i965/sbe: fix active components for SSO programs with over 16 inputs
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #if GEN_GEN == 6
38 #include "brw_defines.h"
39 #endif
40 #include "brw_draw.h"
41 #include "brw_multisample_state.h"
42 #include "brw_state.h"
43 #include "brw_wm.h"
44 #include "brw_util.h"
45
46 #include "intel_batchbuffer.h"
47 #include "intel_buffer_objects.h"
48 #include "intel_fbo.h"
49
50 #include "main/enums.h"
51 #include "main/fbobject.h"
52 #include "main/framebuffer.h"
53 #include "main/glformats.h"
54 #include "main/samplerobj.h"
55 #include "main/shaderapi.h"
56 #include "main/stencil.h"
57 #include "main/transformfeedback.h"
58 #include "main/varray.h"
59 #include "main/viewport.h"
60 #include "util/half_float.h"
61
62 UNUSED static void *
63 emit_dwords(struct brw_context *brw, unsigned n)
64 {
65 intel_batchbuffer_begin(brw, n, RENDER_RING);
66 uint32_t *map = brw->batch.map_next;
67 brw->batch.map_next += n;
68 intel_batchbuffer_advance(brw);
69 return map;
70 }
71
72 struct brw_address {
73 struct brw_bo *bo;
74 unsigned reloc_flags;
75 uint32_t offset;
76 };
77
78 #define __gen_address_type struct brw_address
79 #define __gen_user_data struct brw_context
80
81 static uint64_t
82 __gen_combine_address(struct brw_context *brw, void *location,
83 struct brw_address address, uint32_t delta)
84 {
85 struct intel_batchbuffer *batch = &brw->batch;
86 uint32_t offset;
87
88 if (address.bo == NULL) {
89 return address.offset + delta;
90 } else {
91 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
92 offset = (char *) location - (char *) brw->batch.state_map;
93 return brw_state_reloc(batch, offset, address.bo,
94 address.offset + delta,
95 address.reloc_flags);
96 }
97
98 assert(!brw_ptr_in_state_buffer(batch, location));
99
100 offset = (char *) location - (char *) brw->batch.map;
101 return brw_batch_reloc(batch, offset, address.bo,
102 address.offset + delta,
103 address.reloc_flags);
104 }
105 }
106
107 static struct brw_address
108 rw_bo(struct brw_bo *bo, uint32_t offset)
109 {
110 return (struct brw_address) {
111 .bo = bo,
112 .offset = offset,
113 .reloc_flags = RELOC_WRITE,
114 };
115 }
116
117 static struct brw_address
118 ro_bo(struct brw_bo *bo, uint32_t offset)
119 {
120 return (struct brw_address) {
121 .bo = bo,
122 .offset = offset,
123 };
124 }
125
126 UNUSED static struct brw_address
127 ggtt_bo(struct brw_bo *bo, uint32_t offset)
128 {
129 return (struct brw_address) {
130 .bo = bo,
131 .offset = offset,
132 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
133 };
134 }
135
136 #if GEN_GEN == 4
137 static struct brw_address
138 KSP(struct brw_context *brw, uint32_t offset)
139 {
140 return ro_bo(brw->cache.bo, offset);
141 }
142 #else
143 static uint32_t
144 KSP(struct brw_context *brw, uint32_t offset)
145 {
146 return offset;
147 }
148 #endif
149
150 #include "genxml/genX_pack.h"
151
152 #define _brw_cmd_length(cmd) cmd ## _length
153 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
154 #define _brw_cmd_header(cmd) cmd ## _header
155 #define _brw_cmd_pack(cmd) cmd ## _pack
156
157 #define brw_batch_emit(brw, cmd, name) \
158 for (struct cmd name = { _brw_cmd_header(cmd) }, \
159 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
160 __builtin_expect(_dst != NULL, 1); \
161 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
162 _dst = NULL)
163
164 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
165 uint32_t *_dw = emit_dwords(brw, n); \
166 struct cmd template = { \
167 _brw_cmd_header(cmd), \
168 .DWordLength = n - _brw_cmd_length_bias(cmd), \
169 __VA_ARGS__ \
170 }; \
171 _brw_cmd_pack(cmd)(brw, _dw, &template); \
172 _dw + 1; /* Array starts at dw[1] */ \
173 })
174
175 #define brw_state_emit(brw, cmd, align, offset, name) \
176 for (struct cmd name = {}, \
177 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
178 align, offset); \
179 __builtin_expect(_dst != NULL, 1); \
180 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
181 _dst = NULL)
182
183 /**
184 * Polygon stipple packet
185 */
186 static void
187 genX(upload_polygon_stipple)(struct brw_context *brw)
188 {
189 struct gl_context *ctx = &brw->ctx;
190
191 /* _NEW_POLYGON */
192 if (!ctx->Polygon.StippleFlag)
193 return;
194
195 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
196 /* Polygon stipple is provided in OpenGL order, i.e. bottom
197 * row first. If we're rendering to a window (i.e. the
198 * default frame buffer object, 0), then we need to invert
199 * it to match our pixel layout. But if we're rendering
200 * to a FBO (i.e. any named frame buffer object), we *don't*
201 * need to invert - we already match the layout.
202 */
203 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
204 for (unsigned i = 0; i < 32; i++)
205 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
206 } else {
207 for (unsigned i = 0; i < 32; i++)
208 poly.PatternRow[i] = ctx->PolygonStipple[i];
209 }
210 }
211 }
212
213 static const struct brw_tracked_state genX(polygon_stipple) = {
214 .dirty = {
215 .mesa = _NEW_POLYGON |
216 _NEW_POLYGONSTIPPLE,
217 .brw = BRW_NEW_CONTEXT,
218 },
219 .emit = genX(upload_polygon_stipple),
220 };
221
222 /**
223 * Polygon stipple offset packet
224 */
225 static void
226 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
227 {
228 struct gl_context *ctx = &brw->ctx;
229
230 /* _NEW_POLYGON */
231 if (!ctx->Polygon.StippleFlag)
232 return;
233
234 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
235 /* _NEW_BUFFERS
236 *
237 * If we're drawing to a system window we have to invert the Y axis
238 * in order to match the OpenGL pixel coordinate system, and our
239 * offset must be matched to the window position. If we're drawing
240 * to a user-created FBO then our native pixel coordinate system
241 * works just fine, and there's no window system to worry about.
242 */
243 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
244 poly.PolygonStippleYOffset =
245 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
246 }
247 }
248 }
249
250 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
251 .dirty = {
252 .mesa = _NEW_BUFFERS |
253 _NEW_POLYGON,
254 .brw = BRW_NEW_CONTEXT,
255 },
256 .emit = genX(upload_polygon_stipple_offset),
257 };
258
259 /**
260 * Line stipple packet
261 */
262 static void
263 genX(upload_line_stipple)(struct brw_context *brw)
264 {
265 struct gl_context *ctx = &brw->ctx;
266
267 if (!ctx->Line.StippleFlag)
268 return;
269
270 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
271 line.LineStipplePattern = ctx->Line.StipplePattern;
272
273 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
274 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
275 }
276 }
277
278 static const struct brw_tracked_state genX(line_stipple) = {
279 .dirty = {
280 .mesa = _NEW_LINE,
281 .brw = BRW_NEW_CONTEXT,
282 },
283 .emit = genX(upload_line_stipple),
284 };
285
286 /* Constant single cliprect for framebuffer object or DRI2 drawing */
287 static void
288 genX(upload_drawing_rect)(struct brw_context *brw)
289 {
290 struct gl_context *ctx = &brw->ctx;
291 const struct gl_framebuffer *fb = ctx->DrawBuffer;
292 const unsigned int fb_width = _mesa_geometric_width(fb);
293 const unsigned int fb_height = _mesa_geometric_height(fb);
294
295 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
296 rect.ClippedDrawingRectangleXMax = fb_width - 1;
297 rect.ClippedDrawingRectangleYMax = fb_height - 1;
298 }
299 }
300
301 static const struct brw_tracked_state genX(drawing_rect) = {
302 .dirty = {
303 .mesa = _NEW_BUFFERS,
304 .brw = BRW_NEW_BLORP |
305 BRW_NEW_CONTEXT,
306 },
307 .emit = genX(upload_drawing_rect),
308 };
309
310 static uint32_t *
311 genX(emit_vertex_buffer_state)(struct brw_context *brw,
312 uint32_t *dw,
313 unsigned buffer_nr,
314 struct brw_bo *bo,
315 unsigned start_offset,
316 unsigned end_offset,
317 unsigned stride,
318 unsigned step_rate)
319 {
320 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
321 .VertexBufferIndex = buffer_nr,
322 .BufferPitch = stride,
323 .BufferStartingAddress = ro_bo(bo, start_offset),
324 #if GEN_GEN >= 8
325 .BufferSize = end_offset - start_offset,
326 #endif
327
328 #if GEN_GEN >= 7
329 .AddressModifyEnable = true,
330 #endif
331
332 #if GEN_GEN < 8
333 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
334 .InstanceDataStepRate = step_rate,
335 #if GEN_GEN >= 5
336 .EndAddress = ro_bo(bo, end_offset - 1),
337 #endif
338 #endif
339
340 #if GEN_GEN == 10
341 .VertexBufferMOCS = CNL_MOCS_WB,
342 #elif GEN_GEN == 9
343 .VertexBufferMOCS = SKL_MOCS_WB,
344 #elif GEN_GEN == 8
345 .VertexBufferMOCS = BDW_MOCS_WB,
346 #elif GEN_GEN == 7
347 .VertexBufferMOCS = GEN7_MOCS_L3,
348 #endif
349 };
350
351 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
352 return dw + GENX(VERTEX_BUFFER_STATE_length);
353 }
354
355 UNUSED static bool
356 is_passthru_format(uint32_t format)
357 {
358 switch (format) {
359 case ISL_FORMAT_R64_PASSTHRU:
360 case ISL_FORMAT_R64G64_PASSTHRU:
361 case ISL_FORMAT_R64G64B64_PASSTHRU:
362 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
363 return true;
364 default:
365 return false;
366 }
367 }
368
369 UNUSED static int
370 uploads_needed(uint32_t format)
371 {
372 if (!is_passthru_format(format))
373 return 1;
374
375 switch (format) {
376 case ISL_FORMAT_R64_PASSTHRU:
377 case ISL_FORMAT_R64G64_PASSTHRU:
378 return 1;
379 case ISL_FORMAT_R64G64B64_PASSTHRU:
380 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
381 return 2;
382 default:
383 unreachable("not reached");
384 }
385 }
386
387 /*
388 * Returns the format that we are finally going to use when upload a vertex
389 * element. It will only change if we are using *64*PASSTHRU formats, as for
390 * gen < 8 they need to be splitted on two *32*FLOAT formats.
391 *
392 * @upload points in which upload we are. Valid values are [0,1]
393 */
394 static uint32_t
395 downsize_format_if_needed(uint32_t format,
396 int upload)
397 {
398 assert(upload == 0 || upload == 1);
399
400 if (!is_passthru_format(format))
401 return format;
402
403 switch (format) {
404 case ISL_FORMAT_R64_PASSTHRU:
405 return ISL_FORMAT_R32G32_FLOAT;
406 case ISL_FORMAT_R64G64_PASSTHRU:
407 return ISL_FORMAT_R32G32B32A32_FLOAT;
408 case ISL_FORMAT_R64G64B64_PASSTHRU:
409 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
410 : ISL_FORMAT_R32G32_FLOAT;
411 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
412 return ISL_FORMAT_R32G32B32A32_FLOAT;
413 default:
414 unreachable("not reached");
415 }
416 }
417
418 /*
419 * Returns the number of componentes associated with a format that is used on
420 * a 64 to 32 format split. See downsize_format()
421 */
422 static int
423 upload_format_size(uint32_t upload_format)
424 {
425 switch (upload_format) {
426 case ISL_FORMAT_R32G32_FLOAT:
427 return 2;
428 case ISL_FORMAT_R32G32B32A32_FLOAT:
429 return 4;
430 default:
431 unreachable("not reached");
432 }
433 }
434
435 static void
436 genX(emit_vertices)(struct brw_context *brw)
437 {
438 const struct gen_device_info *devinfo = &brw->screen->devinfo;
439 uint32_t *dw;
440
441 brw_prepare_vertices(brw);
442 brw_prepare_shader_draw_parameters(brw);
443
444 #if GEN_GEN < 6
445 brw_emit_query_begin(brw);
446 #endif
447
448 const struct brw_vs_prog_data *vs_prog_data =
449 brw_vs_prog_data(brw->vs.base.prog_data);
450
451 #if GEN_GEN >= 8
452 struct gl_context *ctx = &brw->ctx;
453 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
454 ctx->Polygon.BackMode != GL_FILL);
455
456 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
457 unsigned vue = brw->vb.nr_enabled;
458
459 /* The element for the edge flags must always be last, so we have to
460 * insert the SGVS before it in that case.
461 */
462 if (uses_edge_flag) {
463 assert(vue > 0);
464 vue--;
465 }
466
467 WARN_ONCE(vue >= 33,
468 "Trying to insert VID/IID past 33rd vertex element, "
469 "need to reorder the vertex attrbutes.");
470
471 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
472 if (vs_prog_data->uses_vertexid) {
473 vfs.VertexIDEnable = true;
474 vfs.VertexIDComponentNumber = 2;
475 vfs.VertexIDElementOffset = vue;
476 }
477
478 if (vs_prog_data->uses_instanceid) {
479 vfs.InstanceIDEnable = true;
480 vfs.InstanceIDComponentNumber = 3;
481 vfs.InstanceIDElementOffset = vue;
482 }
483 }
484
485 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
486 vfi.InstancingEnable = true;
487 vfi.VertexElementIndex = vue;
488 }
489 } else {
490 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
491 }
492
493 /* Normally we don't need an element for the SGVS attribute because the
494 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
495 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
496 * we're using draw parameters then we need an element for the those
497 * values. Additionally if there is an edge flag element then the SGVS
498 * can't be inserted past that so we need a dummy element to ensure that
499 * the edge flag is the last one.
500 */
501 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
502 vs_prog_data->uses_baseinstance ||
503 ((vs_prog_data->uses_instanceid ||
504 vs_prog_data->uses_vertexid)
505 && uses_edge_flag));
506 #else
507 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
508 vs_prog_data->uses_baseinstance ||
509 vs_prog_data->uses_instanceid ||
510 vs_prog_data->uses_vertexid);
511 #endif
512 unsigned nr_elements =
513 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
514
515 #if GEN_GEN < 8
516 /* If any of the formats of vb.enabled needs more that one upload, we need
517 * to add it to nr_elements
518 */
519 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
520 struct brw_vertex_element *input = brw->vb.enabled[i];
521 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
522
523 if (uploads_needed(format) > 1)
524 nr_elements++;
525 }
526 #endif
527
528 /* If the VS doesn't read any inputs (calculating vertex position from
529 * a state variable for some reason, for example), emit a single pad
530 * VERTEX_ELEMENT struct and bail.
531 *
532 * The stale VB state stays in place, but they don't do anything unless
533 * a VE loads from them.
534 */
535 if (nr_elements == 0) {
536 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
537 1 + GENX(VERTEX_ELEMENT_STATE_length));
538 struct GENX(VERTEX_ELEMENT_STATE) elem = {
539 .Valid = true,
540 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
541 .Component0Control = VFCOMP_STORE_0,
542 .Component1Control = VFCOMP_STORE_0,
543 .Component2Control = VFCOMP_STORE_0,
544 .Component3Control = VFCOMP_STORE_1_FP,
545 };
546 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
547 return;
548 }
549
550 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
551 const bool uses_draw_params =
552 vs_prog_data->uses_basevertex ||
553 vs_prog_data->uses_baseinstance;
554 const unsigned nr_buffers = brw->vb.nr_buffers +
555 uses_draw_params + vs_prog_data->uses_drawid;
556
557 if (nr_buffers) {
558 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
559
560 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
561 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
562
563 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
564 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
565 /* Prior to Haswell and Bay Trail we have to use 4-component formats
566 * to fake 3-component ones. In particular, we do this for
567 * half-float and 8 and 16-bit integer formats. This means that the
568 * vertex element may poke over the end of the buffer by 2 bytes.
569 */
570 const unsigned padding =
571 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
572 const unsigned end = buffer->offset + buffer->size + padding;
573 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
574 buffer->offset,
575 end,
576 buffer->stride,
577 buffer->step_rate);
578 }
579
580 if (uses_draw_params) {
581 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
582 brw->draw.draw_params_bo,
583 brw->draw.draw_params_offset,
584 brw->draw.draw_params_bo->size,
585 0 /* stride */,
586 0 /* step rate */);
587 }
588
589 if (vs_prog_data->uses_drawid) {
590 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
591 brw->draw.draw_id_bo,
592 brw->draw.draw_id_offset,
593 brw->draw.draw_id_bo->size,
594 0 /* stride */,
595 0 /* step rate */);
596 }
597 }
598
599 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
600 * presumably for VertexID/InstanceID.
601 */
602 #if GEN_GEN >= 6
603 assert(nr_elements <= 34);
604 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
605 #else
606 assert(nr_elements <= 18);
607 #endif
608
609 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
610 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
611 unsigned i;
612 for (i = 0; i < brw->vb.nr_enabled; i++) {
613 const struct brw_vertex_element *input = brw->vb.enabled[i];
614 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
615 uint32_t comp0 = VFCOMP_STORE_SRC;
616 uint32_t comp1 = VFCOMP_STORE_SRC;
617 uint32_t comp2 = VFCOMP_STORE_SRC;
618 uint32_t comp3 = VFCOMP_STORE_SRC;
619 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
620
621 #if GEN_GEN >= 8
622 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
623 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
624 * element which has edge flag enabled."
625 */
626 assert(!(is_passthru_format(format) && uses_edge_flag));
627 #endif
628
629 /* The gen4 driver expects edgeflag to come in as a float, and passes
630 * that float on to the tests in the clipper. Mesa's current vertex
631 * attribute value for EdgeFlag is stored as a float, which works out.
632 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
633 * integer ubyte. Just rewrite that to convert to a float.
634 *
635 * Gen6+ passes edgeflag as sideband along with the vertex, instead
636 * of in the VUE. We have to upload it sideband as the last vertex
637 * element according to the B-Spec.
638 */
639 #if GEN_GEN >= 6
640 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
641 gen6_edgeflag_input = input;
642 continue;
643 }
644 #endif
645
646 for (unsigned c = 0; c < num_uploads; c++) {
647 const uint32_t upload_format = GEN_GEN >= 8 ? format :
648 downsize_format_if_needed(format, c);
649 /* If we need more that one upload, the offset stride would be 128
650 * bits (16 bytes), as for previous uploads we are using the full
651 * entry. */
652 const unsigned offset = input->offset + c * 16;
653
654 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
655 upload_format_size(upload_format) : input->glarray->Size;
656
657 switch (size) {
658 case 0: comp0 = VFCOMP_STORE_0;
659 case 1: comp1 = VFCOMP_STORE_0;
660 case 2: comp2 = VFCOMP_STORE_0;
661 case 3:
662 if (GEN_GEN >= 8 && input->glarray->Doubles) {
663 comp3 = VFCOMP_STORE_0;
664 } else if (input->glarray->Integer) {
665 comp3 = VFCOMP_STORE_1_INT;
666 } else {
667 comp3 = VFCOMP_STORE_1_FP;
668 }
669
670 break;
671 }
672
673 #if GEN_GEN >= 8
674 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
675 *
676 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
677 * formats, 64-bit components are stored in the URB without any
678 * conversion. In this case, vertex elements must be written as 128
679 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
680 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
681 * component into the URB, Component 1 must be specified as
682 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
683 * order to output a 128-bit vertex element, or Components 1-3 must
684 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
685 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
686 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
687 * vertex element."
688 */
689 if (input->glarray->Doubles && !input->is_dual_slot) {
690 /* Store vertex elements which correspond to double and dvec2 vertex
691 * shader inputs as 128-bit vertex elements, instead of 256-bits.
692 */
693 comp2 = VFCOMP_NOSTORE;
694 comp3 = VFCOMP_NOSTORE;
695 }
696 #endif
697
698 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
699 .VertexBufferIndex = input->buffer,
700 .Valid = true,
701 .SourceElementFormat = upload_format,
702 .SourceElementOffset = offset,
703 .Component0Control = comp0,
704 .Component1Control = comp1,
705 .Component2Control = comp2,
706 .Component3Control = comp3,
707 #if GEN_GEN < 5
708 .DestinationElementOffset = i * 4,
709 #endif
710 };
711
712 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
713 dw += GENX(VERTEX_ELEMENT_STATE_length);
714 }
715 }
716
717 if (needs_sgvs_element) {
718 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
719 .Valid = true,
720 .Component0Control = VFCOMP_STORE_0,
721 .Component1Control = VFCOMP_STORE_0,
722 .Component2Control = VFCOMP_STORE_0,
723 .Component3Control = VFCOMP_STORE_0,
724 #if GEN_GEN < 5
725 .DestinationElementOffset = i * 4,
726 #endif
727 };
728
729 #if GEN_GEN >= 8
730 if (vs_prog_data->uses_basevertex ||
731 vs_prog_data->uses_baseinstance) {
732 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
733 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
734 elem_state.Component0Control = VFCOMP_STORE_SRC;
735 elem_state.Component1Control = VFCOMP_STORE_SRC;
736 }
737 #else
738 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
739 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
740 if (vs_prog_data->uses_basevertex)
741 elem_state.Component0Control = VFCOMP_STORE_SRC;
742
743 if (vs_prog_data->uses_baseinstance)
744 elem_state.Component1Control = VFCOMP_STORE_SRC;
745
746 if (vs_prog_data->uses_vertexid)
747 elem_state.Component2Control = VFCOMP_STORE_VID;
748
749 if (vs_prog_data->uses_instanceid)
750 elem_state.Component3Control = VFCOMP_STORE_IID;
751 #endif
752
753 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
754 dw += GENX(VERTEX_ELEMENT_STATE_length);
755 }
756
757 if (vs_prog_data->uses_drawid) {
758 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
759 .Valid = true,
760 .VertexBufferIndex = brw->vb.nr_buffers + 1,
761 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
762 .Component0Control = VFCOMP_STORE_SRC,
763 .Component1Control = VFCOMP_STORE_0,
764 .Component2Control = VFCOMP_STORE_0,
765 .Component3Control = VFCOMP_STORE_0,
766 #if GEN_GEN < 5
767 .DestinationElementOffset = i * 4,
768 #endif
769 };
770
771 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
772 dw += GENX(VERTEX_ELEMENT_STATE_length);
773 }
774
775 #if GEN_GEN >= 6
776 if (gen6_edgeflag_input) {
777 const uint32_t format =
778 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
779
780 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
781 .Valid = true,
782 .VertexBufferIndex = gen6_edgeflag_input->buffer,
783 .EdgeFlagEnable = true,
784 .SourceElementFormat = format,
785 .SourceElementOffset = gen6_edgeflag_input->offset,
786 .Component0Control = VFCOMP_STORE_SRC,
787 .Component1Control = VFCOMP_STORE_0,
788 .Component2Control = VFCOMP_STORE_0,
789 .Component3Control = VFCOMP_STORE_0,
790 };
791
792 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
793 dw += GENX(VERTEX_ELEMENT_STATE_length);
794 }
795 #endif
796
797 #if GEN_GEN >= 8
798 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
799 const struct brw_vertex_element *input = brw->vb.enabled[i];
800 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
801 unsigned element_index;
802
803 /* The edge flag element is reordered to be the last one in the code
804 * above so we need to compensate for that in the element indices used
805 * below.
806 */
807 if (input == gen6_edgeflag_input)
808 element_index = nr_elements - 1;
809 else
810 element_index = j++;
811
812 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
813 vfi.VertexElementIndex = element_index;
814 vfi.InstancingEnable = buffer->step_rate != 0;
815 vfi.InstanceDataStepRate = buffer->step_rate;
816 }
817 }
818
819 if (vs_prog_data->uses_drawid) {
820 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
821
822 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
823 vfi.VertexElementIndex = element;
824 }
825 }
826 #endif
827 }
828
829 static const struct brw_tracked_state genX(vertices) = {
830 .dirty = {
831 .mesa = _NEW_POLYGON,
832 .brw = BRW_NEW_BATCH |
833 BRW_NEW_BLORP |
834 BRW_NEW_VERTICES |
835 BRW_NEW_VS_PROG_DATA,
836 },
837 .emit = genX(emit_vertices),
838 };
839
840 static void
841 genX(emit_index_buffer)(struct brw_context *brw)
842 {
843 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
844
845 if (index_buffer == NULL)
846 return;
847
848 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
849 #if GEN_GEN < 8 && !GEN_IS_HASWELL
850 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
851 #endif
852 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
853 ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
854 #if GEN_GEN >= 8
855 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
856 ib.BufferSize = brw->ib.size;
857 #else
858 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
859 #endif
860 }
861 }
862
863 static const struct brw_tracked_state genX(index_buffer) = {
864 .dirty = {
865 .mesa = 0,
866 .brw = BRW_NEW_BATCH |
867 BRW_NEW_BLORP |
868 BRW_NEW_INDEX_BUFFER,
869 },
870 .emit = genX(emit_index_buffer),
871 };
872
873 #if GEN_IS_HASWELL || GEN_GEN >= 8
874 static void
875 genX(upload_cut_index)(struct brw_context *brw)
876 {
877 const struct gl_context *ctx = &brw->ctx;
878
879 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
880 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
881 vf.IndexedDrawCutIndexEnable = true;
882 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
883 }
884 }
885 }
886
887 const struct brw_tracked_state genX(cut_index) = {
888 .dirty = {
889 .mesa = _NEW_TRANSFORM,
890 .brw = BRW_NEW_INDEX_BUFFER,
891 },
892 .emit = genX(upload_cut_index),
893 };
894 #endif
895
896 #if GEN_GEN >= 6
897 /**
898 * Determine the appropriate attribute override value to store into the
899 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
900 * override value contains two pieces of information: the location of the
901 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
902 * flag indicating whether to "swizzle" the attribute based on the direction
903 * the triangle is facing.
904 *
905 * If an attribute is "swizzled", then the given VUE location is used for
906 * front-facing triangles, and the VUE location that immediately follows is
907 * used for back-facing triangles. We use this to implement the mapping from
908 * gl_FrontColor/gl_BackColor to gl_Color.
909 *
910 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
911 * being instructed to begin reading attribute data. It can be set to a
912 * nonzero value to prevent the SF unit from wasting time reading elements of
913 * the VUE that are not needed by the fragment shader. It is measured in
914 * 256-bit increments.
915 */
916 static void
917 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
918 const struct brw_vue_map *vue_map,
919 int urb_entry_read_offset, int fs_attr,
920 bool two_side_color, uint32_t *max_source_attr)
921 {
922 /* Find the VUE slot for this attribute. */
923 int slot = vue_map->varying_to_slot[fs_attr];
924
925 /* Viewport and Layer are stored in the VUE header. We need to override
926 * them to zero if earlier stages didn't write them, as GL requires that
927 * they read back as zero when not explicitly set.
928 */
929 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
930 attr->ComponentOverrideX = true;
931 attr->ComponentOverrideW = true;
932 attr->ConstantSource = CONST_0000;
933
934 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
935 attr->ComponentOverrideY = true;
936 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
937 attr->ComponentOverrideZ = true;
938
939 return;
940 }
941
942 /* If there was only a back color written but not front, use back
943 * as the color instead of undefined
944 */
945 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
946 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
947 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
948 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
949
950 if (slot == -1) {
951 /* This attribute does not exist in the VUE--that means that the vertex
952 * shader did not write to it. This means that either:
953 *
954 * (a) This attribute is a texture coordinate, and it is going to be
955 * replaced with point coordinates (as a consequence of a call to
956 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
957 * hardware will ignore whatever attribute override we supply.
958 *
959 * (b) This attribute is read by the fragment shader but not written by
960 * the vertex shader, so its value is undefined. Therefore the
961 * attribute override we supply doesn't matter.
962 *
963 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
964 * previous shader stage.
965 *
966 * Note that we don't have to worry about the cases where the attribute
967 * is gl_PointCoord or is undergoing point sprite coordinate
968 * replacement, because in those cases, this function isn't called.
969 *
970 * In case (c), we need to program the attribute overrides so that the
971 * primitive ID will be stored in this slot. In every other case, the
972 * attribute override we supply doesn't matter. So just go ahead and
973 * program primitive ID in every case.
974 */
975 attr->ComponentOverrideW = true;
976 attr->ComponentOverrideX = true;
977 attr->ComponentOverrideY = true;
978 attr->ComponentOverrideZ = true;
979 attr->ConstantSource = PRIM_ID;
980 return;
981 }
982
983 /* Compute the location of the attribute relative to urb_entry_read_offset.
984 * Each increment of urb_entry_read_offset represents a 256-bit value, so
985 * it counts for two 128-bit VUE slots.
986 */
987 int source_attr = slot - 2 * urb_entry_read_offset;
988 assert(source_attr >= 0 && source_attr < 32);
989
990 /* If we are doing two-sided color, and the VUE slot following this one
991 * represents a back-facing color, then we need to instruct the SF unit to
992 * do back-facing swizzling.
993 */
994 bool swizzling = two_side_color &&
995 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
996 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
997 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
998 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
999
1000 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1001 if (*max_source_attr < source_attr + swizzling)
1002 *max_source_attr = source_attr + swizzling;
1003
1004 attr->SourceAttribute = source_attr;
1005 if (swizzling)
1006 attr->SwizzleSelect = INPUTATTR_FACING;
1007 }
1008
1009
1010 static void
1011 genX(calculate_attr_overrides)(const struct brw_context *brw,
1012 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1013 uint32_t *point_sprite_enables,
1014 uint32_t *urb_entry_read_length,
1015 uint32_t *urb_entry_read_offset)
1016 {
1017 const struct gl_context *ctx = &brw->ctx;
1018
1019 /* _NEW_POINT */
1020 const struct gl_point_attrib *point = &ctx->Point;
1021
1022 /* BRW_NEW_FRAGMENT_PROGRAM */
1023 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1024
1025 /* BRW_NEW_FS_PROG_DATA */
1026 const struct brw_wm_prog_data *wm_prog_data =
1027 brw_wm_prog_data(brw->wm.base.prog_data);
1028 uint32_t max_source_attr = 0;
1029
1030 *point_sprite_enables = 0;
1031
1032 int first_slot =
1033 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1034 &brw->vue_map_geom_out);
1035
1036 /* Each URB offset packs two varying slots */
1037 assert(first_slot % 2 == 0);
1038 *urb_entry_read_offset = first_slot / 2;
1039
1040 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1041 * description of dw10 Point Sprite Texture Coordinate Enable:
1042 *
1043 * "This field must be programmed to zero when non-point primitives
1044 * are rendered."
1045 *
1046 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1047 * must be programmed to zero when rendering non-point primitives, but
1048 * the IvyBridge PRM does, and if we don't, we get garbage.
1049 *
1050 * This is not required on Haswell, as the hardware ignores this state
1051 * when drawing non-points -- although we do still need to be careful to
1052 * correctly set the attr overrides.
1053 *
1054 * _NEW_POLYGON
1055 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1056 */
1057 bool drawing_points = brw_is_drawing_points(brw);
1058
1059 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1060 int input_index = wm_prog_data->urb_setup[attr];
1061
1062 if (input_index < 0)
1063 continue;
1064
1065 /* _NEW_POINT */
1066 bool point_sprite = false;
1067 if (drawing_points) {
1068 if (point->PointSprite &&
1069 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1070 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1071 point_sprite = true;
1072 }
1073
1074 if (attr == VARYING_SLOT_PNTC)
1075 point_sprite = true;
1076
1077 if (point_sprite)
1078 *point_sprite_enables |= (1 << input_index);
1079 }
1080
1081 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1082 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1083
1084 if (!point_sprite) {
1085 genX(get_attr_override)(&attribute,
1086 &brw->vue_map_geom_out,
1087 *urb_entry_read_offset, attr,
1088 _mesa_vertex_program_two_side_enabled(ctx),
1089 &max_source_attr);
1090 }
1091
1092 /* The hardware can only do the overrides on 16 overrides at a
1093 * time, and the other up to 16 have to be lined up so that the
1094 * input index = the output index. We'll need to do some
1095 * tweaking to make sure that's the case.
1096 */
1097 if (input_index < 16)
1098 attr_overrides[input_index] = attribute;
1099 else
1100 assert(attribute.SourceAttribute == input_index);
1101 }
1102
1103 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1104 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1105 *
1106 * "This field should be set to the minimum length required to read the
1107 * maximum source attribute. The maximum source attribute is indicated
1108 * by the maximum value of the enabled Attribute # Source Attribute if
1109 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1110 * enable is not set.
1111 * read_length = ceiling((max_source_attr + 1) / 2)
1112 *
1113 * [errata] Corruption/Hang possible if length programmed larger than
1114 * recommended"
1115 *
1116 * Similar text exists for Ivy Bridge.
1117 */
1118 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1119 }
1120 #endif
1121
1122 /* ---------------------------------------------------------------------- */
1123
1124 #if GEN_GEN >= 8
1125 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1126 #elif GEN_GEN >= 6
1127 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1128 #else
1129 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1130 #endif
1131
1132 static inline void
1133 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1134 {
1135 struct gl_context *ctx = &brw->ctx;
1136
1137 /* _NEW_BUFFERS */
1138 struct intel_renderbuffer *depth_irb =
1139 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1140
1141 /* _NEW_DEPTH */
1142 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1143
1144 /* _NEW_STENCIL */
1145 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1146 const int b = stencil->_BackFace;
1147
1148 if (depth->Test && depth_irb) {
1149 ds->DepthTestEnable = true;
1150 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1151 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1152 }
1153
1154 if (brw->stencil_enabled) {
1155 ds->StencilTestEnable = true;
1156 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1157 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1158
1159 ds->StencilTestFunction =
1160 intel_translate_compare_func(stencil->Function[0]);
1161 ds->StencilFailOp =
1162 intel_translate_stencil_op(stencil->FailFunc[0]);
1163 ds->StencilPassDepthPassOp =
1164 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1165 ds->StencilPassDepthFailOp =
1166 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1167
1168 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1169
1170 if (brw->stencil_two_sided) {
1171 ds->DoubleSidedStencilEnable = true;
1172 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1173 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1174
1175 ds->BackfaceStencilTestFunction =
1176 intel_translate_compare_func(stencil->Function[b]);
1177 ds->BackfaceStencilFailOp =
1178 intel_translate_stencil_op(stencil->FailFunc[b]);
1179 ds->BackfaceStencilPassDepthPassOp =
1180 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1181 ds->BackfaceStencilPassDepthFailOp =
1182 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1183 }
1184
1185 #if GEN_GEN <= 5 || GEN_GEN >= 9
1186 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1187 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1188 #endif
1189 }
1190 }
1191
1192 #if GEN_GEN >= 6
1193 static void
1194 genX(upload_depth_stencil_state)(struct brw_context *brw)
1195 {
1196 #if GEN_GEN >= 8
1197 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1198 set_depth_stencil_bits(brw, &wmds);
1199 }
1200 #else
1201 uint32_t ds_offset;
1202 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1203 set_depth_stencil_bits(brw, &ds);
1204 }
1205
1206 /* Now upload a pointer to the indirect state */
1207 #if GEN_GEN == 6
1208 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1209 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1210 ptr.DEPTH_STENCIL_STATEChange = true;
1211 }
1212 #else
1213 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1214 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1215 }
1216 #endif
1217 #endif
1218 }
1219
1220 static const struct brw_tracked_state genX(depth_stencil_state) = {
1221 .dirty = {
1222 .mesa = _NEW_BUFFERS |
1223 _NEW_DEPTH |
1224 _NEW_STENCIL,
1225 .brw = BRW_NEW_BLORP |
1226 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1227 : BRW_NEW_BATCH |
1228 BRW_NEW_STATE_BASE_ADDRESS),
1229 },
1230 .emit = genX(upload_depth_stencil_state),
1231 };
1232 #endif
1233
1234 /* ---------------------------------------------------------------------- */
1235
1236 #if GEN_GEN <= 5
1237
1238 static void
1239 genX(upload_clip_state)(struct brw_context *brw)
1240 {
1241 struct gl_context *ctx = &brw->ctx;
1242
1243 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1244 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1245 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1246 clip.GRFRegisterCount =
1247 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1248 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1249 clip.SingleProgramFlow = true;
1250 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1251 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1252
1253 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1254 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1255 clip.DispatchGRFStartRegisterForURBData = 1;
1256 clip.VertexURBEntryReadOffset = 0;
1257
1258 /* BRW_NEW_URB_FENCE */
1259 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1260 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1261
1262 if (brw->urb.nr_clip_entries >= 10) {
1263 /* Half of the URB entries go to each thread, and it has to be an
1264 * even number.
1265 */
1266 assert(brw->urb.nr_clip_entries % 2 == 0);
1267
1268 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1269 * only 2 threads can output VUEs at a time.
1270 */
1271 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1272 } else {
1273 assert(brw->urb.nr_clip_entries >= 5);
1274 clip.MaximumNumberofThreads = 1 - 1;
1275 }
1276
1277 clip.VertexPositionSpace = VPOS_NDCSPACE;
1278 clip.UserClipFlagsMustClipEnable = true;
1279 clip.GuardbandClipTestEnable = true;
1280
1281 clip.ClipperViewportStatePointer =
1282 ro_bo(brw->batch.state_bo, brw->clip.vp_offset);
1283
1284 clip.ScreenSpaceViewportXMin = -1;
1285 clip.ScreenSpaceViewportXMax = 1;
1286 clip.ScreenSpaceViewportYMin = -1;
1287 clip.ScreenSpaceViewportYMax = 1;
1288
1289 clip.ViewportXYClipTestEnable = true;
1290 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1291
1292 /* _NEW_TRANSFORM */
1293 if (GEN_GEN == 5 || GEN_IS_G4X) {
1294 clip.UserClipDistanceClipTestEnableBitmask =
1295 ctx->Transform.ClipPlanesEnabled;
1296 } else {
1297 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1298 * workaround.
1299 */
1300 clip.UserClipDistanceClipTestEnableBitmask =
1301 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1302 }
1303
1304 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1305 clip.APIMode = APIMODE_D3D;
1306 else
1307 clip.APIMode = APIMODE_OGL;
1308
1309 clip.GuardbandClipTestEnable = true;
1310
1311 clip.ClipMode = brw->clip.prog_data->clip_mode;
1312
1313 #if GEN_IS_G4X
1314 clip.NegativeWClipTestEnable = true;
1315 #endif
1316 }
1317 }
1318
1319 const struct brw_tracked_state genX(clip_state) = {
1320 .dirty = {
1321 .mesa = _NEW_TRANSFORM |
1322 _NEW_VIEWPORT,
1323 .brw = BRW_NEW_BATCH |
1324 BRW_NEW_BLORP |
1325 BRW_NEW_CLIP_PROG_DATA |
1326 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1327 BRW_NEW_PROGRAM_CACHE |
1328 BRW_NEW_URB_FENCE,
1329 },
1330 .emit = genX(upload_clip_state),
1331 };
1332
1333 #else
1334
1335 static void
1336 genX(upload_clip_state)(struct brw_context *brw)
1337 {
1338 struct gl_context *ctx = &brw->ctx;
1339
1340 /* _NEW_BUFFERS */
1341 struct gl_framebuffer *fb = ctx->DrawBuffer;
1342
1343 /* BRW_NEW_FS_PROG_DATA */
1344 struct brw_wm_prog_data *wm_prog_data =
1345 brw_wm_prog_data(brw->wm.base.prog_data);
1346
1347 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1348 clip.StatisticsEnable = !brw->meta_in_progress;
1349
1350 if (wm_prog_data->barycentric_interp_modes &
1351 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1352 clip.NonPerspectiveBarycentricEnable = true;
1353
1354 #if GEN_GEN >= 7
1355 clip.EarlyCullEnable = true;
1356 #endif
1357
1358 #if GEN_GEN == 7
1359 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1360
1361 if (ctx->Polygon.CullFlag) {
1362 switch (ctx->Polygon.CullFaceMode) {
1363 case GL_FRONT:
1364 clip.CullMode = CULLMODE_FRONT;
1365 break;
1366 case GL_BACK:
1367 clip.CullMode = CULLMODE_BACK;
1368 break;
1369 case GL_FRONT_AND_BACK:
1370 clip.CullMode = CULLMODE_BOTH;
1371 break;
1372 default:
1373 unreachable("Should not get here: invalid CullFlag");
1374 }
1375 } else {
1376 clip.CullMode = CULLMODE_NONE;
1377 }
1378 #endif
1379
1380 #if GEN_GEN < 8
1381 clip.UserClipDistanceCullTestEnableBitmask =
1382 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1383
1384 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1385 #endif
1386
1387 /* _NEW_LIGHT */
1388 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1389 clip.TriangleStripListProvokingVertexSelect = 0;
1390 clip.TriangleFanProvokingVertexSelect = 1;
1391 clip.LineStripListProvokingVertexSelect = 0;
1392 } else {
1393 clip.TriangleStripListProvokingVertexSelect = 2;
1394 clip.TriangleFanProvokingVertexSelect = 2;
1395 clip.LineStripListProvokingVertexSelect = 1;
1396 }
1397
1398 /* _NEW_TRANSFORM */
1399 clip.UserClipDistanceClipTestEnableBitmask =
1400 ctx->Transform.ClipPlanesEnabled;
1401
1402 #if GEN_GEN >= 8
1403 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1404 #endif
1405
1406 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1407 clip.APIMode = APIMODE_D3D;
1408 else
1409 clip.APIMode = APIMODE_OGL;
1410
1411 clip.GuardbandClipTestEnable = true;
1412
1413 /* BRW_NEW_VIEWPORT_COUNT */
1414 const unsigned viewport_count = brw->clip.viewport_count;
1415
1416 if (ctx->RasterDiscard) {
1417 clip.ClipMode = CLIPMODE_REJECT_ALL;
1418 #if GEN_GEN == 6
1419 perf_debug("Rasterizer discard is currently implemented via the "
1420 "clipper; having the GS not write primitives would "
1421 "likely be faster.\n");
1422 #endif
1423 } else {
1424 clip.ClipMode = CLIPMODE_NORMAL;
1425 }
1426
1427 clip.ClipEnable = true;
1428
1429 /* _NEW_POLYGON,
1430 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1431 */
1432 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1433 clip.ViewportXYClipTestEnable = true;
1434
1435 clip.MinimumPointWidth = 0.125;
1436 clip.MaximumPointWidth = 255.875;
1437 clip.MaximumVPIndex = viewport_count - 1;
1438 if (_mesa_geometric_layers(fb) == 0)
1439 clip.ForceZeroRTAIndexEnable = true;
1440 }
1441 }
1442
1443 static const struct brw_tracked_state genX(clip_state) = {
1444 .dirty = {
1445 .mesa = _NEW_BUFFERS |
1446 _NEW_LIGHT |
1447 _NEW_POLYGON |
1448 _NEW_TRANSFORM,
1449 .brw = BRW_NEW_BLORP |
1450 BRW_NEW_CONTEXT |
1451 BRW_NEW_FS_PROG_DATA |
1452 BRW_NEW_GS_PROG_DATA |
1453 BRW_NEW_VS_PROG_DATA |
1454 BRW_NEW_META_IN_PROGRESS |
1455 BRW_NEW_PRIMITIVE |
1456 BRW_NEW_RASTERIZER_DISCARD |
1457 BRW_NEW_TES_PROG_DATA |
1458 BRW_NEW_VIEWPORT_COUNT,
1459 },
1460 .emit = genX(upload_clip_state),
1461 };
1462 #endif
1463
1464 /* ---------------------------------------------------------------------- */
1465
1466 static void
1467 genX(upload_sf)(struct brw_context *brw)
1468 {
1469 struct gl_context *ctx = &brw->ctx;
1470 float point_size;
1471
1472 #if GEN_GEN <= 7
1473 /* _NEW_BUFFERS */
1474 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1475 UNUSED const bool multisampled_fbo =
1476 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1477 #endif
1478
1479 #if GEN_GEN < 6
1480 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1481
1482 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1483
1484 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1485 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1486 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1487 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1488 sf.DispatchGRFStartRegisterForURBData = 3;
1489 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1490 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1491 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1492 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1493
1494 /* STATE_PREFETCH command description describes this state as being
1495 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1496 * domain.
1497 */
1498 sf.SetupViewportStateOffset =
1499 ro_bo(brw->batch.state_bo, brw->sf.vp_offset);
1500
1501 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1502
1503 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1504 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1505
1506 sf.MaximumNumberofThreads =
1507 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1508
1509 sf.SpritePointEnable = ctx->Point.PointSprite;
1510
1511 sf.DestinationOriginHorizontalBias = 0.5;
1512 sf.DestinationOriginVerticalBias = 0.5;
1513 #else
1514 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1515 sf.StatisticsEnable = true;
1516 #endif
1517 sf.ViewportTransformEnable = true;
1518
1519 #if GEN_GEN == 7
1520 /* _NEW_BUFFERS */
1521 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1522 #endif
1523
1524 #if GEN_GEN <= 7
1525 /* _NEW_POLYGON */
1526 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1527 #if GEN_GEN >= 6
1528 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1529 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1530 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1531
1532 switch (ctx->Polygon.FrontMode) {
1533 case GL_FILL:
1534 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1535 break;
1536 case GL_LINE:
1537 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1538 break;
1539 case GL_POINT:
1540 sf.FrontFaceFillMode = FILL_MODE_POINT;
1541 break;
1542 default:
1543 unreachable("not reached");
1544 }
1545
1546 switch (ctx->Polygon.BackMode) {
1547 case GL_FILL:
1548 sf.BackFaceFillMode = FILL_MODE_SOLID;
1549 break;
1550 case GL_LINE:
1551 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1552 break;
1553 case GL_POINT:
1554 sf.BackFaceFillMode = FILL_MODE_POINT;
1555 break;
1556 default:
1557 unreachable("not reached");
1558 }
1559
1560 if (multisampled_fbo && ctx->Multisample.Enabled)
1561 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1562
1563 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1564 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1565 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1566 #endif
1567
1568 sf.ScissorRectangleEnable = true;
1569
1570 if (ctx->Polygon.CullFlag) {
1571 switch (ctx->Polygon.CullFaceMode) {
1572 case GL_FRONT:
1573 sf.CullMode = CULLMODE_FRONT;
1574 break;
1575 case GL_BACK:
1576 sf.CullMode = CULLMODE_BACK;
1577 break;
1578 case GL_FRONT_AND_BACK:
1579 sf.CullMode = CULLMODE_BOTH;
1580 break;
1581 default:
1582 unreachable("not reached");
1583 }
1584 } else {
1585 sf.CullMode = CULLMODE_NONE;
1586 }
1587
1588 #if GEN_IS_HASWELL
1589 sf.LineStippleEnable = ctx->Line.StippleFlag;
1590 #endif
1591
1592 #endif
1593
1594 /* _NEW_LINE */
1595 #if GEN_GEN == 8
1596 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1597
1598 if (devinfo->is_cherryview)
1599 sf.CHVLineWidth = brw_get_line_width(brw);
1600 else
1601 sf.LineWidth = brw_get_line_width(brw);
1602 #else
1603 sf.LineWidth = brw_get_line_width(brw);
1604 #endif
1605
1606 if (ctx->Line.SmoothFlag) {
1607 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1608 #if GEN_GEN <= 7
1609 sf.AntiAliasingEnable = true;
1610 #endif
1611 }
1612
1613 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1614 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1615 /* Clamp to the hardware limits */
1616 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1617
1618 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1619 if (use_state_point_size(brw))
1620 sf.PointWidthSource = State;
1621
1622 #if GEN_GEN >= 8
1623 /* _NEW_POINT | _NEW_MULTISAMPLE */
1624 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1625 !ctx->Point.PointSprite)
1626 sf.SmoothPointEnable = true;
1627 #endif
1628
1629 #if GEN_IS_G4X || GEN_GEN >= 5
1630 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1631 #endif
1632
1633 /* _NEW_LIGHT */
1634 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1635 sf.TriangleStripListProvokingVertexSelect = 2;
1636 sf.TriangleFanProvokingVertexSelect = 2;
1637 sf.LineStripListProvokingVertexSelect = 1;
1638 } else {
1639 sf.TriangleFanProvokingVertexSelect = 1;
1640 }
1641
1642 #if GEN_GEN == 6
1643 /* BRW_NEW_FS_PROG_DATA */
1644 const struct brw_wm_prog_data *wm_prog_data =
1645 brw_wm_prog_data(brw->wm.base.prog_data);
1646
1647 sf.AttributeSwizzleEnable = true;
1648 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1649
1650 /*
1651 * Window coordinates in an FBO are inverted, which means point
1652 * sprite origin must be inverted, too.
1653 */
1654 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1655 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1656 } else {
1657 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1658 }
1659
1660 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1661 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1662 */
1663 uint32_t urb_entry_read_length;
1664 uint32_t urb_entry_read_offset;
1665 uint32_t point_sprite_enables;
1666 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1667 &urb_entry_read_length,
1668 &urb_entry_read_offset);
1669 sf.VertexURBEntryReadLength = urb_entry_read_length;
1670 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1671 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1672 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1673 #endif
1674 }
1675 }
1676
1677 static const struct brw_tracked_state genX(sf_state) = {
1678 .dirty = {
1679 .mesa = _NEW_LIGHT |
1680 _NEW_LINE |
1681 _NEW_POINT |
1682 _NEW_PROGRAM |
1683 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1684 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1685 .brw = BRW_NEW_BLORP |
1686 BRW_NEW_VUE_MAP_GEOM_OUT |
1687 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1688 BRW_NEW_PROGRAM_CACHE |
1689 BRW_NEW_SF_PROG_DATA |
1690 BRW_NEW_SF_VP |
1691 BRW_NEW_URB_FENCE
1692 : 0) |
1693 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1694 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1695 BRW_NEW_GS_PROG_DATA |
1696 BRW_NEW_PRIMITIVE |
1697 BRW_NEW_TES_PROG_DATA
1698 : 0) |
1699 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1700 BRW_NEW_FRAGMENT_PROGRAM
1701 : 0),
1702 },
1703 .emit = genX(upload_sf),
1704 };
1705
1706 /* ---------------------------------------------------------------------- */
1707
1708 static bool
1709 brw_color_buffer_write_enabled(struct brw_context *brw)
1710 {
1711 struct gl_context *ctx = &brw->ctx;
1712 /* BRW_NEW_FRAGMENT_PROGRAM */
1713 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1714 unsigned i;
1715
1716 /* _NEW_BUFFERS */
1717 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1718 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1719 uint64_t outputs_written = fp->info.outputs_written;
1720
1721 /* _NEW_COLOR */
1722 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1723 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1724 (ctx->Color.ColorMask[i][0] ||
1725 ctx->Color.ColorMask[i][1] ||
1726 ctx->Color.ColorMask[i][2] ||
1727 ctx->Color.ColorMask[i][3])) {
1728 return true;
1729 }
1730 }
1731
1732 return false;
1733 }
1734
1735 static void
1736 genX(upload_wm)(struct brw_context *brw)
1737 {
1738 struct gl_context *ctx = &brw->ctx;
1739
1740 /* BRW_NEW_FS_PROG_DATA */
1741 const struct brw_wm_prog_data *wm_prog_data =
1742 brw_wm_prog_data(brw->wm.base.prog_data);
1743
1744 UNUSED bool writes_depth =
1745 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1746 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1747 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1748
1749 #if GEN_GEN == 6
1750 /* We can't fold this into gen6_upload_wm_push_constants(), because
1751 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1752 * (3DSTATE_CONSTANT_PS [DevSNB]):
1753 *
1754 * "[DevSNB]: This packet must be followed by WM_STATE."
1755 */
1756 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1757 if (wm_prog_data->base.nr_params != 0) {
1758 wmcp.Buffer0Valid = true;
1759 /* Pointer to the WM constant buffer. Covered by the set of
1760 * state flags from gen6_upload_wm_push_constants.
1761 */
1762 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1763 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1764 }
1765 }
1766 #endif
1767
1768 #if GEN_GEN >= 6
1769 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1770 wm.LineAntialiasingRegionWidth = _10pixels;
1771 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1772
1773 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1774 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1775 #else
1776 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1777 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1778 if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1779 /* These two fields should be the same pre-gen6, which is why we
1780 * only have one hardware field to program for both dispatch
1781 * widths.
1782 */
1783 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1784 wm_prog_data->dispatch_grf_start_reg_2);
1785 }
1786
1787 if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1788 wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1789
1790 if (stage_state->sampler_count)
1791 wm.SamplerStatePointer =
1792 ro_bo(brw->batch.state_bo, stage_state->sampler_offset);
1793 #if GEN_GEN == 5
1794 if (wm_prog_data->prog_offset_2)
1795 wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1796 #endif
1797
1798 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1799 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1800 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1801 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1802 wm.EarlyDepthTestEnable = true;
1803 wm.LineAntialiasingRegionWidth = _05pixels;
1804 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1805
1806 /* _NEW_POLYGON */
1807 if (ctx->Polygon.OffsetFill) {
1808 wm.GlobalDepthOffsetEnable = true;
1809 /* Something weird going on with legacy_global_depth_bias,
1810 * offset_constant, scaling and MRD. This value passes glean
1811 * but gives some odd results elsewere (eg. the
1812 * quad-offset-units test).
1813 */
1814 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1815
1816 /* This is the only value that passes glean:
1817 */
1818 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1819 }
1820
1821 wm.DepthCoefficientURBReadOffset = 1;
1822 #endif
1823
1824 /* BRW_NEW_STATS_WM */
1825 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1826
1827 #if GEN_GEN < 7
1828 if (wm_prog_data->base.use_alt_mode)
1829 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1830
1831 wm.SamplerCount = GEN_GEN == 5 ?
1832 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1833
1834 wm.BindingTableEntryCount =
1835 wm_prog_data->base.binding_table.size_bytes / 4;
1836 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1837 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1838 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1839 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1840 wm_prog_data->base.dispatch_grf_start_reg;
1841 if (GEN_GEN == 6 ||
1842 wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1843 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1844 }
1845
1846 #if GEN_GEN >= 5
1847 if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1848 wm.KernelStartPointer2 =
1849 KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1850 }
1851 #endif
1852
1853 #if GEN_GEN == 6
1854 wm.DualSourceBlendEnable =
1855 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1856 ctx->Color.Blend[0]._UsesDualSrc;
1857 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1858 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1859
1860 /* From the SNB PRM, volume 2 part 1, page 281:
1861 * "If the PS kernel does not need the Position XY Offsets
1862 * to compute a Position XY value, then this field should be
1863 * programmed to POSOFFSET_NONE."
1864 *
1865 * "SW Recommendation: If the PS kernel needs the Position Offsets
1866 * to compute a Position XY value, this field should match Position
1867 * ZW Interpolation Mode to ensure a consistent position.xyzw
1868 * computation."
1869 * We only require XY sample offsets. So, this recommendation doesn't
1870 * look useful at the moment. We might need this in future.
1871 */
1872 if (wm_prog_data->uses_pos_offset)
1873 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1874 else
1875 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1876
1877 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1878 wm_prog_data->dispatch_grf_start_reg_2;
1879 #endif
1880
1881 if (wm_prog_data->base.total_scratch) {
1882 wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1883 wm.PerThreadScratchSpace =
1884 ffs(stage_state->per_thread_scratch) - 11;
1885 }
1886
1887 wm.PixelShaderComputedDepth = writes_depth;
1888 #endif
1889
1890 /* _NEW_LINE */
1891 wm.LineStippleEnable = ctx->Line.StippleFlag;
1892
1893 /* _NEW_POLYGON */
1894 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1895
1896 #if GEN_GEN < 8
1897
1898 #if GEN_GEN >= 6
1899 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1900
1901 /* _NEW_BUFFERS */
1902 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1903
1904 if (multisampled_fbo) {
1905 /* _NEW_MULTISAMPLE */
1906 if (ctx->Multisample.Enabled)
1907 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1908 else
1909 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1910
1911 if (wm_prog_data->persample_dispatch)
1912 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1913 else
1914 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1915 } else {
1916 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1917 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1918 }
1919 #endif
1920 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1921 if (wm_prog_data->uses_kill ||
1922 _mesa_is_alpha_test_enabled(ctx) ||
1923 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1924 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1925 wm.PixelShaderKillsPixel = true;
1926 }
1927
1928 /* _NEW_BUFFERS | _NEW_COLOR */
1929 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1930 wm.PixelShaderKillsPixel ||
1931 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1932 wm.ThreadDispatchEnable = true;
1933 }
1934
1935 #if GEN_GEN >= 7
1936 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1937 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1938 #endif
1939
1940 /* The "UAV access enable" bits are unnecessary on HSW because they only
1941 * seem to have an effect on the HW-assisted coherency mechanism which we
1942 * don't need, and the rasterization-related UAV_ONLY flag and the
1943 * DISPATCH_ENABLE bit can be set independently from it.
1944 * C.f. gen8_upload_ps_extra().
1945 *
1946 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1947 * _NEW_COLOR
1948 */
1949 #if GEN_IS_HASWELL
1950 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1951 wm_prog_data->has_side_effects)
1952 wm.PSUAVonly = ON;
1953 #endif
1954 #endif
1955
1956 #if GEN_GEN >= 7
1957 /* BRW_NEW_FS_PROG_DATA */
1958 if (wm_prog_data->early_fragment_tests)
1959 wm.EarlyDepthStencilControl = EDSC_PREPS;
1960 else if (wm_prog_data->has_side_effects)
1961 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1962 #endif
1963 }
1964
1965 #if GEN_GEN <= 5
1966 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1967 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1968 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1969 }
1970
1971 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
1972 }
1973 #endif
1974 }
1975
1976 static const struct brw_tracked_state genX(wm_state) = {
1977 .dirty = {
1978 .mesa = _NEW_LINE |
1979 _NEW_POLYGON |
1980 (GEN_GEN < 8 ? _NEW_BUFFERS |
1981 _NEW_COLOR :
1982 0) |
1983 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
1984 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
1985 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
1986 .brw = BRW_NEW_BLORP |
1987 BRW_NEW_FS_PROG_DATA |
1988 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1989 BRW_NEW_FRAGMENT_PROGRAM |
1990 BRW_NEW_PROGRAM_CACHE |
1991 BRW_NEW_SAMPLER_STATE_TABLE |
1992 BRW_NEW_STATS_WM
1993 : 0) |
1994 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1995 },
1996 .emit = genX(upload_wm),
1997 };
1998
1999 /* ---------------------------------------------------------------------- */
2000
2001 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2002 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2003 pkt.SamplerCount = \
2004 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2005 pkt.BindingTableEntryCount = \
2006 stage_prog_data->binding_table.size_bytes / 4; \
2007 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2008 \
2009 if (stage_prog_data->total_scratch) { \
2010 pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0); \
2011 pkt.PerThreadScratchSpace = \
2012 ffs(stage_state->per_thread_scratch) - 11; \
2013 } \
2014 \
2015 pkt.DispatchGRFStartRegisterForURBData = \
2016 stage_prog_data->dispatch_grf_start_reg; \
2017 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2018 pkt.prefix##URBEntryReadOffset = 0; \
2019 \
2020 pkt.StatisticsEnable = true; \
2021 pkt.Enable = true;
2022
2023 static void
2024 genX(upload_vs_state)(struct brw_context *brw)
2025 {
2026 UNUSED struct gl_context *ctx = &brw->ctx;
2027 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2028 struct brw_stage_state *stage_state = &brw->vs.base;
2029
2030 /* BRW_NEW_VS_PROG_DATA */
2031 const struct brw_vue_prog_data *vue_prog_data =
2032 brw_vue_prog_data(brw->vs.base.prog_data);
2033 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2034
2035 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2036 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2037
2038 #if GEN_GEN == 6
2039 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2040 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2041 *
2042 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2043 * command that causes the VS Function Enable to toggle. Pipeline
2044 * flush can be executed by sending a PIPE_CONTROL command with CS
2045 * stall bit set and a post sync operation.
2046 *
2047 * We've already done such a flush at the start of state upload, so we
2048 * don't need to do another one here.
2049 */
2050 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2051 if (stage_state->push_const_size != 0) {
2052 cvs.Buffer0Valid = true;
2053 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2054 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2055 }
2056 }
2057 #endif
2058
2059 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2060 gen7_emit_vs_workaround_flush(brw);
2061
2062 #if GEN_GEN >= 6
2063 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2064 #else
2065 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2066 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2067 #endif
2068 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2069
2070 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2071
2072 #if GEN_GEN < 6
2073 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2074 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2075 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2076
2077 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2078 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2079
2080 vs.MaximumNumberofThreads =
2081 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2082
2083 vs.StatisticsEnable = false;
2084 vs.SamplerStatePointer =
2085 ro_bo(brw->batch.state_bo, stage_state->sampler_offset);
2086 #endif
2087
2088 #if GEN_GEN == 5
2089 /* Force single program flow on Ironlake. We cannot reliably get
2090 * all applications working without it. See:
2091 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2092 *
2093 * The most notable and reliably failing application is the Humus
2094 * demo "CelShading"
2095 */
2096 vs.SingleProgramFlow = true;
2097 vs.SamplerCount = 0; /* hardware requirement */
2098 #endif
2099
2100 #if GEN_GEN >= 8
2101 vs.SIMD8DispatchEnable =
2102 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2103
2104 vs.UserClipDistanceCullTestEnableBitmask =
2105 vue_prog_data->cull_distance_mask;
2106 #endif
2107 }
2108
2109 #if GEN_GEN == 6
2110 /* Based on my reading of the simulator, the VS constants don't get
2111 * pulled into the VS FF unit until an appropriate pipeline flush
2112 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2113 * references to them into a little FIFO. The flushes are common,
2114 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2115 * the primitive to use the wrong constants. Then the FIFO
2116 * containing the constant setup gets added to again on the next
2117 * constants change, and eventually when a flush does happen the
2118 * unit is overwhelmed by constant changes and dies.
2119 *
2120 * To avoid this, send a PIPE_CONTROL down the line that will
2121 * update the unit immediately loading the constants. The flush
2122 * type bits here were those set by the STATE_BASE_ADDRESS whose
2123 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2124 * bug reports that led to this workaround, and may be more than
2125 * what is strictly required to avoid the issue.
2126 */
2127 brw_emit_pipe_control_flush(brw,
2128 PIPE_CONTROL_DEPTH_STALL |
2129 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2130 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2131 #endif
2132 }
2133
2134 static const struct brw_tracked_state genX(vs_state) = {
2135 .dirty = {
2136 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2137 .brw = BRW_NEW_BATCH |
2138 BRW_NEW_BLORP |
2139 BRW_NEW_CONTEXT |
2140 BRW_NEW_VS_PROG_DATA |
2141 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2142 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2143 BRW_NEW_PROGRAM_CACHE |
2144 BRW_NEW_SAMPLER_STATE_TABLE |
2145 BRW_NEW_URB_FENCE
2146 : 0),
2147 },
2148 .emit = genX(upload_vs_state),
2149 };
2150
2151 /* ---------------------------------------------------------------------- */
2152
2153 static void
2154 genX(upload_cc_viewport)(struct brw_context *brw)
2155 {
2156 struct gl_context *ctx = &brw->ctx;
2157
2158 /* BRW_NEW_VIEWPORT_COUNT */
2159 const unsigned viewport_count = brw->clip.viewport_count;
2160
2161 struct GENX(CC_VIEWPORT) ccv;
2162 uint32_t cc_vp_offset;
2163 uint32_t *cc_map =
2164 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2165 32, &cc_vp_offset);
2166
2167 for (unsigned i = 0; i < viewport_count; i++) {
2168 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2169 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2170 if (ctx->Transform.DepthClamp) {
2171 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2172 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2173 } else {
2174 ccv.MinimumDepth = 0.0;
2175 ccv.MaximumDepth = 1.0;
2176 }
2177 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2178 cc_map += GENX(CC_VIEWPORT_length);
2179 }
2180
2181 #if GEN_GEN >= 7
2182 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2183 ptr.CCViewportPointer = cc_vp_offset;
2184 }
2185 #elif GEN_GEN == 6
2186 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2187 vp.CCViewportStateChange = 1;
2188 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2189 }
2190 #else
2191 brw->cc.vp_offset = cc_vp_offset;
2192 ctx->NewDriverState |= BRW_NEW_CC_VP;
2193 #endif
2194 }
2195
2196 const struct brw_tracked_state genX(cc_vp) = {
2197 .dirty = {
2198 .mesa = _NEW_TRANSFORM |
2199 _NEW_VIEWPORT,
2200 .brw = BRW_NEW_BATCH |
2201 BRW_NEW_BLORP |
2202 BRW_NEW_VIEWPORT_COUNT,
2203 },
2204 .emit = genX(upload_cc_viewport)
2205 };
2206
2207 /* ---------------------------------------------------------------------- */
2208
2209 static void
2210 set_scissor_bits(const struct gl_context *ctx, int i,
2211 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2212 struct GENX(SCISSOR_RECT) *sc)
2213 {
2214 int bbox[4];
2215
2216 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2217 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2218 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2219 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2220 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2221
2222 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2223 /* If the scissor was out of bounds and got clamped to 0 width/height
2224 * at the bounds, the subtraction of 1 from maximums could produce a
2225 * negative number and thus not clip anything. Instead, just provide
2226 * a min > max scissor inside the bounds, which produces the expected
2227 * no rendering.
2228 */
2229 sc->ScissorRectangleXMin = 1;
2230 sc->ScissorRectangleXMax = 0;
2231 sc->ScissorRectangleYMin = 1;
2232 sc->ScissorRectangleYMax = 0;
2233 } else if (render_to_fbo) {
2234 /* texmemory: Y=0=bottom */
2235 sc->ScissorRectangleXMin = bbox[0];
2236 sc->ScissorRectangleXMax = bbox[1] - 1;
2237 sc->ScissorRectangleYMin = bbox[2];
2238 sc->ScissorRectangleYMax = bbox[3] - 1;
2239 } else {
2240 /* memory: Y=0=top */
2241 sc->ScissorRectangleXMin = bbox[0];
2242 sc->ScissorRectangleXMax = bbox[1] - 1;
2243 sc->ScissorRectangleYMin = fb_height - bbox[3];
2244 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2245 }
2246 }
2247
2248 #if GEN_GEN >= 6
2249 static void
2250 genX(upload_scissor_state)(struct brw_context *brw)
2251 {
2252 struct gl_context *ctx = &brw->ctx;
2253 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2254 struct GENX(SCISSOR_RECT) scissor;
2255 uint32_t scissor_state_offset;
2256 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2257 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2258 uint32_t *scissor_map;
2259
2260 /* BRW_NEW_VIEWPORT_COUNT */
2261 const unsigned viewport_count = brw->clip.viewport_count;
2262
2263 scissor_map = brw_state_batch(
2264 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2265 32, &scissor_state_offset);
2266
2267 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2268
2269 /* The scissor only needs to handle the intersection of drawable and
2270 * scissor rect. Clipping to the boundaries of static shared buffers
2271 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2272 *
2273 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2274 * inclusive but max is exclusive.
2275 */
2276 for (unsigned i = 0; i < viewport_count; i++) {
2277 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2278 GENX(SCISSOR_RECT_pack)(
2279 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2280 }
2281
2282 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2283 ptr.ScissorRectPointer = scissor_state_offset;
2284 }
2285 }
2286
2287 static const struct brw_tracked_state genX(scissor_state) = {
2288 .dirty = {
2289 .mesa = _NEW_BUFFERS |
2290 _NEW_SCISSOR |
2291 _NEW_VIEWPORT,
2292 .brw = BRW_NEW_BATCH |
2293 BRW_NEW_BLORP |
2294 BRW_NEW_VIEWPORT_COUNT,
2295 },
2296 .emit = genX(upload_scissor_state),
2297 };
2298 #endif
2299
2300 /* ---------------------------------------------------------------------- */
2301
2302 static void
2303 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2304 float m00, float m11, float m30, float m31,
2305 float *xmin, float *xmax,
2306 float *ymin, float *ymax)
2307 {
2308 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2309 * Strips and Fans documentation:
2310 *
2311 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2312 * fixed-point "guardband" range supported by the rasterization hardware"
2313 *
2314 * and
2315 *
2316 * "In almost all circumstances, if an object’s vertices are actually
2317 * modified by this clamping (i.e., had X or Y coordinates outside of
2318 * the guardband extent the rendered object will not match the intended
2319 * result. Therefore software should take steps to ensure that this does
2320 * not happen - e.g., by clipping objects such that they do not exceed
2321 * these limits after the Drawing Rectangle is applied."
2322 *
2323 * I believe the fundamental restriction is that the rasterizer (in
2324 * the SF/WM stages) have a limit on the number of pixels that can be
2325 * rasterized. We need to ensure any coordinates beyond the rasterizer
2326 * limit are handled by the clipper. So effectively that limit becomes
2327 * the clipper's guardband size.
2328 *
2329 * It goes on to say:
2330 *
2331 * "In addition, in order to be correctly rendered, objects must have a
2332 * screenspace bounding box not exceeding 8K in the X or Y direction.
2333 * This additional restriction must also be comprehended by software,
2334 * i.e., enforced by use of clipping."
2335 *
2336 * This makes no sense. Gen7+ hardware supports 16K render targets,
2337 * and you definitely need to be able to draw polygons that fill the
2338 * surface. Our assumption is that the rasterizer was limited to 8K
2339 * on Sandybridge, which only supports 8K surfaces, and it was actually
2340 * increased to 16K on Ivybridge and later.
2341 *
2342 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2343 */
2344 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2345
2346 if (m00 != 0 && m11 != 0) {
2347 /* First, we compute the screen-space render area */
2348 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2349 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2350 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2351 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2352
2353 /* We want the guardband to be centered on that */
2354 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2355 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2356 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2357 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2358
2359 /* Now we need it in native device coordinates */
2360 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2361 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2362 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2363 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2364
2365 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2366 * flipped upside-down. X should be fine though.
2367 */
2368 assert(ndc_gb_xmin <= ndc_gb_xmax);
2369 *xmin = ndc_gb_xmin;
2370 *xmax = ndc_gb_xmax;
2371 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2372 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2373 } else {
2374 /* The viewport scales to 0, so nothing will be rendered. */
2375 *xmin = 0.0f;
2376 *xmax = 0.0f;
2377 *ymin = 0.0f;
2378 *ymax = 0.0f;
2379 }
2380 }
2381
2382 static void
2383 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2384 {
2385 struct gl_context *ctx = &brw->ctx;
2386 float y_scale, y_bias;
2387
2388 /* BRW_NEW_VIEWPORT_COUNT */
2389 const unsigned viewport_count = brw->clip.viewport_count;
2390
2391 /* _NEW_BUFFERS */
2392 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2393 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2394 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2395
2396 #if GEN_GEN >= 7
2397 #define clv sfv
2398 struct GENX(SF_CLIP_VIEWPORT) sfv;
2399 uint32_t sf_clip_vp_offset;
2400 uint32_t *sf_clip_map =
2401 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2402 64, &sf_clip_vp_offset);
2403 #else
2404 struct GENX(SF_VIEWPORT) sfv;
2405 struct GENX(CLIP_VIEWPORT) clv;
2406 uint32_t sf_vp_offset, clip_vp_offset;
2407 uint32_t *sf_map =
2408 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2409 32, &sf_vp_offset);
2410 uint32_t *clip_map =
2411 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2412 32, &clip_vp_offset);
2413 #endif
2414
2415 /* _NEW_BUFFERS */
2416 if (render_to_fbo) {
2417 y_scale = 1.0;
2418 y_bias = 0;
2419 } else {
2420 y_scale = -1.0;
2421 y_bias = (float)fb_height;
2422 }
2423
2424 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2425 /* _NEW_VIEWPORT: Guardband Clipping */
2426 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2427 _mesa_get_viewport_xform(ctx, i, scale, translate);
2428
2429 sfv.ViewportMatrixElementm00 = scale[0];
2430 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2431 sfv.ViewportMatrixElementm22 = scale[2],
2432 sfv.ViewportMatrixElementm30 = translate[0],
2433 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2434 sfv.ViewportMatrixElementm32 = translate[2],
2435 brw_calculate_guardband_size(fb_width, fb_height,
2436 sfv.ViewportMatrixElementm00,
2437 sfv.ViewportMatrixElementm11,
2438 sfv.ViewportMatrixElementm30,
2439 sfv.ViewportMatrixElementm31,
2440 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2441
2442
2443 clv.XMinClipGuardband = gb_xmin;
2444 clv.XMaxClipGuardband = gb_xmax;
2445 clv.YMinClipGuardband = gb_ymin;
2446 clv.YMaxClipGuardband = gb_ymax;
2447
2448 #if GEN_GEN < 6
2449 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2450 &sfv.ScissorRectangle);
2451 #elif GEN_GEN >= 8
2452 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2453 * The hardware will take the intersection of the drawing rectangle,
2454 * scissor rectangle, and the viewport extents. We don't need to be
2455 * smart, and can therefore just program the viewport extents.
2456 */
2457 const float viewport_Xmax =
2458 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2459 const float viewport_Ymax =
2460 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2461
2462 if (render_to_fbo) {
2463 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2464 sfv.XMaxViewPort = viewport_Xmax - 1;
2465 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2466 sfv.YMaxViewPort = viewport_Ymax - 1;
2467 } else {
2468 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2469 sfv.XMaxViewPort = viewport_Xmax - 1;
2470 sfv.YMinViewPort = fb_height - viewport_Ymax;
2471 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2472 }
2473 #endif
2474
2475 #if GEN_GEN >= 7
2476 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2477 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2478 #else
2479 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2480 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2481 sf_map += GENX(SF_VIEWPORT_length);
2482 clip_map += GENX(CLIP_VIEWPORT_length);
2483 #endif
2484 }
2485
2486 #if GEN_GEN >= 7
2487 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2488 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2489 }
2490 #elif GEN_GEN == 6
2491 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2492 vp.SFViewportStateChange = 1;
2493 vp.CLIPViewportStateChange = 1;
2494 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2495 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2496 }
2497 #else
2498 brw->sf.vp_offset = sf_vp_offset;
2499 brw->clip.vp_offset = clip_vp_offset;
2500 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2501 #endif
2502 }
2503
2504 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2505 .dirty = {
2506 .mesa = _NEW_BUFFERS |
2507 _NEW_VIEWPORT |
2508 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2509 .brw = BRW_NEW_BATCH |
2510 BRW_NEW_BLORP |
2511 BRW_NEW_VIEWPORT_COUNT,
2512 },
2513 .emit = genX(upload_sf_clip_viewport),
2514 };
2515
2516 /* ---------------------------------------------------------------------- */
2517
2518 static void
2519 genX(upload_gs_state)(struct brw_context *brw)
2520 {
2521 UNUSED struct gl_context *ctx = &brw->ctx;
2522 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2523 const struct brw_stage_state *stage_state = &brw->gs.base;
2524 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2525 /* BRW_NEW_GEOMETRY_PROGRAM */
2526 bool active = GEN_GEN >= 6 && gs_prog;
2527
2528 /* BRW_NEW_GS_PROG_DATA */
2529 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2530 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2531 brw_vue_prog_data(stage_prog_data);
2532 #if GEN_GEN >= 7
2533 const struct brw_gs_prog_data *gs_prog_data =
2534 brw_gs_prog_data(stage_prog_data);
2535 #endif
2536
2537 #if GEN_GEN == 6
2538 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2539 if (active && stage_state->push_const_size != 0) {
2540 cgs.Buffer0Valid = true;
2541 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2542 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2543 }
2544 }
2545 #endif
2546
2547 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2548 /**
2549 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2550 * Geometry > Geometry Shader > State:
2551 *
2552 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2553 * whole fixed function pipeline when the GS enable changes value in
2554 * the 3DSTATE_GS."
2555 *
2556 * The hardware architects have clarified that in this context "flush the
2557 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2558 * Stall" bit set.
2559 */
2560 if (devinfo->gt == 2 && brw->gs.enabled != active)
2561 gen7_emit_cs_stall_flush(brw);
2562 #endif
2563
2564 #if GEN_GEN >= 6
2565 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2566 #else
2567 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2568 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2569 #endif
2570
2571 #if GEN_GEN >= 6
2572 if (active) {
2573 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2574
2575 #if GEN_GEN >= 7
2576 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2577 gs.OutputTopology = gs_prog_data->output_topology;
2578 gs.ControlDataHeaderSize =
2579 gs_prog_data->control_data_header_size_hwords;
2580
2581 gs.InstanceControl = gs_prog_data->invocations - 1;
2582 gs.DispatchMode = vue_prog_data->dispatch_mode;
2583
2584 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2585
2586 gs.ControlDataFormat = gs_prog_data->control_data_format;
2587 #endif
2588
2589 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2590 * Ivy Bridge and Haswell.
2591 *
2592 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2593 * strip to be delivered to the geometry shader in an order that does
2594 * not strictly follow the OpenGL spec, but preserves triangle
2595 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2596 * the geometry shader sees triangles:
2597 *
2598 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2599 *
2600 * (Clearing the bit is even worse, because it fails to preserve
2601 * orientation).
2602 *
2603 * Triangle strips with adjacency always ordered in a way that preserves
2604 * triangle orientation but does not strictly follow the OpenGL spec,
2605 * regardless of the setting of this bit.
2606 *
2607 * On Haswell, both triangle strips and triangle strips with adjacency
2608 * are always ordered in a way that preserves triangle orientation.
2609 * Setting this bit causes the ordering to strictly follow the OpenGL
2610 * spec.
2611 *
2612 * So in either case we want to set the bit. Unfortunately on Ivy
2613 * Bridge this will get the order close to correct but not perfect.
2614 */
2615 gs.ReorderMode = TRAILING;
2616 gs.MaximumNumberofThreads =
2617 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2618 : (devinfo->max_gs_threads - 1);
2619
2620 #if GEN_GEN < 7
2621 gs.SOStatisticsEnable = true;
2622 if (gs_prog->info.has_transform_feedback_varyings)
2623 gs.SVBIPayloadEnable = true;
2624
2625 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2626 * was previously done for gen6.
2627 *
2628 * TODO: test with both disabled to see if the HW is behaving
2629 * as expected, like in gen7.
2630 */
2631 gs.SingleProgramFlow = true;
2632 gs.VectorMaskEnable = true;
2633 #endif
2634
2635 #if GEN_GEN >= 8
2636 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2637
2638 if (gs_prog_data->static_vertex_count != -1) {
2639 gs.StaticOutput = true;
2640 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2641 }
2642 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2643
2644 gs.UserClipDistanceCullTestEnableBitmask =
2645 vue_prog_data->cull_distance_mask;
2646
2647 const int urb_entry_write_offset = 1;
2648 const uint32_t urb_entry_output_length =
2649 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2650 urb_entry_write_offset;
2651
2652 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2653 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2654 #endif
2655 }
2656 #endif
2657
2658 #if GEN_GEN <= 6
2659 if (!active && brw->ff_gs.prog_active) {
2660 /* In gen6, transform feedback for the VS stage is done with an
2661 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2662 * for this.
2663 */
2664 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2665 gs.SingleProgramFlow = true;
2666 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2667 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2668
2669 #if GEN_GEN <= 5
2670 gs.GRFRegisterCount =
2671 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2672 /* BRW_NEW_URB_FENCE */
2673 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2674 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2675 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2676 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2677 #else
2678 gs.Enable = true;
2679 gs.VectorMaskEnable = true;
2680 gs.SVBIPayloadEnable = true;
2681 gs.SVBIPostIncrementEnable = true;
2682 gs.SVBIPostIncrementValue =
2683 brw->ff_gs.prog_data->svbi_postincrement_value;
2684 gs.SOStatisticsEnable = true;
2685 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2686 #endif
2687 }
2688 #endif
2689 if (!active && !brw->ff_gs.prog_active) {
2690 #if GEN_GEN < 8
2691 gs.DispatchGRFStartRegisterForURBData = 1;
2692 #if GEN_GEN >= 7
2693 gs.IncludeVertexHandles = true;
2694 #endif
2695 #endif
2696 }
2697
2698 #if GEN_GEN >= 6
2699 gs.StatisticsEnable = true;
2700 #endif
2701 #if GEN_GEN == 5 || GEN_GEN == 6
2702 gs.RenderingEnabled = true;
2703 #endif
2704 #if GEN_GEN <= 5
2705 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2706 #endif
2707 }
2708
2709 #if GEN_GEN == 6
2710 brw->gs.enabled = active;
2711 #endif
2712 }
2713
2714 static const struct brw_tracked_state genX(gs_state) = {
2715 .dirty = {
2716 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2717 .brw = BRW_NEW_BATCH |
2718 BRW_NEW_BLORP |
2719 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2720 BRW_NEW_PROGRAM_CACHE |
2721 BRW_NEW_URB_FENCE |
2722 BRW_NEW_VIEWPORT_COUNT
2723 : 0) |
2724 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2725 BRW_NEW_GEOMETRY_PROGRAM |
2726 BRW_NEW_GS_PROG_DATA
2727 : 0) |
2728 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2729 },
2730 .emit = genX(upload_gs_state),
2731 };
2732
2733 /* ---------------------------------------------------------------------- */
2734
2735 UNUSED static GLenum
2736 fix_dual_blend_alpha_to_one(GLenum function)
2737 {
2738 switch (function) {
2739 case GL_SRC1_ALPHA:
2740 return GL_ONE;
2741
2742 case GL_ONE_MINUS_SRC1_ALPHA:
2743 return GL_ZERO;
2744 }
2745
2746 return function;
2747 }
2748
2749 #define blend_factor(x) brw_translate_blend_factor(x)
2750 #define blend_eqn(x) brw_translate_blend_equation(x)
2751
2752 /**
2753 * Modify blend function to force destination alpha to 1.0
2754 *
2755 * If \c function specifies a blend function that uses destination alpha,
2756 * replace it with a function that hard-wires destination alpha to 1.0. This
2757 * is used when rendering to xRGB targets.
2758 */
2759 static GLenum
2760 brw_fix_xRGB_alpha(GLenum function)
2761 {
2762 switch (function) {
2763 case GL_DST_ALPHA:
2764 return GL_ONE;
2765
2766 case GL_ONE_MINUS_DST_ALPHA:
2767 case GL_SRC_ALPHA_SATURATE:
2768 return GL_ZERO;
2769 }
2770
2771 return function;
2772 }
2773
2774 #if GEN_GEN >= 6
2775 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2776 #else
2777 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2778 #endif
2779
2780 UNUSED static bool
2781 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2782 bool alpha_to_one)
2783 {
2784 struct gl_context *ctx = &brw->ctx;
2785
2786 /* _NEW_BUFFERS */
2787 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2788
2789 bool independent_alpha_blend = false;
2790
2791 /* Used for implementing the following bit of GL_EXT_texture_integer:
2792 * "Per-fragment operations that require floating-point color
2793 * components, including multisample alpha operations, alpha test,
2794 * blending, and dithering, have no effect when the corresponding
2795 * colors are written to an integer color buffer."
2796 */
2797 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2798
2799 const unsigned blend_enabled = GEN_GEN >= 6 ?
2800 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2801
2802 /* _NEW_COLOR */
2803 if (ctx->Color.ColorLogicOpEnabled) {
2804 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2805 : GL_UNSIGNED_NORMALIZED;
2806 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2807 rb_type != GL_UNSIGNED_NORMALIZED &&
2808 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2809 "renderbuffer\n",
2810 _mesa_enum_to_string(ctx->Color.LogicOp),
2811 _mesa_enum_to_string(rb_type));
2812 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2813 entry->LogicOpEnable = true;
2814 entry->LogicOpFunction =
2815 intel_translate_logic_op(ctx->Color.LogicOp);
2816 }
2817 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2818 && (GEN_GEN <= 5 || !integer)) {
2819 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2820 GLenum eqA = ctx->Color.Blend[i].EquationA;
2821 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2822 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2823 GLenum srcA = ctx->Color.Blend[i].SrcA;
2824 GLenum dstA = ctx->Color.Blend[i].DstA;
2825
2826 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2827 srcRGB = dstRGB = GL_ONE;
2828
2829 if (eqA == GL_MIN || eqA == GL_MAX)
2830 srcA = dstA = GL_ONE;
2831
2832 /* Due to hardware limitations, the destination may have information
2833 * in an alpha channel even when the format specifies no alpha
2834 * channel. In order to avoid getting any incorrect blending due to
2835 * that alpha channel, coerce the blend factors to values that will
2836 * not read the alpha channel, but will instead use the correct
2837 * implicit value for alpha.
2838 */
2839 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2840 GL_TEXTURE_ALPHA_TYPE)) {
2841 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2842 srcA = brw_fix_xRGB_alpha(srcA);
2843 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2844 dstA = brw_fix_xRGB_alpha(dstA);
2845 }
2846
2847 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2848 * "If Dual Source Blending is enabled, this bit must be disabled."
2849 *
2850 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2851 * and leave it enabled anyway.
2852 */
2853 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2854 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2855 srcA = fix_dual_blend_alpha_to_one(srcA);
2856 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2857 dstA = fix_dual_blend_alpha_to_one(dstA);
2858 }
2859
2860 entry->ColorBufferBlendEnable = true;
2861 entry->DestinationBlendFactor = blend_factor(dstRGB);
2862 entry->SourceBlendFactor = blend_factor(srcRGB);
2863 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2864 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2865 entry->ColorBlendFunction = blend_eqn(eqRGB);
2866 entry->AlphaBlendFunction = blend_eqn(eqA);
2867
2868 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2869 independent_alpha_blend = true;
2870 }
2871
2872 return independent_alpha_blend;
2873 }
2874
2875 #if GEN_GEN >= 6
2876 static void
2877 genX(upload_blend_state)(struct brw_context *brw)
2878 {
2879 struct gl_context *ctx = &brw->ctx;
2880 int size;
2881
2882 /* We need at least one BLEND_STATE written, because we might do
2883 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2884 * for computed depth or alpha test), which will do an FB write
2885 * with render target 0, which will reference BLEND_STATE[0] for
2886 * alpha test enable.
2887 */
2888 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2889 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2890 nr_draw_buffers = 1;
2891
2892 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2893 #if GEN_GEN >= 8
2894 size += GENX(BLEND_STATE_length) * 4;
2895 #endif
2896
2897 uint32_t *blend_map;
2898 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2899
2900 #if GEN_GEN >= 8
2901 struct GENX(BLEND_STATE) blend = { 0 };
2902 {
2903 #else
2904 for (int i = 0; i < nr_draw_buffers; i++) {
2905 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2906 #define blend entry
2907 #endif
2908 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2909 * "If drawbuffer zero is not NONE and the buffer it references has an
2910 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2911 * operations are skipped."
2912 */
2913 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2914 /* _NEW_MULTISAMPLE */
2915 if (_mesa_is_multisample_enabled(ctx)) {
2916 if (ctx->Multisample.SampleAlphaToCoverage) {
2917 blend.AlphaToCoverageEnable = true;
2918 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2919 }
2920 if (ctx->Multisample.SampleAlphaToOne)
2921 blend.AlphaToOneEnable = true;
2922 }
2923
2924 /* _NEW_COLOR */
2925 if (ctx->Color.AlphaEnabled) {
2926 blend.AlphaTestEnable = true;
2927 blend.AlphaTestFunction =
2928 intel_translate_compare_func(ctx->Color.AlphaFunc);
2929 }
2930
2931 if (ctx->Color.DitherFlag) {
2932 blend.ColorDitherEnable = true;
2933 }
2934 }
2935
2936 #if GEN_GEN >= 8
2937 for (int i = 0; i < nr_draw_buffers; i++) {
2938 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2939 #else
2940 {
2941 #endif
2942 blend.IndependentAlphaBlendEnable =
2943 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2944 blend.IndependentAlphaBlendEnable;
2945
2946 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2947 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2948 *
2949 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2950 * clamping in the fragment shader. For its clamping of
2951 * blending, the spec says:
2952 *
2953 * "RESOLVED: For fixed-point color buffers, the inputs and
2954 * the result of the blending equation are clamped. For
2955 * floating-point color buffers, no clamping occurs."
2956 *
2957 * So, generally, we want clamping to the render target's range.
2958 * And, good news, the hardware tables for both pre- and
2959 * post-blend color clamping are either ignored, or any are
2960 * allowed, or clamping is required but RT range clamping is a
2961 * valid option.
2962 */
2963 entry.PreBlendColorClampEnable = true;
2964 entry.PostBlendColorClampEnable = true;
2965 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2966
2967 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2968 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2969 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2970 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2971
2972 #if GEN_GEN >= 8
2973 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2974 #else
2975 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2976 #endif
2977 }
2978 }
2979
2980 #if GEN_GEN >= 8
2981 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2982 #endif
2983
2984 #if GEN_GEN < 7
2985 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2986 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2987 ptr.BLEND_STATEChange = true;
2988 }
2989 #else
2990 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2991 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2992 #if GEN_GEN >= 8
2993 ptr.BlendStatePointerValid = true;
2994 #endif
2995 }
2996 #endif
2997 }
2998
2999 static const struct brw_tracked_state genX(blend_state) = {
3000 .dirty = {
3001 .mesa = _NEW_BUFFERS |
3002 _NEW_COLOR |
3003 _NEW_MULTISAMPLE,
3004 .brw = BRW_NEW_BATCH |
3005 BRW_NEW_BLORP |
3006 BRW_NEW_STATE_BASE_ADDRESS,
3007 },
3008 .emit = genX(upload_blend_state),
3009 };
3010 #endif
3011
3012 /* ---------------------------------------------------------------------- */
3013
3014 #if GEN_GEN >= 7
3015 UNUSED static const uint32_t push_constant_opcodes[] = {
3016 [MESA_SHADER_VERTEX] = 21,
3017 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3018 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3019 [MESA_SHADER_GEOMETRY] = 22,
3020 [MESA_SHADER_FRAGMENT] = 23,
3021 [MESA_SHADER_COMPUTE] = 0,
3022 };
3023
3024 static void
3025 genX(upload_push_constant_packets)(struct brw_context *brw)
3026 {
3027 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3028 struct gl_context *ctx = &brw->ctx;
3029
3030 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3031
3032 struct brw_stage_state *stage_states[] = {
3033 &brw->vs.base,
3034 &brw->tcs.base,
3035 &brw->tes.base,
3036 &brw->gs.base,
3037 &brw->wm.base,
3038 };
3039
3040 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3041 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3042 gen7_emit_vs_workaround_flush(brw);
3043
3044 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3045 struct brw_stage_state *stage_state = stage_states[stage];
3046 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3047
3048 if (!stage_state->push_constants_dirty)
3049 continue;
3050
3051 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3052 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3053 if (stage_state->prog_data) {
3054 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3055 /* The Skylake PRM contains the following restriction:
3056 *
3057 * "The driver must ensure The following case does not occur
3058 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3059 * buffer 3 read length equal to zero committed followed by a
3060 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3061 * zero committed."
3062 *
3063 * To avoid this, we program the buffers in the highest slots.
3064 * This way, slot 0 is only used if slot 3 is also used.
3065 */
3066 int n = 3;
3067
3068 for (int i = 3; i >= 0; i--) {
3069 const struct brw_ubo_range *range =
3070 &stage_state->prog_data->ubo_ranges[i];
3071
3072 if (range->length == 0)
3073 continue;
3074
3075 const struct gl_uniform_block *block =
3076 prog->sh.UniformBlocks[range->block];
3077 const struct gl_buffer_binding *binding =
3078 &ctx->UniformBufferBindings[block->Binding];
3079
3080 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3081 static unsigned msg_id = 0;
3082 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3083 MESA_DEBUG_TYPE_UNDEFINED,
3084 MESA_DEBUG_SEVERITY_HIGH,
3085 "UBO %d unbound, %s shader uniform data "
3086 "will be undefined.",
3087 range->block,
3088 _mesa_shader_stage_to_string(stage));
3089 continue;
3090 }
3091
3092 assert(binding->Offset % 32 == 0);
3093
3094 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3095 intel_buffer_object(binding->BufferObject),
3096 binding->Offset, range->length * 32, false);
3097
3098 pkt.ConstantBody.ReadLength[n] = range->length;
3099 pkt.ConstantBody.Buffer[n] =
3100 ro_bo(bo, range->start * 32 + binding->Offset);
3101 n--;
3102 }
3103
3104 if (stage_state->push_const_size > 0) {
3105 assert(n >= 0);
3106 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3107 pkt.ConstantBody.Buffer[n] =
3108 ro_bo(stage_state->push_const_bo,
3109 stage_state->push_const_offset);
3110 }
3111 #else
3112 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3113 pkt.ConstantBody.Buffer[0].offset =
3114 stage_state->push_const_offset | mocs;
3115 #endif
3116 }
3117 }
3118
3119 stage_state->push_constants_dirty = false;
3120 }
3121
3122 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3123 }
3124
3125 const struct brw_tracked_state genX(push_constant_packets) = {
3126 .dirty = {
3127 .mesa = 0,
3128 .brw = BRW_NEW_DRAW_CALL,
3129 },
3130 .emit = genX(upload_push_constant_packets),
3131 };
3132 #endif
3133
3134 #if GEN_GEN >= 6
3135 static void
3136 genX(upload_vs_push_constants)(struct brw_context *brw)
3137 {
3138 struct brw_stage_state *stage_state = &brw->vs.base;
3139
3140 /* BRW_NEW_VERTEX_PROGRAM */
3141 const struct brw_program *vp =
3142 brw_program_const(brw->programs[MESA_SHADER_VERTEX]);
3143 /* BRW_NEW_VS_PROG_DATA */
3144 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3145
3146 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
3147 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
3148 }
3149
3150 static const struct brw_tracked_state genX(vs_push_constants) = {
3151 .dirty = {
3152 .mesa = _NEW_PROGRAM_CONSTANTS |
3153 _NEW_TRANSFORM,
3154 .brw = BRW_NEW_BATCH |
3155 BRW_NEW_BLORP |
3156 BRW_NEW_VERTEX_PROGRAM |
3157 BRW_NEW_VS_PROG_DATA,
3158 },
3159 .emit = genX(upload_vs_push_constants),
3160 };
3161
3162 static void
3163 genX(upload_gs_push_constants)(struct brw_context *brw)
3164 {
3165 struct brw_stage_state *stage_state = &brw->gs.base;
3166
3167 /* BRW_NEW_GEOMETRY_PROGRAM */
3168 const struct brw_program *gp =
3169 brw_program_const(brw->programs[MESA_SHADER_GEOMETRY]);
3170
3171 if (gp) {
3172 /* BRW_NEW_GS_PROG_DATA */
3173 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3174
3175 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
3176 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
3177 }
3178 }
3179
3180 static const struct brw_tracked_state genX(gs_push_constants) = {
3181 .dirty = {
3182 .mesa = _NEW_PROGRAM_CONSTANTS |
3183 _NEW_TRANSFORM,
3184 .brw = BRW_NEW_BATCH |
3185 BRW_NEW_BLORP |
3186 BRW_NEW_GEOMETRY_PROGRAM |
3187 BRW_NEW_GS_PROG_DATA,
3188 },
3189 .emit = genX(upload_gs_push_constants),
3190 };
3191
3192 static void
3193 genX(upload_wm_push_constants)(struct brw_context *brw)
3194 {
3195 struct brw_stage_state *stage_state = &brw->wm.base;
3196 /* BRW_NEW_FRAGMENT_PROGRAM */
3197 const struct brw_program *fp =
3198 brw_program_const(brw->programs[MESA_SHADER_FRAGMENT]);
3199 /* BRW_NEW_FS_PROG_DATA */
3200 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3201
3202 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
3203
3204 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
3205 }
3206
3207 static const struct brw_tracked_state genX(wm_push_constants) = {
3208 .dirty = {
3209 .mesa = _NEW_PROGRAM_CONSTANTS,
3210 .brw = BRW_NEW_BATCH |
3211 BRW_NEW_BLORP |
3212 BRW_NEW_FRAGMENT_PROGRAM |
3213 BRW_NEW_FS_PROG_DATA,
3214 },
3215 .emit = genX(upload_wm_push_constants),
3216 };
3217 #endif
3218
3219 /* ---------------------------------------------------------------------- */
3220
3221 #if GEN_GEN >= 6
3222 static unsigned
3223 genX(determine_sample_mask)(struct brw_context *brw)
3224 {
3225 struct gl_context *ctx = &brw->ctx;
3226 float coverage = 1.0f;
3227 float coverage_invert = false;
3228 unsigned sample_mask = ~0u;
3229
3230 /* BRW_NEW_NUM_SAMPLES */
3231 unsigned num_samples = brw->num_samples;
3232
3233 if (_mesa_is_multisample_enabled(ctx)) {
3234 if (ctx->Multisample.SampleCoverage) {
3235 coverage = ctx->Multisample.SampleCoverageValue;
3236 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3237 }
3238 if (ctx->Multisample.SampleMask) {
3239 sample_mask = ctx->Multisample.SampleMaskValue;
3240 }
3241 }
3242
3243 if (num_samples > 1) {
3244 int coverage_int = (int) (num_samples * coverage + 0.5f);
3245 uint32_t coverage_bits = (1 << coverage_int) - 1;
3246 if (coverage_invert)
3247 coverage_bits ^= (1 << num_samples) - 1;
3248 return coverage_bits & sample_mask;
3249 } else {
3250 return 1;
3251 }
3252 }
3253
3254 static void
3255 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3256 unsigned num_samples)
3257 {
3258 unsigned log2_samples = ffs(num_samples) - 1;
3259
3260 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3261 multi.PixelLocation = CENTER;
3262 multi.NumberofMultisamples = log2_samples;
3263 #if GEN_GEN == 6
3264 GEN_SAMPLE_POS_4X(multi.Sample);
3265 #elif GEN_GEN == 7
3266 switch (num_samples) {
3267 case 1:
3268 GEN_SAMPLE_POS_1X(multi.Sample);
3269 break;
3270 case 2:
3271 GEN_SAMPLE_POS_2X(multi.Sample);
3272 break;
3273 case 4:
3274 GEN_SAMPLE_POS_4X(multi.Sample);
3275 break;
3276 case 8:
3277 GEN_SAMPLE_POS_8X(multi.Sample);
3278 break;
3279 default:
3280 break;
3281 }
3282 #endif
3283 }
3284 }
3285
3286 static void
3287 genX(upload_multisample_state)(struct brw_context *brw)
3288 {
3289 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3290
3291 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3292
3293 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3294 sm.SampleMask = genX(determine_sample_mask)(brw);
3295 }
3296 }
3297
3298 static const struct brw_tracked_state genX(multisample_state) = {
3299 .dirty = {
3300 .mesa = _NEW_MULTISAMPLE,
3301 .brw = BRW_NEW_BLORP |
3302 BRW_NEW_CONTEXT |
3303 BRW_NEW_NUM_SAMPLES,
3304 },
3305 .emit = genX(upload_multisample_state)
3306 };
3307 #endif
3308
3309 /* ---------------------------------------------------------------------- */
3310
3311 static void
3312 genX(upload_color_calc_state)(struct brw_context *brw)
3313 {
3314 struct gl_context *ctx = &brw->ctx;
3315
3316 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3317 #if GEN_GEN <= 5
3318 cc.IndependentAlphaBlendEnable =
3319 set_blend_entry_bits(brw, &cc, 0, false);
3320 set_depth_stencil_bits(brw, &cc);
3321
3322 if (ctx->Color.AlphaEnabled &&
3323 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3324 cc.AlphaTestEnable = true;
3325 cc.AlphaTestFunction =
3326 intel_translate_compare_func(ctx->Color.AlphaFunc);
3327 }
3328
3329 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3330
3331 cc.StatisticsEnable = brw->stats_wm;
3332
3333 cc.CCViewportStatePointer =
3334 ro_bo(brw->batch.state_bo, brw->cc.vp_offset);
3335 #else
3336 /* _NEW_COLOR */
3337 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3338 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3339 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3340 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3341
3342 #if GEN_GEN < 9
3343 /* _NEW_STENCIL */
3344 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3345 cc.BackfaceStencilReferenceValue =
3346 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3347 #endif
3348
3349 #endif
3350
3351 /* _NEW_COLOR */
3352 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3353 ctx->Color.AlphaRef);
3354 }
3355
3356 #if GEN_GEN >= 6
3357 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3358 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3359 #if GEN_GEN != 7
3360 ptr.ColorCalcStatePointerValid = true;
3361 #endif
3362 }
3363 #else
3364 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3365 #endif
3366 }
3367
3368 static const struct brw_tracked_state genX(color_calc_state) = {
3369 .dirty = {
3370 .mesa = _NEW_COLOR |
3371 _NEW_STENCIL |
3372 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3373 _NEW_DEPTH
3374 : 0),
3375 .brw = BRW_NEW_BATCH |
3376 BRW_NEW_BLORP |
3377 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3378 BRW_NEW_STATS_WM
3379 : BRW_NEW_CC_STATE |
3380 BRW_NEW_STATE_BASE_ADDRESS),
3381 },
3382 .emit = genX(upload_color_calc_state),
3383 };
3384
3385
3386 /* ---------------------------------------------------------------------- */
3387
3388 #if GEN_GEN >= 7
3389 static void
3390 genX(upload_sbe)(struct brw_context *brw)
3391 {
3392 struct gl_context *ctx = &brw->ctx;
3393 /* BRW_NEW_FRAGMENT_PROGRAM */
3394 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3395 /* BRW_NEW_FS_PROG_DATA */
3396 const struct brw_wm_prog_data *wm_prog_data =
3397 brw_wm_prog_data(brw->wm.base.prog_data);
3398 #if GEN_GEN >= 8
3399 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3400 #else
3401 #define attr_overrides sbe.Attribute
3402 #endif
3403 uint32_t urb_entry_read_length;
3404 uint32_t urb_entry_read_offset;
3405 uint32_t point_sprite_enables;
3406
3407 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3408 sbe.AttributeSwizzleEnable = true;
3409 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3410
3411 /* _NEW_BUFFERS */
3412 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3413
3414 /* _NEW_POINT
3415 *
3416 * Window coordinates in an FBO are inverted, which means point
3417 * sprite origin must be inverted.
3418 */
3419 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3420 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3421 else
3422 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3423
3424 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3425 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3426 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3427 * BRW_NEW_VUE_MAP_GEOM_OUT
3428 */
3429 genX(calculate_attr_overrides)(brw,
3430 attr_overrides,
3431 &point_sprite_enables,
3432 &urb_entry_read_length,
3433 &urb_entry_read_offset);
3434
3435 /* Typically, the URB entry read length and offset should be programmed
3436 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3437 * stage which produces geometry. However, we don't know the proper
3438 * value until we call calculate_attr_overrides().
3439 *
3440 * To fit with our existing code, we override the inherited values and
3441 * specify it here directly, as we did on previous generations.
3442 */
3443 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3444 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3445 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3446 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3447
3448 #if GEN_GEN >= 8
3449 sbe.ForceVertexURBEntryReadLength = true;
3450 sbe.ForceVertexURBEntryReadOffset = true;
3451 #endif
3452
3453 #if GEN_GEN >= 9
3454 /* prepare the active component dwords */
3455 const int num_inputs = urb_entry_read_length * 2;
3456 for (int input_index = 0; input_index < num_inputs; input_index++) {
3457 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3458 }
3459 #endif
3460 }
3461
3462 #if GEN_GEN >= 8
3463 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3464 for (int i = 0; i < 16; i++)
3465 sbes.Attribute[i] = attr_overrides[i];
3466 }
3467 #endif
3468
3469 #undef attr_overrides
3470 }
3471
3472 static const struct brw_tracked_state genX(sbe_state) = {
3473 .dirty = {
3474 .mesa = _NEW_BUFFERS |
3475 _NEW_LIGHT |
3476 _NEW_POINT |
3477 _NEW_POLYGON |
3478 _NEW_PROGRAM,
3479 .brw = BRW_NEW_BLORP |
3480 BRW_NEW_CONTEXT |
3481 BRW_NEW_FRAGMENT_PROGRAM |
3482 BRW_NEW_FS_PROG_DATA |
3483 BRW_NEW_GS_PROG_DATA |
3484 BRW_NEW_TES_PROG_DATA |
3485 BRW_NEW_VUE_MAP_GEOM_OUT |
3486 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3487 : 0),
3488 },
3489 .emit = genX(upload_sbe),
3490 };
3491 #endif
3492
3493 /* ---------------------------------------------------------------------- */
3494
3495 #if GEN_GEN >= 7
3496 /**
3497 * Outputs the 3DSTATE_SO_DECL_LIST command.
3498 *
3499 * The data output is a series of 64-bit entries containing a SO_DECL per
3500 * stream. We only have one stream of rendering coming out of the GS unit, so
3501 * we only emit stream 0 (low 16 bits) SO_DECLs.
3502 */
3503 static void
3504 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3505 const struct brw_vue_map *vue_map)
3506 {
3507 struct gl_context *ctx = &brw->ctx;
3508 /* BRW_NEW_TRANSFORM_FEEDBACK */
3509 struct gl_transform_feedback_object *xfb_obj =
3510 ctx->TransformFeedback.CurrentObject;
3511 const struct gl_transform_feedback_info *linked_xfb_info =
3512 xfb_obj->program->sh.LinkedTransformFeedback;
3513 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3514 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3515 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3516 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3517 int max_decls = 0;
3518 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3519
3520 memset(so_decl, 0, sizeof(so_decl));
3521
3522 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3523 * command feels strange -- each dword pair contains a SO_DECL per stream.
3524 */
3525 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3526 const struct gl_transform_feedback_output *output =
3527 &linked_xfb_info->Outputs[i];
3528 const int buffer = output->OutputBuffer;
3529 const int varying = output->OutputRegister;
3530 const unsigned stream_id = output->StreamId;
3531 assert(stream_id < MAX_VERTEX_STREAMS);
3532
3533 buffer_mask[stream_id] |= 1 << buffer;
3534
3535 assert(vue_map->varying_to_slot[varying] >= 0);
3536
3537 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3538 * array. Instead, it simply increments DstOffset for the following
3539 * input by the number of components that should be skipped.
3540 *
3541 * Our hardware is unusual in that it requires us to program SO_DECLs
3542 * for fake "hole" components, rather than simply taking the offset
3543 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3544 * program as many size = 4 holes as we can, then a final hole to
3545 * accommodate the final 1, 2, or 3 remaining.
3546 */
3547 int skip_components = output->DstOffset - next_offset[buffer];
3548
3549 while (skip_components > 0) {
3550 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3551 .HoleFlag = 1,
3552 .OutputBufferSlot = output->OutputBuffer,
3553 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3554 };
3555 skip_components -= 4;
3556 }
3557
3558 next_offset[buffer] = output->DstOffset + output->NumComponents;
3559
3560 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3561 .OutputBufferSlot = output->OutputBuffer,
3562 .RegisterIndex = vue_map->varying_to_slot[varying],
3563 .ComponentMask =
3564 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3565 };
3566
3567 if (decls[stream_id] > max_decls)
3568 max_decls = decls[stream_id];
3569 }
3570
3571 uint32_t *dw;
3572 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3573 .StreamtoBufferSelects0 = buffer_mask[0],
3574 .StreamtoBufferSelects1 = buffer_mask[1],
3575 .StreamtoBufferSelects2 = buffer_mask[2],
3576 .StreamtoBufferSelects3 = buffer_mask[3],
3577 .NumEntries0 = decls[0],
3578 .NumEntries1 = decls[1],
3579 .NumEntries2 = decls[2],
3580 .NumEntries3 = decls[3]);
3581
3582 for (int i = 0; i < max_decls; i++) {
3583 GENX(SO_DECL_ENTRY_pack)(
3584 brw, dw + 2 + i * 2,
3585 &(struct GENX(SO_DECL_ENTRY)) {
3586 .Stream0Decl = so_decl[0][i],
3587 .Stream1Decl = so_decl[1][i],
3588 .Stream2Decl = so_decl[2][i],
3589 .Stream3Decl = so_decl[3][i],
3590 });
3591 }
3592 }
3593
3594 static void
3595 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3596 {
3597 struct gl_context *ctx = &brw->ctx;
3598 /* BRW_NEW_TRANSFORM_FEEDBACK */
3599 struct gl_transform_feedback_object *xfb_obj =
3600 ctx->TransformFeedback.CurrentObject;
3601 #if GEN_GEN < 8
3602 const struct gl_transform_feedback_info *linked_xfb_info =
3603 xfb_obj->program->sh.LinkedTransformFeedback;
3604 #else
3605 struct brw_transform_feedback_object *brw_obj =
3606 (struct brw_transform_feedback_object *) xfb_obj;
3607 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3608 #endif
3609
3610 /* Set up the up to 4 output buffers. These are the ranges defined in the
3611 * gl_transform_feedback_object.
3612 */
3613 for (int i = 0; i < 4; i++) {
3614 struct intel_buffer_object *bufferobj =
3615 intel_buffer_object(xfb_obj->Buffers[i]);
3616
3617 if (!bufferobj) {
3618 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3619 sob.SOBufferIndex = i;
3620 }
3621 continue;
3622 }
3623
3624 uint32_t start = xfb_obj->Offset[i];
3625 assert(start % 4 == 0);
3626 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3627 struct brw_bo *bo =
3628 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3629 assert(end <= bo->size);
3630
3631 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3632 sob.SOBufferIndex = i;
3633
3634 sob.SurfaceBaseAddress = rw_bo(bo, start);
3635 #if GEN_GEN < 8
3636 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3637 sob.SurfaceEndAddress = rw_bo(bo, end);
3638 #else
3639 sob.SOBufferEnable = true;
3640 sob.StreamOffsetWriteEnable = true;
3641 sob.StreamOutputBufferOffsetAddressEnable = true;
3642 sob.SOBufferMOCS = mocs_wb;
3643
3644 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3645 sob.StreamOutputBufferOffsetAddress =
3646 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3647
3648 if (brw_obj->zero_offsets) {
3649 /* Zero out the offset and write that to offset_bo */
3650 sob.StreamOffset = 0;
3651 } else {
3652 /* Use offset_bo as the "Stream Offset." */
3653 sob.StreamOffset = 0xFFFFFFFF;
3654 }
3655 #endif
3656 }
3657 }
3658
3659 #if GEN_GEN >= 8
3660 brw_obj->zero_offsets = false;
3661 #endif
3662 }
3663
3664 static bool
3665 query_active(struct gl_query_object *q)
3666 {
3667 return q && q->Active;
3668 }
3669
3670 static void
3671 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3672 const struct brw_vue_map *vue_map)
3673 {
3674 struct gl_context *ctx = &brw->ctx;
3675 /* BRW_NEW_TRANSFORM_FEEDBACK */
3676 struct gl_transform_feedback_object *xfb_obj =
3677 ctx->TransformFeedback.CurrentObject;
3678
3679 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3680 if (active) {
3681 int urb_entry_read_offset = 0;
3682 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3683 urb_entry_read_offset;
3684
3685 sos.SOFunctionEnable = true;
3686 sos.SOStatisticsEnable = true;
3687
3688 /* BRW_NEW_RASTERIZER_DISCARD */
3689 if (ctx->RasterDiscard) {
3690 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3691 sos.RenderingDisable = true;
3692 } else {
3693 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3694 "query active relies on the clipper.\n");
3695 }
3696 }
3697
3698 /* _NEW_LIGHT */
3699 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3700 sos.ReorderMode = TRAILING;
3701
3702 #if GEN_GEN < 8
3703 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3704 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3705 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3706 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3707 #else
3708 const struct gl_transform_feedback_info *linked_xfb_info =
3709 xfb_obj->program->sh.LinkedTransformFeedback;
3710 /* Set buffer pitches; 0 means unbound. */
3711 if (xfb_obj->Buffers[0])
3712 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3713 if (xfb_obj->Buffers[1])
3714 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3715 if (xfb_obj->Buffers[2])
3716 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3717 if (xfb_obj->Buffers[3])
3718 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3719 #endif
3720
3721 /* We always read the whole vertex. This could be reduced at some
3722 * point by reading less and offsetting the register index in the
3723 * SO_DECLs.
3724 */
3725 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3726 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3727 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3728 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3729 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3730 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3731 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3732 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3733 }
3734 }
3735 }
3736
3737 static void
3738 genX(upload_sol)(struct brw_context *brw)
3739 {
3740 struct gl_context *ctx = &brw->ctx;
3741 /* BRW_NEW_TRANSFORM_FEEDBACK */
3742 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3743
3744 if (active) {
3745 genX(upload_3dstate_so_buffers)(brw);
3746
3747 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3748 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3749 }
3750
3751 /* Finally, set up the SOL stage. This command must always follow updates to
3752 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3753 * MMIO register updates (current performed by the kernel at each batch
3754 * emit).
3755 */
3756 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3757 }
3758
3759 static const struct brw_tracked_state genX(sol_state) = {
3760 .dirty = {
3761 .mesa = _NEW_LIGHT,
3762 .brw = BRW_NEW_BATCH |
3763 BRW_NEW_BLORP |
3764 BRW_NEW_RASTERIZER_DISCARD |
3765 BRW_NEW_VUE_MAP_GEOM_OUT |
3766 BRW_NEW_TRANSFORM_FEEDBACK,
3767 },
3768 .emit = genX(upload_sol),
3769 };
3770 #endif
3771
3772 /* ---------------------------------------------------------------------- */
3773
3774 #if GEN_GEN >= 7
3775 static void
3776 genX(upload_ps)(struct brw_context *brw)
3777 {
3778 UNUSED const struct gl_context *ctx = &brw->ctx;
3779 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3780
3781 /* BRW_NEW_FS_PROG_DATA */
3782 const struct brw_wm_prog_data *prog_data =
3783 brw_wm_prog_data(brw->wm.base.prog_data);
3784 const struct brw_stage_state *stage_state = &brw->wm.base;
3785
3786 #if GEN_GEN < 8
3787 #endif
3788
3789 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3790 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3791 * incorrect for subspans where some of the pixels are unlit. We believe
3792 * the bit just didn't take effect in previous generations.
3793 */
3794 ps.VectorMaskEnable = GEN_GEN >= 8;
3795
3796 ps.SamplerCount =
3797 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3798
3799 /* BRW_NEW_FS_PROG_DATA */
3800 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3801
3802 if (prog_data->base.use_alt_mode)
3803 ps.FloatingPointMode = Alternate;
3804
3805 /* Haswell requires the sample mask to be set in this packet as well as
3806 * in 3DSTATE_SAMPLE_MASK; the values should match.
3807 */
3808
3809 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3810 #if GEN_IS_HASWELL
3811 ps.SampleMask = genX(determine_sample_mask(brw));
3812 #endif
3813
3814 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3815 * it implicitly scales for different GT levels (which have some # of
3816 * PSDs).
3817 *
3818 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3819 */
3820 #if GEN_GEN >= 9
3821 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3822 #elif GEN_GEN >= 8
3823 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3824 #else
3825 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3826 #endif
3827
3828 if (prog_data->base.nr_params > 0 ||
3829 prog_data->base.ubo_ranges[0].length > 0)
3830 ps.PushConstantEnable = true;
3831
3832 #if GEN_GEN < 8
3833 /* From the IVB PRM, volume 2 part 1, page 287:
3834 * "This bit is inserted in the PS payload header and made available to
3835 * the DataPort (either via the message header or via header bypass) to
3836 * indicate that oMask data (one or two phases) is included in Render
3837 * Target Write messages. If present, the oMask data is used to mask off
3838 * samples."
3839 */
3840 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3841
3842 /* The hardware wedges if you have this bit set but don't turn on any
3843 * dual source blend factors.
3844 *
3845 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3846 */
3847 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3848 (ctx->Color.BlendEnabled & 1) &&
3849 ctx->Color.Blend[0]._UsesDualSrc;
3850
3851 /* BRW_NEW_FS_PROG_DATA */
3852 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3853 #endif
3854
3855 /* From the documentation for this packet:
3856 * "If the PS kernel does not need the Position XY Offsets to
3857 * compute a Position Value, then this field should be programmed
3858 * to POSOFFSET_NONE."
3859 *
3860 * "SW Recommendation: If the PS kernel needs the Position Offsets
3861 * to compute a Position XY value, this field should match Position
3862 * ZW Interpolation Mode to ensure a consistent position.xyzw
3863 * computation."
3864 *
3865 * We only require XY sample offsets. So, this recommendation doesn't
3866 * look useful at the moment. We might need this in future.
3867 */
3868 if (prog_data->uses_pos_offset)
3869 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3870 else
3871 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3872
3873 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3874 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3875 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3876 prog_data->base.dispatch_grf_start_reg;
3877 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3878 prog_data->dispatch_grf_start_reg_2;
3879
3880 ps.KernelStartPointer0 = stage_state->prog_offset;
3881 ps.KernelStartPointer2 = stage_state->prog_offset +
3882 prog_data->prog_offset_2;
3883
3884 if (prog_data->base.total_scratch) {
3885 ps.ScratchSpaceBasePointer =
3886 rw_bo(stage_state->scratch_bo,
3887 ffs(stage_state->per_thread_scratch) - 11);
3888 }
3889 }
3890 }
3891
3892 static const struct brw_tracked_state genX(ps_state) = {
3893 .dirty = {
3894 .mesa = _NEW_MULTISAMPLE |
3895 (GEN_GEN < 8 ? _NEW_BUFFERS |
3896 _NEW_COLOR
3897 : 0),
3898 .brw = BRW_NEW_BATCH |
3899 BRW_NEW_BLORP |
3900 BRW_NEW_FS_PROG_DATA,
3901 },
3902 .emit = genX(upload_ps),
3903 };
3904 #endif
3905
3906 /* ---------------------------------------------------------------------- */
3907
3908 #if GEN_GEN >= 7
3909 static void
3910 genX(upload_hs_state)(struct brw_context *brw)
3911 {
3912 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3913 struct brw_stage_state *stage_state = &brw->tcs.base;
3914 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3915 const struct brw_vue_prog_data *vue_prog_data =
3916 brw_vue_prog_data(stage_prog_data);
3917
3918 /* BRW_NEW_TES_PROG_DATA */
3919 struct brw_tcs_prog_data *tcs_prog_data =
3920 brw_tcs_prog_data(stage_prog_data);
3921
3922 if (!tcs_prog_data) {
3923 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3924 } else {
3925 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3926 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3927
3928 hs.InstanceCount = tcs_prog_data->instances - 1;
3929 hs.IncludeVertexHandles = true;
3930
3931 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3932 }
3933 }
3934 }
3935
3936 static const struct brw_tracked_state genX(hs_state) = {
3937 .dirty = {
3938 .mesa = 0,
3939 .brw = BRW_NEW_BATCH |
3940 BRW_NEW_BLORP |
3941 BRW_NEW_TCS_PROG_DATA |
3942 BRW_NEW_TESS_PROGRAMS,
3943 },
3944 .emit = genX(upload_hs_state),
3945 };
3946
3947 static void
3948 genX(upload_ds_state)(struct brw_context *brw)
3949 {
3950 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3951 const struct brw_stage_state *stage_state = &brw->tes.base;
3952 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3953
3954 /* BRW_NEW_TES_PROG_DATA */
3955 const struct brw_tes_prog_data *tes_prog_data =
3956 brw_tes_prog_data(stage_prog_data);
3957 const struct brw_vue_prog_data *vue_prog_data =
3958 brw_vue_prog_data(stage_prog_data);
3959
3960 if (!tes_prog_data) {
3961 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3962 } else {
3963 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3964 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3965
3966 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3967 ds.ComputeWCoordinateEnable =
3968 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3969
3970 #if GEN_GEN >= 8
3971 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3972 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3973 ds.UserClipDistanceCullTestEnableBitmask =
3974 vue_prog_data->cull_distance_mask;
3975 #endif
3976 }
3977 }
3978 }
3979
3980 static const struct brw_tracked_state genX(ds_state) = {
3981 .dirty = {
3982 .mesa = 0,
3983 .brw = BRW_NEW_BATCH |
3984 BRW_NEW_BLORP |
3985 BRW_NEW_TESS_PROGRAMS |
3986 BRW_NEW_TES_PROG_DATA,
3987 },
3988 .emit = genX(upload_ds_state),
3989 };
3990
3991 /* ---------------------------------------------------------------------- */
3992
3993 static void
3994 upload_te_state(struct brw_context *brw)
3995 {
3996 /* BRW_NEW_TESS_PROGRAMS */
3997 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
3998
3999 /* BRW_NEW_TES_PROG_DATA */
4000 const struct brw_tes_prog_data *tes_prog_data =
4001 brw_tes_prog_data(brw->tes.base.prog_data);
4002
4003 if (active) {
4004 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4005 te.Partitioning = tes_prog_data->partitioning;
4006 te.OutputTopology = tes_prog_data->output_topology;
4007 te.TEDomain = tes_prog_data->domain;
4008 te.TEEnable = true;
4009 te.MaximumTessellationFactorOdd = 63.0;
4010 te.MaximumTessellationFactorNotOdd = 64.0;
4011 }
4012 } else {
4013 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4014 }
4015 }
4016
4017 static const struct brw_tracked_state genX(te_state) = {
4018 .dirty = {
4019 .mesa = 0,
4020 .brw = BRW_NEW_BLORP |
4021 BRW_NEW_CONTEXT |
4022 BRW_NEW_TES_PROG_DATA |
4023 BRW_NEW_TESS_PROGRAMS,
4024 },
4025 .emit = upload_te_state,
4026 };
4027
4028 /* ---------------------------------------------------------------------- */
4029
4030 static void
4031 genX(upload_tes_push_constants)(struct brw_context *brw)
4032 {
4033 struct brw_stage_state *stage_state = &brw->tes.base;
4034 /* BRW_NEW_TESS_PROGRAMS */
4035 const struct brw_program *tep =
4036 brw_program_const(brw->programs[MESA_SHADER_TESS_EVAL]);
4037
4038 if (tep) {
4039 /* BRW_NEW_TES_PROG_DATA */
4040 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4041 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
4042 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
4043 }
4044 }
4045
4046 static const struct brw_tracked_state genX(tes_push_constants) = {
4047 .dirty = {
4048 .mesa = _NEW_PROGRAM_CONSTANTS,
4049 .brw = BRW_NEW_BATCH |
4050 BRW_NEW_BLORP |
4051 BRW_NEW_TESS_PROGRAMS |
4052 BRW_NEW_TES_PROG_DATA,
4053 },
4054 .emit = genX(upload_tes_push_constants),
4055 };
4056
4057 static void
4058 genX(upload_tcs_push_constants)(struct brw_context *brw)
4059 {
4060 struct brw_stage_state *stage_state = &brw->tcs.base;
4061 /* BRW_NEW_TESS_PROGRAMS */
4062 const struct brw_program *tcp =
4063 brw_program_const(brw->programs[MESA_SHADER_TESS_CTRL]);
4064 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4065
4066 if (active) {
4067 /* BRW_NEW_TCS_PROG_DATA */
4068 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4069
4070 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
4071 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
4072 }
4073 }
4074
4075 static const struct brw_tracked_state genX(tcs_push_constants) = {
4076 .dirty = {
4077 .mesa = _NEW_PROGRAM_CONSTANTS,
4078 .brw = BRW_NEW_BATCH |
4079 BRW_NEW_BLORP |
4080 BRW_NEW_DEFAULT_TESS_LEVELS |
4081 BRW_NEW_TESS_PROGRAMS |
4082 BRW_NEW_TCS_PROG_DATA,
4083 },
4084 .emit = genX(upload_tcs_push_constants),
4085 };
4086
4087 #endif
4088
4089 /* ---------------------------------------------------------------------- */
4090
4091 #if GEN_GEN >= 7
4092 static void
4093 genX(upload_cs_push_constants)(struct brw_context *brw)
4094 {
4095 struct brw_stage_state *stage_state = &brw->cs.base;
4096
4097 /* BRW_NEW_COMPUTE_PROGRAM */
4098 const struct brw_program *cp =
4099 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4100
4101 if (cp) {
4102 /* BRW_NEW_CS_PROG_DATA */
4103 struct brw_cs_prog_data *cs_prog_data =
4104 brw_cs_prog_data(brw->cs.base.prog_data);
4105
4106 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4107 brw_upload_cs_push_constants(brw, &cp->program, cs_prog_data,
4108 stage_state);
4109 }
4110 }
4111
4112 const struct brw_tracked_state genX(cs_push_constants) = {
4113 .dirty = {
4114 .mesa = _NEW_PROGRAM_CONSTANTS,
4115 .brw = BRW_NEW_BATCH |
4116 BRW_NEW_BLORP |
4117 BRW_NEW_COMPUTE_PROGRAM |
4118 BRW_NEW_CS_PROG_DATA,
4119 },
4120 .emit = genX(upload_cs_push_constants),
4121 };
4122
4123 /**
4124 * Creates a new CS constant buffer reflecting the current CS program's
4125 * constants, if needed by the CS program.
4126 */
4127 static void
4128 genX(upload_cs_pull_constants)(struct brw_context *brw)
4129 {
4130 struct brw_stage_state *stage_state = &brw->cs.base;
4131
4132 /* BRW_NEW_COMPUTE_PROGRAM */
4133 struct brw_program *cp =
4134 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4135
4136 /* BRW_NEW_CS_PROG_DATA */
4137 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4138
4139 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4140 /* _NEW_PROGRAM_CONSTANTS */
4141 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4142 stage_state, prog_data);
4143 }
4144
4145 const struct brw_tracked_state genX(cs_pull_constants) = {
4146 .dirty = {
4147 .mesa = _NEW_PROGRAM_CONSTANTS,
4148 .brw = BRW_NEW_BATCH |
4149 BRW_NEW_BLORP |
4150 BRW_NEW_COMPUTE_PROGRAM |
4151 BRW_NEW_CS_PROG_DATA,
4152 },
4153 .emit = genX(upload_cs_pull_constants),
4154 };
4155
4156 static void
4157 genX(upload_cs_state)(struct brw_context *brw)
4158 {
4159 if (!brw->cs.base.prog_data)
4160 return;
4161
4162 uint32_t offset;
4163 uint32_t *desc = (uint32_t*) brw_state_batch(
4164 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4165 &offset);
4166
4167 struct brw_stage_state *stage_state = &brw->cs.base;
4168 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4169 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4170 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4171
4172 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4173 brw_emit_buffer_surface_state(
4174 brw, &stage_state->surf_offset[
4175 prog_data->binding_table.shader_time_start],
4176 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4177 brw->shader_time.bo->size, 1,
4178 RELOC_WRITE);
4179 }
4180
4181 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4182 32, &stage_state->bind_bo_offset);
4183
4184 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4185 if (prog_data->total_scratch) {
4186 uint32_t bo_offset;
4187
4188 if (GEN_GEN >= 8) {
4189 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4190 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4191 */
4192 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
4193 } else if (GEN_IS_HASWELL) {
4194 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4195 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4196 */
4197 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
4198 } else {
4199 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4200 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4201 */
4202 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
4203 }
4204 vfe.ScratchSpaceBasePointer =
4205 rw_bo(stage_state->scratch_bo, bo_offset);
4206 }
4207
4208 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4209 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4210 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4211 vfe.ResetGatewayTimer =
4212 Resettingrelativetimerandlatchingtheglobaltimestamp;
4213 #if GEN_GEN < 9
4214 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4215 #endif
4216 #if GEN_GEN == 7
4217 vfe.GPGPUMode = 1;
4218 #endif
4219
4220 /* We are uploading duplicated copies of push constant uniforms for each
4221 * thread. Although the local id data needs to vary per thread, it won't
4222 * change for other uniform data. Unfortunately this duplication is
4223 * required for gen7. As of Haswell, this duplication can be avoided,
4224 * but this older mechanism with duplicated data continues to work.
4225 *
4226 * FINISHME: As of Haswell, we could make use of the
4227 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4228 * field to only store one copy of uniform data.
4229 *
4230 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4231 * which is described in the GPGPU_WALKER command and in the Broadwell
4232 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4233 * Operations => GPGPU Mode => Indirect Payload Storage.
4234 *
4235 * Note: The constant data is built in brw_upload_cs_push_constants
4236 * below.
4237 */
4238 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4239
4240 const uint32_t vfe_curbe_allocation =
4241 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4242 cs_prog_data->push.cross_thread.regs, 2);
4243 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4244 }
4245
4246 if (cs_prog_data->push.total.size > 0) {
4247 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4248 curbe.CURBETotalDataLength =
4249 ALIGN(cs_prog_data->push.total.size, 64);
4250 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4251 }
4252 }
4253
4254 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4255 memcpy(bind, stage_state->surf_offset,
4256 prog_data->binding_table.size_bytes);
4257 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4258 .KernelStartPointer = brw->cs.base.prog_offset,
4259 .SamplerStatePointer = stage_state->sampler_offset,
4260 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
4261 .BindingTablePointer = stage_state->bind_bo_offset,
4262 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4263 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4264 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4265 prog_data->total_shared),
4266 .BarrierEnable = cs_prog_data->uses_barrier,
4267 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4268 .CrossThreadConstantDataReadLength =
4269 cs_prog_data->push.cross_thread.regs,
4270 #endif
4271 };
4272
4273 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4274
4275 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4276 load.InterfaceDescriptorTotalLength =
4277 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4278 load.InterfaceDescriptorDataStartAddress = offset;
4279 }
4280 }
4281
4282 static const struct brw_tracked_state genX(cs_state) = {
4283 .dirty = {
4284 .mesa = _NEW_PROGRAM_CONSTANTS,
4285 .brw = BRW_NEW_BATCH |
4286 BRW_NEW_BLORP |
4287 BRW_NEW_CS_PROG_DATA |
4288 BRW_NEW_SAMPLER_STATE_TABLE |
4289 BRW_NEW_SURFACES,
4290 },
4291 .emit = genX(upload_cs_state)
4292 };
4293
4294 #endif
4295
4296 /* ---------------------------------------------------------------------- */
4297
4298 #if GEN_GEN >= 8
4299 static void
4300 genX(upload_raster)(struct brw_context *brw)
4301 {
4302 struct gl_context *ctx = &brw->ctx;
4303
4304 /* _NEW_BUFFERS */
4305 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4306
4307 /* _NEW_POLYGON */
4308 struct gl_polygon_attrib *polygon = &ctx->Polygon;
4309
4310 /* _NEW_POINT */
4311 struct gl_point_attrib *point = &ctx->Point;
4312
4313 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4314 if (brw->polygon_front_bit == render_to_fbo)
4315 raster.FrontWinding = CounterClockwise;
4316
4317 if (polygon->CullFlag) {
4318 switch (polygon->CullFaceMode) {
4319 case GL_FRONT:
4320 raster.CullMode = CULLMODE_FRONT;
4321 break;
4322 case GL_BACK:
4323 raster.CullMode = CULLMODE_BACK;
4324 break;
4325 case GL_FRONT_AND_BACK:
4326 raster.CullMode = CULLMODE_BOTH;
4327 break;
4328 default:
4329 unreachable("not reached");
4330 }
4331 } else {
4332 raster.CullMode = CULLMODE_NONE;
4333 }
4334
4335 point->SmoothFlag = raster.SmoothPointEnable;
4336
4337 raster.DXMultisampleRasterizationEnable =
4338 _mesa_is_multisample_enabled(ctx);
4339
4340 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4341 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4342 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4343
4344 switch (polygon->FrontMode) {
4345 case GL_FILL:
4346 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4347 break;
4348 case GL_LINE:
4349 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4350 break;
4351 case GL_POINT:
4352 raster.FrontFaceFillMode = FILL_MODE_POINT;
4353 break;
4354 default:
4355 unreachable("not reached");
4356 }
4357
4358 switch (polygon->BackMode) {
4359 case GL_FILL:
4360 raster.BackFaceFillMode = FILL_MODE_SOLID;
4361 break;
4362 case GL_LINE:
4363 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4364 break;
4365 case GL_POINT:
4366 raster.BackFaceFillMode = FILL_MODE_POINT;
4367 break;
4368 default:
4369 unreachable("not reached");
4370 }
4371
4372 /* _NEW_LINE */
4373 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4374
4375 /* _NEW_SCISSOR */
4376 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4377
4378 /* _NEW_TRANSFORM */
4379 if (!ctx->Transform.DepthClamp) {
4380 #if GEN_GEN >= 9
4381 raster.ViewportZFarClipTestEnable = true;
4382 raster.ViewportZNearClipTestEnable = true;
4383 #else
4384 raster.ViewportZClipTestEnable = true;
4385 #endif
4386 }
4387
4388 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4389 #if GEN_GEN >= 9
4390 raster.ConservativeRasterizationEnable =
4391 ctx->IntelConservativeRasterization;
4392 #endif
4393
4394 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4395 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4396
4397 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4398 }
4399 }
4400
4401 static const struct brw_tracked_state genX(raster_state) = {
4402 .dirty = {
4403 .mesa = _NEW_BUFFERS |
4404 _NEW_LINE |
4405 _NEW_MULTISAMPLE |
4406 _NEW_POINT |
4407 _NEW_POLYGON |
4408 _NEW_SCISSOR |
4409 _NEW_TRANSFORM,
4410 .brw = BRW_NEW_BLORP |
4411 BRW_NEW_CONTEXT |
4412 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4413 },
4414 .emit = genX(upload_raster),
4415 };
4416 #endif
4417
4418 /* ---------------------------------------------------------------------- */
4419
4420 #if GEN_GEN >= 8
4421 static void
4422 genX(upload_ps_extra)(struct brw_context *brw)
4423 {
4424 UNUSED struct gl_context *ctx = &brw->ctx;
4425
4426 const struct brw_wm_prog_data *prog_data =
4427 brw_wm_prog_data(brw->wm.base.prog_data);
4428
4429 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4430 psx.PixelShaderValid = true;
4431 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4432 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4433 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4434 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4435 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4436 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4437
4438 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4439 if (prog_data->uses_sample_mask) {
4440 #if GEN_GEN >= 9
4441 if (prog_data->post_depth_coverage)
4442 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4443 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4444 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4445 else
4446 psx.InputCoverageMaskState = ICMS_NORMAL;
4447 #else
4448 psx.PixelShaderUsesInputCoverageMask = true;
4449 #endif
4450 }
4451
4452 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4453 #if GEN_GEN >= 9
4454 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4455 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4456 #endif
4457
4458 /* The stricter cross-primitive coherency guarantees that the hardware
4459 * gives us with the "Accesses UAV" bit set for at least one shader stage
4460 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4461 * are redundant within the current image, atomic counter and SSBO GL
4462 * APIs, which all have very loose ordering and coherency requirements
4463 * and generally rely on the application to insert explicit barriers when
4464 * a shader invocation is expected to see the memory writes performed by
4465 * the invocations of some previous primitive. Regardless of the value
4466 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4467 * cause an in most cases useless DC flush when the lowermost stage with
4468 * the bit set finishes execution.
4469 *
4470 * It would be nice to disable it, but in some cases we can't because on
4471 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4472 * signal (which could be set independently from the coherency mechanism
4473 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4474 * determine whether the hardware skips execution of the fragment shader
4475 * or not via the ThreadDispatchEnable signal. However if we know that
4476 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4477 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4478 * difference so we may just disable it here.
4479 *
4480 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4481 * take into account KillPixels when no depth or stencil writes are
4482 * enabled. In order for occlusion queries to work correctly with no
4483 * attachments, we need to force-enable here.
4484 *
4485 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4486 * _NEW_COLOR
4487 */
4488 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4489 !brw_color_buffer_write_enabled(brw))
4490 psx.PixelShaderHasUAV = true;
4491 }
4492 }
4493
4494 const struct brw_tracked_state genX(ps_extra) = {
4495 .dirty = {
4496 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4497 .brw = BRW_NEW_BLORP |
4498 BRW_NEW_CONTEXT |
4499 BRW_NEW_FRAGMENT_PROGRAM |
4500 BRW_NEW_FS_PROG_DATA |
4501 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4502 },
4503 .emit = genX(upload_ps_extra),
4504 };
4505 #endif
4506
4507 /* ---------------------------------------------------------------------- */
4508
4509 #if GEN_GEN >= 8
4510 static void
4511 genX(upload_ps_blend)(struct brw_context *brw)
4512 {
4513 struct gl_context *ctx = &brw->ctx;
4514
4515 /* _NEW_BUFFERS */
4516 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4517 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4518
4519 /* _NEW_COLOR */
4520 struct gl_colorbuffer_attrib *color = &ctx->Color;
4521
4522 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4523 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4524 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4525
4526 bool alpha_to_one = false;
4527
4528 if (!buffer0_is_integer) {
4529 /* _NEW_MULTISAMPLE */
4530
4531 if (_mesa_is_multisample_enabled(ctx)) {
4532 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4533 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4534 }
4535
4536 pb.AlphaTestEnable = color->AlphaEnabled;
4537 }
4538
4539 /* Used for implementing the following bit of GL_EXT_texture_integer:
4540 * "Per-fragment operations that require floating-point color
4541 * components, including multisample alpha operations, alpha test,
4542 * blending, and dithering, have no effect when the corresponding
4543 * colors are written to an integer color buffer."
4544 *
4545 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4546 * "If drawbuffer zero is not NONE and the buffer it references has an
4547 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4548 * operations are skipped."
4549 */
4550 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4551 GLenum eqRGB = color->Blend[0].EquationRGB;
4552 GLenum eqA = color->Blend[0].EquationA;
4553 GLenum srcRGB = color->Blend[0].SrcRGB;
4554 GLenum dstRGB = color->Blend[0].DstRGB;
4555 GLenum srcA = color->Blend[0].SrcA;
4556 GLenum dstA = color->Blend[0].DstA;
4557
4558 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4559 srcRGB = dstRGB = GL_ONE;
4560
4561 if (eqA == GL_MIN || eqA == GL_MAX)
4562 srcA = dstA = GL_ONE;
4563
4564 /* Due to hardware limitations, the destination may have information
4565 * in an alpha channel even when the format specifies no alpha
4566 * channel. In order to avoid getting any incorrect blending due to
4567 * that alpha channel, coerce the blend factors to values that will
4568 * not read the alpha channel, but will instead use the correct
4569 * implicit value for alpha.
4570 */
4571 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4572 GL_TEXTURE_ALPHA_TYPE)) {
4573 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4574 srcA = brw_fix_xRGB_alpha(srcA);
4575 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4576 dstA = brw_fix_xRGB_alpha(dstA);
4577 }
4578
4579 /* Alpha to One doesn't work with Dual Color Blending. Override
4580 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4581 */
4582 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4583 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4584 srcA = fix_dual_blend_alpha_to_one(srcA);
4585 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4586 dstA = fix_dual_blend_alpha_to_one(dstA);
4587 }
4588
4589 pb.ColorBufferBlendEnable = true;
4590 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4591 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4592 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4593 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4594
4595 pb.IndependentAlphaBlendEnable =
4596 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4597 }
4598 }
4599 }
4600
4601 static const struct brw_tracked_state genX(ps_blend) = {
4602 .dirty = {
4603 .mesa = _NEW_BUFFERS |
4604 _NEW_COLOR |
4605 _NEW_MULTISAMPLE,
4606 .brw = BRW_NEW_BLORP |
4607 BRW_NEW_CONTEXT |
4608 BRW_NEW_FRAGMENT_PROGRAM,
4609 },
4610 .emit = genX(upload_ps_blend)
4611 };
4612 #endif
4613
4614 /* ---------------------------------------------------------------------- */
4615
4616 #if GEN_GEN >= 8
4617 static void
4618 genX(emit_vf_topology)(struct brw_context *brw)
4619 {
4620 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4621 vftopo.PrimitiveTopologyType = brw->primitive;
4622 }
4623 }
4624
4625 static const struct brw_tracked_state genX(vf_topology) = {
4626 .dirty = {
4627 .mesa = 0,
4628 .brw = BRW_NEW_BLORP |
4629 BRW_NEW_PRIMITIVE,
4630 },
4631 .emit = genX(emit_vf_topology),
4632 };
4633 #endif
4634
4635 /* ---------------------------------------------------------------------- */
4636
4637 #if GEN_GEN >= 7
4638 static void
4639 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4640 struct brw_bo *bo,
4641 uint32_t offset_in_bytes,
4642 uint32_t report_id)
4643 {
4644 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4645 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4646 mi_rpc.ReportID = report_id;
4647 }
4648 }
4649 #endif
4650
4651 /* ---------------------------------------------------------------------- */
4652
4653 /**
4654 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4655 */
4656 static void
4657 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4658 struct brw_stage_state *stage_state)
4659 {
4660 #if GEN_GEN >= 7
4661 static const uint16_t packet_headers[] = {
4662 [MESA_SHADER_VERTEX] = 43,
4663 [MESA_SHADER_TESS_CTRL] = 44,
4664 [MESA_SHADER_TESS_EVAL] = 45,
4665 [MESA_SHADER_GEOMETRY] = 46,
4666 [MESA_SHADER_FRAGMENT] = 47,
4667 };
4668
4669 /* Ivybridge requires a workaround flush before VS packets. */
4670 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4671 stage_state->stage == MESA_SHADER_VERTEX) {
4672 gen7_emit_vs_workaround_flush(brw);
4673 }
4674
4675 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4676 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4677 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4678 }
4679 #endif
4680 }
4681
4682 UNUSED static bool
4683 has_component(mesa_format format, int i)
4684 {
4685 if (_mesa_is_format_color_format(format))
4686 return _mesa_format_has_color_component(format, i);
4687
4688 /* depth and stencil have only one component */
4689 return i == 0;
4690 }
4691
4692 /**
4693 * Upload SAMPLER_BORDER_COLOR_STATE.
4694 */
4695 static void
4696 genX(upload_default_color)(struct brw_context *brw,
4697 const struct gl_sampler_object *sampler,
4698 mesa_format format, GLenum base_format,
4699 bool is_integer_format, bool is_stencil_sampling,
4700 uint32_t *sdc_offset)
4701 {
4702 union gl_color_union color;
4703
4704 switch (base_format) {
4705 case GL_DEPTH_COMPONENT:
4706 /* GL specs that border color for depth textures is taken from the
4707 * R channel, while the hardware uses A. Spam R into all the
4708 * channels for safety.
4709 */
4710 color.ui[0] = sampler->BorderColor.ui[0];
4711 color.ui[1] = sampler->BorderColor.ui[0];
4712 color.ui[2] = sampler->BorderColor.ui[0];
4713 color.ui[3] = sampler->BorderColor.ui[0];
4714 break;
4715 case GL_ALPHA:
4716 color.ui[0] = 0u;
4717 color.ui[1] = 0u;
4718 color.ui[2] = 0u;
4719 color.ui[3] = sampler->BorderColor.ui[3];
4720 break;
4721 case GL_INTENSITY:
4722 color.ui[0] = sampler->BorderColor.ui[0];
4723 color.ui[1] = sampler->BorderColor.ui[0];
4724 color.ui[2] = sampler->BorderColor.ui[0];
4725 color.ui[3] = sampler->BorderColor.ui[0];
4726 break;
4727 case GL_LUMINANCE:
4728 color.ui[0] = sampler->BorderColor.ui[0];
4729 color.ui[1] = sampler->BorderColor.ui[0];
4730 color.ui[2] = sampler->BorderColor.ui[0];
4731 color.ui[3] = float_as_int(1.0);
4732 break;
4733 case GL_LUMINANCE_ALPHA:
4734 color.ui[0] = sampler->BorderColor.ui[0];
4735 color.ui[1] = sampler->BorderColor.ui[0];
4736 color.ui[2] = sampler->BorderColor.ui[0];
4737 color.ui[3] = sampler->BorderColor.ui[3];
4738 break;
4739 default:
4740 color.ui[0] = sampler->BorderColor.ui[0];
4741 color.ui[1] = sampler->BorderColor.ui[1];
4742 color.ui[2] = sampler->BorderColor.ui[2];
4743 color.ui[3] = sampler->BorderColor.ui[3];
4744 break;
4745 }
4746
4747 /* In some cases we use an RGBA surface format for GL RGB textures,
4748 * where we've initialized the A channel to 1.0. We also have to set
4749 * the border color alpha to 1.0 in that case.
4750 */
4751 if (base_format == GL_RGB)
4752 color.ui[3] = float_as_int(1.0);
4753
4754 int alignment = 32;
4755 if (GEN_GEN >= 8) {
4756 alignment = 64;
4757 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4758 alignment = 512;
4759 }
4760
4761 uint32_t *sdc = brw_state_batch(
4762 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4763 alignment, sdc_offset);
4764
4765 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4766
4767 #define ASSIGN(dst, src) \
4768 do { \
4769 dst = src; \
4770 } while (0)
4771
4772 #define ASSIGNu16(dst, src) \
4773 do { \
4774 dst = (uint16_t)src; \
4775 } while (0)
4776
4777 #define ASSIGNu8(dst, src) \
4778 do { \
4779 dst = (uint8_t)src; \
4780 } while (0)
4781
4782 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4783 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4784 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4785 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4786 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4787
4788 #if GEN_GEN >= 8
4789 /* On Broadwell, the border color is represented as four 32-bit floats,
4790 * integers, or unsigned values, interpreted according to the surface
4791 * format. This matches the sampler->BorderColor union exactly; just
4792 * memcpy the values.
4793 */
4794 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4795 #elif GEN_IS_HASWELL
4796 if (is_integer_format || is_stencil_sampling) {
4797 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4798 const int bits_per_channel =
4799 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4800
4801 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4802 * "If any color channel is missing from the surface format,
4803 * corresponding border color should be programmed as zero and if
4804 * alpha channel is missing, corresponding Alpha border color should
4805 * be programmed as 1."
4806 */
4807 unsigned c[4] = { 0, 0, 0, 1 };
4808 for (int i = 0; i < 4; i++) {
4809 if (has_component(format, i))
4810 c[i] = color.ui[i];
4811 }
4812
4813 switch (bits_per_channel) {
4814 case 8:
4815 /* Copy RGBA in order. */
4816 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4817 break;
4818 case 10:
4819 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4820 case 16:
4821 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4822 break;
4823 case 32:
4824 if (base_format == GL_RG) {
4825 /* Careful inspection of the tables reveals that for RG32 formats,
4826 * the green channel needs to go where blue normally belongs.
4827 */
4828 state.BorderColor32bitRed = c[0];
4829 state.BorderColor32bitBlue = c[1];
4830 state.BorderColor32bitAlpha = 1;
4831 } else {
4832 /* Copy RGBA in order. */
4833 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4834 }
4835 break;
4836 default:
4837 assert(!"Invalid number of bits per channel in integer format.");
4838 break;
4839 }
4840 } else {
4841 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4842 }
4843 #elif GEN_GEN == 5 || GEN_GEN == 6
4844 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4845 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4846 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4847
4848 #define MESA_FLOAT_TO_HALF(dst, src) \
4849 dst = _mesa_float_to_half(src);
4850
4851 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4852
4853 #undef MESA_FLOAT_TO_HALF
4854
4855 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4856 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4857 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4858 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4859
4860 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4861 #elif GEN_GEN == 4
4862 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4863 #else
4864 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4865 #endif
4866
4867 #undef ASSIGN
4868 #undef BORDER_COLOR_ATTR
4869
4870 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4871 }
4872
4873 static uint32_t
4874 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4875 {
4876 switch (wrap) {
4877 case GL_REPEAT:
4878 return TCM_WRAP;
4879 case GL_CLAMP:
4880 #if GEN_GEN >= 8
4881 /* GL_CLAMP is the weird mode where coordinates are clamped to
4882 * [0.0, 1.0], so linear filtering of coordinates outside of
4883 * [0.0, 1.0] give you half edge texel value and half border
4884 * color.
4885 *
4886 * Gen8+ supports this natively.
4887 */
4888 return TCM_HALF_BORDER;
4889 #else
4890 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4891 * and set clamp_border here, which gets the result desired.
4892 * We just use clamp(_to_edge) for nearest, because for nearest
4893 * clamping to 1.0 gives border color instead of the desired
4894 * edge texels.
4895 */
4896 if (using_nearest)
4897 return TCM_CLAMP;
4898 else
4899 return TCM_CLAMP_BORDER;
4900 #endif
4901 case GL_CLAMP_TO_EDGE:
4902 return TCM_CLAMP;
4903 case GL_CLAMP_TO_BORDER:
4904 return TCM_CLAMP_BORDER;
4905 case GL_MIRRORED_REPEAT:
4906 return TCM_MIRROR;
4907 case GL_MIRROR_CLAMP_TO_EDGE:
4908 return TCM_MIRROR_ONCE;
4909 default:
4910 return TCM_WRAP;
4911 }
4912 }
4913
4914 /**
4915 * Return true if the given wrap mode requires the border color to exist.
4916 */
4917 static bool
4918 wrap_mode_needs_border_color(unsigned wrap_mode)
4919 {
4920 #if GEN_GEN >= 8
4921 return wrap_mode == TCM_CLAMP_BORDER ||
4922 wrap_mode == TCM_HALF_BORDER;
4923 #else
4924 return wrap_mode == TCM_CLAMP_BORDER;
4925 #endif
4926 }
4927
4928 /**
4929 * Sets the sampler state for a single unit based off of the sampler key
4930 * entry.
4931 */
4932 static void
4933 genX(update_sampler_state)(struct brw_context *brw,
4934 GLenum target, bool tex_cube_map_seamless,
4935 GLfloat tex_unit_lod_bias,
4936 mesa_format format, GLenum base_format,
4937 const struct gl_texture_object *texObj,
4938 const struct gl_sampler_object *sampler,
4939 uint32_t *sampler_state,
4940 uint32_t batch_offset_for_sampler_state)
4941 {
4942 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4943
4944 /* Select min and mip filters. */
4945 switch (sampler->MinFilter) {
4946 case GL_NEAREST:
4947 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4948 samp_st.MipModeFilter = MIPFILTER_NONE;
4949 break;
4950 case GL_LINEAR:
4951 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4952 samp_st.MipModeFilter = MIPFILTER_NONE;
4953 break;
4954 case GL_NEAREST_MIPMAP_NEAREST:
4955 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4956 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4957 break;
4958 case GL_LINEAR_MIPMAP_NEAREST:
4959 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4960 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4961 break;
4962 case GL_NEAREST_MIPMAP_LINEAR:
4963 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4964 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4965 break;
4966 case GL_LINEAR_MIPMAP_LINEAR:
4967 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4968 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4969 break;
4970 default:
4971 unreachable("not reached");
4972 }
4973
4974 /* Select mag filter. */
4975 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
4976 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
4977
4978 /* Enable anisotropic filtering if desired. */
4979 samp_st.MaximumAnisotropy = RATIO21;
4980
4981 if (sampler->MaxAnisotropy > 1.0f) {
4982 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
4983 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
4984 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
4985 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
4986
4987 if (sampler->MaxAnisotropy > 2.0f) {
4988 samp_st.MaximumAnisotropy =
4989 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
4990 }
4991 }
4992
4993 /* Set address rounding bits if not using nearest filtering. */
4994 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
4995 samp_st.UAddressMinFilterRoundingEnable = true;
4996 samp_st.VAddressMinFilterRoundingEnable = true;
4997 samp_st.RAddressMinFilterRoundingEnable = true;
4998 }
4999
5000 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5001 samp_st.UAddressMagFilterRoundingEnable = true;
5002 samp_st.VAddressMagFilterRoundingEnable = true;
5003 samp_st.RAddressMagFilterRoundingEnable = true;
5004 }
5005
5006 bool either_nearest =
5007 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5008 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
5009 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
5010 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
5011
5012 if (target == GL_TEXTURE_CUBE_MAP ||
5013 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5014 /* Cube maps must use the same wrap mode for all three coordinate
5015 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5016 *
5017 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5018 * integer formats. Fall back to CLAMP for now.
5019 */
5020 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5021 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5022 wrap_s = TCM_CUBE;
5023 wrap_t = TCM_CUBE;
5024 wrap_r = TCM_CUBE;
5025 } else {
5026 wrap_s = TCM_CLAMP;
5027 wrap_t = TCM_CLAMP;
5028 wrap_r = TCM_CLAMP;
5029 }
5030 } else if (target == GL_TEXTURE_1D) {
5031 /* There's a bug in 1D texture sampling - it actually pays
5032 * attention to the wrap_t value, though it should not.
5033 * Override the wrap_t value here to GL_REPEAT to keep
5034 * any nonexistent border pixels from floating in.
5035 */
5036 wrap_t = TCM_WRAP;
5037 }
5038
5039 samp_st.TCXAddressControlMode = wrap_s;
5040 samp_st.TCYAddressControlMode = wrap_t;
5041 samp_st.TCZAddressControlMode = wrap_r;
5042
5043 samp_st.ShadowFunction =
5044 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5045 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5046
5047 #if GEN_GEN >= 7
5048 /* Set shadow function. */
5049 samp_st.AnisotropicAlgorithm =
5050 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5051 EWAApproximation : LEGACY;
5052 #endif
5053
5054 #if GEN_GEN >= 6
5055 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5056 #endif
5057
5058 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5059 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5060 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5061 samp_st.TextureLODBias =
5062 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5063
5064 #if GEN_GEN == 6
5065 samp_st.BaseMipLevel =
5066 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5067 samp_st.MinandMagStateNotEqual =
5068 samp_st.MinModeFilter != samp_st.MagModeFilter;
5069 #endif
5070
5071 /* Upload the border color if necessary. If not, just point it at
5072 * offset 0 (the start of the batch) - the color should be ignored,
5073 * but that address won't fault in case something reads it anyway.
5074 */
5075 uint32_t border_color_offset = 0;
5076 if (wrap_mode_needs_border_color(wrap_s) ||
5077 wrap_mode_needs_border_color(wrap_t) ||
5078 wrap_mode_needs_border_color(wrap_r)) {
5079 genX(upload_default_color)(brw, sampler, format, base_format,
5080 texObj->_IsIntegerFormat,
5081 texObj->StencilSampling,
5082 &border_color_offset);
5083 }
5084 #if GEN_GEN < 6
5085 samp_st.BorderColorPointer =
5086 ro_bo(brw->batch.state_bo, border_color_offset);
5087 #else
5088 samp_st.BorderColorPointer = border_color_offset;
5089 #endif
5090
5091 #if GEN_GEN >= 8
5092 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5093 #else
5094 samp_st.LODPreClampEnable = true;
5095 #endif
5096
5097 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5098 }
5099
5100 static void
5101 update_sampler_state(struct brw_context *brw,
5102 int unit,
5103 uint32_t *sampler_state,
5104 uint32_t batch_offset_for_sampler_state)
5105 {
5106 struct gl_context *ctx = &brw->ctx;
5107 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5108 const struct gl_texture_object *texObj = texUnit->_Current;
5109 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5110
5111 /* These don't use samplers at all. */
5112 if (texObj->Target == GL_TEXTURE_BUFFER)
5113 return;
5114
5115 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5116 genX(update_sampler_state)(brw, texObj->Target,
5117 ctx->Texture.CubeMapSeamless,
5118 texUnit->LodBias,
5119 firstImage->TexFormat, firstImage->_BaseFormat,
5120 texObj, sampler,
5121 sampler_state, batch_offset_for_sampler_state);
5122 }
5123
5124 static void
5125 genX(upload_sampler_state_table)(struct brw_context *brw,
5126 struct gl_program *prog,
5127 struct brw_stage_state *stage_state)
5128 {
5129 struct gl_context *ctx = &brw->ctx;
5130 uint32_t sampler_count = stage_state->sampler_count;
5131
5132 GLbitfield SamplersUsed = prog->SamplersUsed;
5133
5134 if (sampler_count == 0)
5135 return;
5136
5137 /* SAMPLER_STATE is 4 DWords on all platforms. */
5138 const int dwords = GENX(SAMPLER_STATE_length);
5139 const int size_in_bytes = dwords * sizeof(uint32_t);
5140
5141 uint32_t *sampler_state = brw_state_batch(brw,
5142 sampler_count * size_in_bytes,
5143 32, &stage_state->sampler_offset);
5144 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5145
5146 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5147
5148 for (unsigned s = 0; s < sampler_count; s++) {
5149 if (SamplersUsed & (1 << s)) {
5150 const unsigned unit = prog->SamplerUnits[s];
5151 if (ctx->Texture.Unit[unit]._Current) {
5152 update_sampler_state(brw, unit, sampler_state,
5153 batch_offset_for_sampler_state);
5154 }
5155 }
5156
5157 sampler_state += dwords;
5158 batch_offset_for_sampler_state += size_in_bytes;
5159 }
5160
5161 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5162 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5163 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5164 } else {
5165 /* Flag that the sampler state table pointer has changed; later atoms
5166 * will handle it.
5167 */
5168 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5169 }
5170 }
5171
5172 static void
5173 genX(upload_fs_samplers)(struct brw_context *brw)
5174 {
5175 /* BRW_NEW_FRAGMENT_PROGRAM */
5176 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5177 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5178 }
5179
5180 static const struct brw_tracked_state genX(fs_samplers) = {
5181 .dirty = {
5182 .mesa = _NEW_TEXTURE,
5183 .brw = BRW_NEW_BATCH |
5184 BRW_NEW_BLORP |
5185 BRW_NEW_FRAGMENT_PROGRAM,
5186 },
5187 .emit = genX(upload_fs_samplers),
5188 };
5189
5190 static void
5191 genX(upload_vs_samplers)(struct brw_context *brw)
5192 {
5193 /* BRW_NEW_VERTEX_PROGRAM */
5194 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5195 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5196 }
5197
5198 static const struct brw_tracked_state genX(vs_samplers) = {
5199 .dirty = {
5200 .mesa = _NEW_TEXTURE,
5201 .brw = BRW_NEW_BATCH |
5202 BRW_NEW_BLORP |
5203 BRW_NEW_VERTEX_PROGRAM,
5204 },
5205 .emit = genX(upload_vs_samplers),
5206 };
5207
5208 #if GEN_GEN >= 6
5209 static void
5210 genX(upload_gs_samplers)(struct brw_context *brw)
5211 {
5212 /* BRW_NEW_GEOMETRY_PROGRAM */
5213 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5214 if (!gs)
5215 return;
5216
5217 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5218 }
5219
5220
5221 static const struct brw_tracked_state genX(gs_samplers) = {
5222 .dirty = {
5223 .mesa = _NEW_TEXTURE,
5224 .brw = BRW_NEW_BATCH |
5225 BRW_NEW_BLORP |
5226 BRW_NEW_GEOMETRY_PROGRAM,
5227 },
5228 .emit = genX(upload_gs_samplers),
5229 };
5230 #endif
5231
5232 #if GEN_GEN >= 7
5233 static void
5234 genX(upload_tcs_samplers)(struct brw_context *brw)
5235 {
5236 /* BRW_NEW_TESS_PROGRAMS */
5237 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5238 if (!tcs)
5239 return;
5240
5241 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5242 }
5243
5244 static const struct brw_tracked_state genX(tcs_samplers) = {
5245 .dirty = {
5246 .mesa = _NEW_TEXTURE,
5247 .brw = BRW_NEW_BATCH |
5248 BRW_NEW_BLORP |
5249 BRW_NEW_TESS_PROGRAMS,
5250 },
5251 .emit = genX(upload_tcs_samplers),
5252 };
5253 #endif
5254
5255 #if GEN_GEN >= 7
5256 static void
5257 genX(upload_tes_samplers)(struct brw_context *brw)
5258 {
5259 /* BRW_NEW_TESS_PROGRAMS */
5260 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5261 if (!tes)
5262 return;
5263
5264 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5265 }
5266
5267 static const struct brw_tracked_state genX(tes_samplers) = {
5268 .dirty = {
5269 .mesa = _NEW_TEXTURE,
5270 .brw = BRW_NEW_BATCH |
5271 BRW_NEW_BLORP |
5272 BRW_NEW_TESS_PROGRAMS,
5273 },
5274 .emit = genX(upload_tes_samplers),
5275 };
5276 #endif
5277
5278 #if GEN_GEN >= 7
5279 static void
5280 genX(upload_cs_samplers)(struct brw_context *brw)
5281 {
5282 /* BRW_NEW_COMPUTE_PROGRAM */
5283 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5284 if (!cs)
5285 return;
5286
5287 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5288 }
5289
5290 const struct brw_tracked_state genX(cs_samplers) = {
5291 .dirty = {
5292 .mesa = _NEW_TEXTURE,
5293 .brw = BRW_NEW_BATCH |
5294 BRW_NEW_BLORP |
5295 BRW_NEW_COMPUTE_PROGRAM,
5296 },
5297 .emit = genX(upload_cs_samplers),
5298 };
5299 #endif
5300
5301 /* ---------------------------------------------------------------------- */
5302
5303 #if GEN_GEN <= 5
5304
5305 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5306 {
5307 struct gl_context *ctx = &brw->ctx;
5308
5309 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5310 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5311 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5312 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5313 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5314 }
5315 }
5316
5317 static const struct brw_tracked_state genX(blend_constant_color) = {
5318 .dirty = {
5319 .mesa = _NEW_COLOR,
5320 .brw = BRW_NEW_CONTEXT |
5321 BRW_NEW_BLORP,
5322 },
5323 .emit = genX(upload_blend_constant_color)
5324 };
5325 #endif
5326
5327 /* ---------------------------------------------------------------------- */
5328
5329 void
5330 genX(init_atoms)(struct brw_context *brw)
5331 {
5332 #if GEN_GEN < 6
5333 static const struct brw_tracked_state *render_atoms[] =
5334 {
5335 /* Once all the programs are done, we know how large urb entry
5336 * sizes need to be and can decide if we need to change the urb
5337 * layout.
5338 */
5339 &brw_curbe_offsets,
5340 &brw_recalculate_urb_fence,
5341
5342 &genX(cc_vp),
5343 &genX(color_calc_state),
5344
5345 /* Surface state setup. Must come before the VS/WM unit. The binding
5346 * table upload must be last.
5347 */
5348 &brw_vs_pull_constants,
5349 &brw_wm_pull_constants,
5350 &brw_renderbuffer_surfaces,
5351 &brw_renderbuffer_read_surfaces,
5352 &brw_texture_surfaces,
5353 &brw_vs_binding_table,
5354 &brw_wm_binding_table,
5355
5356 &genX(fs_samplers),
5357 &genX(vs_samplers),
5358
5359 /* These set up state for brw_psp_urb_cbs */
5360 &genX(wm_state),
5361 &genX(sf_clip_viewport),
5362 &genX(sf_state),
5363 &genX(vs_state), /* always required, enabled or not */
5364 &genX(clip_state),
5365 &genX(gs_state),
5366
5367 /* Command packets:
5368 */
5369 &brw_invariant_state,
5370
5371 &brw_binding_table_pointers,
5372 &genX(blend_constant_color),
5373
5374 &brw_depthbuffer,
5375
5376 &genX(polygon_stipple),
5377 &genX(polygon_stipple_offset),
5378
5379 &genX(line_stipple),
5380
5381 &brw_psp_urb_cbs,
5382
5383 &genX(drawing_rect),
5384 &brw_indices, /* must come before brw_vertices */
5385 &genX(index_buffer),
5386 &genX(vertices),
5387
5388 &brw_constant_buffer
5389 };
5390 #elif GEN_GEN == 6
5391 static const struct brw_tracked_state *render_atoms[] =
5392 {
5393 &genX(sf_clip_viewport),
5394
5395 /* Command packets: */
5396
5397 &genX(cc_vp),
5398
5399 &gen6_urb,
5400 &genX(blend_state), /* must do before cc unit */
5401 &genX(color_calc_state), /* must do before cc unit */
5402 &genX(depth_stencil_state), /* must do before cc unit */
5403
5404 &genX(vs_push_constants), /* Before vs_state */
5405 &genX(gs_push_constants), /* Before gs_state */
5406 &genX(wm_push_constants), /* Before wm_state */
5407
5408 /* Surface state setup. Must come before the VS/WM unit. The binding
5409 * table upload must be last.
5410 */
5411 &brw_vs_pull_constants,
5412 &brw_vs_ubo_surfaces,
5413 &brw_gs_pull_constants,
5414 &brw_gs_ubo_surfaces,
5415 &brw_wm_pull_constants,
5416 &brw_wm_ubo_surfaces,
5417 &gen6_renderbuffer_surfaces,
5418 &brw_renderbuffer_read_surfaces,
5419 &brw_texture_surfaces,
5420 &gen6_sol_surface,
5421 &brw_vs_binding_table,
5422 &gen6_gs_binding_table,
5423 &brw_wm_binding_table,
5424
5425 &genX(fs_samplers),
5426 &genX(vs_samplers),
5427 &genX(gs_samplers),
5428 &gen6_sampler_state,
5429 &genX(multisample_state),
5430
5431 &genX(vs_state),
5432 &genX(gs_state),
5433 &genX(clip_state),
5434 &genX(sf_state),
5435 &genX(wm_state),
5436
5437 &genX(scissor_state),
5438
5439 &gen6_binding_table_pointers,
5440
5441 &brw_depthbuffer,
5442
5443 &genX(polygon_stipple),
5444 &genX(polygon_stipple_offset),
5445
5446 &genX(line_stipple),
5447
5448 &genX(drawing_rect),
5449
5450 &brw_indices, /* must come before brw_vertices */
5451 &genX(index_buffer),
5452 &genX(vertices),
5453 };
5454 #elif GEN_GEN == 7
5455 static const struct brw_tracked_state *render_atoms[] =
5456 {
5457 /* Command packets: */
5458
5459 &genX(cc_vp),
5460 &genX(sf_clip_viewport),
5461
5462 &gen7_l3_state,
5463 &gen7_push_constant_space,
5464 &gen7_urb,
5465 &genX(blend_state), /* must do before cc unit */
5466 &genX(color_calc_state), /* must do before cc unit */
5467 &genX(depth_stencil_state), /* must do before cc unit */
5468
5469 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5470 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5471 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5472 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5473 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5474
5475 &genX(vs_push_constants), /* Before vs_state */
5476 &genX(tcs_push_constants),
5477 &genX(tes_push_constants),
5478 &genX(gs_push_constants), /* Before gs_state */
5479 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5480
5481 /* Surface state setup. Must come before the VS/WM unit. The binding
5482 * table upload must be last.
5483 */
5484 &brw_vs_pull_constants,
5485 &brw_vs_ubo_surfaces,
5486 &brw_vs_abo_surfaces,
5487 &brw_tcs_pull_constants,
5488 &brw_tcs_ubo_surfaces,
5489 &brw_tcs_abo_surfaces,
5490 &brw_tes_pull_constants,
5491 &brw_tes_ubo_surfaces,
5492 &brw_tes_abo_surfaces,
5493 &brw_gs_pull_constants,
5494 &brw_gs_ubo_surfaces,
5495 &brw_gs_abo_surfaces,
5496 &brw_wm_pull_constants,
5497 &brw_wm_ubo_surfaces,
5498 &brw_wm_abo_surfaces,
5499 &gen6_renderbuffer_surfaces,
5500 &brw_renderbuffer_read_surfaces,
5501 &brw_texture_surfaces,
5502
5503 &genX(push_constant_packets),
5504
5505 &brw_vs_binding_table,
5506 &brw_tcs_binding_table,
5507 &brw_tes_binding_table,
5508 &brw_gs_binding_table,
5509 &brw_wm_binding_table,
5510
5511 &genX(fs_samplers),
5512 &genX(vs_samplers),
5513 &genX(tcs_samplers),
5514 &genX(tes_samplers),
5515 &genX(gs_samplers),
5516 &genX(multisample_state),
5517
5518 &genX(vs_state),
5519 &genX(hs_state),
5520 &genX(te_state),
5521 &genX(ds_state),
5522 &genX(gs_state),
5523 &genX(sol_state),
5524 &genX(clip_state),
5525 &genX(sbe_state),
5526 &genX(sf_state),
5527 &genX(wm_state),
5528 &genX(ps_state),
5529
5530 &genX(scissor_state),
5531
5532 &gen7_depthbuffer,
5533
5534 &genX(polygon_stipple),
5535 &genX(polygon_stipple_offset),
5536
5537 &genX(line_stipple),
5538
5539 &genX(drawing_rect),
5540
5541 &brw_indices, /* must come before brw_vertices */
5542 &genX(index_buffer),
5543 &genX(vertices),
5544
5545 #if GEN_IS_HASWELL
5546 &genX(cut_index),
5547 #endif
5548 };
5549 #elif GEN_GEN >= 8
5550 static const struct brw_tracked_state *render_atoms[] =
5551 {
5552 &genX(cc_vp),
5553 &genX(sf_clip_viewport),
5554
5555 &gen7_l3_state,
5556 &gen7_push_constant_space,
5557 &gen7_urb,
5558 &genX(blend_state),
5559 &genX(color_calc_state),
5560
5561 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5562 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5563 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5564 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5565 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5566
5567 &genX(vs_push_constants), /* Before vs_state */
5568 &genX(tcs_push_constants),
5569 &genX(tes_push_constants),
5570 &genX(gs_push_constants), /* Before gs_state */
5571 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5572
5573 /* Surface state setup. Must come before the VS/WM unit. The binding
5574 * table upload must be last.
5575 */
5576 &brw_vs_pull_constants,
5577 &brw_vs_ubo_surfaces,
5578 &brw_vs_abo_surfaces,
5579 &brw_tcs_pull_constants,
5580 &brw_tcs_ubo_surfaces,
5581 &brw_tcs_abo_surfaces,
5582 &brw_tes_pull_constants,
5583 &brw_tes_ubo_surfaces,
5584 &brw_tes_abo_surfaces,
5585 &brw_gs_pull_constants,
5586 &brw_gs_ubo_surfaces,
5587 &brw_gs_abo_surfaces,
5588 &brw_wm_pull_constants,
5589 &brw_wm_ubo_surfaces,
5590 &brw_wm_abo_surfaces,
5591 &gen6_renderbuffer_surfaces,
5592 &brw_renderbuffer_read_surfaces,
5593 &brw_texture_surfaces,
5594
5595 &genX(push_constant_packets),
5596
5597 &brw_vs_binding_table,
5598 &brw_tcs_binding_table,
5599 &brw_tes_binding_table,
5600 &brw_gs_binding_table,
5601 &brw_wm_binding_table,
5602
5603 &genX(fs_samplers),
5604 &genX(vs_samplers),
5605 &genX(tcs_samplers),
5606 &genX(tes_samplers),
5607 &genX(gs_samplers),
5608 &genX(multisample_state),
5609
5610 &genX(vs_state),
5611 &genX(hs_state),
5612 &genX(te_state),
5613 &genX(ds_state),
5614 &genX(gs_state),
5615 &genX(sol_state),
5616 &genX(clip_state),
5617 &genX(raster_state),
5618 &genX(sbe_state),
5619 &genX(sf_state),
5620 &genX(ps_blend),
5621 &genX(ps_extra),
5622 &genX(ps_state),
5623 &genX(depth_stencil_state),
5624 &genX(wm_state),
5625
5626 &genX(scissor_state),
5627
5628 &gen7_depthbuffer,
5629
5630 &genX(polygon_stipple),
5631 &genX(polygon_stipple_offset),
5632
5633 &genX(line_stipple),
5634
5635 &genX(drawing_rect),
5636
5637 &genX(vf_topology),
5638
5639 &brw_indices,
5640 &genX(index_buffer),
5641 &genX(vertices),
5642
5643 &genX(cut_index),
5644 &gen8_pma_fix,
5645 };
5646 #endif
5647
5648 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5649 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5650 render_atoms, ARRAY_SIZE(render_atoms));
5651
5652 #if GEN_GEN >= 7
5653 static const struct brw_tracked_state *compute_atoms[] =
5654 {
5655 &gen7_l3_state,
5656 &brw_cs_image_surfaces,
5657 &genX(cs_push_constants),
5658 &genX(cs_pull_constants),
5659 &brw_cs_ubo_surfaces,
5660 &brw_cs_abo_surfaces,
5661 &brw_cs_texture_surfaces,
5662 &brw_cs_work_groups_surface,
5663 &genX(cs_samplers),
5664 &genX(cs_state),
5665 };
5666
5667 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5668 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5669 compute_atoms, ARRAY_SIZE(compute_atoms));
5670
5671 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5672 #endif
5673 }