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2755 : (devinfo->max_gs_threads - 1);
2756
2757 #if GEN_GEN < 7
2758 gs.SOStatisticsEnable = true;
2759 if (gs_prog->info.has_transform_feedback_varyings)
2760 gs.SVBIPayloadEnable = _mesa_is_xfb_active_and_unpaused(ctx);
2761
2762 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2763 * was previously done for gen6.
2764 *
2765 * TODO: test with both disabled to see if the HW is behaving
2766 * as expected, like in gen7.
2767 */
2768 gs.SingleProgramFlow = true;
2769 gs.VectorMaskEnable = true;
2770 #endif
2771
2772 #if GEN_GEN >= 8
2773 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2774
2775 if (gs_prog_data->static_vertex_count != -1) {
2776 gs.StaticOutput = true;
2777 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2778 }
2779 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2780
2781 gs.UserClipDistanceCullTestEnableBitmask =
2782 vue_prog_data->cull_distance_mask;
2783
2784 const int urb_entry_write_offset = 1;
2785 const uint32_t urb_entry_output_length =
2786 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2787 urb_entry_write_offset;
2788
2789 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2790 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2791 #endif
2792 }
2793 #endif
2794
2795 #if GEN_GEN <= 6
2796 if (!active && brw->ff_gs.prog_active) {
2797 /* In gen6, transform feedback for the VS stage is done with an
2798 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2799 * for this.
2800 */
2801 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2802 gs.SingleProgramFlow = true;
2803 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2804 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2805
2806 #if GEN_GEN <= 5
2807 gs.GRFRegisterCount =
2808 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2809 /* BRW_NEW_URB_FENCE */
2810 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2811 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2812 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2813 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2814 #else
2815 gs.Enable = true;
2816 gs.VectorMaskEnable = true;
2817 gs.SVBIPayloadEnable = true;
2818 gs.SVBIPostIncrementEnable = true;
2819 gs.SVBIPostIncrementValue =
2820 brw->ff_gs.prog_data->svbi_postincrement_value;
2821 gs.SOStatisticsEnable = true;
2822 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2823 #endif
2824 }
2825 #endif
2826 if (!active && !brw->ff_gs.prog_active) {
2827 #if GEN_GEN < 8
2828 gs.DispatchGRFStartRegisterForURBData = 1;
2829 #if GEN_GEN >= 7
2830 gs.IncludeVertexHandles = true;
2831 #endif
2832 #endif
2833 }
2834
2835 #if GEN_GEN >= 6
2836 gs.StatisticsEnable = true;
2837 #endif
2838 #if GEN_GEN == 5 || GEN_GEN == 6
2839 gs.RenderingEnabled = true;
2840 #endif
2841 #if GEN_GEN <= 5
2842 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2843 #endif
2844 }
2845
2846 #if GEN_GEN == 6
2847 brw->gs.enabled = active;
2848 #endif
2849 }
2850
2851 static const struct brw_tracked_state genX(gs_state) = {
2852 .dirty = {
2853 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2854 .brw = BRW_NEW_BATCH |
2855 BRW_NEW_BLORP |
2856 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2857 BRW_NEW_PROGRAM_CACHE |
2858 BRW_NEW_URB_FENCE |
2859 BRW_NEW_VIEWPORT_COUNT
2860 : 0) |
2861 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2862 BRW_NEW_GEOMETRY_PROGRAM |
2863 BRW_NEW_GS_PROG_DATA
2864 : 0) |
2865 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2866 },
2867 .emit = genX(upload_gs_state),
2868 };
2869
2870 /* ---------------------------------------------------------------------- */
2871
2872 UNUSED static GLenum
2873 fix_dual_blend_alpha_to_one(GLenum function)
2874 {
2875 switch (function) {
2876 case GL_SRC1_ALPHA:
2877 return GL_ONE;
2878
2879 case GL_ONE_MINUS_SRC1_ALPHA:
2880 return GL_ZERO;
2881 }
2882
2883 return function;
2884 }
2885
2886 #define blend_factor(x) brw_translate_blend_factor(x)
2887 #define blend_eqn(x) brw_translate_blend_equation(x)
2888
2889 /**
2890 * Modify blend function to force destination alpha to 1.0
2891 *
2892 * If \c function specifies a blend function that uses destination alpha,
2893 * replace it with a function that hard-wires destination alpha to 1.0. This
2894 * is used when rendering to xRGB targets.
2895 */
2896 static GLenum
2897 brw_fix_xRGB_alpha(GLenum function)
2898 {
2899 switch (function) {
2900 case GL_DST_ALPHA:
2901 return GL_ONE;
2902
2903 case GL_ONE_MINUS_DST_ALPHA:
2904 case GL_SRC_ALPHA_SATURATE:
2905 return GL_ZERO;
2906 }
2907
2908 return function;
2909 }
2910
2911 #if GEN_GEN >= 6
2912 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2913 #else
2914 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2915 #endif
2916
2917 UNUSED static bool
2918 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2919 bool alpha_to_one)
2920 {
2921 struct gl_context *ctx = &brw->ctx;
2922
2923 /* _NEW_BUFFERS */
2924 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2925
2926 bool independent_alpha_blend = false;
2927
2928 /* Used for implementing the following bit of GL_EXT_texture_integer:
2929 * "Per-fragment operations that require floating-point color
2930 * components, including multisample alpha operations, alpha test,
2931 * blending, and dithering, have no effect when the corresponding
2932 * colors are written to an integer color buffer."
2933 */
2934 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2935
2936 const unsigned blend_enabled = GEN_GEN >= 6 ?
2937 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2938
2939 /* _NEW_COLOR */
2940 if (ctx->Color.ColorLogicOpEnabled) {
2941 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2942 : GL_UNSIGNED_NORMALIZED;
2943 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2944 rb_type != GL_UNSIGNED_NORMALIZED &&
2945 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2946 "renderbuffer\n",
2947 _mesa_enum_to_string(ctx->Color.LogicOp),
2948 _mesa_enum_to_string(rb_type));
2949 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2950 entry->LogicOpEnable = true;
2951 entry->LogicOpFunction = ctx->Color._LogicOp;
2952 }
2953 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2954 && (GEN_GEN <= 5 || !integer)) {
2955 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2956 GLenum eqA = ctx->Color.Blend[i].EquationA;
2957 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2958 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2959 GLenum srcA = ctx->Color.Blend[i].SrcA;
2960 GLenum dstA = ctx->Color.Blend[i].DstA;
2961
2962 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2963 srcRGB = dstRGB = GL_ONE;
2964
2965 if (eqA == GL_MIN || eqA == GL_MAX)
2966 srcA = dstA = GL_ONE;
2967
2968 /* Due to hardware limitations, the destination may have information
2969 * in an alpha channel even when the format specifies no alpha
2970 * channel. In order to avoid getting any incorrect blending due to
2971 * that alpha channel, coerce the blend factors to values that will
2972 * not read the alpha channel, but will instead use the correct
2973 * implicit value for alpha.
2974 */
2975 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2976 GL_TEXTURE_ALPHA_TYPE)) {
2977 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2978 srcA = brw_fix_xRGB_alpha(srcA);
2979 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2980 dstA = brw_fix_xRGB_alpha(dstA);
2981 }
2982
2983 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2984 * "If Dual Source Blending is enabled, this bit must be disabled."
2985 *
2986 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2987 * and leave it enabled anyway.
2988 */
2989 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2990 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2991 srcA = fix_dual_blend_alpha_to_one(srcA);
2992 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2993 dstA = fix_dual_blend_alpha_to_one(dstA);
2994 }
2995
2996 /* BRW_NEW_FS_PROG_DATA */
2997 const struct brw_wm_prog_data *wm_prog_data =
2998 brw_wm_prog_data(brw->wm.base.prog_data);
2999
3000 /* The Dual Source Blending documentation says:
3001 *
3002 * "If SRC1 is included in a src/dst blend factor and
3003 * a DualSource RT Write message is not used, results
3004 * are UNDEFINED. (This reflects the same restriction in DX APIs,
3005 * where undefined results are produced if “o1” is not written
3006 * by a PS – there are no default values defined).
3007 * If SRC1 is not included in a src/dst blend factor,
3008 * dual source blending must be disabled."
3009 *
3010 * There is no way to gracefully fix this undefined situation
3011 * so we just disable the blending to prevent possible issues.
3012 */
3013 entry->ColorBufferBlendEnable =
3014 !ctx->Color.Blend[0]._UsesDualSrc || wm_prog_data->dual_src_blend;
3015
3016 entry->DestinationBlendFactor = blend_factor(dstRGB);
3017 entry->SourceBlendFactor = blend_factor(srcRGB);
3018 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
3019 entry->SourceAlphaBlendFactor = blend_factor(srcA);
3020 entry->ColorBlendFunction = blend_eqn(eqRGB);
3021 entry->AlphaBlendFunction = blend_eqn(eqA);
3022
3023 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
3024 independent_alpha_blend = true;
3025 }
3026
3027 return independent_alpha_blend;
3028 }
3029
3030 #if GEN_GEN >= 6
3031 static void
3032 genX(upload_blend_state)(struct brw_context *brw)
3033 {
3034 struct gl_context *ctx = &brw->ctx;
3035 int size;
3036
3037 /* We need at least one BLEND_STATE written, because we might do
3038 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
3039 * for computed depth or alpha test), which will do an FB write
3040 * with render target 0, which will reference BLEND_STATE[0] for
3041 * alpha test enable.
3042 */
3043 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
3044 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
3045 nr_draw_buffers = 1;
3046
3047 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
3048 #if GEN_GEN >= 8
3049 size += GENX(BLEND_STATE_length) * 4;
3050 #endif
3051
3052 uint32_t *blend_map;
3053 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
3054
3055 #if GEN_GEN >= 8
3056 struct GENX(BLEND_STATE) blend = { 0 };
3057 {
3058 #else
3059 for (int i = 0; i < nr_draw_buffers; i++) {
3060 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
3061 #define blend entry
3062 #endif
3063 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
3064 * "If drawbuffer zero is not NONE and the buffer it references has an
3065 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
3066 * operations are skipped."
3067 */
3068 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
3069 /* _NEW_MULTISAMPLE */
3070 if (_mesa_is_multisample_enabled(ctx)) {
3071 if (ctx->Multisample.SampleAlphaToCoverage) {
3072 blend.AlphaToCoverageEnable = true;
3073 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
3074 }
3075 if (ctx->Multisample.SampleAlphaToOne)
3076 blend.AlphaToOneEnable = true;
3077 }
3078
3079 /* _NEW_COLOR */
3080 if (ctx->Color.AlphaEnabled) {
3081 blend.AlphaTestEnable = true;
3082 blend.AlphaTestFunction =
3083 intel_translate_compare_func(ctx->Color.AlphaFunc);
3084 }
3085
3086 if (ctx->Color.DitherFlag) {
3087 blend.ColorDitherEnable = true;
3088 }
3089 }
3090
3091 #if GEN_GEN >= 8
3092 for (int i = 0; i < nr_draw_buffers; i++) {
3093 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
3094 #else
3095 {
3096 #endif
3097 blend.IndependentAlphaBlendEnable =
3098 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
3099 blend.IndependentAlphaBlendEnable;
3100
3101 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
3102 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
3103 *
3104 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
3105 * clamping in the fragment shader. For its clamping of
3106 * blending, the spec says:
3107 *
3108 * "RESOLVED: For fixed-point color buffers, the inputs and
3109 * the result of the blending equation are clamped. For
3110 * floating-point color buffers, no clamping occurs."
3111 *
3112 * So, generally, we want clamping to the render target's range.
3113 * And, good news, the hardware tables for both pre- and
3114 * post-blend color clamping are either ignored, or any are
3115 * allowed, or clamping is required but RT range clamping is a
3116 * valid option.
3117 */
3118 entry.PreBlendColorClampEnable = true;
3119 entry.PostBlendColorClampEnable = true;
3120 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
3121
3122 entry.WriteDisableRed = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
3123 entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
3124 entry.WriteDisableBlue = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
3125 entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
3126
3127 #if GEN_GEN >= 8
3128 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3129 #else
3130 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3131 #endif
3132 }
3133 }
3134
3135 #if GEN_GEN >= 8
3136 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3137 #endif
3138
3139 #if GEN_GEN < 7
3140 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3141 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3142 ptr.BLEND_STATEChange = true;
3143 }
3144 #else
3145 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3146 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3147 #if GEN_GEN >= 8
3148 ptr.BlendStatePointerValid = true;
3149 #endif
3150 }
3151 #endif
3152 }
3153
3154 static const struct brw_tracked_state genX(blend_state) = {
3155 .dirty = {
3156 .mesa = _NEW_BUFFERS |
3157 _NEW_COLOR |
3158 _NEW_MULTISAMPLE,
3159 .brw = BRW_NEW_BATCH |
3160 BRW_NEW_BLORP |
3161 BRW_NEW_FS_PROG_DATA |
3162 BRW_NEW_STATE_BASE_ADDRESS,
3163 },
3164 .emit = genX(upload_blend_state),
3165 };
3166 #endif
3167
3168 /* ---------------------------------------------------------------------- */
3169
3170 #if GEN_GEN >= 7
3171 UNUSED static const uint32_t push_constant_opcodes[] = {
3172 [MESA_SHADER_VERTEX] = 21,
3173 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3174 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3175 [MESA_SHADER_GEOMETRY] = 22,
3176 [MESA_SHADER_FRAGMENT] = 23,
3177 [MESA_SHADER_COMPUTE] = 0,
3178 };
3179
3180 static void
3181 genX(upload_push_constant_packets)(struct brw_context *brw)
3182 {
3183 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3184 struct gl_context *ctx = &brw->ctx;
3185
3186 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3187
3188 struct brw_stage_state *stage_states[] = {
3189 &brw->vs.base,
3190 &brw->tcs.base,
3191 &brw->tes.base,
3192 &brw->gs.base,
3193 &brw->wm.base,
3194 };
3195
3196 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3197 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3198 gen7_emit_vs_workaround_flush(brw);
3199
3200 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3201 struct brw_stage_state *stage_state = stage_states[stage];
3202 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3203
3204 if (!stage_state->push_constants_dirty)
3205 continue;
3206
3207 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3208 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3209 if (stage_state->prog_data) {
3210 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3211 /* The Skylake PRM contains the following restriction:
3212 *
3213 * "The driver must ensure The following case does not occur
3214 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3215 * buffer 3 read length equal to zero committed followed by a
3216 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3217 * zero committed."
3218 *
3219 * To avoid this, we program the buffers in the highest slots.
3220 * This way, slot 0 is only used if slot 3 is also used.
3221 */
3222 int n = 3;
3223
3224 for (int i = 3; i >= 0; i--) {
3225 const struct brw_ubo_range *range =
3226 &stage_state->prog_data->ubo_ranges[i];
3227
3228 if (range->length == 0)
3229 continue;
3230
3231 const struct gl_uniform_block *block =
3232 prog->sh.UniformBlocks[range->block];
3233 const struct gl_buffer_binding *binding =
3234 &ctx->UniformBufferBindings[block->Binding];
3235
3236 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3237 static unsigned msg_id = 0;
3238 _mesa_gl_debugf(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3239 MESA_DEBUG_TYPE_UNDEFINED,
3240 MESA_DEBUG_SEVERITY_HIGH,
3241 "UBO %d unbound, %s shader uniform data "
3242 "will be undefined.",
3243 range->block,
3244 _mesa_shader_stage_to_string(stage));
3245 continue;
3246 }
3247
3248 assert(binding->Offset % 32 == 0);
3249
3250 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3251 intel_buffer_object(binding->BufferObject),
3252 binding->Offset, range->length * 32, false);
3253
3254 pkt.ConstantBody.ReadLength[n] = range->length;
3255 pkt.ConstantBody.Buffer[n] =
3256 ro_bo(bo, range->start * 32 + binding->Offset);
3257 n--;
3258 }
3259
3260 if (stage_state->push_const_size > 0) {
3261 assert(n >= 0);
3262 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3263 pkt.ConstantBody.Buffer[n] =
3264 ro_bo(stage_state->push_const_bo,
3265 stage_state->push_const_offset);
3266 }
3267 #else
3268 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3269 pkt.ConstantBody.Buffer[0].offset =
3270 stage_state->push_const_offset | mocs;
3271 #endif
3272 }
3273 }
3274
3275 stage_state->push_constants_dirty = false;
3276 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3277 }
3278 }
3279
3280 const struct brw_tracked_state genX(push_constant_packets) = {
3281 .dirty = {
3282 .mesa = 0,
3283 .brw = BRW_NEW_DRAW_CALL,
3284 },
3285 .emit = genX(upload_push_constant_packets),
3286 };
3287 #endif
3288
3289 #if GEN_GEN >= 6
3290 static void
3291 genX(upload_vs_push_constants)(struct brw_context *brw)
3292 {
3293 struct brw_stage_state *stage_state = &brw->vs.base;
3294
3295 /* BRW_NEW_VERTEX_PROGRAM */
3296 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3297 /* BRW_NEW_VS_PROG_DATA */
3298 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3299
3300 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3301 }
3302
3303 static const struct brw_tracked_state genX(vs_push_constants) = {
3304 .dirty = {
3305 .mesa = _NEW_PROGRAM_CONSTANTS |
3306 _NEW_TRANSFORM,
3307 .brw = BRW_NEW_BATCH |
3308 BRW_NEW_BLORP |
3309 BRW_NEW_VERTEX_PROGRAM |
3310 BRW_NEW_VS_PROG_DATA,
3311 },
3312 .emit = genX(upload_vs_push_constants),
3313 };
3314
3315 static void
3316 genX(upload_gs_push_constants)(struct brw_context *brw)
3317 {
3318 struct brw_stage_state *stage_state = &brw->gs.base;
3319
3320 /* BRW_NEW_GEOMETRY_PROGRAM */
3321 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3322
3323 /* BRW_NEW_GS_PROG_DATA */
3324 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3325
3326 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3327 }
3328
3329 static const struct brw_tracked_state genX(gs_push_constants) = {
3330 .dirty = {
3331 .mesa = _NEW_PROGRAM_CONSTANTS |
3332 _NEW_TRANSFORM,
3333 .brw = BRW_NEW_BATCH |
3334 BRW_NEW_BLORP |
3335 BRW_NEW_GEOMETRY_PROGRAM |
3336 BRW_NEW_GS_PROG_DATA,
3337 },
3338 .emit = genX(upload_gs_push_constants),
3339 };
3340
3341 static void
3342 genX(upload_wm_push_constants)(struct brw_context *brw)
3343 {
3344 struct brw_stage_state *stage_state = &brw->wm.base;
3345 /* BRW_NEW_FRAGMENT_PROGRAM */
3346 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3347 /* BRW_NEW_FS_PROG_DATA */
3348 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3349
3350 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3351 }
3352
3353 static const struct brw_tracked_state genX(wm_push_constants) = {
3354 .dirty = {
3355 .mesa = _NEW_PROGRAM_CONSTANTS,
3356 .brw = BRW_NEW_BATCH |
3357 BRW_NEW_BLORP |
3358 BRW_NEW_FRAGMENT_PROGRAM |
3359 BRW_NEW_FS_PROG_DATA,
3360 },
3361 .emit = genX(upload_wm_push_constants),
3362 };
3363 #endif
3364
3365 /* ---------------------------------------------------------------------- */
3366
3367 #if GEN_GEN >= 6
3368 static unsigned
3369 genX(determine_sample_mask)(struct brw_context *brw)
3370 {
3371 struct gl_context *ctx = &brw->ctx;
3372 float coverage = 1.0f;
3373 float coverage_invert = false;
3374 unsigned sample_mask = ~0u;
3375
3376 /* BRW_NEW_NUM_SAMPLES */
3377 unsigned num_samples = brw->num_samples;
3378
3379 if (_mesa_is_multisample_enabled(ctx)) {
3380 if (ctx->Multisample.SampleCoverage) {
3381 coverage = ctx->Multisample.SampleCoverageValue;
3382 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3383 }
3384 if (ctx->Multisample.SampleMask) {
3385 sample_mask = ctx->Multisample.SampleMaskValue;
3386 }
3387 }
3388
3389 if (num_samples > 1) {
3390 int coverage_int = (int) (num_samples * coverage + 0.5f);
3391 uint32_t coverage_bits = (1 << coverage_int) - 1;
3392 if (coverage_invert)
3393 coverage_bits ^= (1 << num_samples) - 1;
3394 return coverage_bits & sample_mask;
3395 } else {
3396 return 1;
3397 }
3398 }
3399
3400 static void
3401 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3402 unsigned num_samples)
3403 {
3404 unsigned log2_samples = ffs(num_samples) - 1;
3405
3406 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3407 multi.PixelLocation = CENTER;
3408 multi.NumberofMultisamples = log2_samples;
3409 #if GEN_GEN == 6
3410 GEN_SAMPLE_POS_4X(multi.Sample);
3411 #elif GEN_GEN == 7
3412 switch (num_samples) {
3413 case 1:
3414 GEN_SAMPLE_POS_1X(multi.Sample);
3415 break;
3416 case 2:
3417 GEN_SAMPLE_POS_2X(multi.Sample);
3418 break;
3419 case 4:
3420 GEN_SAMPLE_POS_4X(multi.Sample);
3421 break;
3422 case 8:
3423 GEN_SAMPLE_POS_8X(multi.Sample);
3424 break;
3425 default:
3426 break;
3427 }
3428 #endif
3429 }
3430 }
3431
3432 static void
3433 genX(upload_multisample_state)(struct brw_context *brw)
3434 {
3435 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3436
3437 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3438
3439 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3440 sm.SampleMask = genX(determine_sample_mask)(brw);
3441 }
3442 }
3443
3444 static const struct brw_tracked_state genX(multisample_state) = {
3445 .dirty = {
3446 .mesa = _NEW_MULTISAMPLE |
3447 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3448 .brw = BRW_NEW_BLORP |
3449 BRW_NEW_CONTEXT |
3450 BRW_NEW_NUM_SAMPLES,
3451 },
3452 .emit = genX(upload_multisample_state)
3453 };
3454 #endif
3455
3456 /* ---------------------------------------------------------------------- */
3457
3458 static void
3459 genX(upload_color_calc_state)(struct brw_context *brw)
3460 {
3461 struct gl_context *ctx = &brw->ctx;
3462
3463 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3464 #if GEN_GEN <= 5
3465 cc.IndependentAlphaBlendEnable =
3466 set_blend_entry_bits(brw, &cc, 0, false);
3467 set_depth_stencil_bits(brw, &cc);
3468
3469 if (ctx->Color.AlphaEnabled &&
3470 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3471 cc.AlphaTestEnable = true;
3472 cc.AlphaTestFunction =
3473 intel_translate_compare_func(ctx->Color.AlphaFunc);
3474 }
3475
3476 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3477
3478 cc.StatisticsEnable = brw->stats_wm;
3479
3480 cc.CCViewportStatePointer =
3481 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3482 #else
3483 /* _NEW_COLOR */
3484 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3485 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3486 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3487 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3488
3489 #if GEN_GEN < 9
3490 /* _NEW_STENCIL */
3491 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3492 cc.BackfaceStencilReferenceValue =
3493 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3494 #endif
3495
3496 #endif
3497
3498 /* _NEW_COLOR */
3499 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3500 ctx->Color.AlphaRef);
3501 }
3502
3503 #if GEN_GEN >= 6
3504 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3505 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3506 #if GEN_GEN != 7
3507 ptr.ColorCalcStatePointerValid = true;
3508 #endif
3509 }
3510 #else
3511 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3512 #endif
3513 }
3514
3515 static const struct brw_tracked_state genX(color_calc_state) = {
3516 .dirty = {
3517 .mesa = _NEW_COLOR |
3518 _NEW_STENCIL |
3519 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3520 _NEW_DEPTH
3521 : 0),
3522 .brw = BRW_NEW_BATCH |
3523 BRW_NEW_BLORP |
3524 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3525 BRW_NEW_STATS_WM
3526 : BRW_NEW_CC_STATE |
3527 BRW_NEW_STATE_BASE_ADDRESS),
3528 },
3529 .emit = genX(upload_color_calc_state),
3530 };
3531
3532
3533 /* ---------------------------------------------------------------------- */
3534
3535 #if GEN_GEN >= 7
3536 static void
3537 genX(upload_sbe)(struct brw_context *brw)
3538 {
3539 struct gl_context *ctx = &brw->ctx;
3540 /* BRW_NEW_FRAGMENT_PROGRAM */
3541 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3542 /* BRW_NEW_FS_PROG_DATA */
3543 const struct brw_wm_prog_data *wm_prog_data =
3544 brw_wm_prog_data(brw->wm.base.prog_data);
3545 #if GEN_GEN >= 8
3546 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3547 #else
3548 #define attr_overrides sbe.Attribute
3549 #endif
3550 uint32_t urb_entry_read_length;
3551 uint32_t urb_entry_read_offset;
3552 uint32_t point_sprite_enables;
3553
3554 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3555 sbe.AttributeSwizzleEnable = true;
3556 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3557
3558 /* _NEW_BUFFERS */
3559 bool flip_y = ctx->DrawBuffer->FlipY;
3560
3561 /* _NEW_POINT
3562 *
3563 * Window coordinates in an FBO are inverted, which means point
3564 * sprite origin must be inverted.
3565 */
3566 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y)
3567 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3568 else
3569 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3570
3571 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3572 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3573 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3574 * BRW_NEW_VUE_MAP_GEOM_OUT
3575 */
3576 genX(calculate_attr_overrides)(brw,
3577 attr_overrides,
3578 &point_sprite_enables,
3579 &urb_entry_read_length,
3580 &urb_entry_read_offset);
3581
3582 /* Typically, the URB entry read length and offset should be programmed
3583 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3584 * stage which produces geometry. However, we don't know the proper
3585 * value until we call calculate_attr_overrides().
3586 *
3587 * To fit with our existing code, we override the inherited values and
3588 * specify it here directly, as we did on previous generations.
3589 */
3590 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3591 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3592 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3593 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3594
3595 #if GEN_GEN >= 8
3596 sbe.ForceVertexURBEntryReadLength = true;
3597 sbe.ForceVertexURBEntryReadOffset = true;
3598 #endif
3599
3600 #if GEN_GEN >= 9
3601 /* prepare the active component dwords */
3602 for (int i = 0; i < 32; i++)
3603 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3604 #endif
3605 }
3606
3607 #if GEN_GEN >= 8
3608 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3609 for (int i = 0; i < 16; i++)
3610 sbes.Attribute[i] = attr_overrides[i];
3611 }
3612 #endif
3613
3614 #undef attr_overrides
3615 }
3616
3617 static const struct brw_tracked_state genX(sbe_state) = {
3618 .dirty = {
3619 .mesa = _NEW_BUFFERS |
3620 _NEW_LIGHT |
3621 _NEW_POINT |
3622 _NEW_POLYGON |
3623 _NEW_PROGRAM,
3624 .brw = BRW_NEW_BLORP |
3625 BRW_NEW_CONTEXT |
3626 BRW_NEW_FRAGMENT_PROGRAM |
3627 BRW_NEW_FS_PROG_DATA |
3628 BRW_NEW_GS_PROG_DATA |
3629 BRW_NEW_TES_PROG_DATA |
3630 BRW_NEW_VUE_MAP_GEOM_OUT |
3631 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3632 : 0),
3633 },
3634 .emit = genX(upload_sbe),
3635 };
3636 #endif
3637
3638 /* ---------------------------------------------------------------------- */
3639
3640 #if GEN_GEN >= 7
3641 /**
3642 * Outputs the 3DSTATE_SO_DECL_LIST command.
3643 *
3644 * The data output is a series of 64-bit entries containing a SO_DECL per
3645 * stream. We only have one stream of rendering coming out of the GS unit, so
3646 * we only emit stream 0 (low 16 bits) SO_DECLs.
3647 */
3648 static void
3649 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3650 const struct brw_vue_map *vue_map)
3651 {
3652 struct gl_context *ctx = &brw->ctx;
3653 /* BRW_NEW_TRANSFORM_FEEDBACK */
3654 struct gl_transform_feedback_object *xfb_obj =
3655 ctx->TransformFeedback.CurrentObject;
3656 const struct gl_transform_feedback_info *linked_xfb_info =
3657 xfb_obj->program->sh.LinkedTransformFeedback;
3658 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3659 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3660 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3661 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3662 int max_decls = 0;
3663 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3664
3665 memset(so_decl, 0, sizeof(so_decl));
3666
3667 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3668 * command feels strange -- each dword pair contains a SO_DECL per stream.
3669 */
3670 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3671 const struct gl_transform_feedback_output *output =
3672 &linked_xfb_info->Outputs[i];
3673 const int buffer = output->OutputBuffer;
3674 const int varying = output->OutputRegister;
3675 const unsigned stream_id = output->StreamId;
3676 assert(stream_id < MAX_VERTEX_STREAMS);
3677
3678 buffer_mask[stream_id] |= 1 << buffer;
3679
3680 assert(vue_map->varying_to_slot[varying] >= 0);
3681
3682 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3683 * array. Instead, it simply increments DstOffset for the following
3684 * input by the number of components that should be skipped.
3685 *
3686 * Our hardware is unusual in that it requires us to program SO_DECLs
3687 * for fake "hole" components, rather than simply taking the offset
3688 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3689 * program as many size = 4 holes as we can, then a final hole to
3690 * accommodate the final 1, 2, or 3 remaining.
3691 */
3692 int skip_components = output->DstOffset - next_offset[buffer];
3693
3694 while (skip_components > 0) {
3695 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3696 .HoleFlag = 1,
3697 .OutputBufferSlot = output->OutputBuffer,
3698 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3699 };
3700 skip_components -= 4;
3701 }
3702
3703 next_offset[buffer] = output->DstOffset + output->NumComponents;
3704
3705 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3706 .OutputBufferSlot = output->OutputBuffer,
3707 .RegisterIndex = vue_map->varying_to_slot[varying],
3708 .ComponentMask =
3709 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3710 };
3711
3712 if (decls[stream_id] > max_decls)
3713 max_decls = decls[stream_id];
3714 }
3715
3716 uint32_t *dw;
3717 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3718 .StreamtoBufferSelects0 = buffer_mask[0],
3719 .StreamtoBufferSelects1 = buffer_mask[1],
3720 .StreamtoBufferSelects2 = buffer_mask[2],
3721 .StreamtoBufferSelects3 = buffer_mask[3],
3722 .NumEntries0 = decls[0],
3723 .NumEntries1 = decls[1],
3724 .NumEntries2 = decls[2],
3725 .NumEntries3 = decls[3]);
3726
3727 for (int i = 0; i < max_decls; i++) {
3728 GENX(SO_DECL_ENTRY_pack)(
3729 brw, dw + 2 + i * 2,
3730 &(struct GENX(SO_DECL_ENTRY)) {
3731 .Stream0Decl = so_decl[0][i],
3732 .Stream1Decl = so_decl[1][i],
3733 .Stream2Decl = so_decl[2][i],
3734 .Stream3Decl = so_decl[3][i],
3735 });
3736 }
3737 }
3738
3739 static void
3740 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3741 {
3742 struct gl_context *ctx = &brw->ctx;
3743 /* BRW_NEW_TRANSFORM_FEEDBACK */
3744 struct gl_transform_feedback_object *xfb_obj =
3745 ctx->TransformFeedback.CurrentObject;
3746 #if GEN_GEN < 8
3747 const struct gl_transform_feedback_info *linked_xfb_info =
3748 xfb_obj->program->sh.LinkedTransformFeedback;
3749 #else
3750 struct brw_transform_feedback_object *brw_obj =
3751 (struct brw_transform_feedback_object *) xfb_obj;
3752 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3753 #endif
3754
3755 /* Set up the up to 4 output buffers. These are the ranges defined in the
3756 * gl_transform_feedback_object.
3757 */
3758 for (int i = 0; i < 4; i++) {
3759 struct intel_buffer_object *bufferobj =
3760 intel_buffer_object(xfb_obj->Buffers[i]);
3761 uint32_t start = xfb_obj->Offset[i];
3762 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3763 uint32_t const size = end - start;
3764
3765 if (!bufferobj || !size) {
3766 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3767 sob.SOBufferIndex = i;
3768 }
3769 continue;
3770 }
3771
3772 assert(start % 4 == 0);
3773 struct brw_bo *bo =
3774 intel_bufferobj_buffer(brw, bufferobj, start, size, true);
3775 assert(end <= bo->size);
3776
3777 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3778 sob.SOBufferIndex = i;
3779
3780 sob.SurfaceBaseAddress = rw_bo(bo, start);
3781 #if GEN_GEN < 8
3782 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3783 sob.SurfaceEndAddress = rw_bo(bo, end);
3784 #else
3785 sob.SOBufferEnable = true;
3786 sob.StreamOffsetWriteEnable = true;
3787 sob.StreamOutputBufferOffsetAddressEnable = true;
3788 sob.MOCS = mocs_wb;
3789
3790 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3791 sob.StreamOutputBufferOffsetAddress =
3792 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3793
3794 if (brw_obj->zero_offsets) {
3795 /* Zero out the offset and write that to offset_bo */
3796 sob.StreamOffset = 0;
3797 } else {
3798 /* Use offset_bo as the "Stream Offset." */
3799 sob.StreamOffset = 0xFFFFFFFF;
3800 }
3801 #endif
3802 }
3803 }
3804
3805 #if GEN_GEN >= 8
3806 brw_obj->zero_offsets = false;
3807 #endif
3808 }
3809
3810 static bool
3811 query_active(struct gl_query_object *q)
3812 {
3813 return q && q->Active;
3814 }
3815
3816 static void
3817 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3818 const struct brw_vue_map *vue_map)
3819 {
3820 struct gl_context *ctx = &brw->ctx;
3821 /* BRW_NEW_TRANSFORM_FEEDBACK */
3822 struct gl_transform_feedback_object *xfb_obj =
3823 ctx->TransformFeedback.CurrentObject;
3824
3825 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3826 if (active) {
3827 int urb_entry_read_offset = 0;
3828 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3829 urb_entry_read_offset;
3830
3831 sos.SOFunctionEnable = true;
3832 sos.SOStatisticsEnable = true;
3833
3834 /* BRW_NEW_RASTERIZER_DISCARD */
3835 if (ctx->RasterDiscard) {
3836 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3837 sos.RenderingDisable = true;
3838 } else {
3839 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3840 "query active relies on the clipper.\n");
3841 }
3842 }
3843
3844 /* _NEW_LIGHT */
3845 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3846 sos.ReorderMode = TRAILING;
3847
3848 #if GEN_GEN < 8
3849 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3850 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3851 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3852 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3853 #else
3854 const struct gl_transform_feedback_info *linked_xfb_info =
3855 xfb_obj->program->sh.LinkedTransformFeedback;
3856 /* Set buffer pitches; 0 means unbound. */
3857 if (xfb_obj->Buffers[0])
3858 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3859 if (xfb_obj->Buffers[1])
3860 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3861 if (xfb_obj->Buffers[2])
3862 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3863 if (xfb_obj->Buffers[3])
3864 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3865 #endif
3866
3867 /* We always read the whole vertex. This could be reduced at some
3868 * point by reading less and offsetting the register index in the
3869 * SO_DECLs.
3870 */
3871 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3872 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3873 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3874 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3875 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3876 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3877 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3878 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3879 }
3880 }
3881 }
3882
3883 static void
3884 genX(upload_sol)(struct brw_context *brw)
3885 {
3886 struct gl_context *ctx = &brw->ctx;
3887 /* BRW_NEW_TRANSFORM_FEEDBACK */
3888 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3889
3890 if (active) {
3891 genX(upload_3dstate_so_buffers)(brw);
3892
3893 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3894 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3895 }
3896
3897 /* Finally, set up the SOL stage. This command must always follow updates to
3898 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3899 * MMIO register updates (current performed by the kernel at each batch
3900 * emit).
3901 */
3902 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3903 }
3904
3905 static const struct brw_tracked_state genX(sol_state) = {
3906 .dirty = {
3907 .mesa = _NEW_LIGHT,
3908 .brw = BRW_NEW_BATCH |
3909 BRW_NEW_BLORP |
3910 BRW_NEW_RASTERIZER_DISCARD |
3911 BRW_NEW_VUE_MAP_GEOM_OUT |
3912 BRW_NEW_TRANSFORM_FEEDBACK,
3913 },
3914 .emit = genX(upload_sol),
3915 };
3916 #endif
3917
3918 /* ---------------------------------------------------------------------- */
3919
3920 #if GEN_GEN >= 7
3921 static void
3922 genX(upload_ps)(struct brw_context *brw)
3923 {
3924 UNUSED const struct gl_context *ctx = &brw->ctx;
3925 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3926
3927 /* BRW_NEW_FS_PROG_DATA */
3928 const struct brw_wm_prog_data *prog_data =
3929 brw_wm_prog_data(brw->wm.base.prog_data);
3930 const struct brw_stage_state *stage_state = &brw->wm.base;
3931
3932 #if GEN_GEN < 8
3933 #endif
3934
3935 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3936 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3937 * incorrect for subspans where some of the pixels are unlit. We believe
3938 * the bit just didn't take effect in previous generations.
3939 */
3940 ps.VectorMaskEnable = GEN_GEN >= 8;
3941
3942 /* WA_1606682166:
3943 * "Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
3944 * Disable the Sampler state prefetch functionality in the SARB by
3945 * programming 0xB000[30] to '1'."
3946 */
3947 ps.SamplerCount = GEN_GEN == 11 ?
3948 0 : DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3949
3950 /* BRW_NEW_FS_PROG_DATA */
3951 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to disable
3952 * prefetching of binding tables in A0 and B0 steppings.
3953 * TODO: Revisit this workaround on C0 stepping.
3954 */
3955 ps.BindingTableEntryCount = GEN_GEN == 11 ?
3956 0 :
3957 prog_data->base.binding_table.size_bytes / 4;
3958
3959 if (prog_data->base.use_alt_mode)
3960 ps.FloatingPointMode = Alternate;
3961
3962 /* Haswell requires the sample mask to be set in this packet as well as
3963 * in 3DSTATE_SAMPLE_MASK; the values should match.
3964 */
3965
3966 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3967 #if GEN_IS_HASWELL
3968 ps.SampleMask = genX(determine_sample_mask(brw));
3969 #endif
3970
3971 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64
3972 * for pre Gen11 and 128 for gen11+; On gen11+ If a programmed value is
3973 * k, it implies 2(k+1) threads. It implicitly scales for different GT
3974 * levels (which have some # of PSDs).
3975 *
3976 * In Gen8 the format is U8-2 whereas in Gen9+ it is U9-1.
3977 */
3978 #if GEN_GEN >= 9
3979 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3980 #elif GEN_GEN >= 8
3981 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3982 #else
3983 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3984 #endif
3985
3986 if (prog_data->base.nr_params > 0 ||
3987 prog_data->base.ubo_ranges[0].length > 0)
3988 ps.PushConstantEnable = true;
3989
3990 #if GEN_GEN < 8
3991 /* From the IVB PRM, volume 2 part 1, page 287:
3992 * "This bit is inserted in the PS payload header and made available to
3993 * the DataPort (either via the message header or via header bypass) to
3994 * indicate that oMask data (one or two phases) is included in Render
3995 * Target Write messages. If present, the oMask data is used to mask off
3996 * samples."
3997 */
3998 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3999
4000 /* The hardware wedges if you have this bit set but don't turn on any
4001 * dual source blend factors.
4002 *
4003 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
4004 */
4005 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
4006 (ctx->Color.BlendEnabled & 1) &&
4007 ctx->Color.Blend[0]._UsesDualSrc;
4008
4009 /* BRW_NEW_FS_PROG_DATA */
4010 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
4011 #endif
4012
4013 /* From the documentation for this packet:
4014 * "If the PS kernel does not need the Position XY Offsets to
4015 * compute a Position Value, then this field should be programmed
4016 * to POSOFFSET_NONE."
4017 *
4018 * "SW Recommendation: If the PS kernel needs the Position Offsets
4019 * to compute a Position XY value, this field should match Position
4020 * ZW Interpolation Mode to ensure a consistent position.xyzw
4021 * computation."
4022 *
4023 * We only require XY sample offsets. So, this recommendation doesn't
4024 * look useful at the moment. We might need this in future.
4025 */
4026 if (prog_data->uses_pos_offset)
4027 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
4028 else
4029 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
4030
4031 ps._8PixelDispatchEnable = prog_data->dispatch_8;
4032 ps._16PixelDispatchEnable = prog_data->dispatch_16;
4033 ps._32PixelDispatchEnable = prog_data->dispatch_32;
4034
4035 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
4036 *
4037 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
4038 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
4039 *
4040 * Since 16x MSAA is first introduced on SKL, we don't need to apply
4041 * the workaround on any older hardware.
4042 *
4043 * BRW_NEW_NUM_SAMPLES
4044 */
4045 if (GEN_GEN >= 9 && !prog_data->persample_dispatch &&
4046 brw->num_samples == 16) {
4047 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
4048 ps._32PixelDispatchEnable = false;
4049 }
4050
4051 ps.DispatchGRFStartRegisterForConstantSetupData0 =
4052 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
4053 ps.DispatchGRFStartRegisterForConstantSetupData1 =
4054 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
4055 ps.DispatchGRFStartRegisterForConstantSetupData2 =
4056 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);
4057
4058 ps.KernelStartPointer0 = stage_state->prog_offset +
4059 brw_wm_prog_data_prog_offset(prog_data, ps, 0);
4060 ps.KernelStartPointer1 = stage_state->prog_offset +
4061 brw_wm_prog_data_prog_offset(prog_data, ps, 1);
4062 ps.KernelStartPointer2 = stage_state->prog_offset +
4063 brw_wm_prog_data_prog_offset(prog_data, ps, 2);
4064
4065 if (prog_data->base.total_scratch) {
4066 ps.ScratchSpaceBasePointer =
4067 rw_32_bo(stage_state->scratch_bo,
4068 ffs(stage_state->per_thread_scratch) - 11);
4069 }
4070 }
4071 }
4072
4073 static const struct brw_tracked_state genX(ps_state) = {
4074 .dirty = {
4075 .mesa = _NEW_MULTISAMPLE |
4076 (GEN_GEN < 8 ? _NEW_BUFFERS |
4077 _NEW_COLOR
4078 : 0),
4079 .brw = BRW_NEW_BATCH |
4080 BRW_NEW_BLORP |
4081 BRW_NEW_FS_PROG_DATA |
4082 (GEN_GEN >= 9 ? BRW_NEW_NUM_SAMPLES : 0),
4083 },
4084 .emit = genX(upload_ps),
4085 };
4086 #endif
4087
4088 /* ---------------------------------------------------------------------- */
4089
4090 #if GEN_GEN >= 7
4091 static void
4092 genX(upload_hs_state)(struct brw_context *brw)
4093 {
4094 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4095 struct brw_stage_state *stage_state = &brw->tcs.base;
4096 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4097 const struct brw_vue_prog_data *vue_prog_data =
4098 brw_vue_prog_data(stage_prog_data);
4099
4100 /* BRW_NEW_TES_PROG_DATA */
4101 struct brw_tcs_prog_data *tcs_prog_data =
4102 brw_tcs_prog_data(stage_prog_data);
4103
4104 if (!tcs_prog_data) {
4105 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
4106 } else {
4107 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
4108 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
4109
4110 hs.InstanceCount = tcs_prog_data->instances - 1;
4111 hs.IncludeVertexHandles = true;
4112
4113 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4114 }
4115 }
4116 }
4117
4118 static const struct brw_tracked_state genX(hs_state) = {
4119 .dirty = {
4120 .mesa = 0,
4121 .brw = BRW_NEW_BATCH |
4122 BRW_NEW_BLORP |
4123 BRW_NEW_TCS_PROG_DATA |
4124 BRW_NEW_TESS_PROGRAMS,
4125 },
4126 .emit = genX(upload_hs_state),
4127 };
4128
4129 static void
4130 genX(upload_ds_state)(struct brw_context *brw)
4131 {
4132 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4133 const struct brw_stage_state *stage_state = &brw->tes.base;
4134 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4135
4136 /* BRW_NEW_TES_PROG_DATA */
4137 const struct brw_tes_prog_data *tes_prog_data =
4138 brw_tes_prog_data(stage_prog_data);
4139 const struct brw_vue_prog_data *vue_prog_data =
4140 brw_vue_prog_data(stage_prog_data);
4141
4142 if (!tes_prog_data) {
4143 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
4144 } else {
4145 assert(GEN_GEN < 11 ||
4146 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
4147
4148 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
4149 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
4150
4151 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4152 ds.ComputeWCoordinateEnable =
4153 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4154
4155 #if GEN_GEN >= 8
4156 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
4157 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4158 ds.UserClipDistanceCullTestEnableBitmask =
4159 vue_prog_data->cull_distance_mask;
4160 #endif
4161 }
4162 }
4163 }
4164
4165 static const struct brw_tracked_state genX(ds_state) = {
4166 .dirty = {
4167 .mesa = 0,
4168 .brw = BRW_NEW_BATCH |
4169 BRW_NEW_BLORP |
4170 BRW_NEW_TESS_PROGRAMS |
4171 BRW_NEW_TES_PROG_DATA,
4172 },
4173 .emit = genX(upload_ds_state),
4174 };
4175
4176 /* ---------------------------------------------------------------------- */
4177
4178 static void
4179 upload_te_state(struct brw_context *brw)
4180 {
4181 /* BRW_NEW_TESS_PROGRAMS */
4182 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4183
4184 /* BRW_NEW_TES_PROG_DATA */
4185 const struct brw_tes_prog_data *tes_prog_data =
4186 brw_tes_prog_data(brw->tes.base.prog_data);
4187
4188 if (active) {
4189 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4190 te.Partitioning = tes_prog_data->partitioning;
4191 te.OutputTopology = tes_prog_data->output_topology;
4192 te.TEDomain = tes_prog_data->domain;
4193 te.TEEnable = true;
4194 te.MaximumTessellationFactorOdd = 63.0;
4195 te.MaximumTessellationFactorNotOdd = 64.0;
4196 }
4197 } else {
4198 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4199 }
4200 }
4201
4202 static const struct brw_tracked_state genX(te_state) = {
4203 .dirty = {
4204 .mesa = 0,
4205 .brw = BRW_NEW_BLORP |
4206 BRW_NEW_CONTEXT |
4207 BRW_NEW_TES_PROG_DATA |
4208 BRW_NEW_TESS_PROGRAMS,
4209 },
4210 .emit = upload_te_state,
4211 };
4212
4213 /* ---------------------------------------------------------------------- */
4214
4215 static void
4216 genX(upload_tes_push_constants)(struct brw_context *brw)
4217 {
4218 struct brw_stage_state *stage_state = &brw->tes.base;
4219 /* BRW_NEW_TESS_PROGRAMS */
4220 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4221
4222 /* BRW_NEW_TES_PROG_DATA */
4223 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4224 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4225 }
4226
4227 static const struct brw_tracked_state genX(tes_push_constants) = {
4228 .dirty = {
4229 .mesa = _NEW_PROGRAM_CONSTANTS,
4230 .brw = BRW_NEW_BATCH |
4231 BRW_NEW_BLORP |
4232 BRW_NEW_TESS_PROGRAMS |
4233 BRW_NEW_TES_PROG_DATA,
4234 },
4235 .emit = genX(upload_tes_push_constants),
4236 };
4237
4238 static void
4239 genX(upload_tcs_push_constants)(struct brw_context *brw)
4240 {
4241 struct brw_stage_state *stage_state = &brw->tcs.base;
4242 /* BRW_NEW_TESS_PROGRAMS */
4243 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4244
4245 /* BRW_NEW_TCS_PROG_DATA */
4246 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4247
4248 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4249 }
4250
4251 static const struct brw_tracked_state genX(tcs_push_constants) = {
4252 .dirty = {
4253 .mesa = _NEW_PROGRAM_CONSTANTS,
4254 .brw = BRW_NEW_BATCH |
4255 BRW_NEW_BLORP |
4256 BRW_NEW_DEFAULT_TESS_LEVELS |
4257 BRW_NEW_TESS_PROGRAMS |
4258 BRW_NEW_TCS_PROG_DATA,
4259 },
4260 .emit = genX(upload_tcs_push_constants),
4261 };
4262
4263 #endif
4264
4265 /* ---------------------------------------------------------------------- */
4266
4267 #if GEN_GEN >= 7
4268 static void
4269 genX(upload_cs_push_constants)(struct brw_context *brw)
4270 {
4271 struct brw_stage_state *stage_state = &brw->cs.base;
4272
4273 /* BRW_NEW_COMPUTE_PROGRAM */
4274 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4275
4276 if (cp) {
4277 /* BRW_NEW_CS_PROG_DATA */
4278 struct brw_cs_prog_data *cs_prog_data =
4279 brw_cs_prog_data(brw->cs.base.prog_data);
4280
4281 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4282 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4283 }
4284 }
4285
4286 const struct brw_tracked_state genX(cs_push_constants) = {
4287 .dirty = {
4288 .mesa = _NEW_PROGRAM_CONSTANTS,
4289 .brw = BRW_NEW_BATCH |
4290 BRW_NEW_BLORP |
4291 BRW_NEW_COMPUTE_PROGRAM |
4292 BRW_NEW_CS_PROG_DATA,
4293 },
4294 .emit = genX(upload_cs_push_constants),
4295 };
4296
4297 /**
4298 * Creates a new CS constant buffer reflecting the current CS program's
4299 * constants, if needed by the CS program.
4300 */
4301 static void
4302 genX(upload_cs_pull_constants)(struct brw_context *brw)
4303 {
4304 struct brw_stage_state *stage_state = &brw->cs.base;
4305
4306 /* BRW_NEW_COMPUTE_PROGRAM */
4307 struct brw_program *cp =
4308 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4309
4310 /* BRW_NEW_CS_PROG_DATA */
4311 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4312
4313 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4314 /* _NEW_PROGRAM_CONSTANTS */
4315 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4316 stage_state, prog_data);
4317 }
4318
4319 const struct brw_tracked_state genX(cs_pull_constants) = {
4320 .dirty = {
4321 .mesa = _NEW_PROGRAM_CONSTANTS,
4322 .brw = BRW_NEW_BATCH |
4323 BRW_NEW_BLORP |
4324 BRW_NEW_COMPUTE_PROGRAM |
4325 BRW_NEW_CS_PROG_DATA,
4326 },
4327 .emit = genX(upload_cs_pull_constants),
4328 };
4329
4330 static void
4331 genX(upload_cs_state)(struct brw_context *brw)
4332 {
4333 if (!brw->cs.base.prog_data)
4334 return;
4335
4336 uint32_t offset;
4337 uint32_t *desc = (uint32_t*) brw_state_batch(
4338 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4339 &offset);
4340
4341 struct brw_stage_state *stage_state = &brw->cs.base;
4342 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4343 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4344 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4345
4346 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4347 brw_emit_buffer_surface_state(
4348 brw, &stage_state->surf_offset[
4349 prog_data->binding_table.shader_time_start],
4350 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4351 brw->shader_time.bo->size, 1,
4352 RELOC_WRITE);
4353 }
4354
4355 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4356 32, &stage_state->bind_bo_offset);
4357
4358 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4359 *
4360 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4361 * the only bits that are changed are scoreboard related: Scoreboard
4362 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4363 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4364 *
4365 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4366 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4367 */
4368 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4369
4370 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4371 if (prog_data->total_scratch) {
4372 uint32_t per_thread_scratch_value;
4373
4374 if (GEN_GEN >= 8) {
4375 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4376 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4377 */
4378 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4379 } else if (GEN_IS_HASWELL) {
4380 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4381 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4382 */
4383 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4384 } else {
4385 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4386 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4387 */
4388 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4389 }
4390 vfe.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
4391 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4392 }
4393
4394 /* If brw->screen->subslice_total is greater than one, then
4395 * devinfo->max_cs_threads stores number of threads per sub-slice;
4396 * thus we need to multiply by that number by subslices to get
4397 * the actual maximum number of threads; the -1 is because the HW
4398 * has a bias of 1 (would not make sense to say the maximum number
4399 * of threads is 0).
4400 */
4401 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4402 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4403 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4404 #if GEN_GEN < 11
4405 vfe.ResetGatewayTimer =
4406 Resettingrelativetimerandlatchingtheglobaltimestamp;
4407 #endif
4408 #if GEN_GEN < 9
4409 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4410 #endif
4411 #if GEN_GEN == 7
4412 vfe.GPGPUMode = 1;
4413 #endif
4414
4415 /* We are uploading duplicated copies of push constant uniforms for each
4416 * thread. Although the local id data needs to vary per thread, it won't
4417 * change for other uniform data. Unfortunately this duplication is
4418 * required for gen7. As of Haswell, this duplication can be avoided,
4419 * but this older mechanism with duplicated data continues to work.
4420 *
4421 * FINISHME: As of Haswell, we could make use of the
4422 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4423 * field to only store one copy of uniform data.
4424 *
4425 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4426 * which is described in the GPGPU_WALKER command and in the Broadwell
4427 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4428 * Operations => GPGPU Mode => Indirect Payload Storage.
4429 *
4430 * Note: The constant data is built in brw_upload_cs_push_constants
4431 * below.
4432 */
4433 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4434
4435 const uint32_t vfe_curbe_allocation =
4436 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4437 cs_prog_data->push.cross_thread.regs, 2);
4438 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4439 }
4440
4441 if (cs_prog_data->push.total.size > 0) {
4442 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4443 curbe.CURBETotalDataLength =
4444 ALIGN(cs_prog_data->push.total.size, 64);
4445 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4446 }
4447 }
4448
4449 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4450 memcpy(bind, stage_state->surf_offset,
4451 prog_data->binding_table.size_bytes);
4452 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4453 .KernelStartPointer = brw->cs.base.prog_offset,
4454 .SamplerStatePointer = stage_state->sampler_offset,
4455 .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4456 .BindingTablePointer = stage_state->bind_bo_offset,
4457 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4458 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4459 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4460 prog_data->total_shared),
4461 .BarrierEnable = cs_prog_data->uses_barrier,
4462 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4463 .CrossThreadConstantDataReadLength =
4464 cs_prog_data->push.cross_thread.regs,
4465 #endif
4466 };
4467
4468 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4469
4470 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4471 load.InterfaceDescriptorTotalLength =
4472 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4473 load.InterfaceDescriptorDataStartAddress = offset;
4474 }
4475 }
4476
4477 static const struct brw_tracked_state genX(cs_state) = {
4478 .dirty = {
4479 .mesa = _NEW_PROGRAM_CONSTANTS,
4480 .brw = BRW_NEW_BATCH |
4481 BRW_NEW_BLORP |
4482 BRW_NEW_CS_PROG_DATA |
4483 BRW_NEW_SAMPLER_STATE_TABLE |
4484 BRW_NEW_SURFACES,
4485 },
4486 .emit = genX(upload_cs_state)
4487 };
4488
4489 #define GPGPU_DISPATCHDIMX 0x2500
4490 #define GPGPU_DISPATCHDIMY 0x2504
4491 #define GPGPU_DISPATCHDIMZ 0x2508
4492
4493 #define MI_PREDICATE_SRC0 0x2400
4494 #define MI_PREDICATE_SRC1 0x2408
4495
4496 static void
4497 prepare_indirect_gpgpu_walker(struct brw_context *brw)
4498 {
4499 GLintptr indirect_offset = brw->compute.num_work_groups_offset;
4500 struct brw_bo *bo = brw->compute.num_work_groups_bo;
4501
4502 emit_lrm(brw, GPGPU_DISPATCHDIMX, ro_bo(bo, indirect_offset + 0));
4503 emit_lrm(brw, GPGPU_DISPATCHDIMY, ro_bo(bo, indirect_offset + 4));
4504 emit_lrm(brw, GPGPU_DISPATCHDIMZ, ro_bo(bo, indirect_offset + 8));
4505
4506 #if GEN_GEN <= 7
4507 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
4508 emit_lri(brw, MI_PREDICATE_SRC0 + 4, 0);
4509 emit_lri(brw, MI_PREDICATE_SRC1 , 0);
4510 emit_lri(brw, MI_PREDICATE_SRC1 + 4, 0);
4511
4512 /* Load compute_dispatch_indirect_x_size into SRC0 */
4513 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 0));
4514
4515 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4516 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4517 mip.LoadOperation = LOAD_LOAD;
4518 mip.CombineOperation = COMBINE_SET;
4519 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4520 }
4521
4522 /* Load compute_dispatch_indirect_y_size into SRC0 */
4523 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 4));
4524
4525 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4526 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4527 mip.LoadOperation = LOAD_LOAD;
4528 mip.CombineOperation = COMBINE_OR;
4529 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4530 }
4531
4532 /* Load compute_dispatch_indirect_z_size into SRC0 */
4533 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 8));
4534
4535 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4536 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4537 mip.LoadOperation = LOAD_LOAD;
4538 mip.CombineOperation = COMBINE_OR;
4539 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4540 }
4541
4542 /* predicate = !predicate; */
4543 #define COMPARE_FALSE 1
4544 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4545 mip.LoadOperation = LOAD_LOADINV;
4546 mip.CombineOperation = COMBINE_OR;
4547 mip.CompareOperation = COMPARE_FALSE;
4548 }
4549 #endif
4550 }
4551
4552 static void
4553 genX(emit_gpgpu_walker)(struct brw_context *brw)
4554 {
4555 const struct brw_cs_prog_data *prog_data =
4556 brw_cs_prog_data(brw->cs.base.prog_data);
4557
4558 const GLuint *num_groups = brw->compute.num_work_groups;
4559
4560 bool indirect = brw->compute.num_work_groups_bo != NULL;
4561 if (indirect)
4562 prepare_indirect_gpgpu_walker(brw);
4563
4564 const unsigned simd_size = prog_data->simd_size;
4565 unsigned group_size = prog_data->local_size[0] *
4566 prog_data->local_size[1] * prog_data->local_size[2];
4567
4568 uint32_t right_mask = 0xffffffffu >> (32 - simd_size);
4569 const unsigned right_non_aligned = group_size & (simd_size - 1);
4570 if (right_non_aligned != 0)
4571 right_mask >>= (simd_size - right_non_aligned);
4572
4573 brw_batch_emit(brw, GENX(GPGPU_WALKER), ggw) {
4574 ggw.IndirectParameterEnable = indirect;
4575 ggw.PredicateEnable = GEN_GEN <= 7 && indirect;
4576 ggw.SIMDSize = prog_data->simd_size / 16;
4577 ggw.ThreadDepthCounterMaximum = 0;
4578 ggw.ThreadHeightCounterMaximum = 0;
4579 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4580 ggw.ThreadGroupIDXDimension = num_groups[0];
4581 ggw.ThreadGroupIDYDimension = num_groups[1];
4582 ggw.ThreadGroupIDZDimension = num_groups[2];
4583 ggw.RightExecutionMask = right_mask;
4584 ggw.BottomExecutionMask = 0xffffffff;
4585 }
4586
4587 brw_batch_emit(brw, GENX(MEDIA_STATE_FLUSH), msf);
4588 }
4589
4590 #endif
4591
4592 /* ---------------------------------------------------------------------- */
4593
4594 #if GEN_GEN >= 8
4595 static void
4596 genX(upload_raster)(struct brw_context *brw)
4597 {
4598 const struct gl_context *ctx = &brw->ctx;
4599
4600 /* _NEW_BUFFERS */
4601 const bool flip_y = ctx->DrawBuffer->FlipY;
4602
4603 /* _NEW_POLYGON */
4604 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4605
4606 /* _NEW_POINT */
4607 const struct gl_point_attrib *point = &ctx->Point;
4608
4609 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4610 if (brw->polygon_front_bit != flip_y)
4611 raster.FrontWinding = CounterClockwise;
4612
4613 if (polygon->CullFlag) {
4614 switch (polygon->CullFaceMode) {
4615 case GL_FRONT:
4616 raster.CullMode = CULLMODE_FRONT;
4617 break;
4618 case GL_BACK:
4619 raster.CullMode = CULLMODE_BACK;
4620 break;
4621 case GL_FRONT_AND_BACK:
4622 raster.CullMode = CULLMODE_BOTH;
4623 break;
4624 default:
4625 unreachable("not reached");
4626 }
4627 } else {
4628 raster.CullMode = CULLMODE_NONE;
4629 }
4630
4631 raster.SmoothPointEnable = point->SmoothFlag;
4632
4633 raster.DXMultisampleRasterizationEnable =
4634 _mesa_is_multisample_enabled(ctx);
4635
4636 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4637 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4638 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4639
4640 switch (polygon->FrontMode) {
4641 case GL_FILL:
4642 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4643 break;
4644 case GL_LINE:
4645 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4646 break;
4647 case GL_POINT:
4648 raster.FrontFaceFillMode = FILL_MODE_POINT;
4649 break;
4650 default:
4651 unreachable("not reached");
4652 }
4653
4654 switch (polygon->BackMode) {
4655 case GL_FILL:
4656 raster.BackFaceFillMode = FILL_MODE_SOLID;
4657 break;
4658 case GL_LINE:
4659 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4660 break;
4661 case GL_POINT:
4662 raster.BackFaceFillMode = FILL_MODE_POINT;
4663 break;
4664 default:
4665 unreachable("not reached");
4666 }
4667
4668 /* _NEW_LINE */
4669 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4670
4671 #if GEN_GEN == 10
4672 /* _NEW_BUFFERS
4673 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4674 */
4675 const bool multisampled_fbo =
4676 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4677 if (multisampled_fbo)
4678 raster.AntialiasingEnable = false;
4679 #endif
4680
4681 /* _NEW_SCISSOR */
4682 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4683
4684 /* _NEW_TRANSFORM */
4685 #if GEN_GEN < 9
4686 if (!(ctx->Transform.DepthClampNear &&
4687 ctx->Transform.DepthClampFar))
4688 raster.ViewportZClipTestEnable = true;
4689 #endif
4690
4691 #if GEN_GEN >= 9
4692 if (!ctx->Transform.DepthClampNear)
4693 raster.ViewportZNearClipTestEnable = true;
4694
4695 if (!ctx->Transform.DepthClampFar)
4696 raster.ViewportZFarClipTestEnable = true;
4697 #endif
4698
4699 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4700 #if GEN_GEN >= 9
4701 raster.ConservativeRasterizationEnable =
4702 ctx->IntelConservativeRasterization;
4703 #endif
4704
4705 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4706 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4707
4708 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4709 }
4710 }
4711
4712 static const struct brw_tracked_state genX(raster_state) = {
4713 .dirty = {
4714 .mesa = _NEW_BUFFERS |
4715 _NEW_LINE |
4716 _NEW_MULTISAMPLE |
4717 _NEW_POINT |
4718 _NEW_POLYGON |
4719 _NEW_SCISSOR |
4720 _NEW_TRANSFORM,
4721 .brw = BRW_NEW_BLORP |
4722 BRW_NEW_CONTEXT |
4723 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4724 },
4725 .emit = genX(upload_raster),
4726 };
4727 #endif
4728
4729 /* ---------------------------------------------------------------------- */
4730
4731 #if GEN_GEN >= 8
4732 static void
4733 genX(upload_ps_extra)(struct brw_context *brw)
4734 {
4735 UNUSED struct gl_context *ctx = &brw->ctx;
4736
4737 const struct brw_wm_prog_data *prog_data =
4738 brw_wm_prog_data(brw->wm.base.prog_data);
4739
4740 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4741 psx.PixelShaderValid = true;
4742 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4743 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4744 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4745 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4746 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4747 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4748
4749 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4750 if (prog_data->uses_sample_mask) {
4751 #if GEN_GEN >= 9
4752 if (prog_data->post_depth_coverage)
4753 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4754 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4755 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4756 else
4757 psx.InputCoverageMaskState = ICMS_NORMAL;
4758 #else
4759 psx.PixelShaderUsesInputCoverageMask = true;
4760 #endif
4761 }
4762
4763 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4764 #if GEN_GEN >= 9
4765 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4766 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4767 #endif
4768
4769 /* The stricter cross-primitive coherency guarantees that the hardware
4770 * gives us with the "Accesses UAV" bit set for at least one shader stage
4771 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4772 * are redundant within the current image, atomic counter and SSBO GL
4773 * APIs, which all have very loose ordering and coherency requirements
4774 * and generally rely on the application to insert explicit barriers when
4775 * a shader invocation is expected to see the memory writes performed by
4776 * the invocations of some previous primitive. Regardless of the value
4777 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4778 * cause an in most cases useless DC flush when the lowermost stage with
4779 * the bit set finishes execution.
4780 *
4781 * It would be nice to disable it, but in some cases we can't because on
4782 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4783 * signal (which could be set independently from the coherency mechanism
4784 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4785 * determine whether the hardware skips execution of the fragment shader
4786 * or not via the ThreadDispatchEnable signal. However if we know that
4787 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4788 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4789 * difference so we may just disable it here.
4790 *
4791 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4792 * take into account KillPixels when no depth or stencil writes are
4793 * enabled. In order for occlusion queries to work correctly with no
4794 * attachments, we need to force-enable here.
4795 *
4796 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4797 * _NEW_COLOR
4798 */
4799 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4800 !brw_color_buffer_write_enabled(brw))
4801 psx.PixelShaderHasUAV = true;
4802 }
4803 }
4804
4805 const struct brw_tracked_state genX(ps_extra) = {
4806 .dirty = {
4807 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4808 .brw = BRW_NEW_BLORP |
4809 BRW_NEW_CONTEXT |
4810 BRW_NEW_FRAGMENT_PROGRAM |
4811 BRW_NEW_FS_PROG_DATA |
4812 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4813 },
4814 .emit = genX(upload_ps_extra),
4815 };
4816 #endif
4817
4818 /* ---------------------------------------------------------------------- */
4819
4820 #if GEN_GEN >= 8
4821 static void
4822 genX(upload_ps_blend)(struct brw_context *brw)
4823 {
4824 struct gl_context *ctx = &brw->ctx;
4825
4826 /* _NEW_BUFFERS */
4827 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4828 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4829
4830 /* _NEW_COLOR */
4831 struct gl_colorbuffer_attrib *color = &ctx->Color;
4832
4833 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4834 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4835 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4836
4837 bool alpha_to_one = false;
4838
4839 if (!buffer0_is_integer) {
4840 /* _NEW_MULTISAMPLE */
4841
4842 if (_mesa_is_multisample_enabled(ctx)) {
4843 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4844 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4845 }
4846
4847 pb.AlphaTestEnable = color->AlphaEnabled;
4848 }
4849
4850 /* Used for implementing the following bit of GL_EXT_texture_integer:
4851 * "Per-fragment operations that require floating-point color
4852 * components, including multisample alpha operations, alpha test,
4853 * blending, and dithering, have no effect when the corresponding
4854 * colors are written to an integer color buffer."
4855 *
4856 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4857 * "If drawbuffer zero is not NONE and the buffer it references has an
4858 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4859 * operations are skipped."
4860 */
4861 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4862 GLenum eqRGB = color->Blend[0].EquationRGB;
4863 GLenum eqA = color->Blend[0].EquationA;
4864 GLenum srcRGB = color->Blend[0].SrcRGB;
4865 GLenum dstRGB = color->Blend[0].DstRGB;
4866 GLenum srcA = color->Blend[0].SrcA;
4867 GLenum dstA = color->Blend[0].DstA;
4868
4869 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4870 srcRGB = dstRGB = GL_ONE;
4871
4872 if (eqA == GL_MIN || eqA == GL_MAX)
4873 srcA = dstA = GL_ONE;
4874
4875 /* Due to hardware limitations, the destination may have information
4876 * in an alpha channel even when the format specifies no alpha
4877 * channel. In order to avoid getting any incorrect blending due to
4878 * that alpha channel, coerce the blend factors to values that will
4879 * not read the alpha channel, but will instead use the correct
4880 * implicit value for alpha.
4881 */
4882 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4883 GL_TEXTURE_ALPHA_TYPE)) {
4884 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4885 srcA = brw_fix_xRGB_alpha(srcA);
4886 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4887 dstA = brw_fix_xRGB_alpha(dstA);
4888 }
4889
4890 /* Alpha to One doesn't work with Dual Color Blending. Override
4891 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4892 */
4893 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4894 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4895 srcA = fix_dual_blend_alpha_to_one(srcA);
4896 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4897 dstA = fix_dual_blend_alpha_to_one(dstA);
4898 }
4899
4900 /* BRW_NEW_FS_PROG_DATA */
4901 const struct brw_wm_prog_data *wm_prog_data =
4902 brw_wm_prog_data(brw->wm.base.prog_data);
4903
4904 /* The Dual Source Blending documentation says:
4905 *
4906 * "If SRC1 is included in a src/dst blend factor and
4907 * a DualSource RT Write message is not used, results
4908 * are UNDEFINED. (This reflects the same restriction in DX APIs,
4909 * where undefined results are produced if “o1” is not written
4910 * by a PS – there are no default values defined).
4911 * If SRC1 is not included in a src/dst blend factor,
4912 * dual source blending must be disabled."
4913 *
4914 * There is no way to gracefully fix this undefined situation
4915 * so we just disable the blending to prevent possible issues.
4916 */
4917 pb.ColorBufferBlendEnable =
4918 !color->Blend[0]._UsesDualSrc || wm_prog_data->dual_src_blend;
4919 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4920 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4921 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4922 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4923
4924 pb.IndependentAlphaBlendEnable =
4925 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4926 }
4927 }
4928 }
4929
4930 static const struct brw_tracked_state genX(ps_blend) = {
4931 .dirty = {
4932 .mesa = _NEW_BUFFERS |
4933 _NEW_COLOR |
4934 _NEW_MULTISAMPLE,
4935 .brw = BRW_NEW_BLORP |
4936 BRW_NEW_CONTEXT |
4937 BRW_NEW_FRAGMENT_PROGRAM |
4938 BRW_NEW_FS_PROG_DATA,
4939 },
4940 .emit = genX(upload_ps_blend)
4941 };
4942 #endif
4943
4944 /* ---------------------------------------------------------------------- */
4945
4946 #if GEN_GEN >= 8
4947 static void
4948 genX(emit_vf_topology)(struct brw_context *brw)
4949 {
4950 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4951 vftopo.PrimitiveTopologyType = brw->primitive;
4952 }
4953 }
4954
4955 static const struct brw_tracked_state genX(vf_topology) = {
4956 .dirty = {
4957 .mesa = 0,
4958 .brw = BRW_NEW_BLORP |
4959 BRW_NEW_PRIMITIVE,
4960 },
4961 .emit = genX(emit_vf_topology),
4962 };
4963 #endif
4964
4965 /* ---------------------------------------------------------------------- */
4966
4967 #if GEN_GEN >= 7
4968 static void
4969 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4970 struct brw_bo *bo,
4971 uint32_t offset_in_bytes,
4972 uint32_t report_id)
4973 {
4974 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4975 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4976 mi_rpc.ReportID = report_id;
4977 }
4978 }
4979 #endif
4980
4981 /* ---------------------------------------------------------------------- */
4982
4983 /**
4984 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4985 */
4986 static void
4987 genX(emit_sampler_state_pointers_xs)(MAYBE_UNUSED struct brw_context *brw,
4988 MAYBE_UNUSED struct brw_stage_state *stage_state)
4989 {
4990 #if GEN_GEN >= 7
4991 static const uint16_t packet_headers[] = {
4992 [MESA_SHADER_VERTEX] = 43,
4993 [MESA_SHADER_TESS_CTRL] = 44,
4994 [MESA_SHADER_TESS_EVAL] = 45,
4995 [MESA_SHADER_GEOMETRY] = 46,
4996 [MESA_SHADER_FRAGMENT] = 47,
4997 };
4998
4999 /* Ivybridge requires a workaround flush before VS packets. */
5000 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
5001 stage_state->stage == MESA_SHADER_VERTEX) {
5002 gen7_emit_vs_workaround_flush(brw);
5003 }
5004
5005 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5006 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
5007 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
5008 }
5009 #endif
5010 }
5011
5012 UNUSED static bool
5013 has_component(mesa_format format, int i)
5014 {
5015 if (_mesa_is_format_color_format(format))
5016 return _mesa_format_has_color_component(format, i);
5017
5018 /* depth and stencil have only one component */
5019 return i == 0;
5020 }
5021
5022 /**
5023 * Upload SAMPLER_BORDER_COLOR_STATE.
5024 */
5025 static void
5026 genX(upload_default_color)(struct brw_context *brw,
5027 const struct gl_sampler_object *sampler,
5028 MAYBE_UNUSED mesa_format format, GLenum base_format,
5029 bool is_integer_format, bool is_stencil_sampling,
5030 uint32_t *sdc_offset)
5031 {
5032 union gl_color_union color;
5033
5034 switch (base_format) {
5035 case GL_DEPTH_COMPONENT:
5036 /* GL specs that border color for depth textures is taken from the
5037 * R channel, while the hardware uses A. Spam R into all the
5038 * channels for safety.
5039 */
5040 color.ui[0] = sampler->BorderColor.ui[0];
5041 color.ui[1] = sampler->BorderColor.ui[0];
5042 color.ui[2] = sampler->BorderColor.ui[0];
5043 color.ui[3] = sampler->BorderColor.ui[0];
5044 break;
5045 case GL_ALPHA:
5046 color.ui[0] = 0u;
5047 color.ui[1] = 0u;
5048 color.ui[2] = 0u;
5049 color.ui[3] = sampler->BorderColor.ui[3];
5050 break;
5051 case GL_INTENSITY:
5052 color.ui[0] = sampler->BorderColor.ui[0];
5053 color.ui[1] = sampler->BorderColor.ui[0];
5054 color.ui[2] = sampler->BorderColor.ui[0];
5055 color.ui[3] = sampler->BorderColor.ui[0];
5056 break;
5057 case GL_LUMINANCE:
5058 color.ui[0] = sampler->BorderColor.ui[0];
5059 color.ui[1] = sampler->BorderColor.ui[0];
5060 color.ui[2] = sampler->BorderColor.ui[0];
5061 color.ui[3] = float_as_int(1.0);
5062 break;
5063 case GL_LUMINANCE_ALPHA:
5064 color.ui[0] = sampler->BorderColor.ui[0];
5065 color.ui[1] = sampler->BorderColor.ui[0];
5066 color.ui[2] = sampler->BorderColor.ui[0];
5067 color.ui[3] = sampler->BorderColor.ui[3];
5068 break;
5069 default:
5070 color.ui[0] = sampler->BorderColor.ui[0];
5071 color.ui[1] = sampler->BorderColor.ui[1];
5072 color.ui[2] = sampler->BorderColor.ui[2];
5073 color.ui[3] = sampler->BorderColor.ui[3];
5074 break;
5075 }
5076
5077 /* In some cases we use an RGBA surface format for GL RGB textures,
5078 * where we've initialized the A channel to 1.0. We also have to set
5079 * the border color alpha to 1.0 in that case.
5080 */
5081 if (base_format == GL_RGB)
5082 color.ui[3] = float_as_int(1.0);
5083
5084 int alignment = 32;
5085 if (GEN_GEN >= 8) {
5086 alignment = 64;
5087 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
5088 alignment = 512;
5089 }
5090
5091 uint32_t *sdc = brw_state_batch(
5092 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
5093 alignment, sdc_offset);
5094
5095 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
5096
5097 #define ASSIGN(dst, src) \
5098 do { \
5099 dst = src; \
5100 } while (0)
5101
5102 #define ASSIGNu16(dst, src) \
5103 do { \
5104 dst = (uint16_t)src; \
5105 } while (0)
5106
5107 #define ASSIGNu8(dst, src) \
5108 do { \
5109 dst = (uint8_t)src; \
5110 } while (0)
5111
5112 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
5113 macro(state.BorderColor ## _color_type ## Red, src[0]); \
5114 macro(state.BorderColor ## _color_type ## Green, src[1]); \
5115 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
5116 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
5117
5118 #if GEN_GEN >= 8
5119 /* On Broadwell, the border color is represented as four 32-bit floats,
5120 * integers, or unsigned values, interpreted according to the surface
5121 * format. This matches the sampler->BorderColor union exactly; just
5122 * memcpy the values.
5123 */
5124 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
5125 #elif GEN_IS_HASWELL
5126 if (is_integer_format || is_stencil_sampling) {
5127 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
5128 const int bits_per_channel =
5129 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
5130
5131 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
5132 * "If any color channel is missing from the surface format,
5133 * corresponding border color should be programmed as zero and if
5134 * alpha channel is missing, corresponding Alpha border color should
5135 * be programmed as 1."
5136 */
5137 unsigned c[4] = { 0, 0, 0, 1 };
5138 for (int i = 0; i < 4; i++) {
5139 if (has_component(format, i))
5140 c[i] = color.ui[i];
5141 }
5142
5143 switch (bits_per_channel) {
5144 case 8:
5145 /* Copy RGBA in order. */
5146 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
5147 break;
5148 case 10:
5149 /* R10G10B10A2_UINT is treated like a 16-bit format. */
5150 case 16:
5151 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
5152 break;
5153 case 32:
5154 if (base_format == GL_RG) {
5155 /* Careful inspection of the tables reveals that for RG32 formats,
5156 * the green channel needs to go where blue normally belongs.
5157 */
5158 state.BorderColor32bitRed = c[0];
5159 state.BorderColor32bitBlue = c[1];
5160 state.BorderColor32bitAlpha = 1;
5161 } else {
5162 /* Copy RGBA in order. */
5163 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
5164 }
5165 break;
5166 default:
5167 assert(!"Invalid number of bits per channel in integer format.");
5168 break;
5169 }
5170 } else {
5171 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5172 }
5173 #elif GEN_GEN == 5 || GEN_GEN == 6
5174 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
5175 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
5176 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
5177
5178 #define MESA_FLOAT_TO_HALF(dst, src) \
5179 dst = _mesa_float_to_half(src);
5180
5181 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
5182
5183 #undef MESA_FLOAT_TO_HALF
5184
5185 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
5186 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
5187 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
5188 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
5189
5190 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5191 #elif GEN_GEN == 4
5192 BORDER_COLOR_ATTR(ASSIGN, , color.f);
5193 #else
5194 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5195 #endif
5196
5197 #undef ASSIGN
5198 #undef BORDER_COLOR_ATTR
5199
5200 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
5201 }
5202
5203 static uint32_t
5204 translate_wrap_mode(GLenum wrap, MAYBE_UNUSED bool using_nearest)
5205 {
5206 switch (wrap) {
5207 case GL_REPEAT:
5208 return TCM_WRAP;
5209 case GL_CLAMP:
5210 #if GEN_GEN >= 8
5211 /* GL_CLAMP is the weird mode where coordinates are clamped to
5212 * [0.0, 1.0], so linear filtering of coordinates outside of
5213 * [0.0, 1.0] give you half edge texel value and half border
5214 * color.
5215 *
5216 * Gen8+ supports this natively.
5217 */
5218 return TCM_HALF_BORDER;
5219 #else
5220 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
5221 * and set clamp_border here, which gets the result desired.
5222 * We just use clamp(_to_edge) for nearest, because for nearest
5223 * clamping to 1.0 gives border color instead of the desired
5224 * edge texels.
5225 */
5226 if (using_nearest)
5227 return TCM_CLAMP;
5228 else
5229 return TCM_CLAMP_BORDER;
5230 #endif
5231 case GL_CLAMP_TO_EDGE:
5232 return TCM_CLAMP;
5233 case GL_CLAMP_TO_BORDER:
5234 return TCM_CLAMP_BORDER;
5235 case GL_MIRRORED_REPEAT:
5236 return TCM_MIRROR;
5237 case GL_MIRROR_CLAMP_TO_EDGE:
5238 return TCM_MIRROR_ONCE;
5239 default:
5240 return TCM_WRAP;
5241 }
5242 }
5243
5244 /**
5245 * Return true if the given wrap mode requires the border color to exist.
5246 */
5247 static bool
5248 wrap_mode_needs_border_color(unsigned wrap_mode)
5249 {
5250 #if GEN_GEN >= 8
5251 return wrap_mode == TCM_CLAMP_BORDER ||
5252 wrap_mode == TCM_HALF_BORDER;
5253 #else
5254 return wrap_mode == TCM_CLAMP_BORDER;
5255 #endif
5256 }
5257
5258 /**
5259 * Sets the sampler state for a single unit based off of the sampler key
5260 * entry.
5261 */
5262 static void
5263 genX(update_sampler_state)(struct brw_context *brw,
5264 GLenum target, bool tex_cube_map_seamless,
5265 GLfloat tex_unit_lod_bias,
5266 mesa_format format, GLenum base_format,
5267 const struct gl_texture_object *texObj,
5268 const struct gl_sampler_object *sampler,
5269 uint32_t *sampler_state)
5270 {
5271 struct GENX(SAMPLER_STATE) samp_st = { 0 };
5272
5273 /* Select min and mip filters. */
5274 switch (sampler->MinFilter) {
5275 case GL_NEAREST:
5276 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5277 samp_st.MipModeFilter = MIPFILTER_NONE;
5278 break;
5279 case GL_LINEAR:
5280 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5281 samp_st.MipModeFilter = MIPFILTER_NONE;
5282 break;
5283 case GL_NEAREST_MIPMAP_NEAREST:
5284 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5285 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5286 break;
5287 case GL_LINEAR_MIPMAP_NEAREST:
5288 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5289 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5290 break;
5291 case GL_NEAREST_MIPMAP_LINEAR:
5292 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5293 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5294 break;
5295 case GL_LINEAR_MIPMAP_LINEAR:
5296 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5297 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5298 break;
5299 default:
5300 unreachable("not reached");
5301 }
5302
5303 /* Select mag filter. */
5304 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5305 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5306
5307 /* Enable anisotropic filtering if desired. */
5308 samp_st.MaximumAnisotropy = RATIO21;
5309
5310 if (sampler->MaxAnisotropy > 1.0f) {
5311 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5312 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5313 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5314 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5315
5316 if (sampler->MaxAnisotropy > 2.0f) {
5317 samp_st.MaximumAnisotropy =
5318 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5319 }
5320 }
5321
5322 /* Set address rounding bits if not using nearest filtering. */
5323 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5324 samp_st.UAddressMinFilterRoundingEnable = true;
5325 samp_st.VAddressMinFilterRoundingEnable = true;
5326 samp_st.RAddressMinFilterRoundingEnable = true;
5327 }
5328
5329 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5330 samp_st.UAddressMagFilterRoundingEnable = true;
5331 samp_st.VAddressMagFilterRoundingEnable = true;
5332 samp_st.RAddressMagFilterRoundingEnable = true;
5333 }
5334
5335 bool either_nearest =
5336 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5337 unsigned wrap_s = translate_wrap_mode(sampler->WrapS, either_nearest);
5338 unsigned wrap_t = translate_wrap_mode(sampler->WrapT, either_nearest);
5339 unsigned wrap_r = translate_wrap_mode(sampler->WrapR, either_nearest);
5340
5341 if (target == GL_TEXTURE_CUBE_MAP ||
5342 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5343 /* Cube maps must use the same wrap mode for all three coordinate
5344 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5345 *
5346 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5347 * integer formats. Fall back to CLAMP for now.
5348 */
5349 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5350 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5351 wrap_s = TCM_CUBE;
5352 wrap_t = TCM_CUBE;
5353 wrap_r = TCM_CUBE;
5354 } else {
5355 wrap_s = TCM_CLAMP;
5356 wrap_t = TCM_CLAMP;
5357 wrap_r = TCM_CLAMP;
5358 }
5359 } else if (target == GL_TEXTURE_1D) {
5360 /* There's a bug in 1D texture sampling - it actually pays
5361 * attention to the wrap_t value, though it should not.
5362 * Override the wrap_t value here to GL_REPEAT to keep
5363 * any nonexistent border pixels from floating in.
5364 */
5365 wrap_t = TCM_WRAP;
5366 }
5367
5368 samp_st.TCXAddressControlMode = wrap_s;
5369 samp_st.TCYAddressControlMode = wrap_t;
5370 samp_st.TCZAddressControlMode = wrap_r;
5371
5372 samp_st.ShadowFunction =
5373 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5374 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5375
5376 #if GEN_GEN >= 7
5377 /* Set shadow function. */
5378 samp_st.AnisotropicAlgorithm =
5379 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5380 EWAApproximation : LEGACY;
5381 #endif
5382
5383 #if GEN_GEN >= 6
5384 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5385 #endif
5386
5387 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5388 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5389 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5390 samp_st.TextureLODBias =
5391 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5392
5393 #if GEN_GEN == 6
5394 samp_st.BaseMipLevel =
5395 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5396 samp_st.MinandMagStateNotEqual =
5397 samp_st.MinModeFilter != samp_st.MagModeFilter;
5398 #endif
5399
5400 /* Upload the border color if necessary. If not, just point it at
5401 * offset 0 (the start of the batch) - the color should be ignored,
5402 * but that address won't fault in case something reads it anyway.
5403 */
5404 uint32_t border_color_offset = 0;
5405 if (wrap_mode_needs_border_color(wrap_s) ||
5406 wrap_mode_needs_border_color(wrap_t) ||
5407 wrap_mode_needs_border_color(wrap_r)) {
5408 genX(upload_default_color)(brw, sampler, format, base_format,
5409 texObj->_IsIntegerFormat,
5410 texObj->StencilSampling,
5411 &border_color_offset);
5412 }
5413 #if GEN_GEN < 6
5414 samp_st.BorderColorPointer =
5415 ro_bo(brw->batch.state.bo, border_color_offset);
5416 #else
5417 samp_st.BorderColorPointer = border_color_offset;
5418 #endif
5419
5420 #if GEN_GEN >= 8
5421 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5422 #else
5423 samp_st.LODPreClampEnable = true;
5424 #endif
5425
5426 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5427 }
5428
5429 static void
5430 update_sampler_state(struct brw_context *brw,
5431 int unit,
5432 uint32_t *sampler_state)
5433 {
5434 struct gl_context *ctx = &brw->ctx;
5435 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5436 const struct gl_texture_object *texObj = texUnit->_Current;
5437 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5438
5439 /* These don't use samplers at all. */
5440 if (texObj->Target == GL_TEXTURE_BUFFER)
5441 return;
5442
5443 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5444 genX(update_sampler_state)(brw, texObj->Target,
5445 ctx->Texture.CubeMapSeamless,
5446 texUnit->LodBias,
5447 firstImage->TexFormat, firstImage->_BaseFormat,
5448 texObj, sampler,
5449 sampler_state);
5450 }
5451
5452 static void
5453 genX(upload_sampler_state_table)(struct brw_context *brw,
5454 struct gl_program *prog,
5455 struct brw_stage_state *stage_state)
5456 {
5457 struct gl_context *ctx = &brw->ctx;
5458 uint32_t sampler_count = stage_state->sampler_count;
5459
5460 GLbitfield SamplersUsed = prog->SamplersUsed;
5461
5462 if (sampler_count == 0)
5463 return;
5464
5465 /* SAMPLER_STATE is 4 DWords on all platforms. */
5466 const int dwords = GENX(SAMPLER_STATE_length);
5467 const int size_in_bytes = dwords * sizeof(uint32_t);
5468
5469 uint32_t *sampler_state = brw_state_batch(brw,
5470 sampler_count * size_in_bytes,
5471 32, &stage_state->sampler_offset);
5472 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5473
5474 for (unsigned s = 0; s < sampler_count; s++) {
5475 if (SamplersUsed & (1 << s)) {
5476 const unsigned unit = prog->SamplerUnits[s];
5477 if (ctx->Texture.Unit[unit]._Current) {
5478 update_sampler_state(brw, unit, sampler_state);
5479 }
5480 }
5481
5482 sampler_state += dwords;
5483 }
5484
5485 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5486 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5487 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5488 } else {
5489 /* Flag that the sampler state table pointer has changed; later atoms
5490 * will handle it.
5491 */
5492 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5493 }
5494 }
5495
5496 static void
5497 genX(upload_fs_samplers)(struct brw_context *brw)
5498 {
5499 /* BRW_NEW_FRAGMENT_PROGRAM */
5500 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5501 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5502 }
5503
5504 static const struct brw_tracked_state genX(fs_samplers) = {
5505 .dirty = {
5506 .mesa = _NEW_TEXTURE,
5507 .brw = BRW_NEW_BATCH |
5508 BRW_NEW_BLORP |
5509 BRW_NEW_FRAGMENT_PROGRAM,
5510 },
5511 .emit = genX(upload_fs_samplers),
5512 };
5513
5514 static void
5515 genX(upload_vs_samplers)(struct brw_context *brw)
5516 {
5517 /* BRW_NEW_VERTEX_PROGRAM */
5518 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5519 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5520 }
5521
5522 static const struct brw_tracked_state genX(vs_samplers) = {
5523 .dirty = {
5524 .mesa = _NEW_TEXTURE,
5525 .brw = BRW_NEW_BATCH |
5526 BRW_NEW_BLORP |
5527 BRW_NEW_VERTEX_PROGRAM,
5528 },
5529 .emit = genX(upload_vs_samplers),
5530 };
5531
5532 #if GEN_GEN >= 6
5533 static void
5534 genX(upload_gs_samplers)(struct brw_context *brw)
5535 {
5536 /* BRW_NEW_GEOMETRY_PROGRAM */
5537 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5538 if (!gs)
5539 return;
5540
5541 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5542 }
5543
5544
5545 static const struct brw_tracked_state genX(gs_samplers) = {
5546 .dirty = {
5547 .mesa = _NEW_TEXTURE,
5548 .brw = BRW_NEW_BATCH |
5549 BRW_NEW_BLORP |
5550 BRW_NEW_GEOMETRY_PROGRAM,
5551 },
5552 .emit = genX(upload_gs_samplers),
5553 };
5554 #endif
5555
5556 #if GEN_GEN >= 7
5557 static void
5558 genX(upload_tcs_samplers)(struct brw_context *brw)
5559 {
5560 /* BRW_NEW_TESS_PROGRAMS */
5561 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5562 if (!tcs)
5563 return;
5564
5565 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5566 }
5567
5568 static const struct brw_tracked_state genX(tcs_samplers) = {
5569 .dirty = {
5570 .mesa = _NEW_TEXTURE,
5571 .brw = BRW_NEW_BATCH |
5572 BRW_NEW_BLORP |
5573 BRW_NEW_TESS_PROGRAMS,
5574 },
5575 .emit = genX(upload_tcs_samplers),
5576 };
5577 #endif
5578
5579 #if GEN_GEN >= 7
5580 static void
5581 genX(upload_tes_samplers)(struct brw_context *brw)
5582 {
5583 /* BRW_NEW_TESS_PROGRAMS */
5584 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5585 if (!tes)
5586 return;
5587
5588 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5589 }
5590
5591 static const struct brw_tracked_state genX(tes_samplers) = {
5592 .dirty = {
5593 .mesa = _NEW_TEXTURE,
5594 .brw = BRW_NEW_BATCH |
5595 BRW_NEW_BLORP |
5596 BRW_NEW_TESS_PROGRAMS,
5597 },
5598 .emit = genX(upload_tes_samplers),
5599 };
5600 #endif
5601
5602 #if GEN_GEN >= 7
5603 static void
5604 genX(upload_cs_samplers)(struct brw_context *brw)
5605 {
5606 /* BRW_NEW_COMPUTE_PROGRAM */
5607 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5608 if (!cs)
5609 return;
5610
5611 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5612 }
5613
5614 const struct brw_tracked_state genX(cs_samplers) = {
5615 .dirty = {
5616 .mesa = _NEW_TEXTURE,
5617 .brw = BRW_NEW_BATCH |
5618 BRW_NEW_BLORP |
5619 BRW_NEW_COMPUTE_PROGRAM,
5620 },
5621 .emit = genX(upload_cs_samplers),
5622 };
5623 #endif
5624
5625 /* ---------------------------------------------------------------------- */
5626
5627 #if GEN_GEN <= 5
5628
5629 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5630 {
5631 struct gl_context *ctx = &brw->ctx;
5632
5633 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5634 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5635 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5636 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5637 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5638 }
5639 }
5640
5641 static const struct brw_tracked_state genX(blend_constant_color) = {
5642 .dirty = {
5643 .mesa = _NEW_COLOR,
5644 .brw = BRW_NEW_CONTEXT |
5645 BRW_NEW_BLORP,
5646 },
5647 .emit = genX(upload_blend_constant_color)
5648 };
5649 #endif
5650
5651 /* ---------------------------------------------------------------------- */
5652
5653 void
5654 genX(init_atoms)(struct brw_context *brw)
5655 {
5656 #if GEN_GEN < 6
5657 static const struct brw_tracked_state *render_atoms[] =
5658 {
5659 &genX(vf_statistics),
5660
5661 /* Once all the programs are done, we know how large urb entry
5662 * sizes need to be and can decide if we need to change the urb
5663 * layout.
5664 */
5665 &brw_curbe_offsets,
5666 &brw_recalculate_urb_fence,
5667
5668 &genX(cc_vp),
5669 &genX(color_calc_state),
5670
5671 /* Surface state setup. Must come before the VS/WM unit. The binding
5672 * table upload must be last.
5673 */
5674 &brw_vs_pull_constants,
5675 &brw_wm_pull_constants,
5676 &brw_renderbuffer_surfaces,
5677 &brw_renderbuffer_read_surfaces,
5678 &brw_texture_surfaces,
5679 &brw_vs_binding_table,
5680 &brw_wm_binding_table,
5681
5682 &genX(fs_samplers),
5683 &genX(vs_samplers),
5684
5685 /* These set up state for brw_psp_urb_cbs */
5686 &genX(wm_state),
5687 &genX(sf_clip_viewport),
5688 &genX(sf_state),
5689 &genX(vs_state), /* always required, enabled or not */
5690 &genX(clip_state),
5691 &genX(gs_state),
5692
5693 /* Command packets:
5694 */
5695 &brw_binding_table_pointers,
5696 &genX(blend_constant_color),
5697
5698 &brw_depthbuffer,
5699
5700 &genX(polygon_stipple),
5701 &genX(polygon_stipple_offset),
5702
5703 &genX(line_stipple),
5704
5705 &brw_psp_urb_cbs,
5706
5707 &genX(drawing_rect),
5708 &brw_indices, /* must come before brw_vertices */
5709 &genX(index_buffer),
5710 &genX(vertices),
5711
5712 &brw_constant_buffer
5713 };
5714 #elif GEN_GEN == 6
5715 static const struct brw_tracked_state *render_atoms[] =
5716 {
5717 &genX(vf_statistics),
5718
5719 &genX(sf_clip_viewport),
5720
5721 /* Command packets: */
5722
5723 &genX(cc_vp),
5724
5725 &gen6_urb,
5726 &genX(blend_state), /* must do before cc unit */
5727 &genX(color_calc_state), /* must do before cc unit */
5728 &genX(depth_stencil_state), /* must do before cc unit */
5729
5730 &genX(vs_push_constants), /* Before vs_state */
5731 &genX(gs_push_constants), /* Before gs_state */
5732 &genX(wm_push_constants), /* Before wm_state */
5733
5734 /* Surface state setup. Must come before the VS/WM unit. The binding
5735 * table upload must be last.
5736 */
5737 &brw_vs_pull_constants,
5738 &brw_vs_ubo_surfaces,
5739 &brw_gs_pull_constants,
5740 &brw_gs_ubo_surfaces,
5741 &brw_wm_pull_constants,
5742 &brw_wm_ubo_surfaces,
5743 &gen6_renderbuffer_surfaces,
5744 &brw_renderbuffer_read_surfaces,
5745 &brw_texture_surfaces,
5746 &gen6_sol_surface,
5747 &brw_vs_binding_table,
5748 &gen6_gs_binding_table,
5749 &brw_wm_binding_table,
5750
5751 &genX(fs_samplers),
5752 &genX(vs_samplers),
5753 &genX(gs_samplers),
5754 &gen6_sampler_state,
5755 &genX(multisample_state),
5756
5757 &genX(vs_state),
5758 &genX(gs_state),
5759 &genX(clip_state),
5760 &genX(sf_state),
5761 &genX(wm_state),
5762
5763 &genX(scissor_state),
5764
5765 &gen6_binding_table_pointers,
5766
5767 &brw_depthbuffer,
5768
5769 &genX(polygon_stipple),
5770 &genX(polygon_stipple_offset),
5771
5772 &genX(line_stipple),
5773
5774 &genX(drawing_rect),
5775
5776 &brw_indices, /* must come before brw_vertices */
5777 &genX(index_buffer),
5778 &genX(vertices),
5779 };
5780 #elif GEN_GEN == 7
5781 static const struct brw_tracked_state *render_atoms[] =
5782 {
5783 &genX(vf_statistics),
5784
5785 /* Command packets: */
5786
5787 &genX(cc_vp),
5788 &genX(sf_clip_viewport),
5789
5790 &gen7_l3_state,
5791 &gen7_push_constant_space,
5792 &gen7_urb,
5793 &genX(blend_state), /* must do before cc unit */
5794 &genX(color_calc_state), /* must do before cc unit */
5795 &genX(depth_stencil_state), /* must do before cc unit */
5796
5797 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5798 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5799 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5800 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5801 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5802
5803 &genX(vs_push_constants), /* Before vs_state */
5804 &genX(tcs_push_constants),
5805 &genX(tes_push_constants),
5806 &genX(gs_push_constants), /* Before gs_state */
5807 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5808
5809 /* Surface state setup. Must come before the VS/WM unit. The binding
5810 * table upload must be last.
5811 */
5812 &brw_vs_pull_constants,
5813 &brw_vs_ubo_surfaces,
5814 &brw_tcs_pull_constants,
5815 &brw_tcs_ubo_surfaces,
5816 &brw_tes_pull_constants,
5817 &brw_tes_ubo_surfaces,
5818 &brw_gs_pull_constants,
5819 &brw_gs_ubo_surfaces,
5820 &brw_wm_pull_constants,
5821 &brw_wm_ubo_surfaces,
5822 &gen6_renderbuffer_surfaces,
5823 &brw_renderbuffer_read_surfaces,
5824 &brw_texture_surfaces,
5825
5826 &genX(push_constant_packets),
5827
5828 &brw_vs_binding_table,
5829 &brw_tcs_binding_table,
5830 &brw_tes_binding_table,
5831 &brw_gs_binding_table,
5832 &brw_wm_binding_table,
5833
5834 &genX(fs_samplers),
5835 &genX(vs_samplers),
5836 &genX(tcs_samplers),
5837 &genX(tes_samplers),
5838 &genX(gs_samplers),
5839 &genX(multisample_state),
5840
5841 &genX(vs_state),
5842 &genX(hs_state),
5843 &genX(te_state),
5844 &genX(ds_state),
5845 &genX(gs_state),
5846 &genX(sol_state),
5847 &genX(clip_state),
5848 &genX(sbe_state),
5849 &genX(sf_state),
5850 &genX(wm_state),
5851 &genX(ps_state),
5852
5853 &genX(scissor_state),
5854
5855 &brw_depthbuffer,
5856
5857 &genX(polygon_stipple),
5858 &genX(polygon_stipple_offset),
5859
5860 &genX(line_stipple),
5861
5862 &genX(drawing_rect),
5863
5864 &brw_indices, /* must come before brw_vertices */
5865 &genX(index_buffer),
5866 &genX(vertices),
5867
5868 #if GEN_IS_HASWELL
5869 &genX(cut_index),
5870 #endif
5871 };
5872 #elif GEN_GEN >= 8
5873 static const struct brw_tracked_state *render_atoms[] =
5874 {
5875 &genX(vf_statistics),
5876
5877 &genX(cc_vp),
5878 &genX(sf_clip_viewport),
5879
5880 &gen7_l3_state,
5881 &gen7_push_constant_space,
5882 &gen7_urb,
5883 &genX(blend_state),
5884 &genX(color_calc_state),
5885
5886 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5887 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5888 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5889 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5890 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5891
5892 &genX(vs_push_constants), /* Before vs_state */
5893 &genX(tcs_push_constants),
5894 &genX(tes_push_constants),
5895 &genX(gs_push_constants), /* Before gs_state */
5896 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5897
5898 /* Surface state setup. Must come before the VS/WM unit. The binding
5899 * table upload must be last.
5900 */
5901 &brw_vs_pull_constants,
5902 &brw_vs_ubo_surfaces,
5903 &brw_tcs_pull_constants,
5904 &brw_tcs_ubo_surfaces,
5905 &brw_tes_pull_constants,
5906 &brw_tes_ubo_surfaces,
5907 &brw_gs_pull_constants,
5908 &brw_gs_ubo_surfaces,
5909 &brw_wm_pull_constants,
5910 &brw_wm_ubo_surfaces,
5911 &gen6_renderbuffer_surfaces,
5912 &brw_renderbuffer_read_surfaces,
5913 &brw_texture_surfaces,
5914
5915 &genX(push_constant_packets),
5916
5917 &brw_vs_binding_table,
5918 &brw_tcs_binding_table,
5919 &brw_tes_binding_table,
5920 &brw_gs_binding_table,
5921 &brw_wm_binding_table,
5922
5923 &genX(fs_samplers),
5924 &genX(vs_samplers),
5925 &genX(tcs_samplers),
5926 &genX(tes_samplers),
5927 &genX(gs_samplers),
5928 &genX(multisample_state),
5929
5930 &genX(vs_state),
5931 &genX(hs_state),
5932 &genX(te_state),
5933 &genX(ds_state),
5934 &genX(gs_state),
5935 &genX(sol_state),
5936 &genX(clip_state),
5937 &genX(raster_state),
5938 &genX(sbe_state),
5939 &genX(sf_state),
5940 &genX(ps_blend),
5941 &genX(ps_extra),
5942 &genX(ps_state),
5943 &genX(depth_stencil_state),
5944 &genX(wm_state),
5945
5946 &genX(scissor_state),
5947
5948 &brw_depthbuffer,
5949
5950 &genX(polygon_stipple),
5951 &genX(polygon_stipple_offset),
5952
5953 &genX(line_stipple),
5954
5955 &genX(drawing_rect),
5956
5957 &genX(vf_topology),
5958
5959 &brw_indices,
5960 &genX(index_buffer),
5961 &genX(vertices),
5962
5963 &genX(cut_index),
5964 &gen8_pma_fix,
5965 };
5966 #endif
5967
5968 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5969 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5970 render_atoms, ARRAY_SIZE(render_atoms));
5971
5972 #if GEN_GEN >= 7
5973 static const struct brw_tracked_state *compute_atoms[] =
5974 {
5975 &gen7_l3_state,
5976 &brw_cs_image_surfaces,
5977 &genX(cs_push_constants),
5978 &genX(cs_pull_constants),
5979 &brw_cs_ubo_surfaces,
5980 &brw_cs_texture_surfaces,
5981 &brw_cs_work_groups_surface,
5982 &genX(cs_samplers),
5983 &genX(cs_state),
5984 };
5985
5986 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5987 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5988 compute_atoms, ARRAY_SIZE(compute_atoms));
5989
5990 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5991 brw->vtbl.emit_compute_walker = genX(emit_gpgpu_walker);
5992 #endif
5993 }