f7128ae8960bfc24bada12320843ec03b644bfb1
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34
35 #include "brw_context.h"
36 #if GEN_GEN == 6
37 #include "brw_defines.h"
38 #endif
39 #include "brw_draw.h"
40 #include "brw_multisample_state.h"
41 #include "brw_state.h"
42 #include "brw_wm.h"
43 #include "brw_util.h"
44
45 #include "intel_batchbuffer.h"
46 #include "intel_buffer_objects.h"
47 #include "intel_fbo.h"
48
49 #include "main/enums.h"
50 #include "main/fbobject.h"
51 #include "main/framebuffer.h"
52 #include "main/glformats.h"
53 #include "main/shaderapi.h"
54 #include "main/stencil.h"
55 #include "main/transformfeedback.h"
56 #include "main/varray.h"
57 #include "main/viewport.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 uint32_t read_domains;
72 uint32_t write_domain;
73 uint32_t offset;
74 };
75
76 static uint64_t
77 emit_reloc(struct brw_context *brw,
78 void *location, struct brw_address address, uint32_t delta)
79 {
80 uint32_t offset = (char *) location - (char *) brw->batch.map;
81
82 return brw_emit_reloc(&brw->batch, offset, address.bo,
83 address.offset + delta,
84 address.read_domains,
85 address.write_domain);
86 }
87
88 #define __gen_address_type struct brw_address
89 #define __gen_user_data struct brw_context
90
91 static uint64_t
92 __gen_combine_address(struct brw_context *brw, void *location,
93 struct brw_address address, uint32_t delta)
94 {
95 if (address.bo == NULL) {
96 return address.offset + delta;
97 } else {
98 return emit_reloc(brw, location, address, delta);
99 }
100 }
101
102 static inline struct brw_address
103 render_bo(struct brw_bo *bo, uint32_t offset)
104 {
105 return (struct brw_address) {
106 .bo = bo,
107 .offset = offset,
108 .read_domains = I915_GEM_DOMAIN_RENDER,
109 .write_domain = I915_GEM_DOMAIN_RENDER,
110 };
111 }
112
113 static inline struct brw_address
114 render_ro_bo(struct brw_bo *bo, uint32_t offset)
115 {
116 return (struct brw_address) {
117 .bo = bo,
118 .offset = offset,
119 .read_domains = I915_GEM_DOMAIN_RENDER,
120 .write_domain = 0,
121 };
122 }
123
124 static inline struct brw_address
125 instruction_bo(struct brw_bo *bo, uint32_t offset)
126 {
127 return (struct brw_address) {
128 .bo = bo,
129 .offset = offset,
130 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
131 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
132 };
133 }
134
135 static inline struct brw_address
136 instruction_ro_bo(struct brw_bo *bo, uint32_t offset)
137 {
138 return (struct brw_address) {
139 .bo = bo,
140 .offset = offset,
141 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
142 .write_domain = 0,
143 };
144 }
145
146 static inline struct brw_address
147 vertex_bo(struct brw_bo *bo, uint32_t offset)
148 {
149 return (struct brw_address) {
150 .bo = bo,
151 .offset = offset,
152 .read_domains = I915_GEM_DOMAIN_VERTEX,
153 .write_domain = 0,
154 };
155 }
156
157 #include "genxml/genX_pack.h"
158
159 #define _brw_cmd_length(cmd) cmd ## _length
160 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
161 #define _brw_cmd_header(cmd) cmd ## _header
162 #define _brw_cmd_pack(cmd) cmd ## _pack
163
164 #define brw_batch_emit(brw, cmd, name) \
165 for (struct cmd name = { _brw_cmd_header(cmd) }, \
166 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
167 __builtin_expect(_dst != NULL, 1); \
168 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
169 _dst = NULL)
170
171 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
172 uint32_t *_dw = emit_dwords(brw, n); \
173 struct cmd template = { \
174 _brw_cmd_header(cmd), \
175 .DWordLength = n - _brw_cmd_length_bias(cmd), \
176 __VA_ARGS__ \
177 }; \
178 _brw_cmd_pack(cmd)(brw, _dw, &template); \
179 _dw + 1; /* Array starts at dw[1] */ \
180 })
181
182 #define brw_state_emit(brw, cmd, align, offset, name) \
183 for (struct cmd name = { 0, }, \
184 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
185 align, offset); \
186 __builtin_expect(_dst != NULL, 1); \
187 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
188 _dst = NULL)
189
190 /**
191 * Polygon stipple packet
192 */
193 static void
194 genX(upload_polygon_stipple)(struct brw_context *brw)
195 {
196 struct gl_context *ctx = &brw->ctx;
197
198 /* _NEW_POLYGON */
199 if (!ctx->Polygon.StippleFlag)
200 return;
201
202 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
203 /* Polygon stipple is provided in OpenGL order, i.e. bottom
204 * row first. If we're rendering to a window (i.e. the
205 * default frame buffer object, 0), then we need to invert
206 * it to match our pixel layout. But if we're rendering
207 * to a FBO (i.e. any named frame buffer object), we *don't*
208 * need to invert - we already match the layout.
209 */
210 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
211 for (unsigned i = 0; i < 32; i++)
212 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
213 } else {
214 for (unsigned i = 0; i < 32; i++)
215 poly.PatternRow[i] = ctx->PolygonStipple[i];
216 }
217 }
218 }
219
220 static const struct brw_tracked_state genX(polygon_stipple) = {
221 .dirty = {
222 .mesa = _NEW_POLYGON |
223 _NEW_POLYGONSTIPPLE,
224 .brw = BRW_NEW_CONTEXT,
225 },
226 .emit = genX(upload_polygon_stipple),
227 };
228
229 /**
230 * Polygon stipple offset packet
231 */
232 static void
233 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
234 {
235 struct gl_context *ctx = &brw->ctx;
236
237 /* _NEW_POLYGON */
238 if (!ctx->Polygon.StippleFlag)
239 return;
240
241 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
242 /* _NEW_BUFFERS
243 *
244 * If we're drawing to a system window we have to invert the Y axis
245 * in order to match the OpenGL pixel coordinate system, and our
246 * offset must be matched to the window position. If we're drawing
247 * to a user-created FBO then our native pixel coordinate system
248 * works just fine, and there's no window system to worry about.
249 */
250 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
251 poly.PolygonStippleYOffset =
252 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
253 }
254 }
255 }
256
257 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
258 .dirty = {
259 .mesa = _NEW_BUFFERS |
260 _NEW_POLYGON,
261 .brw = BRW_NEW_CONTEXT,
262 },
263 .emit = genX(upload_polygon_stipple_offset),
264 };
265
266 /**
267 * Line stipple packet
268 */
269 static void
270 genX(upload_line_stipple)(struct brw_context *brw)
271 {
272 struct gl_context *ctx = &brw->ctx;
273
274 if (!ctx->Line.StippleFlag)
275 return;
276
277 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
278 line.LineStipplePattern = ctx->Line.StipplePattern;
279
280 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
281 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
282 }
283 }
284
285 static const struct brw_tracked_state genX(line_stipple) = {
286 .dirty = {
287 .mesa = _NEW_LINE,
288 .brw = BRW_NEW_CONTEXT,
289 },
290 .emit = genX(upload_line_stipple),
291 };
292
293 /* Constant single cliprect for framebuffer object or DRI2 drawing */
294 static void
295 genX(upload_drawing_rect)(struct brw_context *brw)
296 {
297 struct gl_context *ctx = &brw->ctx;
298 const struct gl_framebuffer *fb = ctx->DrawBuffer;
299 const unsigned int fb_width = _mesa_geometric_width(fb);
300 const unsigned int fb_height = _mesa_geometric_height(fb);
301
302 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
303 rect.ClippedDrawingRectangleXMax = fb_width - 1;
304 rect.ClippedDrawingRectangleYMax = fb_height - 1;
305 }
306 }
307
308 static const struct brw_tracked_state genX(drawing_rect) = {
309 .dirty = {
310 .mesa = _NEW_BUFFERS,
311 .brw = BRW_NEW_BLORP |
312 BRW_NEW_CONTEXT,
313 },
314 .emit = genX(upload_drawing_rect),
315 };
316
317 static uint32_t *
318 genX(emit_vertex_buffer_state)(struct brw_context *brw,
319 uint32_t *dw,
320 unsigned buffer_nr,
321 struct brw_bo *bo,
322 unsigned start_offset,
323 unsigned end_offset,
324 unsigned stride,
325 unsigned step_rate)
326 {
327 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
328 .VertexBufferIndex = buffer_nr,
329 .BufferPitch = stride,
330 .BufferStartingAddress = vertex_bo(bo, start_offset),
331 #if GEN_GEN >= 8
332 .BufferSize = end_offset - start_offset,
333 #endif
334
335 #if GEN_GEN >= 7
336 .AddressModifyEnable = true,
337 #endif
338
339 #if GEN_GEN < 8
340 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
341 .InstanceDataStepRate = step_rate,
342 #if GEN_GEN >= 5
343 .EndAddress = vertex_bo(bo, end_offset - 1),
344 #endif
345 #endif
346
347 #if GEN_GEN == 9
348 .VertexBufferMOCS = SKL_MOCS_WB,
349 #elif GEN_GEN == 8
350 .VertexBufferMOCS = BDW_MOCS_WB,
351 #elif GEN_GEN == 7
352 .VertexBufferMOCS = GEN7_MOCS_L3,
353 #endif
354 };
355
356 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
357 return dw + GENX(VERTEX_BUFFER_STATE_length);
358 }
359
360 UNUSED static bool
361 is_passthru_format(uint32_t format)
362 {
363 switch (format) {
364 case ISL_FORMAT_R64_PASSTHRU:
365 case ISL_FORMAT_R64G64_PASSTHRU:
366 case ISL_FORMAT_R64G64B64_PASSTHRU:
367 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
368 return true;
369 default:
370 return false;
371 }
372 }
373
374 UNUSED static int
375 uploads_needed(uint32_t format)
376 {
377 if (!is_passthru_format(format))
378 return 1;
379
380 switch (format) {
381 case ISL_FORMAT_R64_PASSTHRU:
382 case ISL_FORMAT_R64G64_PASSTHRU:
383 return 1;
384 case ISL_FORMAT_R64G64B64_PASSTHRU:
385 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
386 return 2;
387 default:
388 unreachable("not reached");
389 }
390 }
391
392 /*
393 * Returns the format that we are finally going to use when upload a vertex
394 * element. It will only change if we are using *64*PASSTHRU formats, as for
395 * gen < 8 they need to be splitted on two *32*FLOAT formats.
396 *
397 * @upload points in which upload we are. Valid values are [0,1]
398 */
399 static uint32_t
400 downsize_format_if_needed(uint32_t format,
401 int upload)
402 {
403 assert(upload == 0 || upload == 1);
404
405 if (!is_passthru_format(format))
406 return format;
407
408 switch (format) {
409 case ISL_FORMAT_R64_PASSTHRU:
410 return ISL_FORMAT_R32G32_FLOAT;
411 case ISL_FORMAT_R64G64_PASSTHRU:
412 return ISL_FORMAT_R32G32B32A32_FLOAT;
413 case ISL_FORMAT_R64G64B64_PASSTHRU:
414 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
415 : ISL_FORMAT_R32G32_FLOAT;
416 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
417 return ISL_FORMAT_R32G32B32A32_FLOAT;
418 default:
419 unreachable("not reached");
420 }
421 }
422
423 /*
424 * Returns the number of componentes associated with a format that is used on
425 * a 64 to 32 format split. See downsize_format()
426 */
427 static int
428 upload_format_size(uint32_t upload_format)
429 {
430 switch (upload_format) {
431 case ISL_FORMAT_R32G32_FLOAT:
432 return 2;
433 case ISL_FORMAT_R32G32B32A32_FLOAT:
434 return 4;
435 default:
436 unreachable("not reached");
437 }
438 }
439
440 static void
441 genX(emit_vertices)(struct brw_context *brw)
442 {
443 uint32_t *dw;
444
445 brw_prepare_vertices(brw);
446 brw_prepare_shader_draw_parameters(brw);
447
448 #if GEN_GEN < 6
449 brw_emit_query_begin(brw);
450 #endif
451
452 const struct brw_vs_prog_data *vs_prog_data =
453 brw_vs_prog_data(brw->vs.base.prog_data);
454
455 #if GEN_GEN >= 8
456 struct gl_context *ctx = &brw->ctx;
457 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
458 ctx->Polygon.BackMode != GL_FILL);
459
460 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
461 unsigned vue = brw->vb.nr_enabled;
462
463 /* The element for the edge flags must always be last, so we have to
464 * insert the SGVS before it in that case.
465 */
466 if (uses_edge_flag) {
467 assert(vue > 0);
468 vue--;
469 }
470
471 WARN_ONCE(vue >= 33,
472 "Trying to insert VID/IID past 33rd vertex element, "
473 "need to reorder the vertex attrbutes.");
474
475 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
476 if (vs_prog_data->uses_vertexid) {
477 vfs.VertexIDEnable = true;
478 vfs.VertexIDComponentNumber = 2;
479 vfs.VertexIDElementOffset = vue;
480 }
481
482 if (vs_prog_data->uses_instanceid) {
483 vfs.InstanceIDEnable = true;
484 vfs.InstanceIDComponentNumber = 3;
485 vfs.InstanceIDElementOffset = vue;
486 }
487 }
488
489 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
490 vfi.InstancingEnable = true;
491 vfi.VertexElementIndex = vue;
492 }
493 } else {
494 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
495 }
496
497 /* Normally we don't need an element for the SGVS attribute because the
498 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
499 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
500 * we're using draw parameters then we need an element for the those
501 * values. Additionally if there is an edge flag element then the SGVS
502 * can't be inserted past that so we need a dummy element to ensure that
503 * the edge flag is the last one.
504 */
505 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
506 vs_prog_data->uses_baseinstance ||
507 ((vs_prog_data->uses_instanceid ||
508 vs_prog_data->uses_vertexid)
509 && uses_edge_flag));
510 #else
511 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
512 vs_prog_data->uses_baseinstance ||
513 vs_prog_data->uses_instanceid ||
514 vs_prog_data->uses_vertexid);
515 #endif
516 unsigned nr_elements =
517 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
518
519 #if GEN_GEN < 8
520 /* If any of the formats of vb.enabled needs more that one upload, we need
521 * to add it to nr_elements
522 */
523 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
524 struct brw_vertex_element *input = brw->vb.enabled[i];
525 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
526
527 if (uploads_needed(format) > 1)
528 nr_elements++;
529 }
530 #endif
531
532 /* If the VS doesn't read any inputs (calculating vertex position from
533 * a state variable for some reason, for example), emit a single pad
534 * VERTEX_ELEMENT struct and bail.
535 *
536 * The stale VB state stays in place, but they don't do anything unless
537 * a VE loads from them.
538 */
539 if (nr_elements == 0) {
540 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
541 1 + GENX(VERTEX_ELEMENT_STATE_length));
542 struct GENX(VERTEX_ELEMENT_STATE) elem = {
543 .Valid = true,
544 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
545 .Component0Control = VFCOMP_STORE_0,
546 .Component1Control = VFCOMP_STORE_0,
547 .Component2Control = VFCOMP_STORE_0,
548 .Component3Control = VFCOMP_STORE_1_FP,
549 };
550 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
551 return;
552 }
553
554 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
555 const bool uses_draw_params =
556 vs_prog_data->uses_basevertex ||
557 vs_prog_data->uses_baseinstance;
558 const unsigned nr_buffers = brw->vb.nr_buffers +
559 uses_draw_params + vs_prog_data->uses_drawid;
560
561 if (nr_buffers) {
562 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
563
564 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
565 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
566
567 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
568 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
569 /* Prior to Haswell and Bay Trail we have to use 4-component formats
570 * to fake 3-component ones. In particular, we do this for
571 * half-float and 8 and 16-bit integer formats. This means that the
572 * vertex element may poke over the end of the buffer by 2 bytes.
573 */
574 const unsigned padding =
575 (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
576 const unsigned end = buffer->offset + buffer->size + padding;
577 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
578 buffer->offset,
579 end,
580 buffer->stride,
581 buffer->step_rate);
582 }
583
584 if (uses_draw_params) {
585 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
586 brw->draw.draw_params_bo,
587 brw->draw.draw_params_offset,
588 brw->draw.draw_params_bo->size,
589 0 /* stride */,
590 0 /* step rate */);
591 }
592
593 if (vs_prog_data->uses_drawid) {
594 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
595 brw->draw.draw_id_bo,
596 brw->draw.draw_id_offset,
597 brw->draw.draw_id_bo->size,
598 0 /* stride */,
599 0 /* step rate */);
600 }
601 }
602
603 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
604 * presumably for VertexID/InstanceID.
605 */
606 #if GEN_GEN >= 6
607 assert(nr_elements <= 34);
608 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
609 #else
610 assert(nr_elements <= 18);
611 #endif
612
613 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
614 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
615 unsigned i;
616 for (i = 0; i < brw->vb.nr_enabled; i++) {
617 const struct brw_vertex_element *input = brw->vb.enabled[i];
618 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
619 uint32_t comp0 = VFCOMP_STORE_SRC;
620 uint32_t comp1 = VFCOMP_STORE_SRC;
621 uint32_t comp2 = VFCOMP_STORE_SRC;
622 uint32_t comp3 = VFCOMP_STORE_SRC;
623 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
624
625 #if GEN_GEN >= 8
626 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
627 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
628 * element which has edge flag enabled."
629 */
630 assert(!(is_passthru_format(format) && uses_edge_flag));
631 #endif
632
633 /* The gen4 driver expects edgeflag to come in as a float, and passes
634 * that float on to the tests in the clipper. Mesa's current vertex
635 * attribute value for EdgeFlag is stored as a float, which works out.
636 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
637 * integer ubyte. Just rewrite that to convert to a float.
638 *
639 * Gen6+ passes edgeflag as sideband along with the vertex, instead
640 * of in the VUE. We have to upload it sideband as the last vertex
641 * element according to the B-Spec.
642 */
643 #if GEN_GEN >= 6
644 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
645 gen6_edgeflag_input = input;
646 continue;
647 }
648 #endif
649
650 for (unsigned c = 0; c < num_uploads; c++) {
651 const uint32_t upload_format = GEN_GEN >= 8 ? format :
652 downsize_format_if_needed(format, c);
653 /* If we need more that one upload, the offset stride would be 128
654 * bits (16 bytes), as for previous uploads we are using the full
655 * entry. */
656 const unsigned offset = input->offset + c * 16;
657
658 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
659 upload_format_size(upload_format) : input->glarray->Size;
660
661 switch (size) {
662 case 0: comp0 = VFCOMP_STORE_0;
663 case 1: comp1 = VFCOMP_STORE_0;
664 case 2: comp2 = VFCOMP_STORE_0;
665 case 3:
666 if (GEN_GEN >= 8 && input->glarray->Doubles) {
667 comp3 = VFCOMP_STORE_0;
668 } else if (input->glarray->Integer) {
669 comp3 = VFCOMP_STORE_1_INT;
670 } else {
671 comp3 = VFCOMP_STORE_1_FP;
672 }
673
674 break;
675 }
676
677 #if GEN_GEN >= 8
678 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
679 *
680 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
681 * formats, 64-bit components are stored in the URB without any
682 * conversion. In this case, vertex elements must be written as 128
683 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
684 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
685 * component into the URB, Component 1 must be specified as
686 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
687 * order to output a 128-bit vertex element, or Components 1-3 must
688 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
689 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
690 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
691 * vertex element."
692 */
693 if (input->glarray->Doubles && !input->is_dual_slot) {
694 /* Store vertex elements which correspond to double and dvec2 vertex
695 * shader inputs as 128-bit vertex elements, instead of 256-bits.
696 */
697 comp2 = VFCOMP_NOSTORE;
698 comp3 = VFCOMP_NOSTORE;
699 }
700 #endif
701
702 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
703 .VertexBufferIndex = input->buffer,
704 .Valid = true,
705 .SourceElementFormat = upload_format,
706 .SourceElementOffset = offset,
707 .Component0Control = comp0,
708 .Component1Control = comp1,
709 .Component2Control = comp2,
710 .Component3Control = comp3,
711 #if GEN_GEN < 5
712 .DestinationElementOffset = i * 4,
713 #endif
714 };
715
716 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
717 dw += GENX(VERTEX_ELEMENT_STATE_length);
718 }
719 }
720
721 if (needs_sgvs_element) {
722 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
723 .Valid = true,
724 .Component0Control = VFCOMP_STORE_0,
725 .Component1Control = VFCOMP_STORE_0,
726 .Component2Control = VFCOMP_STORE_0,
727 .Component3Control = VFCOMP_STORE_0,
728 #if GEN_GEN < 5
729 .DestinationElementOffset = i * 4,
730 #endif
731 };
732
733 #if GEN_GEN >= 8
734 if (vs_prog_data->uses_basevertex ||
735 vs_prog_data->uses_baseinstance) {
736 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
737 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
738 elem_state.Component0Control = VFCOMP_STORE_SRC;
739 elem_state.Component1Control = VFCOMP_STORE_SRC;
740 }
741 #else
742 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
743 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
744 if (vs_prog_data->uses_basevertex)
745 elem_state.Component0Control = VFCOMP_STORE_SRC;
746
747 if (vs_prog_data->uses_baseinstance)
748 elem_state.Component1Control = VFCOMP_STORE_SRC;
749
750 if (vs_prog_data->uses_vertexid)
751 elem_state.Component2Control = VFCOMP_STORE_VID;
752
753 if (vs_prog_data->uses_instanceid)
754 elem_state.Component3Control = VFCOMP_STORE_IID;
755 #endif
756
757 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
758 dw += GENX(VERTEX_ELEMENT_STATE_length);
759 }
760
761 if (vs_prog_data->uses_drawid) {
762 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
763 .Valid = true,
764 .VertexBufferIndex = brw->vb.nr_buffers + 1,
765 .SourceElementFormat = ISL_FORMAT_R32_UINT,
766 .Component0Control = VFCOMP_STORE_SRC,
767 .Component1Control = VFCOMP_STORE_0,
768 .Component2Control = VFCOMP_STORE_0,
769 .Component3Control = VFCOMP_STORE_0,
770 #if GEN_GEN < 5
771 .DestinationElementOffset = i * 4,
772 #endif
773 };
774
775 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
776 dw += GENX(VERTEX_ELEMENT_STATE_length);
777 }
778
779 #if GEN_GEN >= 6
780 if (gen6_edgeflag_input) {
781 const uint32_t format =
782 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
783
784 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
785 .Valid = true,
786 .VertexBufferIndex = gen6_edgeflag_input->buffer,
787 .EdgeFlagEnable = true,
788 .SourceElementFormat = format,
789 .SourceElementOffset = gen6_edgeflag_input->offset,
790 .Component0Control = VFCOMP_STORE_SRC,
791 .Component1Control = VFCOMP_STORE_0,
792 .Component2Control = VFCOMP_STORE_0,
793 .Component3Control = VFCOMP_STORE_0,
794 };
795
796 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
797 dw += GENX(VERTEX_ELEMENT_STATE_length);
798 }
799 #endif
800
801 #if GEN_GEN >= 8
802 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
803 const struct brw_vertex_element *input = brw->vb.enabled[i];
804 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
805 unsigned element_index;
806
807 /* The edge flag element is reordered to be the last one in the code
808 * above so we need to compensate for that in the element indices used
809 * below.
810 */
811 if (input == gen6_edgeflag_input)
812 element_index = nr_elements - 1;
813 else
814 element_index = j++;
815
816 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
817 vfi.VertexElementIndex = element_index;
818 vfi.InstancingEnable = buffer->step_rate != 0;
819 vfi.InstanceDataStepRate = buffer->step_rate;
820 }
821 }
822
823 if (vs_prog_data->uses_drawid) {
824 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
825
826 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
827 vfi.VertexElementIndex = element;
828 }
829 }
830 #endif
831 }
832
833 static const struct brw_tracked_state genX(vertices) = {
834 .dirty = {
835 .mesa = _NEW_POLYGON,
836 .brw = BRW_NEW_BATCH |
837 BRW_NEW_BLORP |
838 BRW_NEW_VERTICES |
839 BRW_NEW_VS_PROG_DATA,
840 },
841 .emit = genX(emit_vertices),
842 };
843
844 static void
845 genX(emit_index_buffer)(struct brw_context *brw)
846 {
847 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
848
849 if (index_buffer == NULL)
850 return;
851
852 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
853 #if GEN_GEN < 8 && !GEN_IS_HASWELL
854 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
855 #endif
856 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
857 ib.BufferStartingAddress = vertex_bo(brw->ib.bo, 0);
858 #if GEN_GEN >= 8
859 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
860 ib.BufferSize = brw->ib.size;
861 #else
862 ib.BufferEndingAddress = vertex_bo(brw->ib.bo, brw->ib.size - 1);
863 #endif
864 }
865 }
866
867 static const struct brw_tracked_state genX(index_buffer) = {
868 .dirty = {
869 .mesa = 0,
870 .brw = BRW_NEW_BATCH |
871 BRW_NEW_BLORP |
872 BRW_NEW_INDEX_BUFFER,
873 },
874 .emit = genX(emit_index_buffer),
875 };
876
877 #if GEN_IS_HASWELL || GEN_GEN >= 8
878 static void
879 genX(upload_cut_index)(struct brw_context *brw)
880 {
881 const struct gl_context *ctx = &brw->ctx;
882
883 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
884 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
885 vf.IndexedDrawCutIndexEnable = true;
886 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
887 }
888 }
889 }
890
891 const struct brw_tracked_state genX(cut_index) = {
892 .dirty = {
893 .mesa = _NEW_TRANSFORM,
894 .brw = BRW_NEW_INDEX_BUFFER,
895 },
896 .emit = genX(upload_cut_index),
897 };
898 #endif
899
900 #if GEN_GEN >= 6
901 /**
902 * Determine the appropriate attribute override value to store into the
903 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
904 * override value contains two pieces of information: the location of the
905 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
906 * flag indicating whether to "swizzle" the attribute based on the direction
907 * the triangle is facing.
908 *
909 * If an attribute is "swizzled", then the given VUE location is used for
910 * front-facing triangles, and the VUE location that immediately follows is
911 * used for back-facing triangles. We use this to implement the mapping from
912 * gl_FrontColor/gl_BackColor to gl_Color.
913 *
914 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
915 * being instructed to begin reading attribute data. It can be set to a
916 * nonzero value to prevent the SF unit from wasting time reading elements of
917 * the VUE that are not needed by the fragment shader. It is measured in
918 * 256-bit increments.
919 */
920 static void
921 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
922 const struct brw_vue_map *vue_map,
923 int urb_entry_read_offset, int fs_attr,
924 bool two_side_color, uint32_t *max_source_attr)
925 {
926 /* Find the VUE slot for this attribute. */
927 int slot = vue_map->varying_to_slot[fs_attr];
928
929 /* Viewport and Layer are stored in the VUE header. We need to override
930 * them to zero if earlier stages didn't write them, as GL requires that
931 * they read back as zero when not explicitly set.
932 */
933 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
934 attr->ComponentOverrideX = true;
935 attr->ComponentOverrideW = true;
936 attr->ConstantSource = CONST_0000;
937
938 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
939 attr->ComponentOverrideY = true;
940 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
941 attr->ComponentOverrideZ = true;
942
943 return;
944 }
945
946 /* If there was only a back color written but not front, use back
947 * as the color instead of undefined
948 */
949 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
950 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
951 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
952 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
953
954 if (slot == -1) {
955 /* This attribute does not exist in the VUE--that means that the vertex
956 * shader did not write to it. This means that either:
957 *
958 * (a) This attribute is a texture coordinate, and it is going to be
959 * replaced with point coordinates (as a consequence of a call to
960 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
961 * hardware will ignore whatever attribute override we supply.
962 *
963 * (b) This attribute is read by the fragment shader but not written by
964 * the vertex shader, so its value is undefined. Therefore the
965 * attribute override we supply doesn't matter.
966 *
967 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
968 * previous shader stage.
969 *
970 * Note that we don't have to worry about the cases where the attribute
971 * is gl_PointCoord or is undergoing point sprite coordinate
972 * replacement, because in those cases, this function isn't called.
973 *
974 * In case (c), we need to program the attribute overrides so that the
975 * primitive ID will be stored in this slot. In every other case, the
976 * attribute override we supply doesn't matter. So just go ahead and
977 * program primitive ID in every case.
978 */
979 attr->ComponentOverrideW = true;
980 attr->ComponentOverrideX = true;
981 attr->ComponentOverrideY = true;
982 attr->ComponentOverrideZ = true;
983 attr->ConstantSource = PRIM_ID;
984 return;
985 }
986
987 /* Compute the location of the attribute relative to urb_entry_read_offset.
988 * Each increment of urb_entry_read_offset represents a 256-bit value, so
989 * it counts for two 128-bit VUE slots.
990 */
991 int source_attr = slot - 2 * urb_entry_read_offset;
992 assert(source_attr >= 0 && source_attr < 32);
993
994 /* If we are doing two-sided color, and the VUE slot following this one
995 * represents a back-facing color, then we need to instruct the SF unit to
996 * do back-facing swizzling.
997 */
998 bool swizzling = two_side_color &&
999 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1000 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1001 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1002 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1003
1004 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1005 if (*max_source_attr < source_attr + swizzling)
1006 *max_source_attr = source_attr + swizzling;
1007
1008 attr->SourceAttribute = source_attr;
1009 if (swizzling)
1010 attr->SwizzleSelect = INPUTATTR_FACING;
1011 }
1012
1013
1014 static void
1015 genX(calculate_attr_overrides)(const struct brw_context *brw,
1016 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1017 uint32_t *point_sprite_enables,
1018 uint32_t *urb_entry_read_length,
1019 uint32_t *urb_entry_read_offset)
1020 {
1021 const struct gl_context *ctx = &brw->ctx;
1022
1023 /* _NEW_POINT */
1024 const struct gl_point_attrib *point = &ctx->Point;
1025
1026 /* BRW_NEW_FS_PROG_DATA */
1027 const struct brw_wm_prog_data *wm_prog_data =
1028 brw_wm_prog_data(brw->wm.base.prog_data);
1029 uint32_t max_source_attr = 0;
1030
1031 *point_sprite_enables = 0;
1032
1033 /* BRW_NEW_FRAGMENT_PROGRAM
1034 *
1035 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
1036 * the full vertex header. Otherwise, we can program the SF to start
1037 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
1038 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1039 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
1040 */
1041
1042 bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
1043 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1044
1045 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
1046
1047 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1048 * description of dw10 Point Sprite Texture Coordinate Enable:
1049 *
1050 * "This field must be programmed to zero when non-point primitives
1051 * are rendered."
1052 *
1053 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1054 * must be programmed to zero when rendering non-point primitives, but
1055 * the IvyBridge PRM does, and if we don't, we get garbage.
1056 *
1057 * This is not required on Haswell, as the hardware ignores this state
1058 * when drawing non-points -- although we do still need to be careful to
1059 * correctly set the attr overrides.
1060 *
1061 * _NEW_POLYGON
1062 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1063 */
1064 bool drawing_points = brw_is_drawing_points(brw);
1065
1066 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1067 int input_index = wm_prog_data->urb_setup[attr];
1068
1069 if (input_index < 0)
1070 continue;
1071
1072 /* _NEW_POINT */
1073 bool point_sprite = false;
1074 if (drawing_points) {
1075 if (point->PointSprite &&
1076 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1077 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1078 point_sprite = true;
1079 }
1080
1081 if (attr == VARYING_SLOT_PNTC)
1082 point_sprite = true;
1083
1084 if (point_sprite)
1085 *point_sprite_enables |= (1 << input_index);
1086 }
1087
1088 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1089 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1090
1091 if (!point_sprite) {
1092 genX(get_attr_override)(&attribute,
1093 &brw->vue_map_geom_out,
1094 *urb_entry_read_offset, attr,
1095 brw->ctx.VertexProgram._TwoSideEnabled,
1096 &max_source_attr);
1097 }
1098
1099 /* The hardware can only do the overrides on 16 overrides at a
1100 * time, and the other up to 16 have to be lined up so that the
1101 * input index = the output index. We'll need to do some
1102 * tweaking to make sure that's the case.
1103 */
1104 if (input_index < 16)
1105 attr_overrides[input_index] = attribute;
1106 else
1107 assert(attribute.SourceAttribute == input_index);
1108 }
1109
1110 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1111 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1112 *
1113 * "This field should be set to the minimum length required to read the
1114 * maximum source attribute. The maximum source attribute is indicated
1115 * by the maximum value of the enabled Attribute # Source Attribute if
1116 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1117 * enable is not set.
1118 * read_length = ceiling((max_source_attr + 1) / 2)
1119 *
1120 * [errata] Corruption/Hang possible if length programmed larger than
1121 * recommended"
1122 *
1123 * Similar text exists for Ivy Bridge.
1124 */
1125 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1126 }
1127 #endif
1128
1129 /* ---------------------------------------------------------------------- */
1130
1131 #if GEN_GEN >= 6
1132 static void
1133 genX(upload_depth_stencil_state)(struct brw_context *brw)
1134 {
1135 struct gl_context *ctx = &brw->ctx;
1136
1137 /* _NEW_BUFFERS */
1138 struct intel_renderbuffer *depth_irb =
1139 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1140
1141 /* _NEW_DEPTH */
1142 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1143
1144 /* _NEW_STENCIL */
1145 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1146 const int b = stencil->_BackFace;
1147
1148 #if GEN_GEN >= 8
1149 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1150 #else
1151 uint32_t ds_offset;
1152 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, wmds) {
1153 #endif
1154 if (depth->Test && depth_irb) {
1155 wmds.DepthTestEnable = true;
1156 wmds.DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1157 wmds.DepthTestFunction = intel_translate_compare_func(depth->Func);
1158 }
1159
1160 if (stencil->_Enabled) {
1161 wmds.StencilTestEnable = true;
1162 wmds.StencilWriteMask = stencil->WriteMask[0] & 0xff;
1163 wmds.StencilTestMask = stencil->ValueMask[0] & 0xff;
1164
1165 wmds.StencilTestFunction =
1166 intel_translate_compare_func(stencil->Function[0]);
1167 wmds.StencilFailOp =
1168 intel_translate_stencil_op(stencil->FailFunc[0]);
1169 wmds.StencilPassDepthPassOp =
1170 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1171 wmds.StencilPassDepthFailOp =
1172 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1173
1174 wmds.StencilBufferWriteEnable = stencil->_WriteEnabled;
1175
1176 if (stencil->_TestTwoSide) {
1177 wmds.DoubleSidedStencilEnable = true;
1178 wmds.BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1179 wmds.BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1180
1181 wmds.BackfaceStencilTestFunction =
1182 intel_translate_compare_func(stencil->Function[b]);
1183 wmds.BackfaceStencilFailOp =
1184 intel_translate_stencil_op(stencil->FailFunc[b]);
1185 wmds.BackfaceStencilPassDepthPassOp =
1186 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1187 wmds.BackfaceStencilPassDepthFailOp =
1188 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1189 }
1190
1191 #if GEN_GEN >= 9
1192 wmds.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1193 wmds.BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1194 #endif
1195 }
1196 }
1197
1198 #if GEN_GEN == 6
1199 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1200 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1201 ptr.DEPTH_STENCIL_STATEChange = true;
1202 }
1203 #elif GEN_GEN == 7
1204 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1205 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1206 }
1207 #endif
1208 }
1209
1210 static const struct brw_tracked_state genX(depth_stencil_state) = {
1211 .dirty = {
1212 .mesa = _NEW_BUFFERS |
1213 _NEW_DEPTH |
1214 _NEW_STENCIL,
1215 .brw = BRW_NEW_BLORP |
1216 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1217 : BRW_NEW_BATCH |
1218 BRW_NEW_STATE_BASE_ADDRESS),
1219 },
1220 .emit = genX(upload_depth_stencil_state),
1221 };
1222 #endif
1223
1224 /* ---------------------------------------------------------------------- */
1225
1226 #if GEN_GEN >= 6
1227 static void
1228 genX(upload_clip_state)(struct brw_context *brw)
1229 {
1230 struct gl_context *ctx = &brw->ctx;
1231
1232 /* _NEW_BUFFERS */
1233 struct gl_framebuffer *fb = ctx->DrawBuffer;
1234
1235 /* BRW_NEW_FS_PROG_DATA */
1236 struct brw_wm_prog_data *wm_prog_data =
1237 brw_wm_prog_data(brw->wm.base.prog_data);
1238
1239 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1240 clip.StatisticsEnable = !brw->meta_in_progress;
1241
1242 if (wm_prog_data->barycentric_interp_modes &
1243 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1244 clip.NonPerspectiveBarycentricEnable = true;
1245
1246 #if GEN_GEN >= 7
1247 clip.EarlyCullEnable = true;
1248 #endif
1249
1250 #if GEN_GEN == 7
1251 clip.FrontWinding = ctx->Polygon._FrontBit == _mesa_is_user_fbo(fb);
1252
1253 if (ctx->Polygon.CullFlag) {
1254 switch (ctx->Polygon.CullFaceMode) {
1255 case GL_FRONT:
1256 clip.CullMode = CULLMODE_FRONT;
1257 break;
1258 case GL_BACK:
1259 clip.CullMode = CULLMODE_BACK;
1260 break;
1261 case GL_FRONT_AND_BACK:
1262 clip.CullMode = CULLMODE_BOTH;
1263 break;
1264 default:
1265 unreachable("Should not get here: invalid CullFlag");
1266 }
1267 } else {
1268 clip.CullMode = CULLMODE_NONE;
1269 }
1270 #endif
1271
1272 #if GEN_GEN < 8
1273 clip.UserClipDistanceCullTestEnableBitmask =
1274 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1275
1276 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1277 #endif
1278
1279 /* _NEW_LIGHT */
1280 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1281 clip.TriangleStripListProvokingVertexSelect = 0;
1282 clip.TriangleFanProvokingVertexSelect = 1;
1283 clip.LineStripListProvokingVertexSelect = 0;
1284 } else {
1285 clip.TriangleStripListProvokingVertexSelect = 2;
1286 clip.TriangleFanProvokingVertexSelect = 2;
1287 clip.LineStripListProvokingVertexSelect = 1;
1288 }
1289
1290 /* _NEW_TRANSFORM */
1291 clip.UserClipDistanceClipTestEnableBitmask =
1292 ctx->Transform.ClipPlanesEnabled;
1293
1294 #if GEN_GEN >= 8
1295 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1296 #endif
1297
1298 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1299 clip.APIMode = APIMODE_D3D;
1300 else
1301 clip.APIMode = APIMODE_OGL;
1302
1303 clip.GuardbandClipTestEnable = true;
1304
1305 /* BRW_NEW_VIEWPORT_COUNT */
1306 const unsigned viewport_count = brw->clip.viewport_count;
1307
1308 if (ctx->RasterDiscard) {
1309 clip.ClipMode = CLIPMODE_REJECT_ALL;
1310 #if GEN_GEN == 6
1311 perf_debug("Rasterizer discard is currently implemented via the "
1312 "clipper; having the GS not write primitives would "
1313 "likely be faster.\n");
1314 #endif
1315 } else {
1316 clip.ClipMode = CLIPMODE_NORMAL;
1317 }
1318
1319 clip.ClipEnable = brw->primitive != _3DPRIM_RECTLIST;
1320
1321 /* _NEW_POLYGON,
1322 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1323 */
1324 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1325 clip.ViewportXYClipTestEnable = true;
1326
1327 clip.MinimumPointWidth = 0.125;
1328 clip.MaximumPointWidth = 255.875;
1329 clip.MaximumVPIndex = viewport_count - 1;
1330 if (_mesa_geometric_layers(fb) == 0)
1331 clip.ForceZeroRTAIndexEnable = true;
1332 }
1333 }
1334
1335 static const struct brw_tracked_state genX(clip_state) = {
1336 .dirty = {
1337 .mesa = _NEW_BUFFERS |
1338 _NEW_LIGHT |
1339 _NEW_POLYGON |
1340 _NEW_TRANSFORM,
1341 .brw = BRW_NEW_BLORP |
1342 BRW_NEW_CONTEXT |
1343 BRW_NEW_FS_PROG_DATA |
1344 BRW_NEW_GS_PROG_DATA |
1345 BRW_NEW_VS_PROG_DATA |
1346 BRW_NEW_META_IN_PROGRESS |
1347 BRW_NEW_PRIMITIVE |
1348 BRW_NEW_RASTERIZER_DISCARD |
1349 BRW_NEW_TES_PROG_DATA |
1350 BRW_NEW_VIEWPORT_COUNT,
1351 },
1352 .emit = genX(upload_clip_state),
1353 };
1354 #endif
1355
1356 /* ---------------------------------------------------------------------- */
1357
1358 #if GEN_GEN >= 6
1359 static void
1360 genX(upload_sf)(struct brw_context *brw)
1361 {
1362 struct gl_context *ctx = &brw->ctx;
1363 float point_size;
1364
1365 #if GEN_GEN <= 7
1366 /* _NEW_BUFFERS */
1367 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1368 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1369 #endif
1370
1371 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1372 sf.StatisticsEnable = true;
1373 sf.ViewportTransformEnable = true;
1374
1375 #if GEN_GEN == 7
1376 /* _NEW_BUFFERS */
1377 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1378 #endif
1379
1380 #if GEN_GEN <= 7
1381 /* _NEW_POLYGON */
1382 sf.FrontWinding = ctx->Polygon._FrontBit == render_to_fbo;
1383 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1384 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1385 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1386
1387 switch (ctx->Polygon.FrontMode) {
1388 case GL_FILL:
1389 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1390 break;
1391 case GL_LINE:
1392 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1393 break;
1394 case GL_POINT:
1395 sf.FrontFaceFillMode = FILL_MODE_POINT;
1396 break;
1397 default:
1398 unreachable("not reached");
1399 }
1400
1401 switch (ctx->Polygon.BackMode) {
1402 case GL_FILL:
1403 sf.BackFaceFillMode = FILL_MODE_SOLID;
1404 break;
1405 case GL_LINE:
1406 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1407 break;
1408 case GL_POINT:
1409 sf.BackFaceFillMode = FILL_MODE_POINT;
1410 break;
1411 default:
1412 unreachable("not reached");
1413 }
1414
1415 sf.ScissorRectangleEnable = true;
1416
1417 if (ctx->Polygon.CullFlag) {
1418 switch (ctx->Polygon.CullFaceMode) {
1419 case GL_FRONT:
1420 sf.CullMode = CULLMODE_FRONT;
1421 break;
1422 case GL_BACK:
1423 sf.CullMode = CULLMODE_BACK;
1424 break;
1425 case GL_FRONT_AND_BACK:
1426 sf.CullMode = CULLMODE_BOTH;
1427 break;
1428 default:
1429 unreachable("not reached");
1430 }
1431 } else {
1432 sf.CullMode = CULLMODE_NONE;
1433 }
1434
1435 #if GEN_IS_HASWELL
1436 sf.LineStippleEnable = ctx->Line.StippleFlag;
1437 #endif
1438
1439 if (multisampled_fbo && ctx->Multisample.Enabled)
1440 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1441
1442 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1443 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1444 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1445 #endif
1446
1447 /* _NEW_LINE */
1448 #if GEN_GEN == 8
1449 if (brw->is_cherryview)
1450 sf.CHVLineWidth = brw_get_line_width(brw);
1451 else
1452 sf.LineWidth = brw_get_line_width(brw);
1453 #else
1454 sf.LineWidth = brw_get_line_width(brw);
1455 #endif
1456
1457 if (ctx->Line.SmoothFlag) {
1458 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1459 #if GEN_GEN <= 7
1460 sf.AntiAliasingEnable = true;
1461 #endif
1462 }
1463
1464 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1465 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1466 /* Clamp to the hardware limits */
1467 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1468
1469 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1470 if (use_state_point_size(brw))
1471 sf.PointWidthSource = State;
1472
1473 #if GEN_GEN >= 8
1474 /* _NEW_POINT | _NEW_MULTISAMPLE */
1475 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1476 !ctx->Point.PointSprite)
1477 sf.SmoothPointEnable = true;
1478 #endif
1479
1480 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1481
1482 /* _NEW_LIGHT */
1483 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1484 sf.TriangleStripListProvokingVertexSelect = 2;
1485 sf.TriangleFanProvokingVertexSelect = 2;
1486 sf.LineStripListProvokingVertexSelect = 1;
1487 } else {
1488 sf.TriangleFanProvokingVertexSelect = 1;
1489 }
1490
1491 #if GEN_GEN == 6
1492 /* BRW_NEW_FS_PROG_DATA */
1493 const struct brw_wm_prog_data *wm_prog_data =
1494 brw_wm_prog_data(brw->wm.base.prog_data);
1495
1496 sf.AttributeSwizzleEnable = true;
1497 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1498
1499 /*
1500 * Window coordinates in an FBO are inverted, which means point
1501 * sprite origin must be inverted, too.
1502 */
1503 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1504 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1505 } else {
1506 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1507 }
1508
1509 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1510 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1511 */
1512 uint32_t urb_entry_read_length;
1513 uint32_t urb_entry_read_offset;
1514 uint32_t point_sprite_enables;
1515 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1516 &urb_entry_read_length,
1517 &urb_entry_read_offset);
1518 sf.VertexURBEntryReadLength = urb_entry_read_length;
1519 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1520 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1521 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1522 #endif
1523 }
1524 }
1525
1526 static const struct brw_tracked_state genX(sf_state) = {
1527 .dirty = {
1528 .mesa = _NEW_LIGHT |
1529 _NEW_LINE |
1530 _NEW_MULTISAMPLE |
1531 _NEW_POINT |
1532 _NEW_PROGRAM |
1533 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1534 .brw = BRW_NEW_BLORP |
1535 BRW_NEW_CONTEXT |
1536 BRW_NEW_VUE_MAP_GEOM_OUT |
1537 (GEN_GEN <= 7 ? BRW_NEW_GS_PROG_DATA |
1538 BRW_NEW_PRIMITIVE |
1539 BRW_NEW_TES_PROG_DATA
1540 : 0) |
1541 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1542 BRW_NEW_FRAGMENT_PROGRAM
1543 : 0),
1544 },
1545 .emit = genX(upload_sf),
1546 };
1547 #endif
1548
1549 /* ---------------------------------------------------------------------- */
1550
1551 #if GEN_GEN >= 6
1552 static void
1553 genX(upload_wm)(struct brw_context *brw)
1554 {
1555 struct gl_context *ctx = &brw->ctx;
1556
1557 /* BRW_NEW_FS_PROG_DATA */
1558 const struct brw_wm_prog_data *wm_prog_data =
1559 brw_wm_prog_data(brw->wm.base.prog_data);
1560
1561 UNUSED bool writes_depth =
1562 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1563
1564 #if GEN_GEN < 7
1565 const struct brw_stage_state *stage_state = &brw->wm.base;
1566 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1567
1568 /* We can't fold this into gen6_upload_wm_push_constants(), because
1569 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1570 * (3DSTATE_CONSTANT_PS [DevSNB]):
1571 *
1572 * "[DevSNB]: This packet must be followed by WM_STATE."
1573 */
1574 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1575 if (wm_prog_data->base.nr_params != 0) {
1576 wmcp.Buffer0Valid = true;
1577 /* Pointer to the WM constant buffer. Covered by the set of
1578 * state flags from gen6_upload_wm_push_constants.
1579 */
1580 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1581 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1582 }
1583 }
1584 #endif
1585
1586 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1587 wm.StatisticsEnable = true;
1588 wm.LineAntialiasingRegionWidth = _10pixels;
1589 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1590
1591 #if GEN_GEN < 7
1592 if (wm_prog_data->base.use_alt_mode)
1593 wm.FloatingPointMode = Alternate;
1594
1595 wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4);
1596 wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4;
1597 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1598 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1599 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1600 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1601 wm_prog_data->base.dispatch_grf_start_reg;
1602 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1603 wm_prog_data->dispatch_grf_start_reg_2;
1604 wm.KernelStartPointer0 = stage_state->prog_offset;
1605 wm.KernelStartPointer2 = stage_state->prog_offset +
1606 wm_prog_data->prog_offset_2;
1607 wm.DualSourceBlendEnable =
1608 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1609 ctx->Color.Blend[0]._UsesDualSrc;
1610 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1611 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1612
1613 /* From the SNB PRM, volume 2 part 1, page 281:
1614 * "If the PS kernel does not need the Position XY Offsets
1615 * to compute a Position XY value, then this field should be
1616 * programmed to POSOFFSET_NONE."
1617 *
1618 * "SW Recommendation: If the PS kernel needs the Position Offsets
1619 * to compute a Position XY value, this field should match Position
1620 * ZW Interpolation Mode to ensure a consistent position.xyzw
1621 * computation."
1622 * We only require XY sample offsets. So, this recommendation doesn't
1623 * look useful at the moment. We might need this in future.
1624 */
1625 if (wm_prog_data->uses_pos_offset)
1626 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1627 else
1628 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1629
1630 if (wm_prog_data->base.total_scratch) {
1631 wm.ScratchSpaceBasePointer =
1632 render_bo(stage_state->scratch_bo,
1633 ffs(stage_state->per_thread_scratch) - 11);
1634 }
1635
1636 wm.PixelShaderComputedDepth = writes_depth;
1637 #endif
1638
1639 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1640
1641 /* _NEW_LINE */
1642 wm.LineStippleEnable = ctx->Line.StippleFlag;
1643
1644 /* _NEW_POLYGON */
1645 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1646 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1647
1648 #if GEN_GEN < 8
1649 /* _NEW_BUFFERS */
1650 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1651
1652 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1653 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1654 if (wm_prog_data->uses_kill ||
1655 _mesa_is_alpha_test_enabled(ctx) ||
1656 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1657 wm_prog_data->uses_omask) {
1658 wm.PixelShaderKillsPixel = true;
1659 }
1660
1661 /* _NEW_BUFFERS | _NEW_COLOR */
1662 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1663 wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) {
1664 wm.ThreadDispatchEnable = true;
1665 }
1666 if (multisampled_fbo) {
1667 /* _NEW_MULTISAMPLE */
1668 if (ctx->Multisample.Enabled)
1669 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1670 else
1671 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1672
1673 if (wm_prog_data->persample_dispatch)
1674 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1675 else
1676 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1677 } else {
1678 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1679 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1680 }
1681
1682 #if GEN_GEN >= 7
1683 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1684 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1685 #endif
1686
1687 /* The "UAV access enable" bits are unnecessary on HSW because they only
1688 * seem to have an effect on the HW-assisted coherency mechanism which we
1689 * don't need, and the rasterization-related UAV_ONLY flag and the
1690 * DISPATCH_ENABLE bit can be set independently from it.
1691 * C.f. gen8_upload_ps_extra().
1692 *
1693 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1694 * _NEW_COLOR
1695 */
1696 #if GEN_IS_HASWELL
1697 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1698 wm_prog_data->has_side_effects)
1699 wm.PSUAVonly = ON;
1700 #endif
1701 #endif
1702
1703 #if GEN_GEN >= 7
1704 /* BRW_NEW_FS_PROG_DATA */
1705 if (wm_prog_data->early_fragment_tests)
1706 wm.EarlyDepthStencilControl = EDSC_PREPS;
1707 else if (wm_prog_data->has_side_effects)
1708 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1709 #endif
1710 }
1711 }
1712
1713 static const struct brw_tracked_state genX(wm_state) = {
1714 .dirty = {
1715 .mesa = _NEW_LINE |
1716 _NEW_POLYGON |
1717 (GEN_GEN < 8 ? _NEW_BUFFERS |
1718 _NEW_COLOR |
1719 _NEW_MULTISAMPLE :
1720 0) |
1721 (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
1722 .brw = BRW_NEW_BLORP |
1723 BRW_NEW_FS_PROG_DATA |
1724 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1725 },
1726 .emit = genX(upload_wm),
1727 };
1728 #endif
1729
1730 /* ---------------------------------------------------------------------- */
1731
1732 #if GEN_GEN == 4
1733 static inline struct brw_address
1734 KSP(struct brw_context *brw, uint32_t offset)
1735 {
1736 return instruction_bo(brw->cache.bo, offset);
1737 }
1738 #else
1739 static inline uint32_t
1740 KSP(struct brw_context *brw, uint32_t offset)
1741 {
1742 return offset;
1743 }
1744 #endif
1745
1746 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1747 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
1748 pkt.SamplerCount = \
1749 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1750 pkt.BindingTableEntryCount = \
1751 stage_prog_data->binding_table.size_bytes / 4; \
1752 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
1753 \
1754 if (stage_prog_data->total_scratch) { \
1755 pkt.ScratchSpaceBasePointer = \
1756 render_bo(stage_state->scratch_bo, 0); \
1757 pkt.PerThreadScratchSpace = \
1758 ffs(stage_state->per_thread_scratch) - 11; \
1759 } \
1760 \
1761 pkt.DispatchGRFStartRegisterForURBData = \
1762 stage_prog_data->dispatch_grf_start_reg; \
1763 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1764 pkt.prefix##URBEntryReadOffset = 0; \
1765 \
1766 pkt.StatisticsEnable = true; \
1767 pkt.Enable = true;
1768
1769 static void
1770 genX(upload_vs_state)(struct brw_context *brw)
1771 {
1772 UNUSED struct gl_context *ctx = &brw->ctx;
1773 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1774 struct brw_stage_state *stage_state = &brw->vs.base;
1775
1776 /* BRW_NEW_VS_PROG_DATA */
1777 const struct brw_vue_prog_data *vue_prog_data =
1778 brw_vue_prog_data(brw->vs.base.prog_data);
1779 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
1780
1781 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
1782 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
1783
1784 #if GEN_GEN == 6
1785 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
1786 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
1787 *
1788 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
1789 * command that causes the VS Function Enable to toggle. Pipeline
1790 * flush can be executed by sending a PIPE_CONTROL command with CS
1791 * stall bit set and a post sync operation.
1792 *
1793 * We've already done such a flush at the start of state upload, so we
1794 * don't need to do another one here.
1795 */
1796 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
1797 if (stage_state->push_const_size != 0) {
1798 cvs.Buffer0Valid = true;
1799 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
1800 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1801 }
1802 }
1803 #endif
1804
1805 if (GEN_GEN == 7 && devinfo->is_ivybridge)
1806 gen7_emit_vs_workaround_flush(brw);
1807
1808 #if GEN_GEN >= 6
1809 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
1810 #else
1811 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1812 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
1813 #endif
1814 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1815
1816 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1817
1818 #if GEN_GEN < 6
1819 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
1820 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
1821 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
1822
1823 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
1824 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
1825
1826 vs.MaximumNumberofThreads =
1827 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
1828
1829 vs.StatisticsEnable = false;
1830 vs.SamplerStateOffset =
1831 instruction_ro_bo(brw->batch.bo, stage_state->sampler_offset);
1832 #endif
1833
1834 #if GEN_GEN == 5
1835 /* Force single program flow on Ironlake. We cannot reliably get
1836 * all applications working without it. See:
1837 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
1838 *
1839 * The most notable and reliably failing application is the Humus
1840 * demo "CelShading"
1841 */
1842 vs.SingleProgramFlow = true;
1843 vs.SamplerCount = 0; /* hardware requirement */
1844 #endif
1845
1846 #if GEN_GEN >= 8
1847 vs.SIMD8DispatchEnable =
1848 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
1849
1850 vs.UserClipDistanceCullTestEnableBitmask =
1851 vue_prog_data->cull_distance_mask;
1852 #endif
1853 }
1854
1855 #if GEN_GEN == 6
1856 /* Based on my reading of the simulator, the VS constants don't get
1857 * pulled into the VS FF unit until an appropriate pipeline flush
1858 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
1859 * references to them into a little FIFO. The flushes are common,
1860 * but don't reliably happen between this and a 3DPRIMITIVE, causing
1861 * the primitive to use the wrong constants. Then the FIFO
1862 * containing the constant setup gets added to again on the next
1863 * constants change, and eventually when a flush does happen the
1864 * unit is overwhelmed by constant changes and dies.
1865 *
1866 * To avoid this, send a PIPE_CONTROL down the line that will
1867 * update the unit immediately loading the constants. The flush
1868 * type bits here were those set by the STATE_BASE_ADDRESS whose
1869 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
1870 * bug reports that led to this workaround, and may be more than
1871 * what is strictly required to avoid the issue.
1872 */
1873 brw_emit_pipe_control_flush(brw,
1874 PIPE_CONTROL_DEPTH_STALL |
1875 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1876 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1877 #endif
1878 }
1879
1880 static const struct brw_tracked_state genX(vs_state) = {
1881 .dirty = {
1882 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
1883 .brw = BRW_NEW_BATCH |
1884 BRW_NEW_BLORP |
1885 BRW_NEW_CONTEXT |
1886 BRW_NEW_VS_PROG_DATA |
1887 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
1888 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1889 BRW_NEW_PROGRAM_CACHE |
1890 BRW_NEW_SAMPLER_STATE_TABLE |
1891 BRW_NEW_URB_FENCE
1892 : 0),
1893 },
1894 .emit = genX(upload_vs_state),
1895 };
1896
1897 /* ---------------------------------------------------------------------- */
1898
1899 #if GEN_GEN >= 6
1900 static void
1901 brw_calculate_guardband_size(const struct gen_device_info *devinfo,
1902 uint32_t fb_width, uint32_t fb_height,
1903 float m00, float m11, float m30, float m31,
1904 float *xmin, float *xmax,
1905 float *ymin, float *ymax)
1906 {
1907 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1908 * Strips and Fans documentation:
1909 *
1910 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1911 * fixed-point "guardband" range supported by the rasterization hardware"
1912 *
1913 * and
1914 *
1915 * "In almost all circumstances, if an object’s vertices are actually
1916 * modified by this clamping (i.e., had X or Y coordinates outside of
1917 * the guardband extent the rendered object will not match the intended
1918 * result. Therefore software should take steps to ensure that this does
1919 * not happen - e.g., by clipping objects such that they do not exceed
1920 * these limits after the Drawing Rectangle is applied."
1921 *
1922 * I believe the fundamental restriction is that the rasterizer (in
1923 * the SF/WM stages) have a limit on the number of pixels that can be
1924 * rasterized. We need to ensure any coordinates beyond the rasterizer
1925 * limit are handled by the clipper. So effectively that limit becomes
1926 * the clipper's guardband size.
1927 *
1928 * It goes on to say:
1929 *
1930 * "In addition, in order to be correctly rendered, objects must have a
1931 * screenspace bounding box not exceeding 8K in the X or Y direction.
1932 * This additional restriction must also be comprehended by software,
1933 * i.e., enforced by use of clipping."
1934 *
1935 * This makes no sense. Gen7+ hardware supports 16K render targets,
1936 * and you definitely need to be able to draw polygons that fill the
1937 * surface. Our assumption is that the rasterizer was limited to 8K
1938 * on Sandybridge, which only supports 8K surfaces, and it was actually
1939 * increased to 16K on Ivybridge and later.
1940 *
1941 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1942 */
1943 const float gb_size = devinfo->gen >= 7 ? 16384.0f : 8192.0f;
1944
1945 if (m00 != 0 && m11 != 0) {
1946 /* First, we compute the screen-space render area */
1947 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1948 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1949 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1950 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1951
1952 /* We want the guardband to be centered on that */
1953 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1954 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1955 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1956 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1957
1958 /* Now we need it in native device coordinates */
1959 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1960 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1961 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1962 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1963
1964 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1965 * flipped upside-down. X should be fine though.
1966 */
1967 assert(ndc_gb_xmin <= ndc_gb_xmax);
1968 *xmin = ndc_gb_xmin;
1969 *xmax = ndc_gb_xmax;
1970 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1971 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1972 } else {
1973 /* The viewport scales to 0, so nothing will be rendered. */
1974 *xmin = 0.0f;
1975 *xmax = 0.0f;
1976 *ymin = 0.0f;
1977 *ymax = 0.0f;
1978 }
1979 }
1980
1981 static void
1982 genX(upload_sf_clip_viewport)(struct brw_context *brw)
1983 {
1984 struct gl_context *ctx = &brw->ctx;
1985 float y_scale, y_bias;
1986 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1987
1988 /* BRW_NEW_VIEWPORT_COUNT */
1989 const unsigned viewport_count = brw->clip.viewport_count;
1990
1991 /* _NEW_BUFFERS */
1992 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1993 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
1994 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
1995
1996 #if GEN_GEN >= 7
1997 #define clv sfv
1998 struct GENX(SF_CLIP_VIEWPORT) sfv;
1999 uint32_t sf_clip_vp_offset;
2000 uint32_t *sf_clip_map = brw_state_batch(brw, 16 * 4 * viewport_count,
2001 64, &sf_clip_vp_offset);
2002 #else
2003 struct GENX(SF_VIEWPORT) sfv;
2004 struct GENX(CLIP_VIEWPORT) clv;
2005 uint32_t *sf_map = brw_state_batch(brw, 8 * 4 * viewport_count,
2006 32, &brw->sf.vp_offset);
2007 uint32_t *clip_map = brw_state_batch(brw, 4 * 4 * viewport_count,
2008 32, &brw->clip.vp_offset);
2009 #endif
2010
2011 /* _NEW_BUFFERS */
2012 if (render_to_fbo) {
2013 y_scale = 1.0;
2014 y_bias = 0;
2015 } else {
2016 y_scale = -1.0;
2017 y_bias = (float)fb_height;
2018 }
2019
2020 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2021 /* _NEW_VIEWPORT: Guardband Clipping */
2022 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2023 _mesa_get_viewport_xform(ctx, i, scale, translate);
2024
2025 sfv.ViewportMatrixElementm00 = scale[0];
2026 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2027 sfv.ViewportMatrixElementm22 = scale[2],
2028 sfv.ViewportMatrixElementm30 = translate[0],
2029 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2030 sfv.ViewportMatrixElementm32 = translate[2],
2031 brw_calculate_guardband_size(devinfo, fb_width, fb_height,
2032 sfv.ViewportMatrixElementm00,
2033 sfv.ViewportMatrixElementm11,
2034 sfv.ViewportMatrixElementm30,
2035 sfv.ViewportMatrixElementm31,
2036 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2037
2038
2039 clv.XMinClipGuardband = gb_xmin;
2040 clv.XMaxClipGuardband = gb_xmax;
2041 clv.YMinClipGuardband = gb_ymin;
2042 clv.YMaxClipGuardband = gb_ymax;
2043
2044 #if GEN_GEN >= 8
2045 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2046 * The hardware will take the intersection of the drawing rectangle,
2047 * scissor rectangle, and the viewport extents. We don't need to be
2048 * smart, and can therefore just program the viewport extents.
2049 */
2050 const float viewport_Xmax =
2051 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2052 const float viewport_Ymax =
2053 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2054
2055 if (render_to_fbo) {
2056 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2057 sfv.XMaxViewPort = viewport_Xmax - 1;
2058 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2059 sfv.YMaxViewPort = viewport_Ymax - 1;
2060 } else {
2061 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2062 sfv.XMaxViewPort = viewport_Xmax - 1;
2063 sfv.YMinViewPort = fb_height - viewport_Ymax;
2064 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2065 }
2066 #endif
2067
2068 #if GEN_GEN >= 7
2069 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2070 sf_clip_map += 16;
2071 #else
2072 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2073 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2074 sf_map += 8;
2075 clip_map += 4;
2076 #endif
2077 }
2078
2079 #if GEN_GEN >= 7
2080 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2081 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2082 }
2083 #else
2084 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2085 #endif
2086 }
2087
2088 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2089 .dirty = {
2090 .mesa = _NEW_BUFFERS |
2091 _NEW_VIEWPORT,
2092 .brw = BRW_NEW_BATCH |
2093 BRW_NEW_BLORP |
2094 BRW_NEW_VIEWPORT_COUNT,
2095 },
2096 .emit = genX(upload_sf_clip_viewport),
2097 };
2098 #endif
2099
2100 /* ---------------------------------------------------------------------- */
2101
2102 #if GEN_GEN >= 6
2103 static void
2104 genX(upload_gs_state)(struct brw_context *brw)
2105 {
2106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2107 const struct brw_stage_state *stage_state = &brw->gs.base;
2108 /* BRW_NEW_GEOMETRY_PROGRAM */
2109 bool active = brw->geometry_program;
2110
2111 /* BRW_NEW_GS_PROG_DATA */
2112 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2113 const struct brw_vue_prog_data *vue_prog_data =
2114 brw_vue_prog_data(stage_prog_data);
2115 #if GEN_GEN >= 7
2116 const struct brw_gs_prog_data *gs_prog_data =
2117 brw_gs_prog_data(stage_prog_data);
2118 #endif
2119
2120 #if GEN_GEN < 7
2121 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2122 if (active && stage_state->push_const_size != 0) {
2123 cgs.Buffer0Valid = true;
2124 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2125 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2126 }
2127 }
2128 #endif
2129
2130 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2131 /**
2132 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2133 * Geometry > Geometry Shader > State:
2134 *
2135 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2136 * whole fixed function pipeline when the GS enable changes value in
2137 * the 3DSTATE_GS."
2138 *
2139 * The hardware architects have clarified that in this context "flush the
2140 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2141 * Stall" bit set.
2142 */
2143 if (brw->gt == 2 && brw->gs.enabled != active)
2144 gen7_emit_cs_stall_flush(brw);
2145 #endif
2146
2147 if (active) {
2148 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2149 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2150
2151 #if GEN_GEN >= 7
2152 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2153 gs.OutputTopology = gs_prog_data->output_topology;
2154 gs.ControlDataHeaderSize =
2155 gs_prog_data->control_data_header_size_hwords;
2156
2157 gs.InstanceControl = gs_prog_data->invocations - 1;
2158 gs.DispatchMode = vue_prog_data->dispatch_mode;
2159
2160 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2161
2162 gs.ControlDataFormat = gs_prog_data->control_data_format;
2163 #endif
2164
2165 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2166 * Ivy Bridge and Haswell.
2167 *
2168 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2169 * strip to be delivered to the geometry shader in an order that does
2170 * not strictly follow the OpenGL spec, but preserves triangle
2171 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2172 * the geometry shader sees triangles:
2173 *
2174 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2175 *
2176 * (Clearing the bit is even worse, because it fails to preserve
2177 * orientation).
2178 *
2179 * Triangle strips with adjacency always ordered in a way that preserves
2180 * triangle orientation but does not strictly follow the OpenGL spec,
2181 * regardless of the setting of this bit.
2182 *
2183 * On Haswell, both triangle strips and triangle strips with adjacency
2184 * are always ordered in a way that preserves triangle orientation.
2185 * Setting this bit causes the ordering to strictly follow the OpenGL
2186 * spec.
2187 *
2188 * So in either case we want to set the bit. Unfortunately on Ivy
2189 * Bridge this will get the order close to correct but not perfect.
2190 */
2191 gs.ReorderMode = TRAILING;
2192 gs.MaximumNumberofThreads =
2193 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2194 : (devinfo->max_gs_threads - 1);
2195
2196 #if GEN_GEN < 7
2197 gs.SOStatisticsEnable = true;
2198 gs.RenderingEnabled = 1;
2199 if (brw->geometry_program->info.has_transform_feedback_varyings)
2200 gs.SVBIPayloadEnable = true;
2201
2202 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2203 * was previously done for gen6.
2204 *
2205 * TODO: test with both disabled to see if the HW is behaving
2206 * as expected, like in gen7.
2207 */
2208 gs.SingleProgramFlow = true;
2209 gs.VectorMaskEnable = true;
2210 #endif
2211
2212 #if GEN_GEN >= 8
2213 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2214
2215 if (gs_prog_data->static_vertex_count != -1) {
2216 gs.StaticOutput = true;
2217 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2218 }
2219 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2220
2221 gs.UserClipDistanceCullTestEnableBitmask =
2222 vue_prog_data->cull_distance_mask;
2223
2224 const int urb_entry_write_offset = 1;
2225 const uint32_t urb_entry_output_length =
2226 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2227 urb_entry_write_offset;
2228
2229 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2230 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2231 #endif
2232 }
2233 #if GEN_GEN < 7
2234 } else if (brw->ff_gs.prog_active) {
2235 /* In gen6, transform feedback for the VS stage is done with an ad-hoc GS
2236 * program. This function provides the needed 3DSTATE_GS for this.
2237 */
2238 upload_gs_state_for_tf(brw);
2239 #endif
2240 } else {
2241 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2242 gs.StatisticsEnable = true;
2243 #if GEN_GEN < 7
2244 gs.RenderingEnabled = true;
2245 #endif
2246
2247 #if GEN_GEN < 8
2248 gs.DispatchGRFStartRegisterForURBData = 1;
2249 #if GEN_GEN >= 7
2250 gs.IncludeVertexHandles = true;
2251 #endif
2252 #endif
2253 }
2254 }
2255 #if GEN_GEN < 7
2256 brw->gs.enabled = active;
2257 #endif
2258 }
2259
2260 static const struct brw_tracked_state genX(gs_state) = {
2261 .dirty = {
2262 .mesa = (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
2263 .brw = BRW_NEW_BATCH |
2264 BRW_NEW_BLORP |
2265 BRW_NEW_CONTEXT |
2266 BRW_NEW_GEOMETRY_PROGRAM |
2267 BRW_NEW_GS_PROG_DATA |
2268 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2269 },
2270 .emit = genX(upload_gs_state),
2271 };
2272 #endif
2273
2274 /* ---------------------------------------------------------------------- */
2275
2276 #define blend_factor(x) brw_translate_blend_factor(x)
2277 #define blend_eqn(x) brw_translate_blend_equation(x)
2278
2279 #if GEN_GEN >= 6
2280 static void
2281 genX(upload_blend_state)(struct brw_context *brw)
2282 {
2283 struct gl_context *ctx = &brw->ctx;
2284 int size;
2285
2286 /* We need at least one BLEND_STATE written, because we might do
2287 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2288 * for computed depth or alpha test), which will do an FB write
2289 * with render target 0, which will reference BLEND_STATE[0] for
2290 * alpha test enable.
2291 */
2292 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2293 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2294 nr_draw_buffers = 1;
2295
2296 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2297 #if GEN_GEN >= 8
2298 size += GENX(BLEND_STATE_length) * 4;
2299 #endif
2300
2301 uint32_t *blend_map;
2302 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2303
2304 #if GEN_GEN >= 8
2305 struct GENX(BLEND_STATE) blend = { 0 };
2306 {
2307 #else
2308 for (int i = 0; i < nr_draw_buffers; i++) {
2309 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2310 #define blend entry
2311 #endif
2312 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2313 * "If drawbuffer zero is not NONE and the buffer it references has an
2314 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2315 * operations are skipped."
2316 */
2317 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2318 /* _NEW_MULTISAMPLE */
2319 if (_mesa_is_multisample_enabled(ctx)) {
2320 if (ctx->Multisample.SampleAlphaToCoverage) {
2321 blend.AlphaToCoverageEnable = true;
2322 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2323 }
2324 if (ctx->Multisample.SampleAlphaToOne)
2325 blend.AlphaToOneEnable = true;
2326 }
2327
2328 /* _NEW_COLOR */
2329 if (ctx->Color.AlphaEnabled) {
2330 blend.AlphaTestEnable = true;
2331 blend.AlphaTestFunction =
2332 intel_translate_compare_func(ctx->Color.AlphaFunc);
2333 }
2334
2335 if (ctx->Color.DitherFlag) {
2336 blend.ColorDitherEnable = true;
2337 }
2338 }
2339
2340 #if GEN_GEN >= 8
2341 for (int i = 0; i < nr_draw_buffers; i++) {
2342 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2343 #else
2344 {
2345 #endif
2346
2347 /* _NEW_BUFFERS */
2348 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2349
2350 /* Used for implementing the following bit of GL_EXT_texture_integer:
2351 * "Per-fragment operations that require floating-point color
2352 * components, including multisample alpha operations, alpha test,
2353 * blending, and dithering, have no effect when the corresponding
2354 * colors are written to an integer color buffer."
2355 */
2356 bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2357
2358 /* _NEW_COLOR */
2359 if (ctx->Color.ColorLogicOpEnabled) {
2360 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2361 : GL_UNSIGNED_NORMALIZED;
2362 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2363 rb_type != GL_UNSIGNED_NORMALIZED &&
2364 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2365 "renderbuffer\n",
2366 _mesa_enum_to_string(ctx->Color.LogicOp),
2367 _mesa_enum_to_string(rb_type));
2368 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2369 entry.LogicOpEnable = true;
2370 entry.LogicOpFunction =
2371 intel_translate_logic_op(ctx->Color.LogicOp);
2372 }
2373 } else if (ctx->Color.BlendEnabled & (1 << i) && !integer &&
2374 !ctx->Color._AdvancedBlendMode) {
2375 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2376 GLenum eqA = ctx->Color.Blend[i].EquationA;
2377 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2378 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2379 GLenum srcA = ctx->Color.Blend[i].SrcA;
2380 GLenum dstA = ctx->Color.Blend[i].DstA;
2381
2382 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2383 srcRGB = dstRGB = GL_ONE;
2384
2385 if (eqA == GL_MIN || eqA == GL_MAX)
2386 srcA = dstA = GL_ONE;
2387
2388 /* Due to hardware limitations, the destination may have information
2389 * in an alpha channel even when the format specifies no alpha
2390 * channel. In order to avoid getting any incorrect blending due to
2391 * that alpha channel, coerce the blend factors to values that will
2392 * not read the alpha channel, but will instead use the correct
2393 * implicit value for alpha.
2394 */
2395 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2396 GL_TEXTURE_ALPHA_TYPE)) {
2397 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2398 srcA = brw_fix_xRGB_alpha(srcA);
2399 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2400 dstA = brw_fix_xRGB_alpha(dstA);
2401 }
2402
2403 entry.ColorBufferBlendEnable = true;
2404 entry.DestinationBlendFactor = blend_factor(dstRGB);
2405 entry.SourceBlendFactor = blend_factor(srcRGB);
2406 entry.DestinationAlphaBlendFactor = blend_factor(dstA);
2407 entry.SourceAlphaBlendFactor = blend_factor(srcA);
2408 entry.ColorBlendFunction = blend_eqn(eqRGB);
2409 entry.AlphaBlendFunction = blend_eqn(eqA);
2410
2411 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2412 blend.IndependentAlphaBlendEnable = true;
2413 }
2414
2415 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2416 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2417 *
2418 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2419 * clamping in the fragment shader. For its clamping of
2420 * blending, the spec says:
2421 *
2422 * "RESOLVED: For fixed-point color buffers, the inputs and
2423 * the result of the blending equation are clamped. For
2424 * floating-point color buffers, no clamping occurs."
2425 *
2426 * So, generally, we want clamping to the render target's range.
2427 * And, good news, the hardware tables for both pre- and
2428 * post-blend color clamping are either ignored, or any are
2429 * allowed, or clamping is required but RT range clamping is a
2430 * valid option.
2431 */
2432 entry.PreBlendColorClampEnable = true;
2433 entry.PostBlendColorClampEnable = true;
2434 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2435
2436 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2437 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2438 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2439 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2440
2441 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2442 * "If Dual Source Blending is enabled, this bit must be disabled."
2443 */
2444 WARN_ONCE(ctx->Color.Blend[i]._UsesDualSrc &&
2445 _mesa_is_multisample_enabled(ctx) &&
2446 ctx->Multisample.SampleAlphaToOne,
2447 "HW workaround: disabling alpha to one with dual src "
2448 "blending\n");
2449 if (ctx->Color.Blend[i]._UsesDualSrc)
2450 blend.AlphaToOneEnable = false;
2451 #if GEN_GEN >= 8
2452 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2453 #else
2454 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2455 #endif
2456 }
2457 }
2458
2459 #if GEN_GEN >= 8
2460 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2461 #endif
2462
2463 #if GEN_GEN < 7
2464 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2465 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2466 ptr.BLEND_STATEChange = true;
2467 }
2468 #else
2469 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2470 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2471 #if GEN_GEN >= 8
2472 ptr.BlendStatePointerValid = true;
2473 #endif
2474 }
2475 #endif
2476 }
2477
2478 static const struct brw_tracked_state genX(blend_state) = {
2479 .dirty = {
2480 .mesa = _NEW_BUFFERS |
2481 _NEW_COLOR |
2482 _NEW_MULTISAMPLE,
2483 .brw = BRW_NEW_BATCH |
2484 BRW_NEW_BLORP |
2485 BRW_NEW_STATE_BASE_ADDRESS,
2486 },
2487 .emit = genX(upload_blend_state),
2488 };
2489 #endif
2490
2491 /* ---------------------------------------------------------------------- */
2492
2493 #if GEN_GEN >= 6
2494 static void
2495 genX(upload_scissor_state)(struct brw_context *brw)
2496 {
2497 struct gl_context *ctx = &brw->ctx;
2498 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2499 struct GENX(SCISSOR_RECT) scissor;
2500 uint32_t scissor_state_offset;
2501 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2502 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2503 uint32_t *scissor_map;
2504
2505 /* BRW_NEW_VIEWPORT_COUNT */
2506 const unsigned viewport_count = brw->clip.viewport_count;
2507
2508 scissor_map = brw_state_batch(
2509 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2510 32, &scissor_state_offset);
2511
2512 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2513
2514 /* The scissor only needs to handle the intersection of drawable and
2515 * scissor rect. Clipping to the boundaries of static shared buffers
2516 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2517 *
2518 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2519 * inclusive but max is exclusive.
2520 */
2521 for (unsigned i = 0; i < viewport_count; i++) {
2522 int bbox[4];
2523
2524 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2525 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2526 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2527 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2528 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2529
2530 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2531 /* If the scissor was out of bounds and got clamped to 0 width/height
2532 * at the bounds, the subtraction of 1 from maximums could produce a
2533 * negative number and thus not clip anything. Instead, just provide
2534 * a min > max scissor inside the bounds, which produces the expected
2535 * no rendering.
2536 */
2537 scissor.ScissorRectangleXMin = 1;
2538 scissor.ScissorRectangleXMax = 0;
2539 scissor.ScissorRectangleYMin = 1;
2540 scissor.ScissorRectangleYMax = 0;
2541 } else if (render_to_fbo) {
2542 /* texmemory: Y=0=bottom */
2543 scissor.ScissorRectangleXMin = bbox[0];
2544 scissor.ScissorRectangleXMax = bbox[1] - 1;
2545 scissor.ScissorRectangleYMin = bbox[2];
2546 scissor.ScissorRectangleYMax = bbox[3] - 1;
2547 } else {
2548 /* memory: Y=0=top */
2549 scissor.ScissorRectangleXMin = bbox[0];
2550 scissor.ScissorRectangleXMax = bbox[1] - 1;
2551 scissor.ScissorRectangleYMin = fb_height - bbox[3];
2552 scissor.ScissorRectangleYMax = fb_height - bbox[2] - 1;
2553 }
2554
2555 GENX(SCISSOR_RECT_pack)(
2556 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2557 }
2558
2559 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2560 ptr.ScissorRectPointer = scissor_state_offset;
2561 }
2562 }
2563
2564 static const struct brw_tracked_state genX(scissor_state) = {
2565 .dirty = {
2566 .mesa = _NEW_BUFFERS |
2567 _NEW_SCISSOR |
2568 _NEW_VIEWPORT,
2569 .brw = BRW_NEW_BATCH |
2570 BRW_NEW_BLORP |
2571 BRW_NEW_VIEWPORT_COUNT,
2572 },
2573 .emit = genX(upload_scissor_state),
2574 };
2575 #endif
2576
2577 /* ---------------------------------------------------------------------- */
2578
2579 #if GEN_GEN >= 7
2580 UNUSED static const uint32_t push_constant_opcodes[] = {
2581 [MESA_SHADER_VERTEX] = 21,
2582 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2583 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2584 [MESA_SHADER_GEOMETRY] = 22,
2585 [MESA_SHADER_FRAGMENT] = 23,
2586 [MESA_SHADER_COMPUTE] = 0,
2587 };
2588
2589 static void
2590 upload_constant_state(struct brw_context *brw,
2591 struct brw_stage_state *stage_state,
2592 bool active, uint32_t stage)
2593 {
2594 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
2595 active = active && stage_state->push_const_size != 0;
2596
2597 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
2598 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2599 if (active) {
2600 #if GEN_GEN >= 9
2601 pkt.ConstantBody.ConstantBuffer2ReadLength =
2602 stage_state->push_const_size;
2603 pkt.ConstantBody.PointerToConstantBuffer2 =
2604 render_ro_bo(brw->curbe.curbe_bo, stage_state->push_const_offset);
2605 #else
2606 pkt.ConstantBody.ConstantBuffer0ReadLength =
2607 stage_state->push_const_size;
2608 pkt.ConstantBody.PointerToConstantBuffer0.offset =
2609 stage_state->push_const_offset | mocs;
2610 #endif
2611 }
2612 }
2613
2614 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
2615 }
2616 #endif
2617
2618 #if GEN_GEN >= 6
2619 static void
2620 genX(upload_vs_push_constants)(struct brw_context *brw)
2621 {
2622 struct brw_stage_state *stage_state = &brw->vs.base;
2623
2624 /* _BRW_NEW_VERTEX_PROGRAM */
2625 const struct brw_program *vp = brw_program_const(brw->vertex_program);
2626 /* BRW_NEW_VS_PROG_DATA */
2627 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
2628
2629 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
2630 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
2631
2632 #if GEN_GEN >= 7
2633 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail)
2634 gen7_emit_vs_workaround_flush(brw);
2635
2636 upload_constant_state(brw, stage_state, true /* active */,
2637 MESA_SHADER_VERTEX);
2638 #endif
2639 }
2640
2641 static const struct brw_tracked_state genX(vs_push_constants) = {
2642 .dirty = {
2643 .mesa = _NEW_PROGRAM_CONSTANTS |
2644 _NEW_TRANSFORM,
2645 .brw = BRW_NEW_BATCH |
2646 BRW_NEW_BLORP |
2647 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2648 BRW_NEW_VERTEX_PROGRAM |
2649 BRW_NEW_VS_PROG_DATA,
2650 },
2651 .emit = genX(upload_vs_push_constants),
2652 };
2653
2654 static void
2655 genX(upload_gs_push_constants)(struct brw_context *brw)
2656 {
2657 struct brw_stage_state *stage_state = &brw->gs.base;
2658
2659 /* BRW_NEW_GEOMETRY_PROGRAM */
2660 const struct brw_program *gp = brw_program_const(brw->geometry_program);
2661
2662 if (gp) {
2663 /* BRW_NEW_GS_PROG_DATA */
2664 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
2665
2666 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
2667 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
2668 }
2669
2670 #if GEN_GEN >= 7
2671 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY);
2672 #endif
2673 }
2674
2675 static const struct brw_tracked_state genX(gs_push_constants) = {
2676 .dirty = {
2677 .mesa = _NEW_PROGRAM_CONSTANTS |
2678 _NEW_TRANSFORM,
2679 .brw = BRW_NEW_BATCH |
2680 BRW_NEW_BLORP |
2681 BRW_NEW_GEOMETRY_PROGRAM |
2682 BRW_NEW_GS_PROG_DATA |
2683 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2684 },
2685 .emit = genX(upload_gs_push_constants),
2686 };
2687
2688 static void
2689 genX(upload_wm_push_constants)(struct brw_context *brw)
2690 {
2691 struct brw_stage_state *stage_state = &brw->wm.base;
2692 /* BRW_NEW_FRAGMENT_PROGRAM */
2693 const struct brw_program *fp = brw_program_const(brw->fragment_program);
2694 /* BRW_NEW_FS_PROG_DATA */
2695 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
2696
2697 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
2698
2699 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
2700
2701 #if GEN_GEN >= 7
2702 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT);
2703 #endif
2704 }
2705
2706 static const struct brw_tracked_state genX(wm_push_constants) = {
2707 .dirty = {
2708 .mesa = _NEW_PROGRAM_CONSTANTS,
2709 .brw = BRW_NEW_BATCH |
2710 BRW_NEW_BLORP |
2711 BRW_NEW_FRAGMENT_PROGRAM |
2712 BRW_NEW_FS_PROG_DATA |
2713 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2714 },
2715 .emit = genX(upload_wm_push_constants),
2716 };
2717 #endif
2718
2719 /* ---------------------------------------------------------------------- */
2720
2721 #if GEN_GEN >= 6
2722 static unsigned
2723 genX(determine_sample_mask)(struct brw_context *brw)
2724 {
2725 struct gl_context *ctx = &brw->ctx;
2726 float coverage = 1.0f;
2727 float coverage_invert = false;
2728 unsigned sample_mask = ~0u;
2729
2730 /* BRW_NEW_NUM_SAMPLES */
2731 unsigned num_samples = brw->num_samples;
2732
2733 if (_mesa_is_multisample_enabled(ctx)) {
2734 if (ctx->Multisample.SampleCoverage) {
2735 coverage = ctx->Multisample.SampleCoverageValue;
2736 coverage_invert = ctx->Multisample.SampleCoverageInvert;
2737 }
2738 if (ctx->Multisample.SampleMask) {
2739 sample_mask = ctx->Multisample.SampleMaskValue;
2740 }
2741 }
2742
2743 if (num_samples > 1) {
2744 int coverage_int = (int) (num_samples * coverage + 0.5f);
2745 uint32_t coverage_bits = (1 << coverage_int) - 1;
2746 if (coverage_invert)
2747 coverage_bits ^= (1 << num_samples) - 1;
2748 return coverage_bits & sample_mask;
2749 } else {
2750 return 1;
2751 }
2752 }
2753
2754 static void
2755 genX(emit_3dstate_multisample2)(struct brw_context *brw,
2756 unsigned num_samples)
2757 {
2758 assert(brw->num_samples <= 16);
2759
2760 unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1;
2761
2762 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
2763 multi.PixelLocation = CENTER;
2764 multi.NumberofMultisamples = log2_samples;
2765 #if GEN_GEN == 6
2766 GEN_SAMPLE_POS_4X(multi.Sample);
2767 #elif GEN_GEN == 7
2768 switch (num_samples) {
2769 case 1:
2770 GEN_SAMPLE_POS_1X(multi.Sample);
2771 break;
2772 case 2:
2773 GEN_SAMPLE_POS_2X(multi.Sample);
2774 break;
2775 case 4:
2776 GEN_SAMPLE_POS_4X(multi.Sample);
2777 break;
2778 case 8:
2779 GEN_SAMPLE_POS_8X(multi.Sample);
2780 break;
2781 default:
2782 break;
2783 }
2784 #endif
2785 }
2786 }
2787
2788 static void
2789 genX(upload_multisample_state)(struct brw_context *brw)
2790 {
2791 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
2792
2793 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
2794 sm.SampleMask = genX(determine_sample_mask)(brw);
2795 }
2796 }
2797
2798 static const struct brw_tracked_state genX(multisample_state) = {
2799 .dirty = {
2800 .mesa = _NEW_MULTISAMPLE,
2801 .brw = BRW_NEW_BLORP |
2802 BRW_NEW_CONTEXT |
2803 BRW_NEW_NUM_SAMPLES,
2804 },
2805 .emit = genX(upload_multisample_state)
2806 };
2807 #endif
2808
2809 /* ---------------------------------------------------------------------- */
2810
2811 #if GEN_GEN >= 6
2812 static void
2813 genX(upload_color_calc_state)(struct brw_context *brw)
2814 {
2815 struct gl_context *ctx = &brw->ctx;
2816
2817 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
2818 /* _NEW_COLOR */
2819 cc.AlphaTestFormat = ALPHATEST_UNORM8;
2820 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
2821 ctx->Color.AlphaRef);
2822
2823 #if GEN_GEN < 9
2824 /* _NEW_STENCIL */
2825 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
2826 cc.BackfaceStencilReferenceValue =
2827 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
2828 #endif
2829
2830 /* _NEW_COLOR */
2831 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
2832 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
2833 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
2834 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
2835 }
2836
2837 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2838 ptr.ColorCalcStatePointer = brw->cc.state_offset;
2839 #if GEN_GEN != 7
2840 ptr.ColorCalcStatePointerValid = true;
2841 #endif
2842 }
2843 }
2844
2845 static const struct brw_tracked_state genX(color_calc_state) = {
2846 .dirty = {
2847 .mesa = _NEW_COLOR |
2848 _NEW_STENCIL,
2849 .brw = BRW_NEW_BATCH |
2850 BRW_NEW_BLORP |
2851 BRW_NEW_CC_STATE |
2852 BRW_NEW_STATE_BASE_ADDRESS,
2853 },
2854 .emit = genX(upload_color_calc_state),
2855 };
2856
2857 #endif
2858
2859 /* ---------------------------------------------------------------------- */
2860
2861 #if GEN_GEN >= 7
2862 static void
2863 genX(upload_sbe)(struct brw_context *brw)
2864 {
2865 struct gl_context *ctx = &brw->ctx;
2866 /* BRW_NEW_FS_PROG_DATA */
2867 const struct brw_wm_prog_data *wm_prog_data =
2868 brw_wm_prog_data(brw->wm.base.prog_data);
2869 #if GEN_GEN >= 8
2870 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
2871 #else
2872 #define attr_overrides sbe.Attribute
2873 #endif
2874 uint32_t urb_entry_read_length;
2875 uint32_t urb_entry_read_offset;
2876 uint32_t point_sprite_enables;
2877
2878 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
2879 sbe.AttributeSwizzleEnable = true;
2880 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2881
2882 /* _NEW_BUFFERS */
2883 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2884
2885 /* _NEW_POINT
2886 *
2887 * Window coordinates in an FBO are inverted, which means point
2888 * sprite origin must be inverted.
2889 */
2890 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
2891 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
2892 else
2893 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
2894
2895 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
2896 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
2897 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
2898 * BRW_NEW_VUE_MAP_GEOM_OUT
2899 */
2900 genX(calculate_attr_overrides)(brw,
2901 attr_overrides,
2902 &point_sprite_enables,
2903 &urb_entry_read_length,
2904 &urb_entry_read_offset);
2905
2906 /* Typically, the URB entry read length and offset should be programmed
2907 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
2908 * stage which produces geometry. However, we don't know the proper
2909 * value until we call calculate_attr_overrides().
2910 *
2911 * To fit with our existing code, we override the inherited values and
2912 * specify it here directly, as we did on previous generations.
2913 */
2914 sbe.VertexURBEntryReadLength = urb_entry_read_length;
2915 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
2916 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
2917 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2918
2919 #if GEN_GEN >= 8
2920 sbe.ForceVertexURBEntryReadLength = true;
2921 sbe.ForceVertexURBEntryReadOffset = true;
2922 #endif
2923
2924 #if GEN_GEN >= 9
2925 /* prepare the active component dwords */
2926 int input_index = 0;
2927 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
2928 if (!(brw->fragment_program->info.inputs_read &
2929 BITFIELD64_BIT(attr))) {
2930 continue;
2931 }
2932
2933 assert(input_index < 32);
2934
2935 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
2936 ++input_index;
2937 }
2938 #endif
2939 }
2940
2941 #if GEN_GEN >= 8
2942 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
2943 for (int i = 0; i < 16; i++)
2944 sbes.Attribute[i] = attr_overrides[i];
2945 }
2946 #endif
2947
2948 #undef attr_overrides
2949 }
2950
2951 static const struct brw_tracked_state genX(sbe_state) = {
2952 .dirty = {
2953 .mesa = _NEW_BUFFERS |
2954 _NEW_LIGHT |
2955 _NEW_POINT |
2956 _NEW_POLYGON |
2957 _NEW_PROGRAM,
2958 .brw = BRW_NEW_BLORP |
2959 BRW_NEW_CONTEXT |
2960 BRW_NEW_FRAGMENT_PROGRAM |
2961 BRW_NEW_FS_PROG_DATA |
2962 BRW_NEW_GS_PROG_DATA |
2963 BRW_NEW_TES_PROG_DATA |
2964 BRW_NEW_VUE_MAP_GEOM_OUT |
2965 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
2966 : 0),
2967 },
2968 .emit = genX(upload_sbe),
2969 };
2970 #endif
2971
2972 /* ---------------------------------------------------------------------- */
2973
2974 #if GEN_GEN >= 7
2975 /**
2976 * Outputs the 3DSTATE_SO_DECL_LIST command.
2977 *
2978 * The data output is a series of 64-bit entries containing a SO_DECL per
2979 * stream. We only have one stream of rendering coming out of the GS unit, so
2980 * we only emit stream 0 (low 16 bits) SO_DECLs.
2981 */
2982 static void
2983 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
2984 const struct brw_vue_map *vue_map)
2985 {
2986 struct gl_context *ctx = &brw->ctx;
2987 /* BRW_NEW_TRANSFORM_FEEDBACK */
2988 struct gl_transform_feedback_object *xfb_obj =
2989 ctx->TransformFeedback.CurrentObject;
2990 const struct gl_transform_feedback_info *linked_xfb_info =
2991 xfb_obj->program->sh.LinkedTransformFeedback;
2992 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2993 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2994 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2995 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2996 int max_decls = 0;
2997 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2998
2999 memset(so_decl, 0, sizeof(so_decl));
3000
3001 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3002 * command feels strange -- each dword pair contains a SO_DECL per stream.
3003 */
3004 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3005 int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
3006 struct GENX(SO_DECL) decl = {0};
3007 int varying = linked_xfb_info->Outputs[i].OutputRegister;
3008 const unsigned components = linked_xfb_info->Outputs[i].NumComponents;
3009 unsigned component_mask = (1 << components) - 1;
3010 unsigned stream_id = linked_xfb_info->Outputs[i].StreamId;
3011 unsigned decl_buffer_slot = buffer;
3012 assert(stream_id < MAX_VERTEX_STREAMS);
3013
3014 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w
3015 * gl_Layer is stored in VARYING_SLOT_PSIZ.y
3016 * gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
3017 */
3018 if (varying == VARYING_SLOT_PSIZ) {
3019 assert(components == 1);
3020 component_mask <<= 3;
3021 } else if (varying == VARYING_SLOT_LAYER) {
3022 assert(components == 1);
3023 component_mask <<= 1;
3024 } else if (varying == VARYING_SLOT_VIEWPORT) {
3025 assert(components == 1);
3026 component_mask <<= 2;
3027 } else {
3028 component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
3029 }
3030
3031 buffer_mask[stream_id] |= 1 << buffer;
3032
3033 decl.OutputBufferSlot = decl_buffer_slot;
3034 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT) {
3035 decl.RegisterIndex = vue_map->varying_to_slot[VARYING_SLOT_PSIZ];
3036 } else {
3037 assert(vue_map->varying_to_slot[varying] >= 0);
3038 decl.RegisterIndex = vue_map->varying_to_slot[varying];
3039 }
3040 decl.ComponentMask = component_mask;
3041
3042 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3043 * array. Instead, it simply increments DstOffset for the following
3044 * input by the number of components that should be skipped.
3045 *
3046 * Our hardware is unusual in that it requires us to program SO_DECLs
3047 * for fake "hole" components, rather than simply taking the offset
3048 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3049 * program as many size = 4 holes as we can, then a final hole to
3050 * accommodate the final 1, 2, or 3 remaining.
3051 */
3052 int skip_components =
3053 linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer];
3054
3055 next_offset[buffer] += skip_components;
3056
3057 while (skip_components >= 4) {
3058 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
3059 d->HoleFlag = 1;
3060 d->OutputBufferSlot = decl_buffer_slot;
3061 d->ComponentMask = 0xf;
3062 skip_components -= 4;
3063 }
3064
3065 if (skip_components > 0) {
3066 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
3067 d->HoleFlag = 1;
3068 d->OutputBufferSlot = decl_buffer_slot;
3069 d->ComponentMask = (1 << skip_components) - 1;
3070 }
3071
3072 assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
3073
3074 next_offset[buffer] += components;
3075
3076 so_decl[stream_id][decls[stream_id]++] = decl;
3077
3078 if (decls[stream_id] > max_decls)
3079 max_decls = decls[stream_id];
3080 }
3081
3082 uint32_t *dw;
3083 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3084 .StreamtoBufferSelects0 = buffer_mask[0],
3085 .StreamtoBufferSelects1 = buffer_mask[1],
3086 .StreamtoBufferSelects2 = buffer_mask[2],
3087 .StreamtoBufferSelects3 = buffer_mask[3],
3088 .NumEntries0 = decls[0],
3089 .NumEntries1 = decls[1],
3090 .NumEntries2 = decls[2],
3091 .NumEntries3 = decls[3]);
3092
3093 for (int i = 0; i < max_decls; i++) {
3094 GENX(SO_DECL_ENTRY_pack)(
3095 brw, dw + 2 + i * 2,
3096 &(struct GENX(SO_DECL_ENTRY)) {
3097 .Stream0Decl = so_decl[0][i],
3098 .Stream1Decl = so_decl[1][i],
3099 .Stream2Decl = so_decl[2][i],
3100 .Stream3Decl = so_decl[3][i],
3101 });
3102 }
3103 }
3104
3105 static void
3106 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3107 {
3108 struct gl_context *ctx = &brw->ctx;
3109 /* BRW_NEW_TRANSFORM_FEEDBACK */
3110 struct gl_transform_feedback_object *xfb_obj =
3111 ctx->TransformFeedback.CurrentObject;
3112 #if GEN_GEN < 8
3113 const struct gl_transform_feedback_info *linked_xfb_info =
3114 xfb_obj->program->sh.LinkedTransformFeedback;
3115 #else
3116 struct brw_transform_feedback_object *brw_obj =
3117 (struct brw_transform_feedback_object *) xfb_obj;
3118 uint32_t mocs_wb = brw->gen >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3119 #endif
3120
3121 /* Set up the up to 4 output buffers. These are the ranges defined in the
3122 * gl_transform_feedback_object.
3123 */
3124 for (int i = 0; i < 4; i++) {
3125 struct intel_buffer_object *bufferobj =
3126 intel_buffer_object(xfb_obj->Buffers[i]);
3127
3128 if (!bufferobj) {
3129 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3130 sob.SOBufferIndex = i;
3131 }
3132 continue;
3133 }
3134
3135 uint32_t start = xfb_obj->Offset[i];
3136 assert(start % 4 == 0);
3137 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3138 struct brw_bo *bo =
3139 intel_bufferobj_buffer(brw, bufferobj, start, end - start);
3140 assert(end <= bo->size);
3141
3142 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3143 sob.SOBufferIndex = i;
3144
3145 sob.SurfaceBaseAddress = render_bo(bo, start);
3146 #if GEN_GEN < 8
3147 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3148 sob.SurfaceEndAddress = render_bo(bo, end);
3149 #else
3150 sob.SOBufferEnable = true;
3151 sob.StreamOffsetWriteEnable = true;
3152 sob.StreamOutputBufferOffsetAddressEnable = true;
3153 sob.SOBufferMOCS = mocs_wb;
3154
3155 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3156 sob.StreamOutputBufferOffsetAddress =
3157 instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3158
3159 if (brw_obj->zero_offsets) {
3160 /* Zero out the offset and write that to offset_bo */
3161 sob.StreamOffset = 0;
3162 } else {
3163 /* Use offset_bo as the "Stream Offset." */
3164 sob.StreamOffset = 0xFFFFFFFF;
3165 }
3166 #endif
3167 }
3168 }
3169
3170 #if GEN_GEN >= 8
3171 brw_obj->zero_offsets = false;
3172 #endif
3173 }
3174
3175 static inline bool
3176 query_active(struct gl_query_object *q)
3177 {
3178 return q && q->Active;
3179 }
3180
3181 static void
3182 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3183 const struct brw_vue_map *vue_map)
3184 {
3185 struct gl_context *ctx = &brw->ctx;
3186 /* BRW_NEW_TRANSFORM_FEEDBACK */
3187 struct gl_transform_feedback_object *xfb_obj =
3188 ctx->TransformFeedback.CurrentObject;
3189
3190 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3191 if (active) {
3192 int urb_entry_read_offset = 0;
3193 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3194 urb_entry_read_offset;
3195
3196 sos.SOFunctionEnable = true;
3197 sos.SOStatisticsEnable = true;
3198
3199 /* BRW_NEW_RASTERIZER_DISCARD */
3200 if (ctx->RasterDiscard) {
3201 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3202 sos.RenderingDisable = true;
3203 } else {
3204 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3205 "query active relies on the clipper.");
3206 }
3207 }
3208
3209 /* _NEW_LIGHT */
3210 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3211 sos.ReorderMode = TRAILING;
3212
3213 #if GEN_GEN < 8
3214 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3215 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3216 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3217 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3218 #else
3219 const struct gl_transform_feedback_info *linked_xfb_info =
3220 xfb_obj->program->sh.LinkedTransformFeedback;
3221 /* Set buffer pitches; 0 means unbound. */
3222 if (xfb_obj->Buffers[0])
3223 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3224 if (xfb_obj->Buffers[1])
3225 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3226 if (xfb_obj->Buffers[2])
3227 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3228 if (xfb_obj->Buffers[3])
3229 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3230 #endif
3231
3232 /* We always read the whole vertex. This could be reduced at some
3233 * point by reading less and offsetting the register index in the
3234 * SO_DECLs.
3235 */
3236 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3237 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3238 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3239 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3240 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3241 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3242 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3243 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3244 }
3245 }
3246 }
3247
3248 static void
3249 genX(upload_sol)(struct brw_context *brw)
3250 {
3251 struct gl_context *ctx = &brw->ctx;
3252 /* BRW_NEW_TRANSFORM_FEEDBACK */
3253 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3254
3255 if (active) {
3256 genX(upload_3dstate_so_buffers)(brw);
3257
3258 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3259 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3260 }
3261
3262 /* Finally, set up the SOL stage. This command must always follow updates to
3263 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3264 * MMIO register updates (current performed by the kernel at each batch
3265 * emit).
3266 */
3267 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3268 }
3269
3270 static const struct brw_tracked_state genX(sol_state) = {
3271 .dirty = {
3272 .mesa = _NEW_LIGHT,
3273 .brw = BRW_NEW_BATCH |
3274 BRW_NEW_BLORP |
3275 BRW_NEW_RASTERIZER_DISCARD |
3276 BRW_NEW_VUE_MAP_GEOM_OUT |
3277 BRW_NEW_TRANSFORM_FEEDBACK,
3278 },
3279 .emit = genX(upload_sol),
3280 };
3281 #endif
3282
3283 /* ---------------------------------------------------------------------- */
3284
3285 #if GEN_GEN >= 7
3286 static void
3287 genX(upload_ps)(struct brw_context *brw)
3288 {
3289 UNUSED const struct gl_context *ctx = &brw->ctx;
3290 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3291
3292 /* BRW_NEW_FS_PROG_DATA */
3293 const struct brw_wm_prog_data *prog_data =
3294 brw_wm_prog_data(brw->wm.base.prog_data);
3295 const struct brw_stage_state *stage_state = &brw->wm.base;
3296
3297 #if GEN_GEN < 8
3298 #endif
3299
3300 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3301 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3302 * incorrect for subspans where some of the pixels are unlit. We believe
3303 * the bit just didn't take effect in previous generations.
3304 */
3305 ps.VectorMaskEnable = GEN_GEN >= 8;
3306
3307 ps.SamplerCount =
3308 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3309
3310 /* BRW_NEW_FS_PROG_DATA */
3311 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3312
3313 if (prog_data->base.use_alt_mode)
3314 ps.FloatingPointMode = Alternate;
3315
3316 /* Haswell requires the sample mask to be set in this packet as well as
3317 * in 3DSTATE_SAMPLE_MASK; the values should match.
3318 */
3319
3320 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3321 #if GEN_IS_HASWELL
3322 ps.SampleMask = genX(determine_sample_mask(brw));
3323 #endif
3324
3325 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3326 * it implicitly scales for different GT levels (which have some # of
3327 * PSDs).
3328 *
3329 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3330 */
3331 #if GEN_GEN >= 9
3332 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3333 #elif GEN_GEN >= 8
3334 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3335 #else
3336 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3337 #endif
3338
3339 if (prog_data->base.nr_params > 0)
3340 ps.PushConstantEnable = true;
3341
3342 #if GEN_GEN < 8
3343 /* From the IVB PRM, volume 2 part 1, page 287:
3344 * "This bit is inserted in the PS payload header and made available to
3345 * the DataPort (either via the message header or via header bypass) to
3346 * indicate that oMask data (one or two phases) is included in Render
3347 * Target Write messages. If present, the oMask data is used to mask off
3348 * samples."
3349 */
3350 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3351
3352 /* The hardware wedges if you have this bit set but don't turn on any
3353 * dual source blend factors.
3354 *
3355 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3356 */
3357 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3358 (ctx->Color.BlendEnabled & 1) &&
3359 ctx->Color.Blend[0]._UsesDualSrc;
3360
3361 /* BRW_NEW_FS_PROG_DATA */
3362 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3363 #endif
3364
3365 /* From the documentation for this packet:
3366 * "If the PS kernel does not need the Position XY Offsets to
3367 * compute a Position Value, then this field should be programmed
3368 * to POSOFFSET_NONE."
3369 *
3370 * "SW Recommendation: If the PS kernel needs the Position Offsets
3371 * to compute a Position XY value, this field should match Position
3372 * ZW Interpolation Mode to ensure a consistent position.xyzw
3373 * computation."
3374 *
3375 * We only require XY sample offsets. So, this recommendation doesn't
3376 * look useful at the moment. We might need this in future.
3377 */
3378 if (prog_data->uses_pos_offset)
3379 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3380 else
3381 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3382
3383 ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op;
3384 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3385 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3386 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3387 prog_data->base.dispatch_grf_start_reg;
3388 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3389 prog_data->dispatch_grf_start_reg_2;
3390
3391 ps.KernelStartPointer0 = stage_state->prog_offset;
3392 ps.KernelStartPointer2 = stage_state->prog_offset +
3393 prog_data->prog_offset_2;
3394
3395 if (prog_data->base.total_scratch) {
3396 ps.ScratchSpaceBasePointer =
3397 render_bo(stage_state->scratch_bo,
3398 ffs(stage_state->per_thread_scratch) - 11);
3399 }
3400 }
3401 }
3402
3403 static const struct brw_tracked_state genX(ps_state) = {
3404 .dirty = {
3405 .mesa = _NEW_MULTISAMPLE |
3406 (GEN_GEN < 8 ? _NEW_BUFFERS |
3407 _NEW_COLOR
3408 : 0),
3409 .brw = BRW_NEW_BATCH |
3410 BRW_NEW_BLORP |
3411 BRW_NEW_FS_PROG_DATA,
3412 },
3413 .emit = genX(upload_ps),
3414 };
3415 #endif
3416
3417 /* ---------------------------------------------------------------------- */
3418
3419 #if GEN_GEN >= 7
3420 static void
3421 genX(upload_hs_state)(struct brw_context *brw)
3422 {
3423 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3424 struct brw_stage_state *stage_state = &brw->tcs.base;
3425 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3426 const struct brw_vue_prog_data *vue_prog_data =
3427 brw_vue_prog_data(stage_prog_data);
3428
3429 /* BRW_NEW_TES_PROG_DATA */
3430 struct brw_tcs_prog_data *tcs_prog_data =
3431 brw_tcs_prog_data(stage_prog_data);
3432
3433 if (!tcs_prog_data) {
3434 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3435 } else {
3436 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3437 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3438
3439 hs.InstanceCount = tcs_prog_data->instances - 1;
3440 hs.IncludeVertexHandles = true;
3441
3442 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3443 }
3444 }
3445 }
3446
3447 static const struct brw_tracked_state genX(hs_state) = {
3448 .dirty = {
3449 .mesa = 0,
3450 .brw = BRW_NEW_BATCH |
3451 BRW_NEW_BLORP |
3452 BRW_NEW_TCS_PROG_DATA |
3453 BRW_NEW_TESS_PROGRAMS,
3454 },
3455 .emit = genX(upload_hs_state),
3456 };
3457
3458 static void
3459 genX(upload_ds_state)(struct brw_context *brw)
3460 {
3461 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3462 const struct brw_stage_state *stage_state = &brw->tes.base;
3463 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3464
3465 /* BRW_NEW_TES_PROG_DATA */
3466 const struct brw_tes_prog_data *tes_prog_data =
3467 brw_tes_prog_data(stage_prog_data);
3468 const struct brw_vue_prog_data *vue_prog_data =
3469 brw_vue_prog_data(stage_prog_data);
3470
3471 if (!tes_prog_data) {
3472 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3473 } else {
3474 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3475 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3476
3477 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3478 ds.ComputeWCoordinateEnable =
3479 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3480
3481 #if GEN_GEN >= 8
3482 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3483 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3484 ds.UserClipDistanceCullTestEnableBitmask =
3485 vue_prog_data->cull_distance_mask;
3486 #endif
3487 }
3488 }
3489 }
3490
3491 static const struct brw_tracked_state genX(ds_state) = {
3492 .dirty = {
3493 .mesa = 0,
3494 .brw = BRW_NEW_BATCH |
3495 BRW_NEW_BLORP |
3496 BRW_NEW_TESS_PROGRAMS |
3497 BRW_NEW_TES_PROG_DATA,
3498 },
3499 .emit = genX(upload_ds_state),
3500 };
3501
3502 /* ---------------------------------------------------------------------- */
3503
3504 static void
3505 upload_te_state(struct brw_context *brw)
3506 {
3507 /* BRW_NEW_TESS_PROGRAMS */
3508 bool active = brw->tess_eval_program;
3509
3510 /* BRW_NEW_TES_PROG_DATA */
3511 const struct brw_tes_prog_data *tes_prog_data =
3512 brw_tes_prog_data(brw->tes.base.prog_data);
3513
3514 if (active) {
3515 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3516 te.Partitioning = tes_prog_data->partitioning;
3517 te.OutputTopology = tes_prog_data->output_topology;
3518 te.TEDomain = tes_prog_data->domain;
3519 te.TEEnable = true;
3520 te.MaximumTessellationFactorOdd = 63.0;
3521 te.MaximumTessellationFactorNotOdd = 64.0;
3522 }
3523 } else {
3524 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
3525 }
3526 }
3527
3528 static const struct brw_tracked_state genX(te_state) = {
3529 .dirty = {
3530 .mesa = 0,
3531 .brw = BRW_NEW_BLORP |
3532 BRW_NEW_CONTEXT |
3533 BRW_NEW_TES_PROG_DATA |
3534 BRW_NEW_TESS_PROGRAMS,
3535 },
3536 .emit = upload_te_state,
3537 };
3538
3539 /* ---------------------------------------------------------------------- */
3540
3541 static void
3542 genX(upload_tes_push_constants)(struct brw_context *brw)
3543 {
3544 struct brw_stage_state *stage_state = &brw->tes.base;
3545 /* BRW_NEW_TESS_PROGRAMS */
3546 const struct brw_program *tep = brw_program_const(brw->tess_eval_program);
3547
3548 if (tep) {
3549 /* BRW_NEW_TES_PROG_DATA */
3550 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
3551 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
3552 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
3553 }
3554
3555 upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL);
3556 }
3557
3558 static const struct brw_tracked_state genX(tes_push_constants) = {
3559 .dirty = {
3560 .mesa = _NEW_PROGRAM_CONSTANTS,
3561 .brw = BRW_NEW_BATCH |
3562 BRW_NEW_BLORP |
3563 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3564 BRW_NEW_TESS_PROGRAMS |
3565 BRW_NEW_TES_PROG_DATA,
3566 },
3567 .emit = genX(upload_tes_push_constants),
3568 };
3569
3570 static void
3571 genX(upload_tcs_push_constants)(struct brw_context *brw)
3572 {
3573 struct brw_stage_state *stage_state = &brw->tcs.base;
3574 /* BRW_NEW_TESS_PROGRAMS */
3575 const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program);
3576 bool active = brw->tess_eval_program;
3577
3578 if (active) {
3579 /* BRW_NEW_TCS_PROG_DATA */
3580 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
3581
3582 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
3583 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
3584 }
3585
3586 upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL);
3587 }
3588
3589 static const struct brw_tracked_state genX(tcs_push_constants) = {
3590 .dirty = {
3591 .mesa = _NEW_PROGRAM_CONSTANTS,
3592 .brw = BRW_NEW_BATCH |
3593 BRW_NEW_BLORP |
3594 BRW_NEW_DEFAULT_TESS_LEVELS |
3595 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3596 BRW_NEW_TESS_PROGRAMS |
3597 BRW_NEW_TCS_PROG_DATA,
3598 },
3599 .emit = genX(upload_tcs_push_constants),
3600 };
3601
3602 #endif
3603
3604 /* ---------------------------------------------------------------------- */
3605
3606 #if GEN_GEN >= 7
3607 static void
3608 genX(upload_cs_state)(struct brw_context *brw)
3609 {
3610 if (!brw->cs.base.prog_data)
3611 return;
3612
3613 uint32_t offset;
3614 uint32_t *desc = (uint32_t*) brw_state_batch(
3615 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
3616 &offset);
3617
3618 struct brw_stage_state *stage_state = &brw->cs.base;
3619 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
3620 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3621 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3622
3623 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
3624 brw_emit_buffer_surface_state(
3625 brw, &stage_state->surf_offset[
3626 prog_data->binding_table.shader_time_start],
3627 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
3628 brw->shader_time.bo->size, 1, true);
3629 }
3630
3631 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
3632 32, &stage_state->bind_bo_offset);
3633
3634 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
3635 if (prog_data->total_scratch) {
3636 uint32_t bo_offset;
3637
3638 if (GEN_GEN >= 8) {
3639 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
3640 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
3641 */
3642 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
3643 } else if (GEN_IS_HASWELL) {
3644 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
3645 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
3646 */
3647 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
3648 } else {
3649 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
3650 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
3651 */
3652 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
3653 }
3654 vfe.ScratchSpaceBasePointer =
3655 render_bo(stage_state->scratch_bo, bo_offset);
3656 }
3657
3658 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
3659 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
3660 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;;
3661 vfe.ResetGatewayTimer =
3662 Resettingrelativetimerandlatchingtheglobaltimestamp;
3663 #if GEN_GEN < 9
3664 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
3665 #endif
3666 #if GEN_GEN == 7
3667 vfe.GPGPUMode = 1;
3668 #endif
3669
3670 /* We are uploading duplicated copies of push constant uniforms for each
3671 * thread. Although the local id data needs to vary per thread, it won't
3672 * change for other uniform data. Unfortunately this duplication is
3673 * required for gen7. As of Haswell, this duplication can be avoided,
3674 * but this older mechanism with duplicated data continues to work.
3675 *
3676 * FINISHME: As of Haswell, we could make use of the
3677 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
3678 * field to only store one copy of uniform data.
3679 *
3680 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
3681 * which is described in the GPGPU_WALKER command and in the Broadwell
3682 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
3683 * Operations => GPGPU Mode => Indirect Payload Storage.
3684 *
3685 * Note: The constant data is built in brw_upload_cs_push_constants
3686 * below.
3687 */
3688 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
3689
3690 const uint32_t vfe_curbe_allocation =
3691 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
3692 cs_prog_data->push.cross_thread.regs, 2);
3693 vfe.CURBEAllocationSize = vfe_curbe_allocation;
3694 }
3695
3696 if (cs_prog_data->push.total.size > 0) {
3697 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
3698 curbe.CURBETotalDataLength =
3699 ALIGN(cs_prog_data->push.total.size, 64);
3700 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
3701 }
3702 }
3703
3704 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
3705 memcpy(bind, stage_state->surf_offset,
3706 prog_data->binding_table.size_bytes);
3707 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
3708 .KernelStartPointer = brw->cs.base.prog_offset,
3709 .SamplerStatePointer = stage_state->sampler_offset,
3710 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
3711 .BindingTablePointer = stage_state->bind_bo_offset,
3712 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
3713 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
3714 .SharedLocalMemorySize = encode_slm_size(devinfo->gen,
3715 prog_data->total_shared),
3716 .BarrierEnable = cs_prog_data->uses_barrier,
3717 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3718 .CrossThreadConstantDataReadLength =
3719 cs_prog_data->push.cross_thread.regs,
3720 #endif
3721 };
3722
3723 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
3724
3725 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
3726 load.InterfaceDescriptorTotalLength =
3727 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3728 load.InterfaceDescriptorDataStartAddress = offset;
3729 }
3730 }
3731
3732 static const struct brw_tracked_state genX(cs_state) = {
3733 .dirty = {
3734 .mesa = _NEW_PROGRAM_CONSTANTS,
3735 .brw = BRW_NEW_BATCH |
3736 BRW_NEW_BLORP |
3737 BRW_NEW_CS_PROG_DATA |
3738 BRW_NEW_SAMPLER_STATE_TABLE |
3739 BRW_NEW_SURFACES,
3740 },
3741 .emit = genX(upload_cs_state)
3742 };
3743
3744 #endif
3745
3746 /* ---------------------------------------------------------------------- */
3747
3748 #if GEN_GEN >= 8
3749 static void
3750 genX(upload_raster)(struct brw_context *brw)
3751 {
3752 struct gl_context *ctx = &brw->ctx;
3753
3754 /* _NEW_BUFFERS */
3755 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3756
3757 /* _NEW_POLYGON */
3758 struct gl_polygon_attrib *polygon = &ctx->Polygon;
3759
3760 /* _NEW_POINT */
3761 struct gl_point_attrib *point = &ctx->Point;
3762
3763 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
3764 if (polygon->_FrontBit == render_to_fbo)
3765 raster.FrontWinding = CounterClockwise;
3766
3767 if (polygon->CullFlag) {
3768 switch (polygon->CullFaceMode) {
3769 case GL_FRONT:
3770 raster.CullMode = CULLMODE_FRONT;
3771 break;
3772 case GL_BACK:
3773 raster.CullMode = CULLMODE_BACK;
3774 break;
3775 case GL_FRONT_AND_BACK:
3776 raster.CullMode = CULLMODE_BOTH;
3777 break;
3778 default:
3779 unreachable("not reached");
3780 }
3781 } else {
3782 raster.CullMode = CULLMODE_NONE;
3783 }
3784
3785 point->SmoothFlag = raster.SmoothPointEnable;
3786
3787 raster.DXMultisampleRasterizationEnable =
3788 _mesa_is_multisample_enabled(ctx);
3789
3790 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
3791 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
3792 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
3793
3794 switch (polygon->FrontMode) {
3795 case GL_FILL:
3796 raster.FrontFaceFillMode = FILL_MODE_SOLID;
3797 break;
3798 case GL_LINE:
3799 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
3800 break;
3801 case GL_POINT:
3802 raster.FrontFaceFillMode = FILL_MODE_POINT;
3803 break;
3804 default:
3805 unreachable("not reached");
3806 }
3807
3808 switch (polygon->BackMode) {
3809 case GL_FILL:
3810 raster.BackFaceFillMode = FILL_MODE_SOLID;
3811 break;
3812 case GL_LINE:
3813 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
3814 break;
3815 case GL_POINT:
3816 raster.BackFaceFillMode = FILL_MODE_POINT;
3817 break;
3818 default:
3819 unreachable("not reached");
3820 }
3821
3822 /* _NEW_LINE */
3823 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
3824
3825 /* _NEW_SCISSOR */
3826 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
3827
3828 /* _NEW_TRANSFORM */
3829 if (!ctx->Transform.DepthClamp) {
3830 #if GEN_GEN >= 9
3831 raster.ViewportZFarClipTestEnable = true;
3832 raster.ViewportZNearClipTestEnable = true;
3833 #else
3834 raster.ViewportZClipTestEnable = true;
3835 #endif
3836 }
3837
3838 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
3839 #if GEN_GEN >= 9
3840 raster.ConservativeRasterizationEnable =
3841 ctx->IntelConservativeRasterization;
3842 #endif
3843
3844 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
3845 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
3846
3847 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
3848 }
3849 }
3850
3851 static const struct brw_tracked_state genX(raster_state) = {
3852 .dirty = {
3853 .mesa = _NEW_BUFFERS |
3854 _NEW_LINE |
3855 _NEW_MULTISAMPLE |
3856 _NEW_POINT |
3857 _NEW_POLYGON |
3858 _NEW_SCISSOR |
3859 _NEW_TRANSFORM,
3860 .brw = BRW_NEW_BLORP |
3861 BRW_NEW_CONTEXT |
3862 BRW_NEW_CONSERVATIVE_RASTERIZATION,
3863 },
3864 .emit = genX(upload_raster),
3865 };
3866 #endif
3867
3868 /* ---------------------------------------------------------------------- */
3869
3870 #if GEN_GEN >= 8
3871 static void
3872 genX(upload_ps_extra)(struct brw_context *brw)
3873 {
3874 UNUSED struct gl_context *ctx = &brw->ctx;
3875
3876 const struct brw_wm_prog_data *prog_data =
3877 brw_wm_prog_data(brw->wm.base.prog_data);
3878
3879 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
3880 psx.PixelShaderValid = true;
3881 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
3882 psx.PixelShaderKillsPixel = prog_data->uses_kill;
3883 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
3884 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
3885 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
3886 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
3887
3888 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
3889 if (prog_data->uses_sample_mask) {
3890 #if GEN_GEN >= 9
3891 if (prog_data->post_depth_coverage)
3892 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3893 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
3894 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
3895 else
3896 psx.InputCoverageMaskState = ICMS_NORMAL;
3897 #else
3898 psx.PixelShaderUsesInputCoverageMask = true;
3899 #endif
3900 }
3901
3902 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3903 #if GEN_GEN >= 9
3904 psx.PixelShaderPullsBary = prog_data->pulls_bary;
3905 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
3906 #endif
3907
3908 /* The stricter cross-primitive coherency guarantees that the hardware
3909 * gives us with the "Accesses UAV" bit set for at least one shader stage
3910 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
3911 * are redundant within the current image, atomic counter and SSBO GL
3912 * APIs, which all have very loose ordering and coherency requirements
3913 * and generally rely on the application to insert explicit barriers when
3914 * a shader invocation is expected to see the memory writes performed by
3915 * the invocations of some previous primitive. Regardless of the value
3916 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
3917 * cause an in most cases useless DC flush when the lowermost stage with
3918 * the bit set finishes execution.
3919 *
3920 * It would be nice to disable it, but in some cases we can't because on
3921 * Gen8+ it also has an influence on rasterization via the PS UAV-only
3922 * signal (which could be set independently from the coherency mechanism
3923 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
3924 * determine whether the hardware skips execution of the fragment shader
3925 * or not via the ThreadDispatchEnable signal. However if we know that
3926 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
3927 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
3928 * difference so we may just disable it here.
3929 *
3930 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
3931 * take into account KillPixels when no depth or stencil writes are
3932 * enabled. In order for occlusion queries to work correctly with no
3933 * attachments, we need to force-enable here.
3934 *
3935 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
3936 * _NEW_COLOR
3937 */
3938 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
3939 !brw_color_buffer_write_enabled(brw))
3940 psx.PixelShaderHasUAV = true;
3941 }
3942 }
3943
3944 const struct brw_tracked_state genX(ps_extra) = {
3945 .dirty = {
3946 .mesa = _NEW_BUFFERS | _NEW_COLOR,
3947 .brw = BRW_NEW_BLORP |
3948 BRW_NEW_CONTEXT |
3949 BRW_NEW_FRAGMENT_PROGRAM |
3950 BRW_NEW_FS_PROG_DATA |
3951 BRW_NEW_CONSERVATIVE_RASTERIZATION,
3952 },
3953 .emit = genX(upload_ps_extra),
3954 };
3955 #endif
3956
3957 /* ---------------------------------------------------------------------- */
3958
3959 #if GEN_GEN >= 8
3960 static void
3961 genX(upload_ps_blend)(struct brw_context *brw)
3962 {
3963 struct gl_context *ctx = &brw->ctx;
3964
3965 /* _NEW_BUFFERS */
3966 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
3967 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
3968
3969 /* _NEW_COLOR */
3970 struct gl_colorbuffer_attrib *color = &ctx->Color;
3971
3972 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
3973 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
3974 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
3975
3976 if (!buffer0_is_integer) {
3977 /* _NEW_MULTISAMPLE */
3978 pb.AlphaToCoverageEnable =
3979 _mesa_is_multisample_enabled(ctx) &&
3980 ctx->Multisample.SampleAlphaToCoverage;
3981
3982 pb.AlphaTestEnable = color->AlphaEnabled;
3983 }
3984
3985 /* Used for implementing the following bit of GL_EXT_texture_integer:
3986 * "Per-fragment operations that require floating-point color
3987 * components, including multisample alpha operations, alpha test,
3988 * blending, and dithering, have no effect when the corresponding
3989 * colors are written to an integer color buffer."
3990 *
3991 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
3992 * "If drawbuffer zero is not NONE and the buffer it references has an
3993 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
3994 * operations are skipped."
3995 */
3996 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
3997 GLenum eqRGB = color->Blend[0].EquationRGB;
3998 GLenum eqA = color->Blend[0].EquationA;
3999 GLenum srcRGB = color->Blend[0].SrcRGB;
4000 GLenum dstRGB = color->Blend[0].DstRGB;
4001 GLenum srcA = color->Blend[0].SrcA;
4002 GLenum dstA = color->Blend[0].DstA;
4003
4004 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4005 srcRGB = dstRGB = GL_ONE;
4006
4007 if (eqA == GL_MIN || eqA == GL_MAX)
4008 srcA = dstA = GL_ONE;
4009
4010 /* Due to hardware limitations, the destination may have information
4011 * in an alpha channel even when the format specifies no alpha
4012 * channel. In order to avoid getting any incorrect blending due to
4013 * that alpha channel, coerce the blend factors to values that will
4014 * not read the alpha channel, but will instead use the correct
4015 * implicit value for alpha.
4016 */
4017 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4018 GL_TEXTURE_ALPHA_TYPE)) {
4019 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4020 srcA = brw_fix_xRGB_alpha(srcA);
4021 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4022 dstA = brw_fix_xRGB_alpha(dstA);
4023 }
4024
4025 pb.ColorBufferBlendEnable = true;
4026 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4027 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4028 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4029 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4030
4031 pb.IndependentAlphaBlendEnable =
4032 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4033 }
4034 }
4035 }
4036
4037 static const struct brw_tracked_state genX(ps_blend) = {
4038 .dirty = {
4039 .mesa = _NEW_BUFFERS |
4040 _NEW_COLOR |
4041 _NEW_MULTISAMPLE,
4042 .brw = BRW_NEW_BLORP |
4043 BRW_NEW_CONTEXT |
4044 BRW_NEW_FRAGMENT_PROGRAM,
4045 },
4046 .emit = genX(upload_ps_blend)
4047 };
4048 #endif
4049
4050 /* ---------------------------------------------------------------------- */
4051
4052 #if GEN_GEN >= 8
4053 static void
4054 genX(emit_vf_topology)(struct brw_context *brw)
4055 {
4056 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4057 vftopo.PrimitiveTopologyType = brw->primitive;
4058 }
4059 }
4060
4061 static const struct brw_tracked_state genX(vf_topology) = {
4062 .dirty = {
4063 .mesa = 0,
4064 .brw = BRW_NEW_BLORP |
4065 BRW_NEW_PRIMITIVE,
4066 },
4067 .emit = genX(emit_vf_topology),
4068 };
4069 #endif
4070
4071 /* ---------------------------------------------------------------------- */
4072
4073 #if GEN_GEN == 6
4074 static void
4075 genX(upload_viewport_state_pointers)(struct brw_context *brw)
4076 {
4077 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
4078 vp.CCViewportStateChange = 1;
4079 vp.SFViewportStateChange = 1;
4080 vp.CLIPViewportStateChange = 1;
4081 vp.PointertoCLIP_VIEWPORT = brw->clip.vp_offset;
4082 vp.PointertoSF_VIEWPORT = brw->sf.vp_offset;
4083 vp.PointertoCC_VIEWPORT = brw->cc.vp_offset;
4084 }
4085 }
4086
4087 static const struct brw_tracked_state genX(viewport_state) = {
4088 .dirty = {
4089 .mesa = 0,
4090 .brw = BRW_NEW_BATCH |
4091 BRW_NEW_BLORP |
4092 BRW_NEW_CC_VP |
4093 BRW_NEW_CLIP_VP |
4094 BRW_NEW_SF_VP |
4095 BRW_NEW_STATE_BASE_ADDRESS,
4096 },
4097 .emit = genX(upload_viewport_state_pointers),
4098 };
4099 #endif
4100
4101 /* ---------------------------------------------------------------------- */
4102
4103 void
4104 genX(init_atoms)(struct brw_context *brw)
4105 {
4106 #if GEN_GEN < 6
4107 static const struct brw_tracked_state *render_atoms[] =
4108 {
4109 /* Once all the programs are done, we know how large urb entry
4110 * sizes need to be and can decide if we need to change the urb
4111 * layout.
4112 */
4113 &brw_curbe_offsets,
4114 &brw_recalculate_urb_fence,
4115
4116 &brw_cc_vp,
4117 &brw_cc_unit,
4118
4119 /* Surface state setup. Must come before the VS/WM unit. The binding
4120 * table upload must be last.
4121 */
4122 &brw_vs_pull_constants,
4123 &brw_wm_pull_constants,
4124 &brw_renderbuffer_surfaces,
4125 &brw_renderbuffer_read_surfaces,
4126 &brw_texture_surfaces,
4127 &brw_vs_binding_table,
4128 &brw_wm_binding_table,
4129
4130 &brw_fs_samplers,
4131 &brw_vs_samplers,
4132
4133 /* These set up state for brw_psp_urb_cbs */
4134 &brw_wm_unit,
4135 &brw_sf_vp,
4136 &brw_sf_unit,
4137 &genX(vs_state), /* always required, enabled or not */
4138 &brw_clip_unit,
4139 &brw_gs_unit,
4140
4141 /* Command packets:
4142 */
4143 &brw_invariant_state,
4144
4145 &brw_binding_table_pointers,
4146 &brw_blend_constant_color,
4147
4148 &brw_depthbuffer,
4149
4150 &genX(polygon_stipple),
4151 &genX(polygon_stipple_offset),
4152
4153 &genX(line_stipple),
4154
4155 &brw_psp_urb_cbs,
4156
4157 &genX(drawing_rect),
4158 &brw_indices, /* must come before brw_vertices */
4159 &genX(index_buffer),
4160 &genX(vertices),
4161
4162 &brw_constant_buffer
4163 };
4164 #elif GEN_GEN == 6
4165 static const struct brw_tracked_state *render_atoms[] =
4166 {
4167 &genX(sf_clip_viewport),
4168
4169 /* Command packets: */
4170
4171 &brw_cc_vp,
4172 &genX(viewport_state), /* must do after *_vp stages */
4173
4174 &gen6_urb,
4175 &genX(blend_state), /* must do before cc unit */
4176 &genX(color_calc_state), /* must do before cc unit */
4177 &genX(depth_stencil_state), /* must do before cc unit */
4178
4179 &genX(vs_push_constants), /* Before vs_state */
4180 &genX(gs_push_constants), /* Before gs_state */
4181 &genX(wm_push_constants), /* Before wm_state */
4182
4183 /* Surface state setup. Must come before the VS/WM unit. The binding
4184 * table upload must be last.
4185 */
4186 &brw_vs_pull_constants,
4187 &brw_vs_ubo_surfaces,
4188 &brw_gs_pull_constants,
4189 &brw_gs_ubo_surfaces,
4190 &brw_wm_pull_constants,
4191 &brw_wm_ubo_surfaces,
4192 &gen6_renderbuffer_surfaces,
4193 &brw_renderbuffer_read_surfaces,
4194 &brw_texture_surfaces,
4195 &gen6_sol_surface,
4196 &brw_vs_binding_table,
4197 &gen6_gs_binding_table,
4198 &brw_wm_binding_table,
4199
4200 &brw_fs_samplers,
4201 &brw_vs_samplers,
4202 &brw_gs_samplers,
4203 &gen6_sampler_state,
4204 &genX(multisample_state),
4205
4206 &genX(vs_state),
4207 &genX(gs_state),
4208 &genX(clip_state),
4209 &genX(sf_state),
4210 &genX(wm_state),
4211
4212 &genX(scissor_state),
4213
4214 &gen6_binding_table_pointers,
4215
4216 &brw_depthbuffer,
4217
4218 &genX(polygon_stipple),
4219 &genX(polygon_stipple_offset),
4220
4221 &genX(line_stipple),
4222
4223 &genX(drawing_rect),
4224
4225 &brw_indices, /* must come before brw_vertices */
4226 &genX(index_buffer),
4227 &genX(vertices),
4228 };
4229 #elif GEN_GEN == 7
4230 static const struct brw_tracked_state *render_atoms[] =
4231 {
4232 /* Command packets: */
4233
4234 &brw_cc_vp,
4235 &genX(sf_clip_viewport),
4236
4237 &gen7_l3_state,
4238 &gen7_push_constant_space,
4239 &gen7_urb,
4240 &genX(blend_state), /* must do before cc unit */
4241 &genX(color_calc_state), /* must do before cc unit */
4242 &genX(depth_stencil_state), /* must do before cc unit */
4243
4244 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
4245 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
4246 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
4247 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
4248 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
4249
4250 &genX(vs_push_constants), /* Before vs_state */
4251 &genX(tcs_push_constants),
4252 &genX(tes_push_constants),
4253 &genX(gs_push_constants), /* Before gs_state */
4254 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4255
4256 /* Surface state setup. Must come before the VS/WM unit. The binding
4257 * table upload must be last.
4258 */
4259 &brw_vs_pull_constants,
4260 &brw_vs_ubo_surfaces,
4261 &brw_vs_abo_surfaces,
4262 &brw_tcs_pull_constants,
4263 &brw_tcs_ubo_surfaces,
4264 &brw_tcs_abo_surfaces,
4265 &brw_tes_pull_constants,
4266 &brw_tes_ubo_surfaces,
4267 &brw_tes_abo_surfaces,
4268 &brw_gs_pull_constants,
4269 &brw_gs_ubo_surfaces,
4270 &brw_gs_abo_surfaces,
4271 &brw_wm_pull_constants,
4272 &brw_wm_ubo_surfaces,
4273 &brw_wm_abo_surfaces,
4274 &gen6_renderbuffer_surfaces,
4275 &brw_renderbuffer_read_surfaces,
4276 &brw_texture_surfaces,
4277 &brw_vs_binding_table,
4278 &brw_tcs_binding_table,
4279 &brw_tes_binding_table,
4280 &brw_gs_binding_table,
4281 &brw_wm_binding_table,
4282
4283 &brw_fs_samplers,
4284 &brw_vs_samplers,
4285 &brw_tcs_samplers,
4286 &brw_tes_samplers,
4287 &brw_gs_samplers,
4288 &genX(multisample_state),
4289
4290 &genX(vs_state),
4291 &genX(hs_state),
4292 &genX(te_state),
4293 &genX(ds_state),
4294 &genX(gs_state),
4295 &genX(sol_state),
4296 &genX(clip_state),
4297 &genX(sbe_state),
4298 &genX(sf_state),
4299 &genX(wm_state),
4300 &genX(ps_state),
4301
4302 &genX(scissor_state),
4303
4304 &gen7_depthbuffer,
4305
4306 &genX(polygon_stipple),
4307 &genX(polygon_stipple_offset),
4308
4309 &genX(line_stipple),
4310
4311 &genX(drawing_rect),
4312
4313 &brw_indices, /* must come before brw_vertices */
4314 &genX(index_buffer),
4315 &genX(vertices),
4316
4317 #if GEN_IS_HASWELL
4318 &genX(cut_index),
4319 #endif
4320 };
4321 #elif GEN_GEN >= 8
4322 static const struct brw_tracked_state *render_atoms[] =
4323 {
4324 &brw_cc_vp,
4325 &genX(sf_clip_viewport),
4326
4327 &gen7_l3_state,
4328 &gen7_push_constant_space,
4329 &gen7_urb,
4330 &genX(blend_state),
4331 &genX(color_calc_state),
4332
4333 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
4334 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
4335 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
4336 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
4337 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
4338
4339 &genX(vs_push_constants), /* Before vs_state */
4340 &genX(tcs_push_constants),
4341 &genX(tes_push_constants),
4342 &genX(gs_push_constants), /* Before gs_state */
4343 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4344
4345 /* Surface state setup. Must come before the VS/WM unit. The binding
4346 * table upload must be last.
4347 */
4348 &brw_vs_pull_constants,
4349 &brw_vs_ubo_surfaces,
4350 &brw_vs_abo_surfaces,
4351 &brw_tcs_pull_constants,
4352 &brw_tcs_ubo_surfaces,
4353 &brw_tcs_abo_surfaces,
4354 &brw_tes_pull_constants,
4355 &brw_tes_ubo_surfaces,
4356 &brw_tes_abo_surfaces,
4357 &brw_gs_pull_constants,
4358 &brw_gs_ubo_surfaces,
4359 &brw_gs_abo_surfaces,
4360 &brw_wm_pull_constants,
4361 &brw_wm_ubo_surfaces,
4362 &brw_wm_abo_surfaces,
4363 &gen6_renderbuffer_surfaces,
4364 &brw_renderbuffer_read_surfaces,
4365 &brw_texture_surfaces,
4366 &brw_vs_binding_table,
4367 &brw_tcs_binding_table,
4368 &brw_tes_binding_table,
4369 &brw_gs_binding_table,
4370 &brw_wm_binding_table,
4371
4372 &brw_fs_samplers,
4373 &brw_vs_samplers,
4374 &brw_tcs_samplers,
4375 &brw_tes_samplers,
4376 &brw_gs_samplers,
4377 &genX(multisample_state),
4378
4379 &genX(vs_state),
4380 &genX(hs_state),
4381 &genX(te_state),
4382 &genX(ds_state),
4383 &genX(gs_state),
4384 &genX(sol_state),
4385 &genX(clip_state),
4386 &genX(raster_state),
4387 &genX(sbe_state),
4388 &genX(sf_state),
4389 &genX(ps_blend),
4390 &genX(ps_extra),
4391 &genX(ps_state),
4392 &genX(depth_stencil_state),
4393 &genX(wm_state),
4394
4395 &genX(scissor_state),
4396
4397 &gen7_depthbuffer,
4398
4399 &genX(polygon_stipple),
4400 &genX(polygon_stipple_offset),
4401
4402 &genX(line_stipple),
4403
4404 &genX(drawing_rect),
4405
4406 &genX(vf_topology),
4407
4408 &brw_indices,
4409 &genX(index_buffer),
4410 &genX(vertices),
4411
4412 &genX(cut_index),
4413 &gen8_pma_fix,
4414 };
4415 #endif
4416
4417 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
4418 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
4419 render_atoms, ARRAY_SIZE(render_atoms));
4420
4421 #if GEN_GEN >= 7
4422 static const struct brw_tracked_state *compute_atoms[] =
4423 {
4424 &gen7_l3_state,
4425 &brw_cs_image_surfaces,
4426 &gen7_cs_push_constants,
4427 &brw_cs_pull_constants,
4428 &brw_cs_ubo_surfaces,
4429 &brw_cs_abo_surfaces,
4430 &brw_cs_texture_surfaces,
4431 &brw_cs_work_groups_surface,
4432 &brw_cs_samplers,
4433 &genX(cs_state),
4434 };
4435
4436 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
4437 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
4438 compute_atoms, ARRAY_SIZE(compute_atoms));
4439 #endif
4440 }