i965: Store per-stage push constant BO pointers.
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #if GEN_GEN == 6
38 #include "brw_defines.h"
39 #endif
40 #include "brw_draw.h"
41 #include "brw_multisample_state.h"
42 #include "brw_state.h"
43 #include "brw_wm.h"
44 #include "brw_util.h"
45
46 #include "intel_batchbuffer.h"
47 #include "intel_buffer_objects.h"
48 #include "intel_fbo.h"
49
50 #include "main/enums.h"
51 #include "main/fbobject.h"
52 #include "main/framebuffer.h"
53 #include "main/glformats.h"
54 #include "main/samplerobj.h"
55 #include "main/shaderapi.h"
56 #include "main/stencil.h"
57 #include "main/transformfeedback.h"
58 #include "main/varray.h"
59 #include "main/viewport.h"
60 #include "util/half_float.h"
61
62 UNUSED static void *
63 emit_dwords(struct brw_context *brw, unsigned n)
64 {
65 intel_batchbuffer_begin(brw, n, RENDER_RING);
66 uint32_t *map = brw->batch.map_next;
67 brw->batch.map_next += n;
68 intel_batchbuffer_advance(brw);
69 return map;
70 }
71
72 struct brw_address {
73 struct brw_bo *bo;
74 uint32_t read_domains;
75 uint32_t write_domain;
76 uint32_t offset;
77 };
78
79 static uint64_t
80 emit_reloc(struct brw_context *brw,
81 void *location, struct brw_address address, uint32_t delta)
82 {
83 uint32_t offset = (char *) location - (char *) brw->batch.map;
84
85 return brw_emit_reloc(&brw->batch, offset, address.bo,
86 address.offset + delta,
87 address.read_domains,
88 address.write_domain);
89 }
90
91 #define __gen_address_type struct brw_address
92 #define __gen_user_data struct brw_context
93
94 static uint64_t
95 __gen_combine_address(struct brw_context *brw, void *location,
96 struct brw_address address, uint32_t delta)
97 {
98 if (address.bo == NULL) {
99 return address.offset + delta;
100 } else {
101 return emit_reloc(brw, location, address, delta);
102 }
103 }
104
105 static inline struct brw_address
106 render_bo(struct brw_bo *bo, uint32_t offset)
107 {
108 return (struct brw_address) {
109 .bo = bo,
110 .offset = offset,
111 .read_domains = I915_GEM_DOMAIN_RENDER,
112 .write_domain = I915_GEM_DOMAIN_RENDER,
113 };
114 }
115
116 static inline struct brw_address
117 render_ro_bo(struct brw_bo *bo, uint32_t offset)
118 {
119 return (struct brw_address) {
120 .bo = bo,
121 .offset = offset,
122 .read_domains = I915_GEM_DOMAIN_RENDER,
123 .write_domain = 0,
124 };
125 }
126
127 static inline struct brw_address
128 instruction_bo(struct brw_bo *bo, uint32_t offset)
129 {
130 return (struct brw_address) {
131 .bo = bo,
132 .offset = offset,
133 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
134 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
135 };
136 }
137
138 static inline struct brw_address
139 instruction_ro_bo(struct brw_bo *bo, uint32_t offset)
140 {
141 return (struct brw_address) {
142 .bo = bo,
143 .offset = offset,
144 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
145 .write_domain = 0,
146 };
147 }
148
149 static inline struct brw_address
150 vertex_bo(struct brw_bo *bo, uint32_t offset)
151 {
152 return (struct brw_address) {
153 .bo = bo,
154 .offset = offset,
155 .read_domains = I915_GEM_DOMAIN_VERTEX,
156 .write_domain = 0,
157 };
158 }
159
160 #if GEN_GEN == 4
161 static inline struct brw_address
162 KSP(struct brw_context *brw, uint32_t offset)
163 {
164 return instruction_bo(brw->cache.bo, offset);
165 }
166
167 static inline struct brw_address
168 KSP_ro(struct brw_context *brw, uint32_t offset)
169 {
170 return instruction_ro_bo(brw->cache.bo, offset);
171 }
172 #else
173 static inline uint32_t
174 KSP(struct brw_context *brw, uint32_t offset)
175 {
176 return offset;
177 }
178
179 #define KSP_ro KSP
180
181 #endif
182
183 #include "genxml/genX_pack.h"
184
185 #define _brw_cmd_length(cmd) cmd ## _length
186 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
187 #define _brw_cmd_header(cmd) cmd ## _header
188 #define _brw_cmd_pack(cmd) cmd ## _pack
189
190 #define brw_batch_emit(brw, cmd, name) \
191 for (struct cmd name = { _brw_cmd_header(cmd) }, \
192 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
193 __builtin_expect(_dst != NULL, 1); \
194 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
195 _dst = NULL)
196
197 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
198 uint32_t *_dw = emit_dwords(brw, n); \
199 struct cmd template = { \
200 _brw_cmd_header(cmd), \
201 .DWordLength = n - _brw_cmd_length_bias(cmd), \
202 __VA_ARGS__ \
203 }; \
204 _brw_cmd_pack(cmd)(brw, _dw, &template); \
205 _dw + 1; /* Array starts at dw[1] */ \
206 })
207
208 #define brw_state_emit(brw, cmd, align, offset, name) \
209 for (struct cmd name = { 0, }, \
210 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
211 align, offset); \
212 __builtin_expect(_dst != NULL, 1); \
213 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
214 _dst = NULL)
215
216 /**
217 * Polygon stipple packet
218 */
219 static void
220 genX(upload_polygon_stipple)(struct brw_context *brw)
221 {
222 struct gl_context *ctx = &brw->ctx;
223
224 /* _NEW_POLYGON */
225 if (!ctx->Polygon.StippleFlag)
226 return;
227
228 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
229 /* Polygon stipple is provided in OpenGL order, i.e. bottom
230 * row first. If we're rendering to a window (i.e. the
231 * default frame buffer object, 0), then we need to invert
232 * it to match our pixel layout. But if we're rendering
233 * to a FBO (i.e. any named frame buffer object), we *don't*
234 * need to invert - we already match the layout.
235 */
236 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
237 for (unsigned i = 0; i < 32; i++)
238 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
239 } else {
240 for (unsigned i = 0; i < 32; i++)
241 poly.PatternRow[i] = ctx->PolygonStipple[i];
242 }
243 }
244 }
245
246 static const struct brw_tracked_state genX(polygon_stipple) = {
247 .dirty = {
248 .mesa = _NEW_POLYGON |
249 _NEW_POLYGONSTIPPLE,
250 .brw = BRW_NEW_CONTEXT,
251 },
252 .emit = genX(upload_polygon_stipple),
253 };
254
255 /**
256 * Polygon stipple offset packet
257 */
258 static void
259 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
260 {
261 struct gl_context *ctx = &brw->ctx;
262
263 /* _NEW_POLYGON */
264 if (!ctx->Polygon.StippleFlag)
265 return;
266
267 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
268 /* _NEW_BUFFERS
269 *
270 * If we're drawing to a system window we have to invert the Y axis
271 * in order to match the OpenGL pixel coordinate system, and our
272 * offset must be matched to the window position. If we're drawing
273 * to a user-created FBO then our native pixel coordinate system
274 * works just fine, and there's no window system to worry about.
275 */
276 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
277 poly.PolygonStippleYOffset =
278 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
279 }
280 }
281 }
282
283 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
284 .dirty = {
285 .mesa = _NEW_BUFFERS |
286 _NEW_POLYGON,
287 .brw = BRW_NEW_CONTEXT,
288 },
289 .emit = genX(upload_polygon_stipple_offset),
290 };
291
292 /**
293 * Line stipple packet
294 */
295 static void
296 genX(upload_line_stipple)(struct brw_context *brw)
297 {
298 struct gl_context *ctx = &brw->ctx;
299
300 if (!ctx->Line.StippleFlag)
301 return;
302
303 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
304 line.LineStipplePattern = ctx->Line.StipplePattern;
305
306 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
307 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
308 }
309 }
310
311 static const struct brw_tracked_state genX(line_stipple) = {
312 .dirty = {
313 .mesa = _NEW_LINE,
314 .brw = BRW_NEW_CONTEXT,
315 },
316 .emit = genX(upload_line_stipple),
317 };
318
319 /* Constant single cliprect for framebuffer object or DRI2 drawing */
320 static void
321 genX(upload_drawing_rect)(struct brw_context *brw)
322 {
323 struct gl_context *ctx = &brw->ctx;
324 const struct gl_framebuffer *fb = ctx->DrawBuffer;
325 const unsigned int fb_width = _mesa_geometric_width(fb);
326 const unsigned int fb_height = _mesa_geometric_height(fb);
327
328 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
329 rect.ClippedDrawingRectangleXMax = fb_width - 1;
330 rect.ClippedDrawingRectangleYMax = fb_height - 1;
331 }
332 }
333
334 static const struct brw_tracked_state genX(drawing_rect) = {
335 .dirty = {
336 .mesa = _NEW_BUFFERS,
337 .brw = BRW_NEW_BLORP |
338 BRW_NEW_CONTEXT,
339 },
340 .emit = genX(upload_drawing_rect),
341 };
342
343 static uint32_t *
344 genX(emit_vertex_buffer_state)(struct brw_context *brw,
345 uint32_t *dw,
346 unsigned buffer_nr,
347 struct brw_bo *bo,
348 unsigned start_offset,
349 unsigned end_offset,
350 unsigned stride,
351 unsigned step_rate)
352 {
353 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
354 .VertexBufferIndex = buffer_nr,
355 .BufferPitch = stride,
356 .BufferStartingAddress = vertex_bo(bo, start_offset),
357 #if GEN_GEN >= 8
358 .BufferSize = end_offset - start_offset,
359 #endif
360
361 #if GEN_GEN >= 7
362 .AddressModifyEnable = true,
363 #endif
364
365 #if GEN_GEN < 8
366 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
367 .InstanceDataStepRate = step_rate,
368 #if GEN_GEN >= 5
369 .EndAddress = vertex_bo(bo, end_offset - 1),
370 #endif
371 #endif
372
373 #if GEN_GEN == 10
374 .VertexBufferMOCS = CNL_MOCS_WB,
375 #elif GEN_GEN == 9
376 .VertexBufferMOCS = SKL_MOCS_WB,
377 #elif GEN_GEN == 8
378 .VertexBufferMOCS = BDW_MOCS_WB,
379 #elif GEN_GEN == 7
380 .VertexBufferMOCS = GEN7_MOCS_L3,
381 #endif
382 };
383
384 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
385 return dw + GENX(VERTEX_BUFFER_STATE_length);
386 }
387
388 UNUSED static bool
389 is_passthru_format(uint32_t format)
390 {
391 switch (format) {
392 case ISL_FORMAT_R64_PASSTHRU:
393 case ISL_FORMAT_R64G64_PASSTHRU:
394 case ISL_FORMAT_R64G64B64_PASSTHRU:
395 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
396 return true;
397 default:
398 return false;
399 }
400 }
401
402 UNUSED static int
403 uploads_needed(uint32_t format)
404 {
405 if (!is_passthru_format(format))
406 return 1;
407
408 switch (format) {
409 case ISL_FORMAT_R64_PASSTHRU:
410 case ISL_FORMAT_R64G64_PASSTHRU:
411 return 1;
412 case ISL_FORMAT_R64G64B64_PASSTHRU:
413 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
414 return 2;
415 default:
416 unreachable("not reached");
417 }
418 }
419
420 /*
421 * Returns the format that we are finally going to use when upload a vertex
422 * element. It will only change if we are using *64*PASSTHRU formats, as for
423 * gen < 8 they need to be splitted on two *32*FLOAT formats.
424 *
425 * @upload points in which upload we are. Valid values are [0,1]
426 */
427 static uint32_t
428 downsize_format_if_needed(uint32_t format,
429 int upload)
430 {
431 assert(upload == 0 || upload == 1);
432
433 if (!is_passthru_format(format))
434 return format;
435
436 switch (format) {
437 case ISL_FORMAT_R64_PASSTHRU:
438 return ISL_FORMAT_R32G32_FLOAT;
439 case ISL_FORMAT_R64G64_PASSTHRU:
440 return ISL_FORMAT_R32G32B32A32_FLOAT;
441 case ISL_FORMAT_R64G64B64_PASSTHRU:
442 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
443 : ISL_FORMAT_R32G32_FLOAT;
444 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
445 return ISL_FORMAT_R32G32B32A32_FLOAT;
446 default:
447 unreachable("not reached");
448 }
449 }
450
451 /*
452 * Returns the number of componentes associated with a format that is used on
453 * a 64 to 32 format split. See downsize_format()
454 */
455 static int
456 upload_format_size(uint32_t upload_format)
457 {
458 switch (upload_format) {
459 case ISL_FORMAT_R32G32_FLOAT:
460 return 2;
461 case ISL_FORMAT_R32G32B32A32_FLOAT:
462 return 4;
463 default:
464 unreachable("not reached");
465 }
466 }
467
468 static void
469 genX(emit_vertices)(struct brw_context *brw)
470 {
471 uint32_t *dw;
472
473 brw_prepare_vertices(brw);
474 brw_prepare_shader_draw_parameters(brw);
475
476 #if GEN_GEN < 6
477 brw_emit_query_begin(brw);
478 #endif
479
480 const struct brw_vs_prog_data *vs_prog_data =
481 brw_vs_prog_data(brw->vs.base.prog_data);
482
483 #if GEN_GEN >= 8
484 struct gl_context *ctx = &brw->ctx;
485 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
486 ctx->Polygon.BackMode != GL_FILL);
487
488 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
489 unsigned vue = brw->vb.nr_enabled;
490
491 /* The element for the edge flags must always be last, so we have to
492 * insert the SGVS before it in that case.
493 */
494 if (uses_edge_flag) {
495 assert(vue > 0);
496 vue--;
497 }
498
499 WARN_ONCE(vue >= 33,
500 "Trying to insert VID/IID past 33rd vertex element, "
501 "need to reorder the vertex attrbutes.");
502
503 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
504 if (vs_prog_data->uses_vertexid) {
505 vfs.VertexIDEnable = true;
506 vfs.VertexIDComponentNumber = 2;
507 vfs.VertexIDElementOffset = vue;
508 }
509
510 if (vs_prog_data->uses_instanceid) {
511 vfs.InstanceIDEnable = true;
512 vfs.InstanceIDComponentNumber = 3;
513 vfs.InstanceIDElementOffset = vue;
514 }
515 }
516
517 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
518 vfi.InstancingEnable = true;
519 vfi.VertexElementIndex = vue;
520 }
521 } else {
522 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
523 }
524
525 /* Normally we don't need an element for the SGVS attribute because the
526 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
527 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
528 * we're using draw parameters then we need an element for the those
529 * values. Additionally if there is an edge flag element then the SGVS
530 * can't be inserted past that so we need a dummy element to ensure that
531 * the edge flag is the last one.
532 */
533 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
534 vs_prog_data->uses_baseinstance ||
535 ((vs_prog_data->uses_instanceid ||
536 vs_prog_data->uses_vertexid)
537 && uses_edge_flag));
538 #else
539 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
540 vs_prog_data->uses_baseinstance ||
541 vs_prog_data->uses_instanceid ||
542 vs_prog_data->uses_vertexid);
543 #endif
544 unsigned nr_elements =
545 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
546
547 #if GEN_GEN < 8
548 /* If any of the formats of vb.enabled needs more that one upload, we need
549 * to add it to nr_elements
550 */
551 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
552 struct brw_vertex_element *input = brw->vb.enabled[i];
553 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
554
555 if (uploads_needed(format) > 1)
556 nr_elements++;
557 }
558 #endif
559
560 /* If the VS doesn't read any inputs (calculating vertex position from
561 * a state variable for some reason, for example), emit a single pad
562 * VERTEX_ELEMENT struct and bail.
563 *
564 * The stale VB state stays in place, but they don't do anything unless
565 * a VE loads from them.
566 */
567 if (nr_elements == 0) {
568 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
569 1 + GENX(VERTEX_ELEMENT_STATE_length));
570 struct GENX(VERTEX_ELEMENT_STATE) elem = {
571 .Valid = true,
572 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
573 .Component0Control = VFCOMP_STORE_0,
574 .Component1Control = VFCOMP_STORE_0,
575 .Component2Control = VFCOMP_STORE_0,
576 .Component3Control = VFCOMP_STORE_1_FP,
577 };
578 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
579 return;
580 }
581
582 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
583 const bool uses_draw_params =
584 vs_prog_data->uses_basevertex ||
585 vs_prog_data->uses_baseinstance;
586 const unsigned nr_buffers = brw->vb.nr_buffers +
587 uses_draw_params + vs_prog_data->uses_drawid;
588
589 if (nr_buffers) {
590 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
591
592 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
593 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
594
595 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
596 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
597 /* Prior to Haswell and Bay Trail we have to use 4-component formats
598 * to fake 3-component ones. In particular, we do this for
599 * half-float and 8 and 16-bit integer formats. This means that the
600 * vertex element may poke over the end of the buffer by 2 bytes.
601 */
602 const unsigned padding =
603 (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
604 const unsigned end = buffer->offset + buffer->size + padding;
605 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
606 buffer->offset,
607 end,
608 buffer->stride,
609 buffer->step_rate);
610 }
611
612 if (uses_draw_params) {
613 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
614 brw->draw.draw_params_bo,
615 brw->draw.draw_params_offset,
616 brw->draw.draw_params_bo->size,
617 0 /* stride */,
618 0 /* step rate */);
619 }
620
621 if (vs_prog_data->uses_drawid) {
622 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
623 brw->draw.draw_id_bo,
624 brw->draw.draw_id_offset,
625 brw->draw.draw_id_bo->size,
626 0 /* stride */,
627 0 /* step rate */);
628 }
629 }
630
631 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
632 * presumably for VertexID/InstanceID.
633 */
634 #if GEN_GEN >= 6
635 assert(nr_elements <= 34);
636 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
637 #else
638 assert(nr_elements <= 18);
639 #endif
640
641 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
642 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
643 unsigned i;
644 for (i = 0; i < brw->vb.nr_enabled; i++) {
645 const struct brw_vertex_element *input = brw->vb.enabled[i];
646 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
647 uint32_t comp0 = VFCOMP_STORE_SRC;
648 uint32_t comp1 = VFCOMP_STORE_SRC;
649 uint32_t comp2 = VFCOMP_STORE_SRC;
650 uint32_t comp3 = VFCOMP_STORE_SRC;
651 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
652
653 #if GEN_GEN >= 8
654 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
655 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
656 * element which has edge flag enabled."
657 */
658 assert(!(is_passthru_format(format) && uses_edge_flag));
659 #endif
660
661 /* The gen4 driver expects edgeflag to come in as a float, and passes
662 * that float on to the tests in the clipper. Mesa's current vertex
663 * attribute value for EdgeFlag is stored as a float, which works out.
664 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
665 * integer ubyte. Just rewrite that to convert to a float.
666 *
667 * Gen6+ passes edgeflag as sideband along with the vertex, instead
668 * of in the VUE. We have to upload it sideband as the last vertex
669 * element according to the B-Spec.
670 */
671 #if GEN_GEN >= 6
672 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
673 gen6_edgeflag_input = input;
674 continue;
675 }
676 #endif
677
678 for (unsigned c = 0; c < num_uploads; c++) {
679 const uint32_t upload_format = GEN_GEN >= 8 ? format :
680 downsize_format_if_needed(format, c);
681 /* If we need more that one upload, the offset stride would be 128
682 * bits (16 bytes), as for previous uploads we are using the full
683 * entry. */
684 const unsigned offset = input->offset + c * 16;
685
686 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
687 upload_format_size(upload_format) : input->glarray->Size;
688
689 switch (size) {
690 case 0: comp0 = VFCOMP_STORE_0;
691 case 1: comp1 = VFCOMP_STORE_0;
692 case 2: comp2 = VFCOMP_STORE_0;
693 case 3:
694 if (GEN_GEN >= 8 && input->glarray->Doubles) {
695 comp3 = VFCOMP_STORE_0;
696 } else if (input->glarray->Integer) {
697 comp3 = VFCOMP_STORE_1_INT;
698 } else {
699 comp3 = VFCOMP_STORE_1_FP;
700 }
701
702 break;
703 }
704
705 #if GEN_GEN >= 8
706 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
707 *
708 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
709 * formats, 64-bit components are stored in the URB without any
710 * conversion. In this case, vertex elements must be written as 128
711 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
712 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
713 * component into the URB, Component 1 must be specified as
714 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
715 * order to output a 128-bit vertex element, or Components 1-3 must
716 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
717 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
718 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
719 * vertex element."
720 */
721 if (input->glarray->Doubles && !input->is_dual_slot) {
722 /* Store vertex elements which correspond to double and dvec2 vertex
723 * shader inputs as 128-bit vertex elements, instead of 256-bits.
724 */
725 comp2 = VFCOMP_NOSTORE;
726 comp3 = VFCOMP_NOSTORE;
727 }
728 #endif
729
730 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
731 .VertexBufferIndex = input->buffer,
732 .Valid = true,
733 .SourceElementFormat = upload_format,
734 .SourceElementOffset = offset,
735 .Component0Control = comp0,
736 .Component1Control = comp1,
737 .Component2Control = comp2,
738 .Component3Control = comp3,
739 #if GEN_GEN < 5
740 .DestinationElementOffset = i * 4,
741 #endif
742 };
743
744 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
745 dw += GENX(VERTEX_ELEMENT_STATE_length);
746 }
747 }
748
749 if (needs_sgvs_element) {
750 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
751 .Valid = true,
752 .Component0Control = VFCOMP_STORE_0,
753 .Component1Control = VFCOMP_STORE_0,
754 .Component2Control = VFCOMP_STORE_0,
755 .Component3Control = VFCOMP_STORE_0,
756 #if GEN_GEN < 5
757 .DestinationElementOffset = i * 4,
758 #endif
759 };
760
761 #if GEN_GEN >= 8
762 if (vs_prog_data->uses_basevertex ||
763 vs_prog_data->uses_baseinstance) {
764 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
765 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
766 elem_state.Component0Control = VFCOMP_STORE_SRC;
767 elem_state.Component1Control = VFCOMP_STORE_SRC;
768 }
769 #else
770 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
771 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
772 if (vs_prog_data->uses_basevertex)
773 elem_state.Component0Control = VFCOMP_STORE_SRC;
774
775 if (vs_prog_data->uses_baseinstance)
776 elem_state.Component1Control = VFCOMP_STORE_SRC;
777
778 if (vs_prog_data->uses_vertexid)
779 elem_state.Component2Control = VFCOMP_STORE_VID;
780
781 if (vs_prog_data->uses_instanceid)
782 elem_state.Component3Control = VFCOMP_STORE_IID;
783 #endif
784
785 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
786 dw += GENX(VERTEX_ELEMENT_STATE_length);
787 }
788
789 if (vs_prog_data->uses_drawid) {
790 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
791 .Valid = true,
792 .VertexBufferIndex = brw->vb.nr_buffers + 1,
793 .SourceElementFormat = ISL_FORMAT_R32_UINT,
794 .Component0Control = VFCOMP_STORE_SRC,
795 .Component1Control = VFCOMP_STORE_0,
796 .Component2Control = VFCOMP_STORE_0,
797 .Component3Control = VFCOMP_STORE_0,
798 #if GEN_GEN < 5
799 .DestinationElementOffset = i * 4,
800 #endif
801 };
802
803 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
804 dw += GENX(VERTEX_ELEMENT_STATE_length);
805 }
806
807 #if GEN_GEN >= 6
808 if (gen6_edgeflag_input) {
809 const uint32_t format =
810 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
811
812 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
813 .Valid = true,
814 .VertexBufferIndex = gen6_edgeflag_input->buffer,
815 .EdgeFlagEnable = true,
816 .SourceElementFormat = format,
817 .SourceElementOffset = gen6_edgeflag_input->offset,
818 .Component0Control = VFCOMP_STORE_SRC,
819 .Component1Control = VFCOMP_STORE_0,
820 .Component2Control = VFCOMP_STORE_0,
821 .Component3Control = VFCOMP_STORE_0,
822 };
823
824 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
825 dw += GENX(VERTEX_ELEMENT_STATE_length);
826 }
827 #endif
828
829 #if GEN_GEN >= 8
830 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
831 const struct brw_vertex_element *input = brw->vb.enabled[i];
832 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
833 unsigned element_index;
834
835 /* The edge flag element is reordered to be the last one in the code
836 * above so we need to compensate for that in the element indices used
837 * below.
838 */
839 if (input == gen6_edgeflag_input)
840 element_index = nr_elements - 1;
841 else
842 element_index = j++;
843
844 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
845 vfi.VertexElementIndex = element_index;
846 vfi.InstancingEnable = buffer->step_rate != 0;
847 vfi.InstanceDataStepRate = buffer->step_rate;
848 }
849 }
850
851 if (vs_prog_data->uses_drawid) {
852 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
853
854 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
855 vfi.VertexElementIndex = element;
856 }
857 }
858 #endif
859 }
860
861 static const struct brw_tracked_state genX(vertices) = {
862 .dirty = {
863 .mesa = _NEW_POLYGON,
864 .brw = BRW_NEW_BATCH |
865 BRW_NEW_BLORP |
866 BRW_NEW_VERTICES |
867 BRW_NEW_VS_PROG_DATA,
868 },
869 .emit = genX(emit_vertices),
870 };
871
872 static void
873 genX(emit_index_buffer)(struct brw_context *brw)
874 {
875 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
876
877 if (index_buffer == NULL)
878 return;
879
880 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
881 #if GEN_GEN < 8 && !GEN_IS_HASWELL
882 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
883 #endif
884 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
885 ib.BufferStartingAddress = vertex_bo(brw->ib.bo, 0);
886 #if GEN_GEN >= 8
887 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
888 ib.BufferSize = brw->ib.size;
889 #else
890 ib.BufferEndingAddress = vertex_bo(brw->ib.bo, brw->ib.size - 1);
891 #endif
892 }
893 }
894
895 static const struct brw_tracked_state genX(index_buffer) = {
896 .dirty = {
897 .mesa = 0,
898 .brw = BRW_NEW_BATCH |
899 BRW_NEW_BLORP |
900 BRW_NEW_INDEX_BUFFER,
901 },
902 .emit = genX(emit_index_buffer),
903 };
904
905 #if GEN_IS_HASWELL || GEN_GEN >= 8
906 static void
907 genX(upload_cut_index)(struct brw_context *brw)
908 {
909 const struct gl_context *ctx = &brw->ctx;
910
911 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
912 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
913 vf.IndexedDrawCutIndexEnable = true;
914 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
915 }
916 }
917 }
918
919 const struct brw_tracked_state genX(cut_index) = {
920 .dirty = {
921 .mesa = _NEW_TRANSFORM,
922 .brw = BRW_NEW_INDEX_BUFFER,
923 },
924 .emit = genX(upload_cut_index),
925 };
926 #endif
927
928 #if GEN_GEN >= 6
929 /**
930 * Determine the appropriate attribute override value to store into the
931 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
932 * override value contains two pieces of information: the location of the
933 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
934 * flag indicating whether to "swizzle" the attribute based on the direction
935 * the triangle is facing.
936 *
937 * If an attribute is "swizzled", then the given VUE location is used for
938 * front-facing triangles, and the VUE location that immediately follows is
939 * used for back-facing triangles. We use this to implement the mapping from
940 * gl_FrontColor/gl_BackColor to gl_Color.
941 *
942 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
943 * being instructed to begin reading attribute data. It can be set to a
944 * nonzero value to prevent the SF unit from wasting time reading elements of
945 * the VUE that are not needed by the fragment shader. It is measured in
946 * 256-bit increments.
947 */
948 static void
949 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
950 const struct brw_vue_map *vue_map,
951 int urb_entry_read_offset, int fs_attr,
952 bool two_side_color, uint32_t *max_source_attr)
953 {
954 /* Find the VUE slot for this attribute. */
955 int slot = vue_map->varying_to_slot[fs_attr];
956
957 /* Viewport and Layer are stored in the VUE header. We need to override
958 * them to zero if earlier stages didn't write them, as GL requires that
959 * they read back as zero when not explicitly set.
960 */
961 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
962 attr->ComponentOverrideX = true;
963 attr->ComponentOverrideW = true;
964 attr->ConstantSource = CONST_0000;
965
966 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
967 attr->ComponentOverrideY = true;
968 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
969 attr->ComponentOverrideZ = true;
970
971 return;
972 }
973
974 /* If there was only a back color written but not front, use back
975 * as the color instead of undefined
976 */
977 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
978 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
979 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
980 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
981
982 if (slot == -1) {
983 /* This attribute does not exist in the VUE--that means that the vertex
984 * shader did not write to it. This means that either:
985 *
986 * (a) This attribute is a texture coordinate, and it is going to be
987 * replaced with point coordinates (as a consequence of a call to
988 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
989 * hardware will ignore whatever attribute override we supply.
990 *
991 * (b) This attribute is read by the fragment shader but not written by
992 * the vertex shader, so its value is undefined. Therefore the
993 * attribute override we supply doesn't matter.
994 *
995 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
996 * previous shader stage.
997 *
998 * Note that we don't have to worry about the cases where the attribute
999 * is gl_PointCoord or is undergoing point sprite coordinate
1000 * replacement, because in those cases, this function isn't called.
1001 *
1002 * In case (c), we need to program the attribute overrides so that the
1003 * primitive ID will be stored in this slot. In every other case, the
1004 * attribute override we supply doesn't matter. So just go ahead and
1005 * program primitive ID in every case.
1006 */
1007 attr->ComponentOverrideW = true;
1008 attr->ComponentOverrideX = true;
1009 attr->ComponentOverrideY = true;
1010 attr->ComponentOverrideZ = true;
1011 attr->ConstantSource = PRIM_ID;
1012 return;
1013 }
1014
1015 /* Compute the location of the attribute relative to urb_entry_read_offset.
1016 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1017 * it counts for two 128-bit VUE slots.
1018 */
1019 int source_attr = slot - 2 * urb_entry_read_offset;
1020 assert(source_attr >= 0 && source_attr < 32);
1021
1022 /* If we are doing two-sided color, and the VUE slot following this one
1023 * represents a back-facing color, then we need to instruct the SF unit to
1024 * do back-facing swizzling.
1025 */
1026 bool swizzling = two_side_color &&
1027 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1028 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1029 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1030 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1031
1032 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1033 if (*max_source_attr < source_attr + swizzling)
1034 *max_source_attr = source_attr + swizzling;
1035
1036 attr->SourceAttribute = source_attr;
1037 if (swizzling)
1038 attr->SwizzleSelect = INPUTATTR_FACING;
1039 }
1040
1041
1042 static void
1043 genX(calculate_attr_overrides)(const struct brw_context *brw,
1044 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1045 uint32_t *point_sprite_enables,
1046 uint32_t *urb_entry_read_length,
1047 uint32_t *urb_entry_read_offset)
1048 {
1049 const struct gl_context *ctx = &brw->ctx;
1050
1051 /* _NEW_POINT */
1052 const struct gl_point_attrib *point = &ctx->Point;
1053
1054 /* BRW_NEW_FS_PROG_DATA */
1055 const struct brw_wm_prog_data *wm_prog_data =
1056 brw_wm_prog_data(brw->wm.base.prog_data);
1057 uint32_t max_source_attr = 0;
1058
1059 *point_sprite_enables = 0;
1060
1061 /* BRW_NEW_FRAGMENT_PROGRAM
1062 *
1063 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
1064 * the full vertex header. Otherwise, we can program the SF to start
1065 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
1066 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1067 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
1068 */
1069
1070 bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
1071 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1072
1073 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
1074
1075 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1076 * description of dw10 Point Sprite Texture Coordinate Enable:
1077 *
1078 * "This field must be programmed to zero when non-point primitives
1079 * are rendered."
1080 *
1081 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1082 * must be programmed to zero when rendering non-point primitives, but
1083 * the IvyBridge PRM does, and if we don't, we get garbage.
1084 *
1085 * This is not required on Haswell, as the hardware ignores this state
1086 * when drawing non-points -- although we do still need to be careful to
1087 * correctly set the attr overrides.
1088 *
1089 * _NEW_POLYGON
1090 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1091 */
1092 bool drawing_points = brw_is_drawing_points(brw);
1093
1094 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1095 int input_index = wm_prog_data->urb_setup[attr];
1096
1097 if (input_index < 0)
1098 continue;
1099
1100 /* _NEW_POINT */
1101 bool point_sprite = false;
1102 if (drawing_points) {
1103 if (point->PointSprite &&
1104 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1105 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1106 point_sprite = true;
1107 }
1108
1109 if (attr == VARYING_SLOT_PNTC)
1110 point_sprite = true;
1111
1112 if (point_sprite)
1113 *point_sprite_enables |= (1 << input_index);
1114 }
1115
1116 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1117 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1118
1119 if (!point_sprite) {
1120 genX(get_attr_override)(&attribute,
1121 &brw->vue_map_geom_out,
1122 *urb_entry_read_offset, attr,
1123 _mesa_vertex_program_two_side_enabled(ctx),
1124 &max_source_attr);
1125 }
1126
1127 /* The hardware can only do the overrides on 16 overrides at a
1128 * time, and the other up to 16 have to be lined up so that the
1129 * input index = the output index. We'll need to do some
1130 * tweaking to make sure that's the case.
1131 */
1132 if (input_index < 16)
1133 attr_overrides[input_index] = attribute;
1134 else
1135 assert(attribute.SourceAttribute == input_index);
1136 }
1137
1138 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1139 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1140 *
1141 * "This field should be set to the minimum length required to read the
1142 * maximum source attribute. The maximum source attribute is indicated
1143 * by the maximum value of the enabled Attribute # Source Attribute if
1144 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1145 * enable is not set.
1146 * read_length = ceiling((max_source_attr + 1) / 2)
1147 *
1148 * [errata] Corruption/Hang possible if length programmed larger than
1149 * recommended"
1150 *
1151 * Similar text exists for Ivy Bridge.
1152 */
1153 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1154 }
1155 #endif
1156
1157 /* ---------------------------------------------------------------------- */
1158
1159 #if GEN_GEN >= 8
1160 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1161 #elif GEN_GEN >= 6
1162 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1163 #else
1164 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1165 #endif
1166
1167 static inline void
1168 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1169 {
1170 struct gl_context *ctx = &brw->ctx;
1171
1172 /* _NEW_BUFFERS */
1173 struct intel_renderbuffer *depth_irb =
1174 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1175
1176 /* _NEW_DEPTH */
1177 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1178
1179 /* _NEW_STENCIL */
1180 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1181 const int b = stencil->_BackFace;
1182
1183 if (depth->Test && depth_irb) {
1184 ds->DepthTestEnable = true;
1185 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1186 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1187 }
1188
1189 if (brw->stencil_enabled) {
1190 ds->StencilTestEnable = true;
1191 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1192 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1193
1194 ds->StencilTestFunction =
1195 intel_translate_compare_func(stencil->Function[0]);
1196 ds->StencilFailOp =
1197 intel_translate_stencil_op(stencil->FailFunc[0]);
1198 ds->StencilPassDepthPassOp =
1199 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1200 ds->StencilPassDepthFailOp =
1201 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1202
1203 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1204
1205 if (brw->stencil_two_sided) {
1206 ds->DoubleSidedStencilEnable = true;
1207 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1208 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1209
1210 ds->BackfaceStencilTestFunction =
1211 intel_translate_compare_func(stencil->Function[b]);
1212 ds->BackfaceStencilFailOp =
1213 intel_translate_stencil_op(stencil->FailFunc[b]);
1214 ds->BackfaceStencilPassDepthPassOp =
1215 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1216 ds->BackfaceStencilPassDepthFailOp =
1217 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1218 }
1219
1220 #if GEN_GEN <= 5 || GEN_GEN >= 9
1221 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1222 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1223 #endif
1224 }
1225 }
1226
1227 #if GEN_GEN >= 6
1228 static void
1229 genX(upload_depth_stencil_state)(struct brw_context *brw)
1230 {
1231 #if GEN_GEN >= 8
1232 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1233 set_depth_stencil_bits(brw, &wmds);
1234 }
1235 #else
1236 uint32_t ds_offset;
1237 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1238 set_depth_stencil_bits(brw, &ds);
1239 }
1240
1241 /* Now upload a pointer to the indirect state */
1242 #if GEN_GEN == 6
1243 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1244 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1245 ptr.DEPTH_STENCIL_STATEChange = true;
1246 }
1247 #else
1248 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1249 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1250 }
1251 #endif
1252 #endif
1253 }
1254
1255 static const struct brw_tracked_state genX(depth_stencil_state) = {
1256 .dirty = {
1257 .mesa = _NEW_BUFFERS |
1258 _NEW_DEPTH |
1259 _NEW_STENCIL,
1260 .brw = BRW_NEW_BLORP |
1261 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1262 : BRW_NEW_BATCH |
1263 BRW_NEW_STATE_BASE_ADDRESS),
1264 },
1265 .emit = genX(upload_depth_stencil_state),
1266 };
1267 #endif
1268
1269 /* ---------------------------------------------------------------------- */
1270
1271 #if GEN_GEN >= 6
1272 static void
1273 genX(upload_clip_state)(struct brw_context *brw)
1274 {
1275 struct gl_context *ctx = &brw->ctx;
1276
1277 /* _NEW_BUFFERS */
1278 struct gl_framebuffer *fb = ctx->DrawBuffer;
1279
1280 /* BRW_NEW_FS_PROG_DATA */
1281 struct brw_wm_prog_data *wm_prog_data =
1282 brw_wm_prog_data(brw->wm.base.prog_data);
1283
1284 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1285 clip.StatisticsEnable = !brw->meta_in_progress;
1286
1287 if (wm_prog_data->barycentric_interp_modes &
1288 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1289 clip.NonPerspectiveBarycentricEnable = true;
1290
1291 #if GEN_GEN >= 7
1292 clip.EarlyCullEnable = true;
1293 #endif
1294
1295 #if GEN_GEN == 7
1296 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1297
1298 if (ctx->Polygon.CullFlag) {
1299 switch (ctx->Polygon.CullFaceMode) {
1300 case GL_FRONT:
1301 clip.CullMode = CULLMODE_FRONT;
1302 break;
1303 case GL_BACK:
1304 clip.CullMode = CULLMODE_BACK;
1305 break;
1306 case GL_FRONT_AND_BACK:
1307 clip.CullMode = CULLMODE_BOTH;
1308 break;
1309 default:
1310 unreachable("Should not get here: invalid CullFlag");
1311 }
1312 } else {
1313 clip.CullMode = CULLMODE_NONE;
1314 }
1315 #endif
1316
1317 #if GEN_GEN < 8
1318 clip.UserClipDistanceCullTestEnableBitmask =
1319 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1320
1321 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1322 #endif
1323
1324 /* _NEW_LIGHT */
1325 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1326 clip.TriangleStripListProvokingVertexSelect = 0;
1327 clip.TriangleFanProvokingVertexSelect = 1;
1328 clip.LineStripListProvokingVertexSelect = 0;
1329 } else {
1330 clip.TriangleStripListProvokingVertexSelect = 2;
1331 clip.TriangleFanProvokingVertexSelect = 2;
1332 clip.LineStripListProvokingVertexSelect = 1;
1333 }
1334
1335 /* _NEW_TRANSFORM */
1336 clip.UserClipDistanceClipTestEnableBitmask =
1337 ctx->Transform.ClipPlanesEnabled;
1338
1339 #if GEN_GEN >= 8
1340 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1341 #endif
1342
1343 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1344 clip.APIMode = APIMODE_D3D;
1345 else
1346 clip.APIMode = APIMODE_OGL;
1347
1348 clip.GuardbandClipTestEnable = true;
1349
1350 /* BRW_NEW_VIEWPORT_COUNT */
1351 const unsigned viewport_count = brw->clip.viewport_count;
1352
1353 if (ctx->RasterDiscard) {
1354 clip.ClipMode = CLIPMODE_REJECT_ALL;
1355 #if GEN_GEN == 6
1356 perf_debug("Rasterizer discard is currently implemented via the "
1357 "clipper; having the GS not write primitives would "
1358 "likely be faster.\n");
1359 #endif
1360 } else {
1361 clip.ClipMode = CLIPMODE_NORMAL;
1362 }
1363
1364 clip.ClipEnable = true;
1365
1366 /* _NEW_POLYGON,
1367 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1368 */
1369 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1370 clip.ViewportXYClipTestEnable = true;
1371
1372 clip.MinimumPointWidth = 0.125;
1373 clip.MaximumPointWidth = 255.875;
1374 clip.MaximumVPIndex = viewport_count - 1;
1375 if (_mesa_geometric_layers(fb) == 0)
1376 clip.ForceZeroRTAIndexEnable = true;
1377 }
1378 }
1379
1380 static const struct brw_tracked_state genX(clip_state) = {
1381 .dirty = {
1382 .mesa = _NEW_BUFFERS |
1383 _NEW_LIGHT |
1384 _NEW_POLYGON |
1385 _NEW_TRANSFORM,
1386 .brw = BRW_NEW_BLORP |
1387 BRW_NEW_CONTEXT |
1388 BRW_NEW_FS_PROG_DATA |
1389 BRW_NEW_GS_PROG_DATA |
1390 BRW_NEW_VS_PROG_DATA |
1391 BRW_NEW_META_IN_PROGRESS |
1392 BRW_NEW_PRIMITIVE |
1393 BRW_NEW_RASTERIZER_DISCARD |
1394 BRW_NEW_TES_PROG_DATA |
1395 BRW_NEW_VIEWPORT_COUNT,
1396 },
1397 .emit = genX(upload_clip_state),
1398 };
1399 #endif
1400
1401 /* ---------------------------------------------------------------------- */
1402
1403 static void
1404 genX(upload_sf)(struct brw_context *brw)
1405 {
1406 struct gl_context *ctx = &brw->ctx;
1407 float point_size;
1408
1409 #if GEN_GEN <= 7
1410 /* _NEW_BUFFERS */
1411 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1412 UNUSED const bool multisampled_fbo =
1413 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1414 #endif
1415
1416 #if GEN_GEN < 6
1417 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1418
1419 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1420
1421 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1422 sf.KernelStartPointer = KSP_ro(brw, brw->sf.prog_offset);
1423 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1424 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1425 sf.DispatchGRFStartRegisterForURBData = 3;
1426 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1427 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1428 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1429 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1430
1431 /* STATE_PREFETCH command description describes this state as being
1432 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1433 * domain.
1434 */
1435 sf.SetupViewportStateOffset =
1436 instruction_ro_bo(brw->batch.bo, brw->sf.vp_offset);
1437
1438 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1439
1440 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1441 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1442
1443 sf.MaximumNumberofThreads =
1444 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1445
1446 sf.SpritePointEnable = ctx->Point.PointSprite;
1447
1448 sf.DestinationOriginHorizontalBias = 0.5;
1449 sf.DestinationOriginVerticalBias = 0.5;
1450 #else
1451 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1452 sf.StatisticsEnable = true;
1453 #endif
1454 sf.ViewportTransformEnable = true;
1455
1456 #if GEN_GEN == 7
1457 /* _NEW_BUFFERS */
1458 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1459 #endif
1460
1461 #if GEN_GEN <= 7
1462 /* _NEW_POLYGON */
1463 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1464 #if GEN_GEN >= 6
1465 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1466 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1467 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1468
1469 switch (ctx->Polygon.FrontMode) {
1470 case GL_FILL:
1471 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1472 break;
1473 case GL_LINE:
1474 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1475 break;
1476 case GL_POINT:
1477 sf.FrontFaceFillMode = FILL_MODE_POINT;
1478 break;
1479 default:
1480 unreachable("not reached");
1481 }
1482
1483 switch (ctx->Polygon.BackMode) {
1484 case GL_FILL:
1485 sf.BackFaceFillMode = FILL_MODE_SOLID;
1486 break;
1487 case GL_LINE:
1488 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1489 break;
1490 case GL_POINT:
1491 sf.BackFaceFillMode = FILL_MODE_POINT;
1492 break;
1493 default:
1494 unreachable("not reached");
1495 }
1496
1497 if (multisampled_fbo && ctx->Multisample.Enabled)
1498 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1499
1500 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1501 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1502 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1503 #endif
1504
1505 sf.ScissorRectangleEnable = true;
1506
1507 if (ctx->Polygon.CullFlag) {
1508 switch (ctx->Polygon.CullFaceMode) {
1509 case GL_FRONT:
1510 sf.CullMode = CULLMODE_FRONT;
1511 break;
1512 case GL_BACK:
1513 sf.CullMode = CULLMODE_BACK;
1514 break;
1515 case GL_FRONT_AND_BACK:
1516 sf.CullMode = CULLMODE_BOTH;
1517 break;
1518 default:
1519 unreachable("not reached");
1520 }
1521 } else {
1522 sf.CullMode = CULLMODE_NONE;
1523 }
1524
1525 #if GEN_IS_HASWELL
1526 sf.LineStippleEnable = ctx->Line.StippleFlag;
1527 #endif
1528
1529 #endif
1530
1531 /* _NEW_LINE */
1532 #if GEN_GEN == 8
1533 if (brw->is_cherryview)
1534 sf.CHVLineWidth = brw_get_line_width(brw);
1535 else
1536 sf.LineWidth = brw_get_line_width(brw);
1537 #else
1538 sf.LineWidth = brw_get_line_width(brw);
1539 #endif
1540
1541 if (ctx->Line.SmoothFlag) {
1542 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1543 #if GEN_GEN <= 7
1544 sf.AntiAliasingEnable = true;
1545 #endif
1546 }
1547
1548 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1549 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1550 /* Clamp to the hardware limits */
1551 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1552
1553 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1554 if (use_state_point_size(brw))
1555 sf.PointWidthSource = State;
1556
1557 #if GEN_GEN >= 8
1558 /* _NEW_POINT | _NEW_MULTISAMPLE */
1559 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1560 !ctx->Point.PointSprite)
1561 sf.SmoothPointEnable = true;
1562 #endif
1563
1564 #if GEN_IS_G4X || GEN_GEN >= 5
1565 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1566 #endif
1567
1568 /* _NEW_LIGHT */
1569 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1570 sf.TriangleStripListProvokingVertexSelect = 2;
1571 sf.TriangleFanProvokingVertexSelect = 2;
1572 sf.LineStripListProvokingVertexSelect = 1;
1573 } else {
1574 sf.TriangleFanProvokingVertexSelect = 1;
1575 }
1576
1577 #if GEN_GEN == 6
1578 /* BRW_NEW_FS_PROG_DATA */
1579 const struct brw_wm_prog_data *wm_prog_data =
1580 brw_wm_prog_data(brw->wm.base.prog_data);
1581
1582 sf.AttributeSwizzleEnable = true;
1583 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1584
1585 /*
1586 * Window coordinates in an FBO are inverted, which means point
1587 * sprite origin must be inverted, too.
1588 */
1589 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1590 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1591 } else {
1592 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1593 }
1594
1595 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1596 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1597 */
1598 uint32_t urb_entry_read_length;
1599 uint32_t urb_entry_read_offset;
1600 uint32_t point_sprite_enables;
1601 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1602 &urb_entry_read_length,
1603 &urb_entry_read_offset);
1604 sf.VertexURBEntryReadLength = urb_entry_read_length;
1605 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1606 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1607 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1608 #endif
1609 }
1610 }
1611
1612 static const struct brw_tracked_state genX(sf_state) = {
1613 .dirty = {
1614 .mesa = _NEW_LIGHT |
1615 _NEW_LINE |
1616 _NEW_POINT |
1617 _NEW_PROGRAM |
1618 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1619 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1620 .brw = BRW_NEW_BLORP |
1621 BRW_NEW_VUE_MAP_GEOM_OUT |
1622 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1623 BRW_NEW_PROGRAM_CACHE |
1624 BRW_NEW_SF_PROG_DATA |
1625 BRW_NEW_SF_VP |
1626 BRW_NEW_URB_FENCE
1627 : 0) |
1628 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1629 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1630 BRW_NEW_GS_PROG_DATA |
1631 BRW_NEW_PRIMITIVE |
1632 BRW_NEW_TES_PROG_DATA
1633 : 0) |
1634 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1635 BRW_NEW_FRAGMENT_PROGRAM
1636 : 0),
1637 },
1638 .emit = genX(upload_sf),
1639 };
1640
1641 /* ---------------------------------------------------------------------- */
1642
1643 #if GEN_GEN >= 6
1644 static void
1645 genX(upload_wm)(struct brw_context *brw)
1646 {
1647 struct gl_context *ctx = &brw->ctx;
1648
1649 /* BRW_NEW_FS_PROG_DATA */
1650 const struct brw_wm_prog_data *wm_prog_data =
1651 brw_wm_prog_data(brw->wm.base.prog_data);
1652
1653 UNUSED bool writes_depth =
1654 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1655
1656 #if GEN_GEN < 7
1657 const struct brw_stage_state *stage_state = &brw->wm.base;
1658 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1659
1660 /* We can't fold this into gen6_upload_wm_push_constants(), because
1661 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1662 * (3DSTATE_CONSTANT_PS [DevSNB]):
1663 *
1664 * "[DevSNB]: This packet must be followed by WM_STATE."
1665 */
1666 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1667 if (wm_prog_data->base.nr_params != 0) {
1668 wmcp.Buffer0Valid = true;
1669 /* Pointer to the WM constant buffer. Covered by the set of
1670 * state flags from gen6_upload_wm_push_constants.
1671 */
1672 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1673 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1674 }
1675 }
1676 #endif
1677
1678 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1679 wm.StatisticsEnable = true;
1680 wm.LineAntialiasingRegionWidth = _10pixels;
1681 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1682
1683 #if GEN_GEN < 7
1684 if (wm_prog_data->base.use_alt_mode)
1685 wm.FloatingPointMode = Alternate;
1686
1687 wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4);
1688 wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4;
1689 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1690 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1691 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1692 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1693 wm_prog_data->base.dispatch_grf_start_reg;
1694 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1695 wm_prog_data->dispatch_grf_start_reg_2;
1696 wm.KernelStartPointer0 = stage_state->prog_offset;
1697 wm.KernelStartPointer2 = stage_state->prog_offset +
1698 wm_prog_data->prog_offset_2;
1699 wm.DualSourceBlendEnable =
1700 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1701 ctx->Color.Blend[0]._UsesDualSrc;
1702 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1703 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1704
1705 /* From the SNB PRM, volume 2 part 1, page 281:
1706 * "If the PS kernel does not need the Position XY Offsets
1707 * to compute a Position XY value, then this field should be
1708 * programmed to POSOFFSET_NONE."
1709 *
1710 * "SW Recommendation: If the PS kernel needs the Position Offsets
1711 * to compute a Position XY value, this field should match Position
1712 * ZW Interpolation Mode to ensure a consistent position.xyzw
1713 * computation."
1714 * We only require XY sample offsets. So, this recommendation doesn't
1715 * look useful at the moment. We might need this in future.
1716 */
1717 if (wm_prog_data->uses_pos_offset)
1718 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1719 else
1720 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1721
1722 if (wm_prog_data->base.total_scratch) {
1723 wm.ScratchSpaceBasePointer =
1724 render_bo(stage_state->scratch_bo,
1725 ffs(stage_state->per_thread_scratch) - 11);
1726 }
1727
1728 wm.PixelShaderComputedDepth = writes_depth;
1729 #endif
1730
1731 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1732
1733 /* _NEW_LINE */
1734 wm.LineStippleEnable = ctx->Line.StippleFlag;
1735
1736 /* _NEW_POLYGON */
1737 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1738 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1739
1740 #if GEN_GEN < 8
1741 /* _NEW_BUFFERS */
1742 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1743
1744 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1745 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1746 if (wm_prog_data->uses_kill ||
1747 _mesa_is_alpha_test_enabled(ctx) ||
1748 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1749 wm_prog_data->uses_omask) {
1750 wm.PixelShaderKillsPixel = true;
1751 }
1752
1753 /* _NEW_BUFFERS | _NEW_COLOR */
1754 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1755 wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) {
1756 wm.ThreadDispatchEnable = true;
1757 }
1758 if (multisampled_fbo) {
1759 /* _NEW_MULTISAMPLE */
1760 if (ctx->Multisample.Enabled)
1761 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1762 else
1763 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1764
1765 if (wm_prog_data->persample_dispatch)
1766 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1767 else
1768 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1769 } else {
1770 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1771 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1772 }
1773
1774 #if GEN_GEN >= 7
1775 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1776 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1777 #endif
1778
1779 /* The "UAV access enable" bits are unnecessary on HSW because they only
1780 * seem to have an effect on the HW-assisted coherency mechanism which we
1781 * don't need, and the rasterization-related UAV_ONLY flag and the
1782 * DISPATCH_ENABLE bit can be set independently from it.
1783 * C.f. gen8_upload_ps_extra().
1784 *
1785 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1786 * _NEW_COLOR
1787 */
1788 #if GEN_IS_HASWELL
1789 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1790 wm_prog_data->has_side_effects)
1791 wm.PSUAVonly = ON;
1792 #endif
1793 #endif
1794
1795 #if GEN_GEN >= 7
1796 /* BRW_NEW_FS_PROG_DATA */
1797 if (wm_prog_data->early_fragment_tests)
1798 wm.EarlyDepthStencilControl = EDSC_PREPS;
1799 else if (wm_prog_data->has_side_effects)
1800 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1801 #endif
1802 }
1803 }
1804
1805 static const struct brw_tracked_state genX(wm_state) = {
1806 .dirty = {
1807 .mesa = _NEW_LINE |
1808 _NEW_POLYGON |
1809 (GEN_GEN < 8 ? _NEW_BUFFERS |
1810 _NEW_COLOR |
1811 _NEW_MULTISAMPLE :
1812 0) |
1813 (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
1814 .brw = BRW_NEW_BLORP |
1815 BRW_NEW_FS_PROG_DATA |
1816 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1817 },
1818 .emit = genX(upload_wm),
1819 };
1820 #endif
1821
1822 /* ---------------------------------------------------------------------- */
1823
1824 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1825 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
1826 pkt.SamplerCount = \
1827 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1828 pkt.BindingTableEntryCount = \
1829 stage_prog_data->binding_table.size_bytes / 4; \
1830 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
1831 \
1832 if (stage_prog_data->total_scratch) { \
1833 pkt.ScratchSpaceBasePointer = \
1834 render_bo(stage_state->scratch_bo, 0); \
1835 pkt.PerThreadScratchSpace = \
1836 ffs(stage_state->per_thread_scratch) - 11; \
1837 } \
1838 \
1839 pkt.DispatchGRFStartRegisterForURBData = \
1840 stage_prog_data->dispatch_grf_start_reg; \
1841 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1842 pkt.prefix##URBEntryReadOffset = 0; \
1843 \
1844 pkt.StatisticsEnable = true; \
1845 pkt.Enable = true;
1846
1847 static void
1848 genX(upload_vs_state)(struct brw_context *brw)
1849 {
1850 UNUSED struct gl_context *ctx = &brw->ctx;
1851 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1852 struct brw_stage_state *stage_state = &brw->vs.base;
1853
1854 /* BRW_NEW_VS_PROG_DATA */
1855 const struct brw_vue_prog_data *vue_prog_data =
1856 brw_vue_prog_data(brw->vs.base.prog_data);
1857 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
1858
1859 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
1860 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
1861
1862 #if GEN_GEN == 6
1863 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
1864 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
1865 *
1866 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
1867 * command that causes the VS Function Enable to toggle. Pipeline
1868 * flush can be executed by sending a PIPE_CONTROL command with CS
1869 * stall bit set and a post sync operation.
1870 *
1871 * We've already done such a flush at the start of state upload, so we
1872 * don't need to do another one here.
1873 */
1874 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
1875 if (stage_state->push_const_size != 0) {
1876 cvs.Buffer0Valid = true;
1877 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
1878 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1879 }
1880 }
1881 #endif
1882
1883 if (GEN_GEN == 7 && devinfo->is_ivybridge)
1884 gen7_emit_vs_workaround_flush(brw);
1885
1886 #if GEN_GEN >= 6
1887 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
1888 #else
1889 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1890 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
1891 #endif
1892 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1893
1894 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1895
1896 #if GEN_GEN < 6
1897 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
1898 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
1899 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
1900
1901 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
1902 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
1903
1904 vs.MaximumNumberofThreads =
1905 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
1906
1907 vs.StatisticsEnable = false;
1908 vs.SamplerStatePointer =
1909 instruction_ro_bo(brw->batch.bo, stage_state->sampler_offset);
1910 #endif
1911
1912 #if GEN_GEN == 5
1913 /* Force single program flow on Ironlake. We cannot reliably get
1914 * all applications working without it. See:
1915 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
1916 *
1917 * The most notable and reliably failing application is the Humus
1918 * demo "CelShading"
1919 */
1920 vs.SingleProgramFlow = true;
1921 vs.SamplerCount = 0; /* hardware requirement */
1922 #endif
1923
1924 #if GEN_GEN >= 8
1925 vs.SIMD8DispatchEnable =
1926 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
1927
1928 vs.UserClipDistanceCullTestEnableBitmask =
1929 vue_prog_data->cull_distance_mask;
1930 #endif
1931 }
1932
1933 #if GEN_GEN == 6
1934 /* Based on my reading of the simulator, the VS constants don't get
1935 * pulled into the VS FF unit until an appropriate pipeline flush
1936 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
1937 * references to them into a little FIFO. The flushes are common,
1938 * but don't reliably happen between this and a 3DPRIMITIVE, causing
1939 * the primitive to use the wrong constants. Then the FIFO
1940 * containing the constant setup gets added to again on the next
1941 * constants change, and eventually when a flush does happen the
1942 * unit is overwhelmed by constant changes and dies.
1943 *
1944 * To avoid this, send a PIPE_CONTROL down the line that will
1945 * update the unit immediately loading the constants. The flush
1946 * type bits here were those set by the STATE_BASE_ADDRESS whose
1947 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
1948 * bug reports that led to this workaround, and may be more than
1949 * what is strictly required to avoid the issue.
1950 */
1951 brw_emit_pipe_control_flush(brw,
1952 PIPE_CONTROL_DEPTH_STALL |
1953 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1954 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1955 #endif
1956 }
1957
1958 static const struct brw_tracked_state genX(vs_state) = {
1959 .dirty = {
1960 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
1961 .brw = BRW_NEW_BATCH |
1962 BRW_NEW_BLORP |
1963 BRW_NEW_CONTEXT |
1964 BRW_NEW_VS_PROG_DATA |
1965 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
1966 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1967 BRW_NEW_PROGRAM_CACHE |
1968 BRW_NEW_SAMPLER_STATE_TABLE |
1969 BRW_NEW_URB_FENCE
1970 : 0),
1971 },
1972 .emit = genX(upload_vs_state),
1973 };
1974
1975 /* ---------------------------------------------------------------------- */
1976
1977 static void
1978 genX(upload_cc_viewport)(struct brw_context *brw)
1979 {
1980 struct gl_context *ctx = &brw->ctx;
1981
1982 /* BRW_NEW_VIEWPORT_COUNT */
1983 const unsigned viewport_count = brw->clip.viewport_count;
1984
1985 struct GENX(CC_VIEWPORT) ccv;
1986 uint32_t cc_vp_offset;
1987 uint32_t *cc_map =
1988 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
1989 32, &cc_vp_offset);
1990
1991 for (unsigned i = 0; i < viewport_count; i++) {
1992 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
1993 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
1994 if (ctx->Transform.DepthClamp) {
1995 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
1996 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
1997 } else {
1998 ccv.MinimumDepth = 0.0;
1999 ccv.MaximumDepth = 1.0;
2000 }
2001 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2002 cc_map += GENX(CC_VIEWPORT_length);
2003 }
2004
2005 #if GEN_GEN >= 7
2006 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2007 ptr.CCViewportPointer = cc_vp_offset;
2008 }
2009 #elif GEN_GEN == 6
2010 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2011 vp.CCViewportStateChange = 1;
2012 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2013 }
2014 #else
2015 brw->cc.vp_offset = cc_vp_offset;
2016 ctx->NewDriverState |= BRW_NEW_CC_VP;
2017 #endif
2018 }
2019
2020 const struct brw_tracked_state genX(cc_vp) = {
2021 .dirty = {
2022 .mesa = _NEW_TRANSFORM |
2023 _NEW_VIEWPORT,
2024 .brw = BRW_NEW_BATCH |
2025 BRW_NEW_BLORP |
2026 BRW_NEW_VIEWPORT_COUNT,
2027 },
2028 .emit = genX(upload_cc_viewport)
2029 };
2030
2031 /* ---------------------------------------------------------------------- */
2032
2033 static inline void
2034 set_scissor_bits(const struct gl_context *ctx, int i,
2035 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2036 struct GENX(SCISSOR_RECT) *sc)
2037 {
2038 int bbox[4];
2039
2040 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2041 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2042 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2043 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2044 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2045
2046 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2047 /* If the scissor was out of bounds and got clamped to 0 width/height
2048 * at the bounds, the subtraction of 1 from maximums could produce a
2049 * negative number and thus not clip anything. Instead, just provide
2050 * a min > max scissor inside the bounds, which produces the expected
2051 * no rendering.
2052 */
2053 sc->ScissorRectangleXMin = 1;
2054 sc->ScissorRectangleXMax = 0;
2055 sc->ScissorRectangleYMin = 1;
2056 sc->ScissorRectangleYMax = 0;
2057 } else if (render_to_fbo) {
2058 /* texmemory: Y=0=bottom */
2059 sc->ScissorRectangleXMin = bbox[0];
2060 sc->ScissorRectangleXMax = bbox[1] - 1;
2061 sc->ScissorRectangleYMin = bbox[2];
2062 sc->ScissorRectangleYMax = bbox[3] - 1;
2063 } else {
2064 /* memory: Y=0=top */
2065 sc->ScissorRectangleXMin = bbox[0];
2066 sc->ScissorRectangleXMax = bbox[1] - 1;
2067 sc->ScissorRectangleYMin = fb_height - bbox[3];
2068 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2069 }
2070 }
2071
2072 #if GEN_GEN >= 6
2073 static void
2074 genX(upload_scissor_state)(struct brw_context *brw)
2075 {
2076 struct gl_context *ctx = &brw->ctx;
2077 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2078 struct GENX(SCISSOR_RECT) scissor;
2079 uint32_t scissor_state_offset;
2080 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2081 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2082 uint32_t *scissor_map;
2083
2084 /* BRW_NEW_VIEWPORT_COUNT */
2085 const unsigned viewport_count = brw->clip.viewport_count;
2086
2087 scissor_map = brw_state_batch(
2088 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2089 32, &scissor_state_offset);
2090
2091 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2092
2093 /* The scissor only needs to handle the intersection of drawable and
2094 * scissor rect. Clipping to the boundaries of static shared buffers
2095 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2096 *
2097 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2098 * inclusive but max is exclusive.
2099 */
2100 for (unsigned i = 0; i < viewport_count; i++) {
2101 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2102 GENX(SCISSOR_RECT_pack)(
2103 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2104 }
2105
2106 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2107 ptr.ScissorRectPointer = scissor_state_offset;
2108 }
2109 }
2110
2111 static const struct brw_tracked_state genX(scissor_state) = {
2112 .dirty = {
2113 .mesa = _NEW_BUFFERS |
2114 _NEW_SCISSOR |
2115 _NEW_VIEWPORT,
2116 .brw = BRW_NEW_BATCH |
2117 BRW_NEW_BLORP |
2118 BRW_NEW_VIEWPORT_COUNT,
2119 },
2120 .emit = genX(upload_scissor_state),
2121 };
2122 #endif
2123
2124 /* ---------------------------------------------------------------------- */
2125
2126 static void
2127 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2128 float m00, float m11, float m30, float m31,
2129 float *xmin, float *xmax,
2130 float *ymin, float *ymax)
2131 {
2132 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2133 * Strips and Fans documentation:
2134 *
2135 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2136 * fixed-point "guardband" range supported by the rasterization hardware"
2137 *
2138 * and
2139 *
2140 * "In almost all circumstances, if an object’s vertices are actually
2141 * modified by this clamping (i.e., had X or Y coordinates outside of
2142 * the guardband extent the rendered object will not match the intended
2143 * result. Therefore software should take steps to ensure that this does
2144 * not happen - e.g., by clipping objects such that they do not exceed
2145 * these limits after the Drawing Rectangle is applied."
2146 *
2147 * I believe the fundamental restriction is that the rasterizer (in
2148 * the SF/WM stages) have a limit on the number of pixels that can be
2149 * rasterized. We need to ensure any coordinates beyond the rasterizer
2150 * limit are handled by the clipper. So effectively that limit becomes
2151 * the clipper's guardband size.
2152 *
2153 * It goes on to say:
2154 *
2155 * "In addition, in order to be correctly rendered, objects must have a
2156 * screenspace bounding box not exceeding 8K in the X or Y direction.
2157 * This additional restriction must also be comprehended by software,
2158 * i.e., enforced by use of clipping."
2159 *
2160 * This makes no sense. Gen7+ hardware supports 16K render targets,
2161 * and you definitely need to be able to draw polygons that fill the
2162 * surface. Our assumption is that the rasterizer was limited to 8K
2163 * on Sandybridge, which only supports 8K surfaces, and it was actually
2164 * increased to 16K on Ivybridge and later.
2165 *
2166 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2167 */
2168 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2169
2170 if (m00 != 0 && m11 != 0) {
2171 /* First, we compute the screen-space render area */
2172 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2173 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2174 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2175 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2176
2177 /* We want the guardband to be centered on that */
2178 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2179 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2180 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2181 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2182
2183 /* Now we need it in native device coordinates */
2184 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2185 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2186 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2187 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2188
2189 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2190 * flipped upside-down. X should be fine though.
2191 */
2192 assert(ndc_gb_xmin <= ndc_gb_xmax);
2193 *xmin = ndc_gb_xmin;
2194 *xmax = ndc_gb_xmax;
2195 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2196 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2197 } else {
2198 /* The viewport scales to 0, so nothing will be rendered. */
2199 *xmin = 0.0f;
2200 *xmax = 0.0f;
2201 *ymin = 0.0f;
2202 *ymax = 0.0f;
2203 }
2204 }
2205
2206 static void
2207 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2208 {
2209 struct gl_context *ctx = &brw->ctx;
2210 float y_scale, y_bias;
2211
2212 /* BRW_NEW_VIEWPORT_COUNT */
2213 const unsigned viewport_count = brw->clip.viewport_count;
2214
2215 /* _NEW_BUFFERS */
2216 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2217 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2218 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2219
2220 #if GEN_GEN >= 7
2221 #define clv sfv
2222 struct GENX(SF_CLIP_VIEWPORT) sfv;
2223 uint32_t sf_clip_vp_offset;
2224 uint32_t *sf_clip_map =
2225 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2226 64, &sf_clip_vp_offset);
2227 #else
2228 struct GENX(SF_VIEWPORT) sfv;
2229 struct GENX(CLIP_VIEWPORT) clv;
2230 uint32_t sf_vp_offset, clip_vp_offset;
2231 uint32_t *sf_map =
2232 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2233 32, &sf_vp_offset);
2234 uint32_t *clip_map =
2235 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2236 32, &clip_vp_offset);
2237 #endif
2238
2239 /* _NEW_BUFFERS */
2240 if (render_to_fbo) {
2241 y_scale = 1.0;
2242 y_bias = 0;
2243 } else {
2244 y_scale = -1.0;
2245 y_bias = (float)fb_height;
2246 }
2247
2248 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2249 /* _NEW_VIEWPORT: Guardband Clipping */
2250 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2251 _mesa_get_viewport_xform(ctx, i, scale, translate);
2252
2253 sfv.ViewportMatrixElementm00 = scale[0];
2254 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2255 sfv.ViewportMatrixElementm22 = scale[2],
2256 sfv.ViewportMatrixElementm30 = translate[0],
2257 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2258 sfv.ViewportMatrixElementm32 = translate[2],
2259 brw_calculate_guardband_size(fb_width, fb_height,
2260 sfv.ViewportMatrixElementm00,
2261 sfv.ViewportMatrixElementm11,
2262 sfv.ViewportMatrixElementm30,
2263 sfv.ViewportMatrixElementm31,
2264 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2265
2266
2267 clv.XMinClipGuardband = gb_xmin;
2268 clv.XMaxClipGuardband = gb_xmax;
2269 clv.YMinClipGuardband = gb_ymin;
2270 clv.YMaxClipGuardband = gb_ymax;
2271
2272 #if GEN_GEN < 6
2273 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2274 &sfv.ScissorRectangle);
2275 #elif GEN_GEN >= 8
2276 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2277 * The hardware will take the intersection of the drawing rectangle,
2278 * scissor rectangle, and the viewport extents. We don't need to be
2279 * smart, and can therefore just program the viewport extents.
2280 */
2281 const float viewport_Xmax =
2282 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2283 const float viewport_Ymax =
2284 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2285
2286 if (render_to_fbo) {
2287 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2288 sfv.XMaxViewPort = viewport_Xmax - 1;
2289 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2290 sfv.YMaxViewPort = viewport_Ymax - 1;
2291 } else {
2292 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2293 sfv.XMaxViewPort = viewport_Xmax - 1;
2294 sfv.YMinViewPort = fb_height - viewport_Ymax;
2295 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2296 }
2297 #endif
2298
2299 #if GEN_GEN >= 7
2300 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2301 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2302 #else
2303 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2304 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2305 sf_map += GENX(SF_VIEWPORT_length);
2306 clip_map += GENX(CLIP_VIEWPORT_length);
2307 #endif
2308 }
2309
2310 #if GEN_GEN >= 7
2311 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2312 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2313 }
2314 #elif GEN_GEN == 6
2315 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2316 vp.SFViewportStateChange = 1;
2317 vp.CLIPViewportStateChange = 1;
2318 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2319 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2320 }
2321 #else
2322 brw->sf.vp_offset = sf_vp_offset;
2323 brw->clip.vp_offset = clip_vp_offset;
2324 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2325 #endif
2326 }
2327
2328 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2329 .dirty = {
2330 .mesa = _NEW_BUFFERS |
2331 _NEW_VIEWPORT |
2332 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2333 .brw = BRW_NEW_BATCH |
2334 BRW_NEW_BLORP |
2335 BRW_NEW_VIEWPORT_COUNT,
2336 },
2337 .emit = genX(upload_sf_clip_viewport),
2338 };
2339
2340 /* ---------------------------------------------------------------------- */
2341
2342 static void
2343 genX(upload_gs_state)(struct brw_context *brw)
2344 {
2345 UNUSED struct gl_context *ctx = &brw->ctx;
2346 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2347 const struct brw_stage_state *stage_state = &brw->gs.base;
2348 /* BRW_NEW_GEOMETRY_PROGRAM */
2349 bool active = GEN_GEN >= 6 && brw->geometry_program;
2350
2351 /* BRW_NEW_GS_PROG_DATA */
2352 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2353 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2354 brw_vue_prog_data(stage_prog_data);
2355 #if GEN_GEN >= 7
2356 const struct brw_gs_prog_data *gs_prog_data =
2357 brw_gs_prog_data(stage_prog_data);
2358 #endif
2359
2360 #if GEN_GEN == 6
2361 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2362 if (active && stage_state->push_const_size != 0) {
2363 cgs.Buffer0Valid = true;
2364 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2365 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2366 }
2367 }
2368 #endif
2369
2370 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2371 /**
2372 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2373 * Geometry > Geometry Shader > State:
2374 *
2375 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2376 * whole fixed function pipeline when the GS enable changes value in
2377 * the 3DSTATE_GS."
2378 *
2379 * The hardware architects have clarified that in this context "flush the
2380 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2381 * Stall" bit set.
2382 */
2383 if (brw->gt == 2 && brw->gs.enabled != active)
2384 gen7_emit_cs_stall_flush(brw);
2385 #endif
2386
2387 #if GEN_GEN >= 6
2388 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2389 #else
2390 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2391 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2392 #endif
2393
2394 #if GEN_GEN >= 6
2395 if (active) {
2396 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2397
2398 #if GEN_GEN >= 7
2399 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2400 gs.OutputTopology = gs_prog_data->output_topology;
2401 gs.ControlDataHeaderSize =
2402 gs_prog_data->control_data_header_size_hwords;
2403
2404 gs.InstanceControl = gs_prog_data->invocations - 1;
2405 gs.DispatchMode = vue_prog_data->dispatch_mode;
2406
2407 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2408
2409 gs.ControlDataFormat = gs_prog_data->control_data_format;
2410 #endif
2411
2412 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2413 * Ivy Bridge and Haswell.
2414 *
2415 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2416 * strip to be delivered to the geometry shader in an order that does
2417 * not strictly follow the OpenGL spec, but preserves triangle
2418 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2419 * the geometry shader sees triangles:
2420 *
2421 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2422 *
2423 * (Clearing the bit is even worse, because it fails to preserve
2424 * orientation).
2425 *
2426 * Triangle strips with adjacency always ordered in a way that preserves
2427 * triangle orientation but does not strictly follow the OpenGL spec,
2428 * regardless of the setting of this bit.
2429 *
2430 * On Haswell, both triangle strips and triangle strips with adjacency
2431 * are always ordered in a way that preserves triangle orientation.
2432 * Setting this bit causes the ordering to strictly follow the OpenGL
2433 * spec.
2434 *
2435 * So in either case we want to set the bit. Unfortunately on Ivy
2436 * Bridge this will get the order close to correct but not perfect.
2437 */
2438 gs.ReorderMode = TRAILING;
2439 gs.MaximumNumberofThreads =
2440 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2441 : (devinfo->max_gs_threads - 1);
2442
2443 #if GEN_GEN < 7
2444 gs.SOStatisticsEnable = true;
2445 if (brw->geometry_program->info.has_transform_feedback_varyings)
2446 gs.SVBIPayloadEnable = true;
2447
2448 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2449 * was previously done for gen6.
2450 *
2451 * TODO: test with both disabled to see if the HW is behaving
2452 * as expected, like in gen7.
2453 */
2454 gs.SingleProgramFlow = true;
2455 gs.VectorMaskEnable = true;
2456 #endif
2457
2458 #if GEN_GEN >= 8
2459 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2460
2461 if (gs_prog_data->static_vertex_count != -1) {
2462 gs.StaticOutput = true;
2463 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2464 }
2465 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2466
2467 gs.UserClipDistanceCullTestEnableBitmask =
2468 vue_prog_data->cull_distance_mask;
2469
2470 const int urb_entry_write_offset = 1;
2471 const uint32_t urb_entry_output_length =
2472 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2473 urb_entry_write_offset;
2474
2475 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2476 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2477 #endif
2478 }
2479 #endif
2480
2481 #if GEN_GEN <= 6
2482 if (!active && brw->ff_gs.prog_active) {
2483 /* In gen6, transform feedback for the VS stage is done with an
2484 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2485 * for this.
2486 */
2487 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2488 gs.SingleProgramFlow = true;
2489 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2490 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2491
2492 #if GEN_GEN <= 5
2493 gs.GRFRegisterCount =
2494 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2495 /* BRW_NEW_URB_FENCE */
2496 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2497 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2498 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2499 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2500 #else
2501 gs.Enable = true;
2502 gs.VectorMaskEnable = true;
2503 gs.SVBIPayloadEnable = true;
2504 gs.SVBIPostIncrementEnable = true;
2505 gs.SVBIPostIncrementValue =
2506 brw->ff_gs.prog_data->svbi_postincrement_value;
2507 gs.SOStatisticsEnable = true;
2508 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2509 #endif
2510 }
2511 #endif
2512 if (!active && !brw->ff_gs.prog_active) {
2513 #if GEN_GEN < 8
2514 gs.DispatchGRFStartRegisterForURBData = 1;
2515 #if GEN_GEN >= 7
2516 gs.IncludeVertexHandles = true;
2517 #endif
2518 #endif
2519 }
2520
2521 #if GEN_GEN >= 6
2522 gs.StatisticsEnable = true;
2523 #endif
2524 #if GEN_GEN == 5 || GEN_GEN == 6
2525 gs.RenderingEnabled = true;
2526 #endif
2527 #if GEN_GEN <= 5
2528 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2529 #endif
2530 }
2531
2532 #if GEN_GEN == 6
2533 brw->gs.enabled = active;
2534 #endif
2535 }
2536
2537 static const struct brw_tracked_state genX(gs_state) = {
2538 .dirty = {
2539 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2540 .brw = BRW_NEW_BATCH |
2541 BRW_NEW_BLORP |
2542 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2543 BRW_NEW_PROGRAM_CACHE |
2544 BRW_NEW_URB_FENCE |
2545 BRW_NEW_VIEWPORT_COUNT
2546 : 0) |
2547 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2548 BRW_NEW_GEOMETRY_PROGRAM |
2549 BRW_NEW_GS_PROG_DATA
2550 : 0) |
2551 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2552 },
2553 .emit = genX(upload_gs_state),
2554 };
2555
2556 /* ---------------------------------------------------------------------- */
2557
2558 UNUSED static GLenum
2559 fix_dual_blend_alpha_to_one(GLenum function)
2560 {
2561 switch (function) {
2562 case GL_SRC1_ALPHA:
2563 return GL_ONE;
2564
2565 case GL_ONE_MINUS_SRC1_ALPHA:
2566 return GL_ZERO;
2567 }
2568
2569 return function;
2570 }
2571
2572 #define blend_factor(x) brw_translate_blend_factor(x)
2573 #define blend_eqn(x) brw_translate_blend_equation(x)
2574
2575 /**
2576 * Modify blend function to force destination alpha to 1.0
2577 *
2578 * If \c function specifies a blend function that uses destination alpha,
2579 * replace it with a function that hard-wires destination alpha to 1.0. This
2580 * is used when rendering to xRGB targets.
2581 */
2582 static GLenum
2583 brw_fix_xRGB_alpha(GLenum function)
2584 {
2585 switch (function) {
2586 case GL_DST_ALPHA:
2587 return GL_ONE;
2588
2589 case GL_ONE_MINUS_DST_ALPHA:
2590 case GL_SRC_ALPHA_SATURATE:
2591 return GL_ZERO;
2592 }
2593
2594 return function;
2595 }
2596
2597 #if GEN_GEN >= 6
2598 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2599 #else
2600 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2601 #endif
2602
2603 UNUSED static bool
2604 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2605 bool alpha_to_one)
2606 {
2607 struct gl_context *ctx = &brw->ctx;
2608
2609 /* _NEW_BUFFERS */
2610 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2611
2612 bool independent_alpha_blend = false;
2613
2614 /* Used for implementing the following bit of GL_EXT_texture_integer:
2615 * "Per-fragment operations that require floating-point color
2616 * components, including multisample alpha operations, alpha test,
2617 * blending, and dithering, have no effect when the corresponding
2618 * colors are written to an integer color buffer."
2619 */
2620 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2621
2622 const unsigned blend_enabled = GEN_GEN >= 6 ?
2623 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2624
2625 /* _NEW_COLOR */
2626 if (ctx->Color.ColorLogicOpEnabled) {
2627 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2628 : GL_UNSIGNED_NORMALIZED;
2629 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2630 rb_type != GL_UNSIGNED_NORMALIZED &&
2631 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2632 "renderbuffer\n",
2633 _mesa_enum_to_string(ctx->Color.LogicOp),
2634 _mesa_enum_to_string(rb_type));
2635 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2636 entry->LogicOpEnable = true;
2637 entry->LogicOpFunction =
2638 intel_translate_logic_op(ctx->Color.LogicOp);
2639 }
2640 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2641 && (GEN_GEN <= 5 || !integer)) {
2642 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2643 GLenum eqA = ctx->Color.Blend[i].EquationA;
2644 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2645 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2646 GLenum srcA = ctx->Color.Blend[i].SrcA;
2647 GLenum dstA = ctx->Color.Blend[i].DstA;
2648
2649 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2650 srcRGB = dstRGB = GL_ONE;
2651
2652 if (eqA == GL_MIN || eqA == GL_MAX)
2653 srcA = dstA = GL_ONE;
2654
2655 /* Due to hardware limitations, the destination may have information
2656 * in an alpha channel even when the format specifies no alpha
2657 * channel. In order to avoid getting any incorrect blending due to
2658 * that alpha channel, coerce the blend factors to values that will
2659 * not read the alpha channel, but will instead use the correct
2660 * implicit value for alpha.
2661 */
2662 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2663 GL_TEXTURE_ALPHA_TYPE)) {
2664 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2665 srcA = brw_fix_xRGB_alpha(srcA);
2666 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2667 dstA = brw_fix_xRGB_alpha(dstA);
2668 }
2669
2670 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2671 * "If Dual Source Blending is enabled, this bit must be disabled."
2672 *
2673 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2674 * and leave it enabled anyway.
2675 */
2676 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2677 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2678 srcA = fix_dual_blend_alpha_to_one(srcA);
2679 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2680 dstA = fix_dual_blend_alpha_to_one(dstA);
2681 }
2682
2683 entry->ColorBufferBlendEnable = true;
2684 entry->DestinationBlendFactor = blend_factor(dstRGB);
2685 entry->SourceBlendFactor = blend_factor(srcRGB);
2686 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2687 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2688 entry->ColorBlendFunction = blend_eqn(eqRGB);
2689 entry->AlphaBlendFunction = blend_eqn(eqA);
2690
2691 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2692 independent_alpha_blend = true;
2693 }
2694
2695 return independent_alpha_blend;
2696 }
2697
2698 #if GEN_GEN >= 6
2699 static void
2700 genX(upload_blend_state)(struct brw_context *brw)
2701 {
2702 struct gl_context *ctx = &brw->ctx;
2703 int size;
2704
2705 /* We need at least one BLEND_STATE written, because we might do
2706 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2707 * for computed depth or alpha test), which will do an FB write
2708 * with render target 0, which will reference BLEND_STATE[0] for
2709 * alpha test enable.
2710 */
2711 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2712 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2713 nr_draw_buffers = 1;
2714
2715 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2716 #if GEN_GEN >= 8
2717 size += GENX(BLEND_STATE_length) * 4;
2718 #endif
2719
2720 uint32_t *blend_map;
2721 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2722
2723 #if GEN_GEN >= 8
2724 struct GENX(BLEND_STATE) blend = { 0 };
2725 {
2726 #else
2727 for (int i = 0; i < nr_draw_buffers; i++) {
2728 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2729 #define blend entry
2730 #endif
2731 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2732 * "If drawbuffer zero is not NONE and the buffer it references has an
2733 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2734 * operations are skipped."
2735 */
2736 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2737 /* _NEW_MULTISAMPLE */
2738 if (_mesa_is_multisample_enabled(ctx)) {
2739 if (ctx->Multisample.SampleAlphaToCoverage) {
2740 blend.AlphaToCoverageEnable = true;
2741 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2742 }
2743 if (ctx->Multisample.SampleAlphaToOne)
2744 blend.AlphaToOneEnable = true;
2745 }
2746
2747 /* _NEW_COLOR */
2748 if (ctx->Color.AlphaEnabled) {
2749 blend.AlphaTestEnable = true;
2750 blend.AlphaTestFunction =
2751 intel_translate_compare_func(ctx->Color.AlphaFunc);
2752 }
2753
2754 if (ctx->Color.DitherFlag) {
2755 blend.ColorDitherEnable = true;
2756 }
2757 }
2758
2759 #if GEN_GEN >= 8
2760 for (int i = 0; i < nr_draw_buffers; i++) {
2761 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2762 #else
2763 {
2764 #endif
2765 blend.IndependentAlphaBlendEnable =
2766 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2767 blend.IndependentAlphaBlendEnable;
2768
2769 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2770 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2771 *
2772 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2773 * clamping in the fragment shader. For its clamping of
2774 * blending, the spec says:
2775 *
2776 * "RESOLVED: For fixed-point color buffers, the inputs and
2777 * the result of the blending equation are clamped. For
2778 * floating-point color buffers, no clamping occurs."
2779 *
2780 * So, generally, we want clamping to the render target's range.
2781 * And, good news, the hardware tables for both pre- and
2782 * post-blend color clamping are either ignored, or any are
2783 * allowed, or clamping is required but RT range clamping is a
2784 * valid option.
2785 */
2786 entry.PreBlendColorClampEnable = true;
2787 entry.PostBlendColorClampEnable = true;
2788 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2789
2790 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2791 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2792 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2793 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2794
2795 #if GEN_GEN >= 8
2796 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2797 #else
2798 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2799 #endif
2800 }
2801 }
2802
2803 #if GEN_GEN >= 8
2804 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2805 #endif
2806
2807 #if GEN_GEN < 7
2808 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2809 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2810 ptr.BLEND_STATEChange = true;
2811 }
2812 #else
2813 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2814 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2815 #if GEN_GEN >= 8
2816 ptr.BlendStatePointerValid = true;
2817 #endif
2818 }
2819 #endif
2820 }
2821
2822 static const struct brw_tracked_state genX(blend_state) = {
2823 .dirty = {
2824 .mesa = _NEW_BUFFERS |
2825 _NEW_COLOR |
2826 _NEW_MULTISAMPLE,
2827 .brw = BRW_NEW_BATCH |
2828 BRW_NEW_BLORP |
2829 BRW_NEW_STATE_BASE_ADDRESS,
2830 },
2831 .emit = genX(upload_blend_state),
2832 };
2833 #endif
2834
2835 /* ---------------------------------------------------------------------- */
2836
2837 #if GEN_GEN >= 7
2838 UNUSED static const uint32_t push_constant_opcodes[] = {
2839 [MESA_SHADER_VERTEX] = 21,
2840 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2841 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2842 [MESA_SHADER_GEOMETRY] = 22,
2843 [MESA_SHADER_FRAGMENT] = 23,
2844 [MESA_SHADER_COMPUTE] = 0,
2845 };
2846
2847 static void
2848 upload_constant_state(struct brw_context *brw,
2849 struct brw_stage_state *stage_state,
2850 bool active, uint32_t stage)
2851 {
2852 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
2853 active = active && stage_state->push_const_size != 0;
2854
2855 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
2856 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2857 if (active) {
2858 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2859 pkt.ConstantBody.ReadLength[2] = stage_state->push_const_size;
2860 pkt.ConstantBody.Buffer[2] =
2861 render_ro_bo(stage_state->push_const_bo,
2862 stage_state->push_const_offset);
2863 #else
2864 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
2865 pkt.ConstantBody.Buffer[0].offset =
2866 stage_state->push_const_offset | mocs;
2867 #endif
2868 }
2869 }
2870
2871 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
2872 }
2873 #endif
2874
2875 #if GEN_GEN >= 6
2876 static void
2877 genX(upload_vs_push_constants)(struct brw_context *brw)
2878 {
2879 struct brw_stage_state *stage_state = &brw->vs.base;
2880
2881 /* _BRW_NEW_VERTEX_PROGRAM */
2882 const struct brw_program *vp = brw_program_const(brw->vertex_program);
2883 /* BRW_NEW_VS_PROG_DATA */
2884 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
2885
2886 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
2887 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
2888
2889 #if GEN_GEN >= 7
2890 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail)
2891 gen7_emit_vs_workaround_flush(brw);
2892
2893 upload_constant_state(brw, stage_state, true /* active */,
2894 MESA_SHADER_VERTEX);
2895 #endif
2896 }
2897
2898 static const struct brw_tracked_state genX(vs_push_constants) = {
2899 .dirty = {
2900 .mesa = _NEW_PROGRAM_CONSTANTS |
2901 _NEW_TRANSFORM,
2902 .brw = BRW_NEW_BATCH |
2903 BRW_NEW_BLORP |
2904 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2905 BRW_NEW_VERTEX_PROGRAM |
2906 BRW_NEW_VS_PROG_DATA,
2907 },
2908 .emit = genX(upload_vs_push_constants),
2909 };
2910
2911 static void
2912 genX(upload_gs_push_constants)(struct brw_context *brw)
2913 {
2914 struct brw_stage_state *stage_state = &brw->gs.base;
2915
2916 /* BRW_NEW_GEOMETRY_PROGRAM */
2917 const struct brw_program *gp = brw_program_const(brw->geometry_program);
2918
2919 if (gp) {
2920 /* BRW_NEW_GS_PROG_DATA */
2921 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
2922
2923 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
2924 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
2925 }
2926
2927 #if GEN_GEN >= 7
2928 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY);
2929 #endif
2930 }
2931
2932 static const struct brw_tracked_state genX(gs_push_constants) = {
2933 .dirty = {
2934 .mesa = _NEW_PROGRAM_CONSTANTS |
2935 _NEW_TRANSFORM,
2936 .brw = BRW_NEW_BATCH |
2937 BRW_NEW_BLORP |
2938 BRW_NEW_GEOMETRY_PROGRAM |
2939 BRW_NEW_GS_PROG_DATA |
2940 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2941 },
2942 .emit = genX(upload_gs_push_constants),
2943 };
2944
2945 static void
2946 genX(upload_wm_push_constants)(struct brw_context *brw)
2947 {
2948 struct brw_stage_state *stage_state = &brw->wm.base;
2949 /* BRW_NEW_FRAGMENT_PROGRAM */
2950 const struct brw_program *fp = brw_program_const(brw->fragment_program);
2951 /* BRW_NEW_FS_PROG_DATA */
2952 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
2953
2954 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
2955
2956 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
2957
2958 #if GEN_GEN >= 7
2959 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT);
2960 #endif
2961 }
2962
2963 static const struct brw_tracked_state genX(wm_push_constants) = {
2964 .dirty = {
2965 .mesa = _NEW_PROGRAM_CONSTANTS,
2966 .brw = BRW_NEW_BATCH |
2967 BRW_NEW_BLORP |
2968 BRW_NEW_FRAGMENT_PROGRAM |
2969 BRW_NEW_FS_PROG_DATA |
2970 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2971 },
2972 .emit = genX(upload_wm_push_constants),
2973 };
2974 #endif
2975
2976 /* ---------------------------------------------------------------------- */
2977
2978 #if GEN_GEN >= 6
2979 static unsigned
2980 genX(determine_sample_mask)(struct brw_context *brw)
2981 {
2982 struct gl_context *ctx = &brw->ctx;
2983 float coverage = 1.0f;
2984 float coverage_invert = false;
2985 unsigned sample_mask = ~0u;
2986
2987 /* BRW_NEW_NUM_SAMPLES */
2988 unsigned num_samples = brw->num_samples;
2989
2990 if (_mesa_is_multisample_enabled(ctx)) {
2991 if (ctx->Multisample.SampleCoverage) {
2992 coverage = ctx->Multisample.SampleCoverageValue;
2993 coverage_invert = ctx->Multisample.SampleCoverageInvert;
2994 }
2995 if (ctx->Multisample.SampleMask) {
2996 sample_mask = ctx->Multisample.SampleMaskValue;
2997 }
2998 }
2999
3000 if (num_samples > 1) {
3001 int coverage_int = (int) (num_samples * coverage + 0.5f);
3002 uint32_t coverage_bits = (1 << coverage_int) - 1;
3003 if (coverage_invert)
3004 coverage_bits ^= (1 << num_samples) - 1;
3005 return coverage_bits & sample_mask;
3006 } else {
3007 return 1;
3008 }
3009 }
3010
3011 static void
3012 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3013 unsigned num_samples)
3014 {
3015 assert(brw->num_samples <= 16);
3016
3017 unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1;
3018
3019 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3020 multi.PixelLocation = CENTER;
3021 multi.NumberofMultisamples = log2_samples;
3022 #if GEN_GEN == 6
3023 GEN_SAMPLE_POS_4X(multi.Sample);
3024 #elif GEN_GEN == 7
3025 switch (num_samples) {
3026 case 1:
3027 GEN_SAMPLE_POS_1X(multi.Sample);
3028 break;
3029 case 2:
3030 GEN_SAMPLE_POS_2X(multi.Sample);
3031 break;
3032 case 4:
3033 GEN_SAMPLE_POS_4X(multi.Sample);
3034 break;
3035 case 8:
3036 GEN_SAMPLE_POS_8X(multi.Sample);
3037 break;
3038 default:
3039 break;
3040 }
3041 #endif
3042 }
3043 }
3044
3045 static void
3046 genX(upload_multisample_state)(struct brw_context *brw)
3047 {
3048 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3049
3050 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3051 sm.SampleMask = genX(determine_sample_mask)(brw);
3052 }
3053 }
3054
3055 static const struct brw_tracked_state genX(multisample_state) = {
3056 .dirty = {
3057 .mesa = _NEW_MULTISAMPLE,
3058 .brw = BRW_NEW_BLORP |
3059 BRW_NEW_CONTEXT |
3060 BRW_NEW_NUM_SAMPLES,
3061 },
3062 .emit = genX(upload_multisample_state)
3063 };
3064 #endif
3065
3066 /* ---------------------------------------------------------------------- */
3067
3068 static void
3069 genX(upload_color_calc_state)(struct brw_context *brw)
3070 {
3071 struct gl_context *ctx = &brw->ctx;
3072
3073 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3074 #if GEN_GEN <= 5
3075 cc.IndependentAlphaBlendEnable =
3076 set_blend_entry_bits(brw, &cc, 0, false);
3077 set_depth_stencil_bits(brw, &cc);
3078
3079 if (ctx->Color.AlphaEnabled &&
3080 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3081 cc.AlphaTestEnable = true;
3082 cc.AlphaTestFunction =
3083 intel_translate_compare_func(ctx->Color.AlphaFunc);
3084 }
3085
3086 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3087
3088 cc.StatisticsEnable = brw->stats_wm;
3089
3090 cc.CCViewportStatePointer =
3091 instruction_ro_bo(brw->batch.bo, brw->cc.vp_offset);
3092 #else
3093 /* _NEW_COLOR */
3094 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3095 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3096 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3097 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3098
3099 #if GEN_GEN < 9
3100 /* _NEW_STENCIL */
3101 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3102 cc.BackfaceStencilReferenceValue =
3103 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3104 #endif
3105
3106 #endif
3107
3108 /* _NEW_COLOR */
3109 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3110 ctx->Color.AlphaRef);
3111 }
3112
3113 #if GEN_GEN >= 6
3114 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3115 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3116 #if GEN_GEN != 7
3117 ptr.ColorCalcStatePointerValid = true;
3118 #endif
3119 }
3120 #else
3121 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3122 #endif
3123 }
3124
3125 static const struct brw_tracked_state genX(color_calc_state) = {
3126 .dirty = {
3127 .mesa = _NEW_COLOR |
3128 _NEW_STENCIL |
3129 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3130 _NEW_DEPTH
3131 : 0),
3132 .brw = BRW_NEW_BATCH |
3133 BRW_NEW_BLORP |
3134 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3135 BRW_NEW_STATS_WM
3136 : BRW_NEW_CC_STATE |
3137 BRW_NEW_STATE_BASE_ADDRESS),
3138 },
3139 .emit = genX(upload_color_calc_state),
3140 };
3141
3142
3143 /* ---------------------------------------------------------------------- */
3144
3145 #if GEN_GEN >= 7
3146 static void
3147 genX(upload_sbe)(struct brw_context *brw)
3148 {
3149 struct gl_context *ctx = &brw->ctx;
3150 /* BRW_NEW_FS_PROG_DATA */
3151 const struct brw_wm_prog_data *wm_prog_data =
3152 brw_wm_prog_data(brw->wm.base.prog_data);
3153 #if GEN_GEN >= 8
3154 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3155 #else
3156 #define attr_overrides sbe.Attribute
3157 #endif
3158 uint32_t urb_entry_read_length;
3159 uint32_t urb_entry_read_offset;
3160 uint32_t point_sprite_enables;
3161
3162 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3163 sbe.AttributeSwizzleEnable = true;
3164 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3165
3166 /* _NEW_BUFFERS */
3167 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3168
3169 /* _NEW_POINT
3170 *
3171 * Window coordinates in an FBO are inverted, which means point
3172 * sprite origin must be inverted.
3173 */
3174 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3175 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3176 else
3177 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3178
3179 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3180 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3181 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3182 * BRW_NEW_VUE_MAP_GEOM_OUT
3183 */
3184 genX(calculate_attr_overrides)(brw,
3185 attr_overrides,
3186 &point_sprite_enables,
3187 &urb_entry_read_length,
3188 &urb_entry_read_offset);
3189
3190 /* Typically, the URB entry read length and offset should be programmed
3191 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3192 * stage which produces geometry. However, we don't know the proper
3193 * value until we call calculate_attr_overrides().
3194 *
3195 * To fit with our existing code, we override the inherited values and
3196 * specify it here directly, as we did on previous generations.
3197 */
3198 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3199 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3200 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3201 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3202
3203 #if GEN_GEN >= 8
3204 sbe.ForceVertexURBEntryReadLength = true;
3205 sbe.ForceVertexURBEntryReadOffset = true;
3206 #endif
3207
3208 #if GEN_GEN >= 9
3209 /* prepare the active component dwords */
3210 int input_index = 0;
3211 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
3212 if (!(brw->fragment_program->info.inputs_read &
3213 BITFIELD64_BIT(attr))) {
3214 continue;
3215 }
3216
3217 assert(input_index < 32);
3218
3219 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3220 ++input_index;
3221 }
3222 #endif
3223 }
3224
3225 #if GEN_GEN >= 8
3226 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3227 for (int i = 0; i < 16; i++)
3228 sbes.Attribute[i] = attr_overrides[i];
3229 }
3230 #endif
3231
3232 #undef attr_overrides
3233 }
3234
3235 static const struct brw_tracked_state genX(sbe_state) = {
3236 .dirty = {
3237 .mesa = _NEW_BUFFERS |
3238 _NEW_LIGHT |
3239 _NEW_POINT |
3240 _NEW_POLYGON |
3241 _NEW_PROGRAM,
3242 .brw = BRW_NEW_BLORP |
3243 BRW_NEW_CONTEXT |
3244 BRW_NEW_FRAGMENT_PROGRAM |
3245 BRW_NEW_FS_PROG_DATA |
3246 BRW_NEW_GS_PROG_DATA |
3247 BRW_NEW_TES_PROG_DATA |
3248 BRW_NEW_VUE_MAP_GEOM_OUT |
3249 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3250 : 0),
3251 },
3252 .emit = genX(upload_sbe),
3253 };
3254 #endif
3255
3256 /* ---------------------------------------------------------------------- */
3257
3258 #if GEN_GEN >= 7
3259 /**
3260 * Outputs the 3DSTATE_SO_DECL_LIST command.
3261 *
3262 * The data output is a series of 64-bit entries containing a SO_DECL per
3263 * stream. We only have one stream of rendering coming out of the GS unit, so
3264 * we only emit stream 0 (low 16 bits) SO_DECLs.
3265 */
3266 static void
3267 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3268 const struct brw_vue_map *vue_map)
3269 {
3270 struct gl_context *ctx = &brw->ctx;
3271 /* BRW_NEW_TRANSFORM_FEEDBACK */
3272 struct gl_transform_feedback_object *xfb_obj =
3273 ctx->TransformFeedback.CurrentObject;
3274 const struct gl_transform_feedback_info *linked_xfb_info =
3275 xfb_obj->program->sh.LinkedTransformFeedback;
3276 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3277 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3278 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3279 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3280 int max_decls = 0;
3281 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3282
3283 memset(so_decl, 0, sizeof(so_decl));
3284
3285 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3286 * command feels strange -- each dword pair contains a SO_DECL per stream.
3287 */
3288 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3289 const struct gl_transform_feedback_output *output =
3290 &linked_xfb_info->Outputs[i];
3291 const int buffer = output->OutputBuffer;
3292 const int varying = output->OutputRegister;
3293 const unsigned stream_id = output->StreamId;
3294 assert(stream_id < MAX_VERTEX_STREAMS);
3295
3296 buffer_mask[stream_id] |= 1 << buffer;
3297
3298 assert(vue_map->varying_to_slot[varying] >= 0);
3299
3300 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3301 * array. Instead, it simply increments DstOffset for the following
3302 * input by the number of components that should be skipped.
3303 *
3304 * Our hardware is unusual in that it requires us to program SO_DECLs
3305 * for fake "hole" components, rather than simply taking the offset
3306 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3307 * program as many size = 4 holes as we can, then a final hole to
3308 * accommodate the final 1, 2, or 3 remaining.
3309 */
3310 int skip_components = output->DstOffset - next_offset[buffer];
3311
3312 while (skip_components > 0) {
3313 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3314 .HoleFlag = 1,
3315 .OutputBufferSlot = output->OutputBuffer,
3316 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3317 };
3318 skip_components -= 4;
3319 }
3320
3321 next_offset[buffer] = output->DstOffset + output->NumComponents;
3322
3323 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3324 .OutputBufferSlot = output->OutputBuffer,
3325 .RegisterIndex = vue_map->varying_to_slot[varying],
3326 .ComponentMask =
3327 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3328 };
3329
3330 if (decls[stream_id] > max_decls)
3331 max_decls = decls[stream_id];
3332 }
3333
3334 uint32_t *dw;
3335 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3336 .StreamtoBufferSelects0 = buffer_mask[0],
3337 .StreamtoBufferSelects1 = buffer_mask[1],
3338 .StreamtoBufferSelects2 = buffer_mask[2],
3339 .StreamtoBufferSelects3 = buffer_mask[3],
3340 .NumEntries0 = decls[0],
3341 .NumEntries1 = decls[1],
3342 .NumEntries2 = decls[2],
3343 .NumEntries3 = decls[3]);
3344
3345 for (int i = 0; i < max_decls; i++) {
3346 GENX(SO_DECL_ENTRY_pack)(
3347 brw, dw + 2 + i * 2,
3348 &(struct GENX(SO_DECL_ENTRY)) {
3349 .Stream0Decl = so_decl[0][i],
3350 .Stream1Decl = so_decl[1][i],
3351 .Stream2Decl = so_decl[2][i],
3352 .Stream3Decl = so_decl[3][i],
3353 });
3354 }
3355 }
3356
3357 static void
3358 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3359 {
3360 struct gl_context *ctx = &brw->ctx;
3361 /* BRW_NEW_TRANSFORM_FEEDBACK */
3362 struct gl_transform_feedback_object *xfb_obj =
3363 ctx->TransformFeedback.CurrentObject;
3364 #if GEN_GEN < 8
3365 const struct gl_transform_feedback_info *linked_xfb_info =
3366 xfb_obj->program->sh.LinkedTransformFeedback;
3367 #else
3368 struct brw_transform_feedback_object *brw_obj =
3369 (struct brw_transform_feedback_object *) xfb_obj;
3370 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3371 #endif
3372
3373 /* Set up the up to 4 output buffers. These are the ranges defined in the
3374 * gl_transform_feedback_object.
3375 */
3376 for (int i = 0; i < 4; i++) {
3377 struct intel_buffer_object *bufferobj =
3378 intel_buffer_object(xfb_obj->Buffers[i]);
3379
3380 if (!bufferobj) {
3381 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3382 sob.SOBufferIndex = i;
3383 }
3384 continue;
3385 }
3386
3387 uint32_t start = xfb_obj->Offset[i];
3388 assert(start % 4 == 0);
3389 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3390 struct brw_bo *bo =
3391 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3392 assert(end <= bo->size);
3393
3394 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3395 sob.SOBufferIndex = i;
3396
3397 sob.SurfaceBaseAddress = render_bo(bo, start);
3398 #if GEN_GEN < 8
3399 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3400 sob.SurfaceEndAddress = render_bo(bo, end);
3401 #else
3402 sob.SOBufferEnable = true;
3403 sob.StreamOffsetWriteEnable = true;
3404 sob.StreamOutputBufferOffsetAddressEnable = true;
3405 sob.SOBufferMOCS = mocs_wb;
3406
3407 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3408 sob.StreamOutputBufferOffsetAddress =
3409 instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3410
3411 if (brw_obj->zero_offsets) {
3412 /* Zero out the offset and write that to offset_bo */
3413 sob.StreamOffset = 0;
3414 } else {
3415 /* Use offset_bo as the "Stream Offset." */
3416 sob.StreamOffset = 0xFFFFFFFF;
3417 }
3418 #endif
3419 }
3420 }
3421
3422 #if GEN_GEN >= 8
3423 brw_obj->zero_offsets = false;
3424 #endif
3425 }
3426
3427 static inline bool
3428 query_active(struct gl_query_object *q)
3429 {
3430 return q && q->Active;
3431 }
3432
3433 static void
3434 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3435 const struct brw_vue_map *vue_map)
3436 {
3437 struct gl_context *ctx = &brw->ctx;
3438 /* BRW_NEW_TRANSFORM_FEEDBACK */
3439 struct gl_transform_feedback_object *xfb_obj =
3440 ctx->TransformFeedback.CurrentObject;
3441
3442 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3443 if (active) {
3444 int urb_entry_read_offset = 0;
3445 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3446 urb_entry_read_offset;
3447
3448 sos.SOFunctionEnable = true;
3449 sos.SOStatisticsEnable = true;
3450
3451 /* BRW_NEW_RASTERIZER_DISCARD */
3452 if (ctx->RasterDiscard) {
3453 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3454 sos.RenderingDisable = true;
3455 } else {
3456 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3457 "query active relies on the clipper.");
3458 }
3459 }
3460
3461 /* _NEW_LIGHT */
3462 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3463 sos.ReorderMode = TRAILING;
3464
3465 #if GEN_GEN < 8
3466 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3467 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3468 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3469 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3470 #else
3471 const struct gl_transform_feedback_info *linked_xfb_info =
3472 xfb_obj->program->sh.LinkedTransformFeedback;
3473 /* Set buffer pitches; 0 means unbound. */
3474 if (xfb_obj->Buffers[0])
3475 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3476 if (xfb_obj->Buffers[1])
3477 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3478 if (xfb_obj->Buffers[2])
3479 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3480 if (xfb_obj->Buffers[3])
3481 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3482 #endif
3483
3484 /* We always read the whole vertex. This could be reduced at some
3485 * point by reading less and offsetting the register index in the
3486 * SO_DECLs.
3487 */
3488 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3489 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3490 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3491 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3492 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3493 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3494 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3495 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3496 }
3497 }
3498 }
3499
3500 static void
3501 genX(upload_sol)(struct brw_context *brw)
3502 {
3503 struct gl_context *ctx = &brw->ctx;
3504 /* BRW_NEW_TRANSFORM_FEEDBACK */
3505 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3506
3507 if (active) {
3508 genX(upload_3dstate_so_buffers)(brw);
3509
3510 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3511 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3512 }
3513
3514 /* Finally, set up the SOL stage. This command must always follow updates to
3515 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3516 * MMIO register updates (current performed by the kernel at each batch
3517 * emit).
3518 */
3519 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3520 }
3521
3522 static const struct brw_tracked_state genX(sol_state) = {
3523 .dirty = {
3524 .mesa = _NEW_LIGHT,
3525 .brw = BRW_NEW_BATCH |
3526 BRW_NEW_BLORP |
3527 BRW_NEW_RASTERIZER_DISCARD |
3528 BRW_NEW_VUE_MAP_GEOM_OUT |
3529 BRW_NEW_TRANSFORM_FEEDBACK,
3530 },
3531 .emit = genX(upload_sol),
3532 };
3533 #endif
3534
3535 /* ---------------------------------------------------------------------- */
3536
3537 #if GEN_GEN >= 7
3538 static void
3539 genX(upload_ps)(struct brw_context *brw)
3540 {
3541 UNUSED const struct gl_context *ctx = &brw->ctx;
3542 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3543
3544 /* BRW_NEW_FS_PROG_DATA */
3545 const struct brw_wm_prog_data *prog_data =
3546 brw_wm_prog_data(brw->wm.base.prog_data);
3547 const struct brw_stage_state *stage_state = &brw->wm.base;
3548
3549 #if GEN_GEN < 8
3550 #endif
3551
3552 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3553 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3554 * incorrect for subspans where some of the pixels are unlit. We believe
3555 * the bit just didn't take effect in previous generations.
3556 */
3557 ps.VectorMaskEnable = GEN_GEN >= 8;
3558
3559 ps.SamplerCount =
3560 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3561
3562 /* BRW_NEW_FS_PROG_DATA */
3563 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3564
3565 if (prog_data->base.use_alt_mode)
3566 ps.FloatingPointMode = Alternate;
3567
3568 /* Haswell requires the sample mask to be set in this packet as well as
3569 * in 3DSTATE_SAMPLE_MASK; the values should match.
3570 */
3571
3572 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3573 #if GEN_IS_HASWELL
3574 ps.SampleMask = genX(determine_sample_mask(brw));
3575 #endif
3576
3577 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3578 * it implicitly scales for different GT levels (which have some # of
3579 * PSDs).
3580 *
3581 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3582 */
3583 #if GEN_GEN >= 9
3584 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3585 #elif GEN_GEN >= 8
3586 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3587 #else
3588 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3589 #endif
3590
3591 if (prog_data->base.nr_params > 0)
3592 ps.PushConstantEnable = true;
3593
3594 #if GEN_GEN < 8
3595 /* From the IVB PRM, volume 2 part 1, page 287:
3596 * "This bit is inserted in the PS payload header and made available to
3597 * the DataPort (either via the message header or via header bypass) to
3598 * indicate that oMask data (one or two phases) is included in Render
3599 * Target Write messages. If present, the oMask data is used to mask off
3600 * samples."
3601 */
3602 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3603
3604 /* The hardware wedges if you have this bit set but don't turn on any
3605 * dual source blend factors.
3606 *
3607 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3608 */
3609 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3610 (ctx->Color.BlendEnabled & 1) &&
3611 ctx->Color.Blend[0]._UsesDualSrc;
3612
3613 /* BRW_NEW_FS_PROG_DATA */
3614 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3615 #endif
3616
3617 /* From the documentation for this packet:
3618 * "If the PS kernel does not need the Position XY Offsets to
3619 * compute a Position Value, then this field should be programmed
3620 * to POSOFFSET_NONE."
3621 *
3622 * "SW Recommendation: If the PS kernel needs the Position Offsets
3623 * to compute a Position XY value, this field should match Position
3624 * ZW Interpolation Mode to ensure a consistent position.xyzw
3625 * computation."
3626 *
3627 * We only require XY sample offsets. So, this recommendation doesn't
3628 * look useful at the moment. We might need this in future.
3629 */
3630 if (prog_data->uses_pos_offset)
3631 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3632 else
3633 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3634
3635 ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op;
3636 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3637 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3638 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3639 prog_data->base.dispatch_grf_start_reg;
3640 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3641 prog_data->dispatch_grf_start_reg_2;
3642
3643 ps.KernelStartPointer0 = stage_state->prog_offset;
3644 ps.KernelStartPointer2 = stage_state->prog_offset +
3645 prog_data->prog_offset_2;
3646
3647 if (prog_data->base.total_scratch) {
3648 ps.ScratchSpaceBasePointer =
3649 render_bo(stage_state->scratch_bo,
3650 ffs(stage_state->per_thread_scratch) - 11);
3651 }
3652 }
3653 }
3654
3655 static const struct brw_tracked_state genX(ps_state) = {
3656 .dirty = {
3657 .mesa = _NEW_MULTISAMPLE |
3658 (GEN_GEN < 8 ? _NEW_BUFFERS |
3659 _NEW_COLOR
3660 : 0),
3661 .brw = BRW_NEW_BATCH |
3662 BRW_NEW_BLORP |
3663 BRW_NEW_FS_PROG_DATA,
3664 },
3665 .emit = genX(upload_ps),
3666 };
3667 #endif
3668
3669 /* ---------------------------------------------------------------------- */
3670
3671 #if GEN_GEN >= 7
3672 static void
3673 genX(upload_hs_state)(struct brw_context *brw)
3674 {
3675 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3676 struct brw_stage_state *stage_state = &brw->tcs.base;
3677 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3678 const struct brw_vue_prog_data *vue_prog_data =
3679 brw_vue_prog_data(stage_prog_data);
3680
3681 /* BRW_NEW_TES_PROG_DATA */
3682 struct brw_tcs_prog_data *tcs_prog_data =
3683 brw_tcs_prog_data(stage_prog_data);
3684
3685 if (!tcs_prog_data) {
3686 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3687 } else {
3688 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3689 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3690
3691 hs.InstanceCount = tcs_prog_data->instances - 1;
3692 hs.IncludeVertexHandles = true;
3693
3694 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3695 }
3696 }
3697 }
3698
3699 static const struct brw_tracked_state genX(hs_state) = {
3700 .dirty = {
3701 .mesa = 0,
3702 .brw = BRW_NEW_BATCH |
3703 BRW_NEW_BLORP |
3704 BRW_NEW_TCS_PROG_DATA |
3705 BRW_NEW_TESS_PROGRAMS,
3706 },
3707 .emit = genX(upload_hs_state),
3708 };
3709
3710 static void
3711 genX(upload_ds_state)(struct brw_context *brw)
3712 {
3713 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3714 const struct brw_stage_state *stage_state = &brw->tes.base;
3715 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3716
3717 /* BRW_NEW_TES_PROG_DATA */
3718 const struct brw_tes_prog_data *tes_prog_data =
3719 brw_tes_prog_data(stage_prog_data);
3720 const struct brw_vue_prog_data *vue_prog_data =
3721 brw_vue_prog_data(stage_prog_data);
3722
3723 if (!tes_prog_data) {
3724 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3725 } else {
3726 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3727 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3728
3729 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3730 ds.ComputeWCoordinateEnable =
3731 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3732
3733 #if GEN_GEN >= 8
3734 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3735 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3736 ds.UserClipDistanceCullTestEnableBitmask =
3737 vue_prog_data->cull_distance_mask;
3738 #endif
3739 }
3740 }
3741 }
3742
3743 static const struct brw_tracked_state genX(ds_state) = {
3744 .dirty = {
3745 .mesa = 0,
3746 .brw = BRW_NEW_BATCH |
3747 BRW_NEW_BLORP |
3748 BRW_NEW_TESS_PROGRAMS |
3749 BRW_NEW_TES_PROG_DATA,
3750 },
3751 .emit = genX(upload_ds_state),
3752 };
3753
3754 /* ---------------------------------------------------------------------- */
3755
3756 static void
3757 upload_te_state(struct brw_context *brw)
3758 {
3759 /* BRW_NEW_TESS_PROGRAMS */
3760 bool active = brw->tess_eval_program;
3761
3762 /* BRW_NEW_TES_PROG_DATA */
3763 const struct brw_tes_prog_data *tes_prog_data =
3764 brw_tes_prog_data(brw->tes.base.prog_data);
3765
3766 if (active) {
3767 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3768 te.Partitioning = tes_prog_data->partitioning;
3769 te.OutputTopology = tes_prog_data->output_topology;
3770 te.TEDomain = tes_prog_data->domain;
3771 te.TEEnable = true;
3772 te.MaximumTessellationFactorOdd = 63.0;
3773 te.MaximumTessellationFactorNotOdd = 64.0;
3774 }
3775 } else {
3776 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
3777 }
3778 }
3779
3780 static const struct brw_tracked_state genX(te_state) = {
3781 .dirty = {
3782 .mesa = 0,
3783 .brw = BRW_NEW_BLORP |
3784 BRW_NEW_CONTEXT |
3785 BRW_NEW_TES_PROG_DATA |
3786 BRW_NEW_TESS_PROGRAMS,
3787 },
3788 .emit = upload_te_state,
3789 };
3790
3791 /* ---------------------------------------------------------------------- */
3792
3793 static void
3794 genX(upload_tes_push_constants)(struct brw_context *brw)
3795 {
3796 struct brw_stage_state *stage_state = &brw->tes.base;
3797 /* BRW_NEW_TESS_PROGRAMS */
3798 const struct brw_program *tep = brw_program_const(brw->tess_eval_program);
3799
3800 if (tep) {
3801 /* BRW_NEW_TES_PROG_DATA */
3802 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
3803 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
3804 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
3805 }
3806
3807 upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL);
3808 }
3809
3810 static const struct brw_tracked_state genX(tes_push_constants) = {
3811 .dirty = {
3812 .mesa = _NEW_PROGRAM_CONSTANTS,
3813 .brw = BRW_NEW_BATCH |
3814 BRW_NEW_BLORP |
3815 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3816 BRW_NEW_TESS_PROGRAMS |
3817 BRW_NEW_TES_PROG_DATA,
3818 },
3819 .emit = genX(upload_tes_push_constants),
3820 };
3821
3822 static void
3823 genX(upload_tcs_push_constants)(struct brw_context *brw)
3824 {
3825 struct brw_stage_state *stage_state = &brw->tcs.base;
3826 /* BRW_NEW_TESS_PROGRAMS */
3827 const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program);
3828 bool active = brw->tess_eval_program;
3829
3830 if (active) {
3831 /* BRW_NEW_TCS_PROG_DATA */
3832 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
3833
3834 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
3835 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
3836 }
3837
3838 upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL);
3839 }
3840
3841 static const struct brw_tracked_state genX(tcs_push_constants) = {
3842 .dirty = {
3843 .mesa = _NEW_PROGRAM_CONSTANTS,
3844 .brw = BRW_NEW_BATCH |
3845 BRW_NEW_BLORP |
3846 BRW_NEW_DEFAULT_TESS_LEVELS |
3847 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3848 BRW_NEW_TESS_PROGRAMS |
3849 BRW_NEW_TCS_PROG_DATA,
3850 },
3851 .emit = genX(upload_tcs_push_constants),
3852 };
3853
3854 #endif
3855
3856 /* ---------------------------------------------------------------------- */
3857
3858 #if GEN_GEN >= 7
3859 static void
3860 genX(upload_cs_state)(struct brw_context *brw)
3861 {
3862 if (!brw->cs.base.prog_data)
3863 return;
3864
3865 uint32_t offset;
3866 uint32_t *desc = (uint32_t*) brw_state_batch(
3867 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
3868 &offset);
3869
3870 struct brw_stage_state *stage_state = &brw->cs.base;
3871 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
3872 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3873 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3874
3875 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
3876 brw_emit_buffer_surface_state(
3877 brw, &stage_state->surf_offset[
3878 prog_data->binding_table.shader_time_start],
3879 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
3880 brw->shader_time.bo->size, 1, true);
3881 }
3882
3883 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
3884 32, &stage_state->bind_bo_offset);
3885
3886 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
3887 if (prog_data->total_scratch) {
3888 uint32_t bo_offset;
3889
3890 if (GEN_GEN >= 8) {
3891 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
3892 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
3893 */
3894 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
3895 } else if (GEN_IS_HASWELL) {
3896 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
3897 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
3898 */
3899 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
3900 } else {
3901 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
3902 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
3903 */
3904 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
3905 }
3906 vfe.ScratchSpaceBasePointer =
3907 render_bo(stage_state->scratch_bo, bo_offset);
3908 }
3909
3910 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
3911 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
3912 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
3913 vfe.ResetGatewayTimer =
3914 Resettingrelativetimerandlatchingtheglobaltimestamp;
3915 #if GEN_GEN < 9
3916 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
3917 #endif
3918 #if GEN_GEN == 7
3919 vfe.GPGPUMode = 1;
3920 #endif
3921
3922 /* We are uploading duplicated copies of push constant uniforms for each
3923 * thread. Although the local id data needs to vary per thread, it won't
3924 * change for other uniform data. Unfortunately this duplication is
3925 * required for gen7. As of Haswell, this duplication can be avoided,
3926 * but this older mechanism with duplicated data continues to work.
3927 *
3928 * FINISHME: As of Haswell, we could make use of the
3929 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
3930 * field to only store one copy of uniform data.
3931 *
3932 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
3933 * which is described in the GPGPU_WALKER command and in the Broadwell
3934 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
3935 * Operations => GPGPU Mode => Indirect Payload Storage.
3936 *
3937 * Note: The constant data is built in brw_upload_cs_push_constants
3938 * below.
3939 */
3940 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
3941
3942 const uint32_t vfe_curbe_allocation =
3943 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
3944 cs_prog_data->push.cross_thread.regs, 2);
3945 vfe.CURBEAllocationSize = vfe_curbe_allocation;
3946 }
3947
3948 if (cs_prog_data->push.total.size > 0) {
3949 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
3950 curbe.CURBETotalDataLength =
3951 ALIGN(cs_prog_data->push.total.size, 64);
3952 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
3953 }
3954 }
3955
3956 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
3957 memcpy(bind, stage_state->surf_offset,
3958 prog_data->binding_table.size_bytes);
3959 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
3960 .KernelStartPointer = brw->cs.base.prog_offset,
3961 .SamplerStatePointer = stage_state->sampler_offset,
3962 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
3963 .BindingTablePointer = stage_state->bind_bo_offset,
3964 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
3965 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
3966 .SharedLocalMemorySize = encode_slm_size(devinfo->gen,
3967 prog_data->total_shared),
3968 .BarrierEnable = cs_prog_data->uses_barrier,
3969 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3970 .CrossThreadConstantDataReadLength =
3971 cs_prog_data->push.cross_thread.regs,
3972 #endif
3973 };
3974
3975 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
3976
3977 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
3978 load.InterfaceDescriptorTotalLength =
3979 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3980 load.InterfaceDescriptorDataStartAddress = offset;
3981 }
3982 }
3983
3984 static const struct brw_tracked_state genX(cs_state) = {
3985 .dirty = {
3986 .mesa = _NEW_PROGRAM_CONSTANTS,
3987 .brw = BRW_NEW_BATCH |
3988 BRW_NEW_BLORP |
3989 BRW_NEW_CS_PROG_DATA |
3990 BRW_NEW_SAMPLER_STATE_TABLE |
3991 BRW_NEW_SURFACES,
3992 },
3993 .emit = genX(upload_cs_state)
3994 };
3995
3996 #endif
3997
3998 /* ---------------------------------------------------------------------- */
3999
4000 #if GEN_GEN >= 8
4001 static void
4002 genX(upload_raster)(struct brw_context *brw)
4003 {
4004 struct gl_context *ctx = &brw->ctx;
4005
4006 /* _NEW_BUFFERS */
4007 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4008
4009 /* _NEW_POLYGON */
4010 struct gl_polygon_attrib *polygon = &ctx->Polygon;
4011
4012 /* _NEW_POINT */
4013 struct gl_point_attrib *point = &ctx->Point;
4014
4015 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4016 if (brw->polygon_front_bit == render_to_fbo)
4017 raster.FrontWinding = CounterClockwise;
4018
4019 if (polygon->CullFlag) {
4020 switch (polygon->CullFaceMode) {
4021 case GL_FRONT:
4022 raster.CullMode = CULLMODE_FRONT;
4023 break;
4024 case GL_BACK:
4025 raster.CullMode = CULLMODE_BACK;
4026 break;
4027 case GL_FRONT_AND_BACK:
4028 raster.CullMode = CULLMODE_BOTH;
4029 break;
4030 default:
4031 unreachable("not reached");
4032 }
4033 } else {
4034 raster.CullMode = CULLMODE_NONE;
4035 }
4036
4037 point->SmoothFlag = raster.SmoothPointEnable;
4038
4039 raster.DXMultisampleRasterizationEnable =
4040 _mesa_is_multisample_enabled(ctx);
4041
4042 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4043 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4044 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4045
4046 switch (polygon->FrontMode) {
4047 case GL_FILL:
4048 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4049 break;
4050 case GL_LINE:
4051 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4052 break;
4053 case GL_POINT:
4054 raster.FrontFaceFillMode = FILL_MODE_POINT;
4055 break;
4056 default:
4057 unreachable("not reached");
4058 }
4059
4060 switch (polygon->BackMode) {
4061 case GL_FILL:
4062 raster.BackFaceFillMode = FILL_MODE_SOLID;
4063 break;
4064 case GL_LINE:
4065 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4066 break;
4067 case GL_POINT:
4068 raster.BackFaceFillMode = FILL_MODE_POINT;
4069 break;
4070 default:
4071 unreachable("not reached");
4072 }
4073
4074 /* _NEW_LINE */
4075 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4076
4077 /* _NEW_SCISSOR */
4078 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4079
4080 /* _NEW_TRANSFORM */
4081 if (!ctx->Transform.DepthClamp) {
4082 #if GEN_GEN >= 9
4083 raster.ViewportZFarClipTestEnable = true;
4084 raster.ViewportZNearClipTestEnable = true;
4085 #else
4086 raster.ViewportZClipTestEnable = true;
4087 #endif
4088 }
4089
4090 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4091 #if GEN_GEN >= 9
4092 raster.ConservativeRasterizationEnable =
4093 ctx->IntelConservativeRasterization;
4094 #endif
4095
4096 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4097 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4098
4099 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4100 }
4101 }
4102
4103 static const struct brw_tracked_state genX(raster_state) = {
4104 .dirty = {
4105 .mesa = _NEW_BUFFERS |
4106 _NEW_LINE |
4107 _NEW_MULTISAMPLE |
4108 _NEW_POINT |
4109 _NEW_POLYGON |
4110 _NEW_SCISSOR |
4111 _NEW_TRANSFORM,
4112 .brw = BRW_NEW_BLORP |
4113 BRW_NEW_CONTEXT |
4114 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4115 },
4116 .emit = genX(upload_raster),
4117 };
4118 #endif
4119
4120 /* ---------------------------------------------------------------------- */
4121
4122 #if GEN_GEN >= 8
4123 static void
4124 genX(upload_ps_extra)(struct brw_context *brw)
4125 {
4126 UNUSED struct gl_context *ctx = &brw->ctx;
4127
4128 const struct brw_wm_prog_data *prog_data =
4129 brw_wm_prog_data(brw->wm.base.prog_data);
4130
4131 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4132 psx.PixelShaderValid = true;
4133 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4134 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4135 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4136 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4137 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4138 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4139
4140 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4141 if (prog_data->uses_sample_mask) {
4142 #if GEN_GEN >= 9
4143 if (prog_data->post_depth_coverage)
4144 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4145 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4146 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4147 else
4148 psx.InputCoverageMaskState = ICMS_NORMAL;
4149 #else
4150 psx.PixelShaderUsesInputCoverageMask = true;
4151 #endif
4152 }
4153
4154 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4155 #if GEN_GEN >= 9
4156 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4157 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4158 #endif
4159
4160 /* The stricter cross-primitive coherency guarantees that the hardware
4161 * gives us with the "Accesses UAV" bit set for at least one shader stage
4162 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4163 * are redundant within the current image, atomic counter and SSBO GL
4164 * APIs, which all have very loose ordering and coherency requirements
4165 * and generally rely on the application to insert explicit barriers when
4166 * a shader invocation is expected to see the memory writes performed by
4167 * the invocations of some previous primitive. Regardless of the value
4168 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4169 * cause an in most cases useless DC flush when the lowermost stage with
4170 * the bit set finishes execution.
4171 *
4172 * It would be nice to disable it, but in some cases we can't because on
4173 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4174 * signal (which could be set independently from the coherency mechanism
4175 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4176 * determine whether the hardware skips execution of the fragment shader
4177 * or not via the ThreadDispatchEnable signal. However if we know that
4178 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4179 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4180 * difference so we may just disable it here.
4181 *
4182 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4183 * take into account KillPixels when no depth or stencil writes are
4184 * enabled. In order for occlusion queries to work correctly with no
4185 * attachments, we need to force-enable here.
4186 *
4187 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4188 * _NEW_COLOR
4189 */
4190 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4191 !brw_color_buffer_write_enabled(brw))
4192 psx.PixelShaderHasUAV = true;
4193 }
4194 }
4195
4196 const struct brw_tracked_state genX(ps_extra) = {
4197 .dirty = {
4198 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4199 .brw = BRW_NEW_BLORP |
4200 BRW_NEW_CONTEXT |
4201 BRW_NEW_FRAGMENT_PROGRAM |
4202 BRW_NEW_FS_PROG_DATA |
4203 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4204 },
4205 .emit = genX(upload_ps_extra),
4206 };
4207 #endif
4208
4209 /* ---------------------------------------------------------------------- */
4210
4211 #if GEN_GEN >= 8
4212 static void
4213 genX(upload_ps_blend)(struct brw_context *brw)
4214 {
4215 struct gl_context *ctx = &brw->ctx;
4216
4217 /* _NEW_BUFFERS */
4218 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4219 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4220
4221 /* _NEW_COLOR */
4222 struct gl_colorbuffer_attrib *color = &ctx->Color;
4223
4224 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4225 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4226 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4227
4228 bool alpha_to_one = false;
4229
4230 if (!buffer0_is_integer) {
4231 /* _NEW_MULTISAMPLE */
4232
4233 if (_mesa_is_multisample_enabled(ctx)) {
4234 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4235 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4236 }
4237
4238 pb.AlphaTestEnable = color->AlphaEnabled;
4239 }
4240
4241 /* Used for implementing the following bit of GL_EXT_texture_integer:
4242 * "Per-fragment operations that require floating-point color
4243 * components, including multisample alpha operations, alpha test,
4244 * blending, and dithering, have no effect when the corresponding
4245 * colors are written to an integer color buffer."
4246 *
4247 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4248 * "If drawbuffer zero is not NONE and the buffer it references has an
4249 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4250 * operations are skipped."
4251 */
4252 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4253 GLenum eqRGB = color->Blend[0].EquationRGB;
4254 GLenum eqA = color->Blend[0].EquationA;
4255 GLenum srcRGB = color->Blend[0].SrcRGB;
4256 GLenum dstRGB = color->Blend[0].DstRGB;
4257 GLenum srcA = color->Blend[0].SrcA;
4258 GLenum dstA = color->Blend[0].DstA;
4259
4260 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4261 srcRGB = dstRGB = GL_ONE;
4262
4263 if (eqA == GL_MIN || eqA == GL_MAX)
4264 srcA = dstA = GL_ONE;
4265
4266 /* Due to hardware limitations, the destination may have information
4267 * in an alpha channel even when the format specifies no alpha
4268 * channel. In order to avoid getting any incorrect blending due to
4269 * that alpha channel, coerce the blend factors to values that will
4270 * not read the alpha channel, but will instead use the correct
4271 * implicit value for alpha.
4272 */
4273 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4274 GL_TEXTURE_ALPHA_TYPE)) {
4275 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4276 srcA = brw_fix_xRGB_alpha(srcA);
4277 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4278 dstA = brw_fix_xRGB_alpha(dstA);
4279 }
4280
4281 /* Alpha to One doesn't work with Dual Color Blending. Override
4282 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4283 */
4284 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4285 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4286 srcA = fix_dual_blend_alpha_to_one(srcA);
4287 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4288 dstA = fix_dual_blend_alpha_to_one(dstA);
4289 }
4290
4291 pb.ColorBufferBlendEnable = true;
4292 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4293 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4294 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4295 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4296
4297 pb.IndependentAlphaBlendEnable =
4298 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4299 }
4300 }
4301 }
4302
4303 static const struct brw_tracked_state genX(ps_blend) = {
4304 .dirty = {
4305 .mesa = _NEW_BUFFERS |
4306 _NEW_COLOR |
4307 _NEW_MULTISAMPLE,
4308 .brw = BRW_NEW_BLORP |
4309 BRW_NEW_CONTEXT |
4310 BRW_NEW_FRAGMENT_PROGRAM,
4311 },
4312 .emit = genX(upload_ps_blend)
4313 };
4314 #endif
4315
4316 /* ---------------------------------------------------------------------- */
4317
4318 #if GEN_GEN >= 8
4319 static void
4320 genX(emit_vf_topology)(struct brw_context *brw)
4321 {
4322 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4323 vftopo.PrimitiveTopologyType = brw->primitive;
4324 }
4325 }
4326
4327 static const struct brw_tracked_state genX(vf_topology) = {
4328 .dirty = {
4329 .mesa = 0,
4330 .brw = BRW_NEW_BLORP |
4331 BRW_NEW_PRIMITIVE,
4332 },
4333 .emit = genX(emit_vf_topology),
4334 };
4335 #endif
4336
4337 /* ---------------------------------------------------------------------- */
4338
4339 #if GEN_GEN >= 7
4340 static void
4341 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4342 struct brw_bo *bo,
4343 uint32_t offset_in_bytes,
4344 uint32_t report_id)
4345 {
4346 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4347 mi_rpc.MemoryAddress = instruction_bo(bo, offset_in_bytes);
4348 mi_rpc.ReportID = report_id;
4349 }
4350 }
4351 #endif
4352
4353 /* ---------------------------------------------------------------------- */
4354
4355 /**
4356 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4357 */
4358 static void
4359 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4360 struct brw_stage_state *stage_state)
4361 {
4362 #if GEN_GEN >= 7
4363 static const uint16_t packet_headers[] = {
4364 [MESA_SHADER_VERTEX] = 43,
4365 [MESA_SHADER_TESS_CTRL] = 44,
4366 [MESA_SHADER_TESS_EVAL] = 45,
4367 [MESA_SHADER_GEOMETRY] = 46,
4368 [MESA_SHADER_FRAGMENT] = 47,
4369 };
4370
4371 /* Ivybridge requires a workaround flush before VS packets. */
4372 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4373 stage_state->stage == MESA_SHADER_VERTEX) {
4374 gen7_emit_vs_workaround_flush(brw);
4375 }
4376
4377 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4378 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4379 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4380 }
4381 #endif
4382 }
4383
4384 UNUSED static bool
4385 has_component(mesa_format format, int i)
4386 {
4387 if (_mesa_is_format_color_format(format))
4388 return _mesa_format_has_color_component(format, i);
4389
4390 /* depth and stencil have only one component */
4391 return i == 0;
4392 }
4393
4394 /**
4395 * Upload SAMPLER_BORDER_COLOR_STATE.
4396 */
4397 static void
4398 genX(upload_default_color)(struct brw_context *brw,
4399 const struct gl_sampler_object *sampler,
4400 mesa_format format, GLenum base_format,
4401 bool is_integer_format, bool is_stencil_sampling,
4402 uint32_t *sdc_offset)
4403 {
4404 union gl_color_union color;
4405
4406 switch (base_format) {
4407 case GL_DEPTH_COMPONENT:
4408 /* GL specs that border color for depth textures is taken from the
4409 * R channel, while the hardware uses A. Spam R into all the
4410 * channels for safety.
4411 */
4412 color.ui[0] = sampler->BorderColor.ui[0];
4413 color.ui[1] = sampler->BorderColor.ui[0];
4414 color.ui[2] = sampler->BorderColor.ui[0];
4415 color.ui[3] = sampler->BorderColor.ui[0];
4416 break;
4417 case GL_ALPHA:
4418 color.ui[0] = 0u;
4419 color.ui[1] = 0u;
4420 color.ui[2] = 0u;
4421 color.ui[3] = sampler->BorderColor.ui[3];
4422 break;
4423 case GL_INTENSITY:
4424 color.ui[0] = sampler->BorderColor.ui[0];
4425 color.ui[1] = sampler->BorderColor.ui[0];
4426 color.ui[2] = sampler->BorderColor.ui[0];
4427 color.ui[3] = sampler->BorderColor.ui[0];
4428 break;
4429 case GL_LUMINANCE:
4430 color.ui[0] = sampler->BorderColor.ui[0];
4431 color.ui[1] = sampler->BorderColor.ui[0];
4432 color.ui[2] = sampler->BorderColor.ui[0];
4433 color.ui[3] = float_as_int(1.0);
4434 break;
4435 case GL_LUMINANCE_ALPHA:
4436 color.ui[0] = sampler->BorderColor.ui[0];
4437 color.ui[1] = sampler->BorderColor.ui[0];
4438 color.ui[2] = sampler->BorderColor.ui[0];
4439 color.ui[3] = sampler->BorderColor.ui[3];
4440 break;
4441 default:
4442 color.ui[0] = sampler->BorderColor.ui[0];
4443 color.ui[1] = sampler->BorderColor.ui[1];
4444 color.ui[2] = sampler->BorderColor.ui[2];
4445 color.ui[3] = sampler->BorderColor.ui[3];
4446 break;
4447 }
4448
4449 /* In some cases we use an RGBA surface format for GL RGB textures,
4450 * where we've initialized the A channel to 1.0. We also have to set
4451 * the border color alpha to 1.0 in that case.
4452 */
4453 if (base_format == GL_RGB)
4454 color.ui[3] = float_as_int(1.0);
4455
4456 int alignment = 32;
4457 if (brw->gen >= 8) {
4458 alignment = 64;
4459 } else if (brw->is_haswell && (is_integer_format || is_stencil_sampling)) {
4460 alignment = 512;
4461 }
4462
4463 uint32_t *sdc = brw_state_batch(
4464 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4465 alignment, sdc_offset);
4466
4467 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4468
4469 #define ASSIGN(dst, src) \
4470 do { \
4471 dst = src; \
4472 } while (0)
4473
4474 #define ASSIGNu16(dst, src) \
4475 do { \
4476 dst = (uint16_t)src; \
4477 } while (0)
4478
4479 #define ASSIGNu8(dst, src) \
4480 do { \
4481 dst = (uint8_t)src; \
4482 } while (0)
4483
4484 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4485 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4486 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4487 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4488 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4489
4490 #if GEN_GEN >= 8
4491 /* On Broadwell, the border color is represented as four 32-bit floats,
4492 * integers, or unsigned values, interpreted according to the surface
4493 * format. This matches the sampler->BorderColor union exactly; just
4494 * memcpy the values.
4495 */
4496 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4497 #elif GEN_IS_HASWELL
4498 if (is_integer_format || is_stencil_sampling) {
4499 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4500 const int bits_per_channel =
4501 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4502
4503 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4504 * "If any color channel is missing from the surface format,
4505 * corresponding border color should be programmed as zero and if
4506 * alpha channel is missing, corresponding Alpha border color should
4507 * be programmed as 1."
4508 */
4509 unsigned c[4] = { 0, 0, 0, 1 };
4510 for (int i = 0; i < 4; i++) {
4511 if (has_component(format, i))
4512 c[i] = color.ui[i];
4513 }
4514
4515 switch (bits_per_channel) {
4516 case 8:
4517 /* Copy RGBA in order. */
4518 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4519 break;
4520 case 10:
4521 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4522 case 16:
4523 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4524 break;
4525 case 32:
4526 if (base_format == GL_RG) {
4527 /* Careful inspection of the tables reveals that for RG32 formats,
4528 * the green channel needs to go where blue normally belongs.
4529 */
4530 state.BorderColor32bitRed = c[0];
4531 state.BorderColor32bitBlue = c[1];
4532 state.BorderColor32bitAlpha = 1;
4533 } else {
4534 /* Copy RGBA in order. */
4535 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4536 }
4537 break;
4538 default:
4539 assert(!"Invalid number of bits per channel in integer format.");
4540 break;
4541 }
4542 } else {
4543 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4544 }
4545 #elif GEN_GEN == 5 || GEN_GEN == 6
4546 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4547 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4548 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4549
4550 #define MESA_FLOAT_TO_HALF(dst, src) \
4551 dst = _mesa_float_to_half(src);
4552
4553 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4554
4555 #undef MESA_FLOAT_TO_HALF
4556
4557 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4558 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4559 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4560 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4561
4562 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4563 #elif GEN_GEN == 4
4564 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4565 #else
4566 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4567 #endif
4568
4569 #undef ASSIGN
4570 #undef BORDER_COLOR_ATTR
4571
4572 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4573 }
4574
4575 static uint32_t
4576 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4577 {
4578 switch (wrap) {
4579 case GL_REPEAT:
4580 return TCM_WRAP;
4581 case GL_CLAMP:
4582 #if GEN_GEN >= 8
4583 /* GL_CLAMP is the weird mode where coordinates are clamped to
4584 * [0.0, 1.0], so linear filtering of coordinates outside of
4585 * [0.0, 1.0] give you half edge texel value and half border
4586 * color.
4587 *
4588 * Gen8+ supports this natively.
4589 */
4590 return TCM_HALF_BORDER;
4591 #else
4592 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4593 * and set clamp_border here, which gets the result desired.
4594 * We just use clamp(_to_edge) for nearest, because for nearest
4595 * clamping to 1.0 gives border color instead of the desired
4596 * edge texels.
4597 */
4598 if (using_nearest)
4599 return TCM_CLAMP;
4600 else
4601 return TCM_CLAMP_BORDER;
4602 #endif
4603 case GL_CLAMP_TO_EDGE:
4604 return TCM_CLAMP;
4605 case GL_CLAMP_TO_BORDER:
4606 return TCM_CLAMP_BORDER;
4607 case GL_MIRRORED_REPEAT:
4608 return TCM_MIRROR;
4609 case GL_MIRROR_CLAMP_TO_EDGE:
4610 return TCM_MIRROR_ONCE;
4611 default:
4612 return TCM_WRAP;
4613 }
4614 }
4615
4616 /**
4617 * Return true if the given wrap mode requires the border color to exist.
4618 */
4619 static bool
4620 wrap_mode_needs_border_color(unsigned wrap_mode)
4621 {
4622 #if GEN_GEN >= 8
4623 return wrap_mode == TCM_CLAMP_BORDER ||
4624 wrap_mode == TCM_HALF_BORDER;
4625 #else
4626 return wrap_mode == TCM_CLAMP_BORDER;
4627 #endif
4628 }
4629
4630 /**
4631 * Sets the sampler state for a single unit based off of the sampler key
4632 * entry.
4633 */
4634 static void
4635 genX(update_sampler_state)(struct brw_context *brw,
4636 GLenum target, bool tex_cube_map_seamless,
4637 GLfloat tex_unit_lod_bias,
4638 mesa_format format, GLenum base_format,
4639 const struct gl_texture_object *texObj,
4640 const struct gl_sampler_object *sampler,
4641 uint32_t *sampler_state,
4642 uint32_t batch_offset_for_sampler_state)
4643 {
4644 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4645
4646 /* Select min and mip filters. */
4647 switch (sampler->MinFilter) {
4648 case GL_NEAREST:
4649 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4650 samp_st.MipModeFilter = MIPFILTER_NONE;
4651 break;
4652 case GL_LINEAR:
4653 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4654 samp_st.MipModeFilter = MIPFILTER_NONE;
4655 break;
4656 case GL_NEAREST_MIPMAP_NEAREST:
4657 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4658 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4659 break;
4660 case GL_LINEAR_MIPMAP_NEAREST:
4661 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4662 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4663 break;
4664 case GL_NEAREST_MIPMAP_LINEAR:
4665 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4666 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4667 break;
4668 case GL_LINEAR_MIPMAP_LINEAR:
4669 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4670 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4671 break;
4672 default:
4673 unreachable("not reached");
4674 }
4675
4676 /* Select mag filter. */
4677 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
4678 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
4679
4680 /* Enable anisotropic filtering if desired. */
4681 samp_st.MaximumAnisotropy = RATIO21;
4682
4683 if (sampler->MaxAnisotropy > 1.0f) {
4684 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
4685 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
4686 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
4687 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
4688
4689 if (sampler->MaxAnisotropy > 2.0f) {
4690 samp_st.MaximumAnisotropy =
4691 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
4692 }
4693 }
4694
4695 /* Set address rounding bits if not using nearest filtering. */
4696 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
4697 samp_st.UAddressMinFilterRoundingEnable = true;
4698 samp_st.VAddressMinFilterRoundingEnable = true;
4699 samp_st.RAddressMinFilterRoundingEnable = true;
4700 }
4701
4702 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
4703 samp_st.UAddressMagFilterRoundingEnable = true;
4704 samp_st.VAddressMagFilterRoundingEnable = true;
4705 samp_st.RAddressMagFilterRoundingEnable = true;
4706 }
4707
4708 bool either_nearest =
4709 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
4710 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
4711 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
4712 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
4713
4714 if (target == GL_TEXTURE_CUBE_MAP ||
4715 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
4716 /* Cube maps must use the same wrap mode for all three coordinate
4717 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
4718 *
4719 * Ivybridge and Baytrail seem to have problems with CUBE mode and
4720 * integer formats. Fall back to CLAMP for now.
4721 */
4722 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
4723 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
4724 wrap_s = TCM_CUBE;
4725 wrap_t = TCM_CUBE;
4726 wrap_r = TCM_CUBE;
4727 } else {
4728 wrap_s = TCM_CLAMP;
4729 wrap_t = TCM_CLAMP;
4730 wrap_r = TCM_CLAMP;
4731 }
4732 } else if (target == GL_TEXTURE_1D) {
4733 /* There's a bug in 1D texture sampling - it actually pays
4734 * attention to the wrap_t value, though it should not.
4735 * Override the wrap_t value here to GL_REPEAT to keep
4736 * any nonexistent border pixels from floating in.
4737 */
4738 wrap_t = TCM_WRAP;
4739 }
4740
4741 samp_st.TCXAddressControlMode = wrap_s;
4742 samp_st.TCYAddressControlMode = wrap_t;
4743 samp_st.TCZAddressControlMode = wrap_r;
4744
4745 samp_st.ShadowFunction =
4746 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
4747 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
4748
4749 #if GEN_GEN >= 7
4750 /* Set shadow function. */
4751 samp_st.AnisotropicAlgorithm =
4752 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
4753 EWAApproximation : LEGACY;
4754 #endif
4755
4756 #if GEN_GEN >= 6
4757 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
4758 #endif
4759
4760 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
4761 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
4762 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
4763 samp_st.TextureLODBias =
4764 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
4765
4766 #if GEN_GEN == 6
4767 samp_st.BaseMipLevel =
4768 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
4769 samp_st.MinandMagStateNotEqual =
4770 samp_st.MinModeFilter != samp_st.MagModeFilter;
4771 #endif
4772
4773 /* Upload the border color if necessary. If not, just point it at
4774 * offset 0 (the start of the batch) - the color should be ignored,
4775 * but that address won't fault in case something reads it anyway.
4776 */
4777 uint32_t border_color_offset = 0;
4778 if (wrap_mode_needs_border_color(wrap_s) ||
4779 wrap_mode_needs_border_color(wrap_t) ||
4780 wrap_mode_needs_border_color(wrap_r)) {
4781 genX(upload_default_color)(brw, sampler, format, base_format,
4782 texObj->_IsIntegerFormat,
4783 texObj->StencilSampling,
4784 &border_color_offset);
4785 }
4786
4787 samp_st.BorderColorPointer = border_color_offset;
4788
4789 if (GEN_GEN < 6) {
4790 samp_st.BorderColorPointer += brw->batch.bo->offset64; /* reloc */
4791 brw_emit_reloc(&brw->batch, batch_offset_for_sampler_state + 8,
4792 brw->batch.bo, border_color_offset,
4793 I915_GEM_DOMAIN_SAMPLER, 0);
4794 }
4795
4796 #if GEN_GEN >= 8
4797 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
4798 #else
4799 samp_st.LODPreClampEnable = true;
4800 #endif
4801
4802 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
4803 }
4804
4805 static void
4806 update_sampler_state(struct brw_context *brw,
4807 int unit,
4808 uint32_t *sampler_state,
4809 uint32_t batch_offset_for_sampler_state)
4810 {
4811 struct gl_context *ctx = &brw->ctx;
4812 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
4813 const struct gl_texture_object *texObj = texUnit->_Current;
4814 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
4815
4816 /* These don't use samplers at all. */
4817 if (texObj->Target == GL_TEXTURE_BUFFER)
4818 return;
4819
4820 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
4821 genX(update_sampler_state)(brw, texObj->Target,
4822 ctx->Texture.CubeMapSeamless,
4823 texUnit->LodBias,
4824 firstImage->TexFormat, firstImage->_BaseFormat,
4825 texObj, sampler,
4826 sampler_state, batch_offset_for_sampler_state);
4827 }
4828
4829 static void
4830 genX(upload_sampler_state_table)(struct brw_context *brw,
4831 struct gl_program *prog,
4832 struct brw_stage_state *stage_state)
4833 {
4834 struct gl_context *ctx = &brw->ctx;
4835 uint32_t sampler_count = stage_state->sampler_count;
4836
4837 GLbitfield SamplersUsed = prog->SamplersUsed;
4838
4839 if (sampler_count == 0)
4840 return;
4841
4842 /* SAMPLER_STATE is 4 DWords on all platforms. */
4843 const int dwords = GENX(SAMPLER_STATE_length);
4844 const int size_in_bytes = dwords * sizeof(uint32_t);
4845
4846 uint32_t *sampler_state = brw_state_batch(brw,
4847 sampler_count * size_in_bytes,
4848 32, &stage_state->sampler_offset);
4849 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
4850
4851 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
4852
4853 for (unsigned s = 0; s < sampler_count; s++) {
4854 if (SamplersUsed & (1 << s)) {
4855 const unsigned unit = prog->SamplerUnits[s];
4856 if (ctx->Texture.Unit[unit]._Current) {
4857 update_sampler_state(brw, unit, sampler_state,
4858 batch_offset_for_sampler_state);
4859 }
4860 }
4861
4862 sampler_state += dwords;
4863 batch_offset_for_sampler_state += size_in_bytes;
4864 }
4865
4866 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
4867 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
4868 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
4869 } else {
4870 /* Flag that the sampler state table pointer has changed; later atoms
4871 * will handle it.
4872 */
4873 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
4874 }
4875 }
4876
4877 static void
4878 genX(upload_fs_samplers)(struct brw_context *brw)
4879 {
4880 /* BRW_NEW_FRAGMENT_PROGRAM */
4881 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
4882 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
4883 }
4884
4885 static const struct brw_tracked_state genX(fs_samplers) = {
4886 .dirty = {
4887 .mesa = _NEW_TEXTURE,
4888 .brw = BRW_NEW_BATCH |
4889 BRW_NEW_BLORP |
4890 BRW_NEW_FRAGMENT_PROGRAM,
4891 },
4892 .emit = genX(upload_fs_samplers),
4893 };
4894
4895 static void
4896 genX(upload_vs_samplers)(struct brw_context *brw)
4897 {
4898 /* BRW_NEW_VERTEX_PROGRAM */
4899 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
4900 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
4901 }
4902
4903 static const struct brw_tracked_state genX(vs_samplers) = {
4904 .dirty = {
4905 .mesa = _NEW_TEXTURE,
4906 .brw = BRW_NEW_BATCH |
4907 BRW_NEW_BLORP |
4908 BRW_NEW_VERTEX_PROGRAM,
4909 },
4910 .emit = genX(upload_vs_samplers),
4911 };
4912
4913 #if GEN_GEN >= 6
4914 static void
4915 genX(upload_gs_samplers)(struct brw_context *brw)
4916 {
4917 /* BRW_NEW_GEOMETRY_PROGRAM */
4918 struct gl_program *gs = (struct gl_program *) brw->geometry_program;
4919 if (!gs)
4920 return;
4921
4922 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
4923 }
4924
4925
4926 static const struct brw_tracked_state genX(gs_samplers) = {
4927 .dirty = {
4928 .mesa = _NEW_TEXTURE,
4929 .brw = BRW_NEW_BATCH |
4930 BRW_NEW_BLORP |
4931 BRW_NEW_GEOMETRY_PROGRAM,
4932 },
4933 .emit = genX(upload_gs_samplers),
4934 };
4935 #endif
4936
4937 #if GEN_GEN >= 7
4938 static void
4939 genX(upload_tcs_samplers)(struct brw_context *brw)
4940 {
4941 /* BRW_NEW_TESS_PROGRAMS */
4942 struct gl_program *tcs = (struct gl_program *) brw->tess_ctrl_program;
4943 if (!tcs)
4944 return;
4945
4946 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
4947 }
4948
4949 static const struct brw_tracked_state genX(tcs_samplers) = {
4950 .dirty = {
4951 .mesa = _NEW_TEXTURE,
4952 .brw = BRW_NEW_BATCH |
4953 BRW_NEW_BLORP |
4954 BRW_NEW_TESS_PROGRAMS,
4955 },
4956 .emit = genX(upload_tcs_samplers),
4957 };
4958 #endif
4959
4960 #if GEN_GEN >= 7
4961 static void
4962 genX(upload_tes_samplers)(struct brw_context *brw)
4963 {
4964 /* BRW_NEW_TESS_PROGRAMS */
4965 struct gl_program *tes = (struct gl_program *) brw->tess_eval_program;
4966 if (!tes)
4967 return;
4968
4969 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
4970 }
4971
4972 static const struct brw_tracked_state genX(tes_samplers) = {
4973 .dirty = {
4974 .mesa = _NEW_TEXTURE,
4975 .brw = BRW_NEW_BATCH |
4976 BRW_NEW_BLORP |
4977 BRW_NEW_TESS_PROGRAMS,
4978 },
4979 .emit = genX(upload_tes_samplers),
4980 };
4981 #endif
4982
4983 #if GEN_GEN >= 7
4984 static void
4985 genX(upload_cs_samplers)(struct brw_context *brw)
4986 {
4987 /* BRW_NEW_COMPUTE_PROGRAM */
4988 struct gl_program *cs = (struct gl_program *) brw->compute_program;
4989 if (!cs)
4990 return;
4991
4992 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
4993 }
4994
4995 const struct brw_tracked_state genX(cs_samplers) = {
4996 .dirty = {
4997 .mesa = _NEW_TEXTURE,
4998 .brw = BRW_NEW_BATCH |
4999 BRW_NEW_BLORP |
5000 BRW_NEW_COMPUTE_PROGRAM,
5001 },
5002 .emit = genX(upload_cs_samplers),
5003 };
5004 #endif
5005
5006 /* ---------------------------------------------------------------------- */
5007
5008 #if GEN_GEN <= 5
5009
5010 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5011 {
5012 struct gl_context *ctx = &brw->ctx;
5013
5014 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5015 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5016 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5017 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5018 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5019 }
5020 }
5021
5022 static const struct brw_tracked_state genX(blend_constant_color) = {
5023 .dirty = {
5024 .mesa = _NEW_COLOR,
5025 .brw = BRW_NEW_CONTEXT |
5026 BRW_NEW_BLORP,
5027 },
5028 .emit = genX(upload_blend_constant_color)
5029 };
5030 #endif
5031
5032 /* ---------------------------------------------------------------------- */
5033
5034 void
5035 genX(init_atoms)(struct brw_context *brw)
5036 {
5037 #if GEN_GEN < 6
5038 static const struct brw_tracked_state *render_atoms[] =
5039 {
5040 /* Once all the programs are done, we know how large urb entry
5041 * sizes need to be and can decide if we need to change the urb
5042 * layout.
5043 */
5044 &brw_curbe_offsets,
5045 &brw_recalculate_urb_fence,
5046
5047 &genX(cc_vp),
5048 &genX(color_calc_state),
5049
5050 /* Surface state setup. Must come before the VS/WM unit. The binding
5051 * table upload must be last.
5052 */
5053 &brw_vs_pull_constants,
5054 &brw_wm_pull_constants,
5055 &brw_renderbuffer_surfaces,
5056 &brw_renderbuffer_read_surfaces,
5057 &brw_texture_surfaces,
5058 &brw_vs_binding_table,
5059 &brw_wm_binding_table,
5060
5061 &genX(fs_samplers),
5062 &genX(vs_samplers),
5063
5064 /* These set up state for brw_psp_urb_cbs */
5065 &brw_wm_unit,
5066 &genX(sf_clip_viewport),
5067 &genX(sf_state),
5068 &genX(vs_state), /* always required, enabled or not */
5069 &brw_clip_unit,
5070 &genX(gs_state),
5071
5072 /* Command packets:
5073 */
5074 &brw_invariant_state,
5075
5076 &brw_binding_table_pointers,
5077 &genX(blend_constant_color),
5078
5079 &brw_depthbuffer,
5080
5081 &genX(polygon_stipple),
5082 &genX(polygon_stipple_offset),
5083
5084 &genX(line_stipple),
5085
5086 &brw_psp_urb_cbs,
5087
5088 &genX(drawing_rect),
5089 &brw_indices, /* must come before brw_vertices */
5090 &genX(index_buffer),
5091 &genX(vertices),
5092
5093 &brw_constant_buffer
5094 };
5095 #elif GEN_GEN == 6
5096 static const struct brw_tracked_state *render_atoms[] =
5097 {
5098 &genX(sf_clip_viewport),
5099
5100 /* Command packets: */
5101
5102 &genX(cc_vp),
5103
5104 &gen6_urb,
5105 &genX(blend_state), /* must do before cc unit */
5106 &genX(color_calc_state), /* must do before cc unit */
5107 &genX(depth_stencil_state), /* must do before cc unit */
5108
5109 &genX(vs_push_constants), /* Before vs_state */
5110 &genX(gs_push_constants), /* Before gs_state */
5111 &genX(wm_push_constants), /* Before wm_state */
5112
5113 /* Surface state setup. Must come before the VS/WM unit. The binding
5114 * table upload must be last.
5115 */
5116 &brw_vs_pull_constants,
5117 &brw_vs_ubo_surfaces,
5118 &brw_gs_pull_constants,
5119 &brw_gs_ubo_surfaces,
5120 &brw_wm_pull_constants,
5121 &brw_wm_ubo_surfaces,
5122 &gen6_renderbuffer_surfaces,
5123 &brw_renderbuffer_read_surfaces,
5124 &brw_texture_surfaces,
5125 &gen6_sol_surface,
5126 &brw_vs_binding_table,
5127 &gen6_gs_binding_table,
5128 &brw_wm_binding_table,
5129
5130 &genX(fs_samplers),
5131 &genX(vs_samplers),
5132 &genX(gs_samplers),
5133 &gen6_sampler_state,
5134 &genX(multisample_state),
5135
5136 &genX(vs_state),
5137 &genX(gs_state),
5138 &genX(clip_state),
5139 &genX(sf_state),
5140 &genX(wm_state),
5141
5142 &genX(scissor_state),
5143
5144 &gen6_binding_table_pointers,
5145
5146 &brw_depthbuffer,
5147
5148 &genX(polygon_stipple),
5149 &genX(polygon_stipple_offset),
5150
5151 &genX(line_stipple),
5152
5153 &genX(drawing_rect),
5154
5155 &brw_indices, /* must come before brw_vertices */
5156 &genX(index_buffer),
5157 &genX(vertices),
5158 };
5159 #elif GEN_GEN == 7
5160 static const struct brw_tracked_state *render_atoms[] =
5161 {
5162 /* Command packets: */
5163
5164 &genX(cc_vp),
5165 &genX(sf_clip_viewport),
5166
5167 &gen7_l3_state,
5168 &gen7_push_constant_space,
5169 &gen7_urb,
5170 &genX(blend_state), /* must do before cc unit */
5171 &genX(color_calc_state), /* must do before cc unit */
5172 &genX(depth_stencil_state), /* must do before cc unit */
5173
5174 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5175 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5176 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5177 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5178 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5179
5180 &genX(vs_push_constants), /* Before vs_state */
5181 &genX(tcs_push_constants),
5182 &genX(tes_push_constants),
5183 &genX(gs_push_constants), /* Before gs_state */
5184 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5185
5186 /* Surface state setup. Must come before the VS/WM unit. The binding
5187 * table upload must be last.
5188 */
5189 &brw_vs_pull_constants,
5190 &brw_vs_ubo_surfaces,
5191 &brw_vs_abo_surfaces,
5192 &brw_tcs_pull_constants,
5193 &brw_tcs_ubo_surfaces,
5194 &brw_tcs_abo_surfaces,
5195 &brw_tes_pull_constants,
5196 &brw_tes_ubo_surfaces,
5197 &brw_tes_abo_surfaces,
5198 &brw_gs_pull_constants,
5199 &brw_gs_ubo_surfaces,
5200 &brw_gs_abo_surfaces,
5201 &brw_wm_pull_constants,
5202 &brw_wm_ubo_surfaces,
5203 &brw_wm_abo_surfaces,
5204 &gen6_renderbuffer_surfaces,
5205 &brw_renderbuffer_read_surfaces,
5206 &brw_texture_surfaces,
5207 &brw_vs_binding_table,
5208 &brw_tcs_binding_table,
5209 &brw_tes_binding_table,
5210 &brw_gs_binding_table,
5211 &brw_wm_binding_table,
5212
5213 &genX(fs_samplers),
5214 &genX(vs_samplers),
5215 &genX(tcs_samplers),
5216 &genX(tes_samplers),
5217 &genX(gs_samplers),
5218 &genX(multisample_state),
5219
5220 &genX(vs_state),
5221 &genX(hs_state),
5222 &genX(te_state),
5223 &genX(ds_state),
5224 &genX(gs_state),
5225 &genX(sol_state),
5226 &genX(clip_state),
5227 &genX(sbe_state),
5228 &genX(sf_state),
5229 &genX(wm_state),
5230 &genX(ps_state),
5231
5232 &genX(scissor_state),
5233
5234 &gen7_depthbuffer,
5235
5236 &genX(polygon_stipple),
5237 &genX(polygon_stipple_offset),
5238
5239 &genX(line_stipple),
5240
5241 &genX(drawing_rect),
5242
5243 &brw_indices, /* must come before brw_vertices */
5244 &genX(index_buffer),
5245 &genX(vertices),
5246
5247 #if GEN_IS_HASWELL
5248 &genX(cut_index),
5249 #endif
5250 };
5251 #elif GEN_GEN >= 8
5252 static const struct brw_tracked_state *render_atoms[] =
5253 {
5254 &genX(cc_vp),
5255 &genX(sf_clip_viewport),
5256
5257 &gen7_l3_state,
5258 &gen7_push_constant_space,
5259 &gen7_urb,
5260 &genX(blend_state),
5261 &genX(color_calc_state),
5262
5263 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5264 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5265 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5266 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5267 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5268
5269 &genX(vs_push_constants), /* Before vs_state */
5270 &genX(tcs_push_constants),
5271 &genX(tes_push_constants),
5272 &genX(gs_push_constants), /* Before gs_state */
5273 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5274
5275 /* Surface state setup. Must come before the VS/WM unit. The binding
5276 * table upload must be last.
5277 */
5278 &brw_vs_pull_constants,
5279 &brw_vs_ubo_surfaces,
5280 &brw_vs_abo_surfaces,
5281 &brw_tcs_pull_constants,
5282 &brw_tcs_ubo_surfaces,
5283 &brw_tcs_abo_surfaces,
5284 &brw_tes_pull_constants,
5285 &brw_tes_ubo_surfaces,
5286 &brw_tes_abo_surfaces,
5287 &brw_gs_pull_constants,
5288 &brw_gs_ubo_surfaces,
5289 &brw_gs_abo_surfaces,
5290 &brw_wm_pull_constants,
5291 &brw_wm_ubo_surfaces,
5292 &brw_wm_abo_surfaces,
5293 &gen6_renderbuffer_surfaces,
5294 &brw_renderbuffer_read_surfaces,
5295 &brw_texture_surfaces,
5296 &brw_vs_binding_table,
5297 &brw_tcs_binding_table,
5298 &brw_tes_binding_table,
5299 &brw_gs_binding_table,
5300 &brw_wm_binding_table,
5301
5302 &genX(fs_samplers),
5303 &genX(vs_samplers),
5304 &genX(tcs_samplers),
5305 &genX(tes_samplers),
5306 &genX(gs_samplers),
5307 &genX(multisample_state),
5308
5309 &genX(vs_state),
5310 &genX(hs_state),
5311 &genX(te_state),
5312 &genX(ds_state),
5313 &genX(gs_state),
5314 &genX(sol_state),
5315 &genX(clip_state),
5316 &genX(raster_state),
5317 &genX(sbe_state),
5318 &genX(sf_state),
5319 &genX(ps_blend),
5320 &genX(ps_extra),
5321 &genX(ps_state),
5322 &genX(depth_stencil_state),
5323 &genX(wm_state),
5324
5325 &genX(scissor_state),
5326
5327 &gen7_depthbuffer,
5328
5329 &genX(polygon_stipple),
5330 &genX(polygon_stipple_offset),
5331
5332 &genX(line_stipple),
5333
5334 &genX(drawing_rect),
5335
5336 &genX(vf_topology),
5337
5338 &brw_indices,
5339 &genX(index_buffer),
5340 &genX(vertices),
5341
5342 &genX(cut_index),
5343 &gen8_pma_fix,
5344 };
5345 #endif
5346
5347 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5348 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5349 render_atoms, ARRAY_SIZE(render_atoms));
5350
5351 #if GEN_GEN >= 7
5352 static const struct brw_tracked_state *compute_atoms[] =
5353 {
5354 &gen7_l3_state,
5355 &brw_cs_image_surfaces,
5356 &gen7_cs_push_constants,
5357 &brw_cs_pull_constants,
5358 &brw_cs_ubo_surfaces,
5359 &brw_cs_abo_surfaces,
5360 &brw_cs_texture_surfaces,
5361 &brw_cs_work_groups_surface,
5362 &genX(cs_samplers),
5363 &genX(cs_state),
5364 };
5365
5366 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5367 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5368 compute_atoms, ARRAY_SIZE(compute_atoms));
5369
5370 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5371 #endif
5372 }