i965: Prepare gs_state emitting code to include gen4-5.
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #if GEN_GEN == 6
38 #include "brw_defines.h"
39 #endif
40 #include "brw_draw.h"
41 #include "brw_multisample_state.h"
42 #include "brw_state.h"
43 #include "brw_wm.h"
44 #include "brw_util.h"
45
46 #include "intel_batchbuffer.h"
47 #include "intel_buffer_objects.h"
48 #include "intel_fbo.h"
49
50 #include "main/enums.h"
51 #include "main/fbobject.h"
52 #include "main/framebuffer.h"
53 #include "main/glformats.h"
54 #include "main/samplerobj.h"
55 #include "main/shaderapi.h"
56 #include "main/stencil.h"
57 #include "main/transformfeedback.h"
58 #include "main/varray.h"
59 #include "main/viewport.h"
60 #include "util/half_float.h"
61
62 UNUSED static void *
63 emit_dwords(struct brw_context *brw, unsigned n)
64 {
65 intel_batchbuffer_begin(brw, n, RENDER_RING);
66 uint32_t *map = brw->batch.map_next;
67 brw->batch.map_next += n;
68 intel_batchbuffer_advance(brw);
69 return map;
70 }
71
72 struct brw_address {
73 struct brw_bo *bo;
74 uint32_t read_domains;
75 uint32_t write_domain;
76 uint32_t offset;
77 };
78
79 static uint64_t
80 emit_reloc(struct brw_context *brw,
81 void *location, struct brw_address address, uint32_t delta)
82 {
83 uint32_t offset = (char *) location - (char *) brw->batch.map;
84
85 return brw_emit_reloc(&brw->batch, offset, address.bo,
86 address.offset + delta,
87 address.read_domains,
88 address.write_domain);
89 }
90
91 #define __gen_address_type struct brw_address
92 #define __gen_user_data struct brw_context
93
94 static uint64_t
95 __gen_combine_address(struct brw_context *brw, void *location,
96 struct brw_address address, uint32_t delta)
97 {
98 if (address.bo == NULL) {
99 return address.offset + delta;
100 } else {
101 return emit_reloc(brw, location, address, delta);
102 }
103 }
104
105 static inline struct brw_address
106 render_bo(struct brw_bo *bo, uint32_t offset)
107 {
108 return (struct brw_address) {
109 .bo = bo,
110 .offset = offset,
111 .read_domains = I915_GEM_DOMAIN_RENDER,
112 .write_domain = I915_GEM_DOMAIN_RENDER,
113 };
114 }
115
116 static inline struct brw_address
117 render_ro_bo(struct brw_bo *bo, uint32_t offset)
118 {
119 return (struct brw_address) {
120 .bo = bo,
121 .offset = offset,
122 .read_domains = I915_GEM_DOMAIN_RENDER,
123 .write_domain = 0,
124 };
125 }
126
127 static inline struct brw_address
128 instruction_bo(struct brw_bo *bo, uint32_t offset)
129 {
130 return (struct brw_address) {
131 .bo = bo,
132 .offset = offset,
133 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
134 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
135 };
136 }
137
138 static inline struct brw_address
139 instruction_ro_bo(struct brw_bo *bo, uint32_t offset)
140 {
141 return (struct brw_address) {
142 .bo = bo,
143 .offset = offset,
144 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
145 .write_domain = 0,
146 };
147 }
148
149 static inline struct brw_address
150 vertex_bo(struct brw_bo *bo, uint32_t offset)
151 {
152 return (struct brw_address) {
153 .bo = bo,
154 .offset = offset,
155 .read_domains = I915_GEM_DOMAIN_VERTEX,
156 .write_domain = 0,
157 };
158 }
159
160 #if GEN_GEN == 4
161 static inline struct brw_address
162 KSP(struct brw_context *brw, uint32_t offset)
163 {
164 return instruction_bo(brw->cache.bo, offset);
165 }
166
167 static inline struct brw_address
168 KSP_ro(struct brw_context *brw, uint32_t offset)
169 {
170 return instruction_ro_bo(brw->cache.bo, offset);
171 }
172 #else
173 static inline uint32_t
174 KSP(struct brw_context *brw, uint32_t offset)
175 {
176 return offset;
177 }
178
179 #define KSP_ro KSP
180
181 #endif
182
183 #include "genxml/genX_pack.h"
184
185 #define _brw_cmd_length(cmd) cmd ## _length
186 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
187 #define _brw_cmd_header(cmd) cmd ## _header
188 #define _brw_cmd_pack(cmd) cmd ## _pack
189
190 #define brw_batch_emit(brw, cmd, name) \
191 for (struct cmd name = { _brw_cmd_header(cmd) }, \
192 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
193 __builtin_expect(_dst != NULL, 1); \
194 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
195 _dst = NULL)
196
197 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
198 uint32_t *_dw = emit_dwords(brw, n); \
199 struct cmd template = { \
200 _brw_cmd_header(cmd), \
201 .DWordLength = n - _brw_cmd_length_bias(cmd), \
202 __VA_ARGS__ \
203 }; \
204 _brw_cmd_pack(cmd)(brw, _dw, &template); \
205 _dw + 1; /* Array starts at dw[1] */ \
206 })
207
208 #define brw_state_emit(brw, cmd, align, offset, name) \
209 for (struct cmd name = { 0, }, \
210 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
211 align, offset); \
212 __builtin_expect(_dst != NULL, 1); \
213 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
214 _dst = NULL)
215
216 /**
217 * Polygon stipple packet
218 */
219 static void
220 genX(upload_polygon_stipple)(struct brw_context *brw)
221 {
222 struct gl_context *ctx = &brw->ctx;
223
224 /* _NEW_POLYGON */
225 if (!ctx->Polygon.StippleFlag)
226 return;
227
228 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
229 /* Polygon stipple is provided in OpenGL order, i.e. bottom
230 * row first. If we're rendering to a window (i.e. the
231 * default frame buffer object, 0), then we need to invert
232 * it to match our pixel layout. But if we're rendering
233 * to a FBO (i.e. any named frame buffer object), we *don't*
234 * need to invert - we already match the layout.
235 */
236 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
237 for (unsigned i = 0; i < 32; i++)
238 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
239 } else {
240 for (unsigned i = 0; i < 32; i++)
241 poly.PatternRow[i] = ctx->PolygonStipple[i];
242 }
243 }
244 }
245
246 static const struct brw_tracked_state genX(polygon_stipple) = {
247 .dirty = {
248 .mesa = _NEW_POLYGON |
249 _NEW_POLYGONSTIPPLE,
250 .brw = BRW_NEW_CONTEXT,
251 },
252 .emit = genX(upload_polygon_stipple),
253 };
254
255 /**
256 * Polygon stipple offset packet
257 */
258 static void
259 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
260 {
261 struct gl_context *ctx = &brw->ctx;
262
263 /* _NEW_POLYGON */
264 if (!ctx->Polygon.StippleFlag)
265 return;
266
267 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
268 /* _NEW_BUFFERS
269 *
270 * If we're drawing to a system window we have to invert the Y axis
271 * in order to match the OpenGL pixel coordinate system, and our
272 * offset must be matched to the window position. If we're drawing
273 * to a user-created FBO then our native pixel coordinate system
274 * works just fine, and there's no window system to worry about.
275 */
276 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
277 poly.PolygonStippleYOffset =
278 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
279 }
280 }
281 }
282
283 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
284 .dirty = {
285 .mesa = _NEW_BUFFERS |
286 _NEW_POLYGON,
287 .brw = BRW_NEW_CONTEXT,
288 },
289 .emit = genX(upload_polygon_stipple_offset),
290 };
291
292 /**
293 * Line stipple packet
294 */
295 static void
296 genX(upload_line_stipple)(struct brw_context *brw)
297 {
298 struct gl_context *ctx = &brw->ctx;
299
300 if (!ctx->Line.StippleFlag)
301 return;
302
303 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
304 line.LineStipplePattern = ctx->Line.StipplePattern;
305
306 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
307 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
308 }
309 }
310
311 static const struct brw_tracked_state genX(line_stipple) = {
312 .dirty = {
313 .mesa = _NEW_LINE,
314 .brw = BRW_NEW_CONTEXT,
315 },
316 .emit = genX(upload_line_stipple),
317 };
318
319 /* Constant single cliprect for framebuffer object or DRI2 drawing */
320 static void
321 genX(upload_drawing_rect)(struct brw_context *brw)
322 {
323 struct gl_context *ctx = &brw->ctx;
324 const struct gl_framebuffer *fb = ctx->DrawBuffer;
325 const unsigned int fb_width = _mesa_geometric_width(fb);
326 const unsigned int fb_height = _mesa_geometric_height(fb);
327
328 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
329 rect.ClippedDrawingRectangleXMax = fb_width - 1;
330 rect.ClippedDrawingRectangleYMax = fb_height - 1;
331 }
332 }
333
334 static const struct brw_tracked_state genX(drawing_rect) = {
335 .dirty = {
336 .mesa = _NEW_BUFFERS,
337 .brw = BRW_NEW_BLORP |
338 BRW_NEW_CONTEXT,
339 },
340 .emit = genX(upload_drawing_rect),
341 };
342
343 static uint32_t *
344 genX(emit_vertex_buffer_state)(struct brw_context *brw,
345 uint32_t *dw,
346 unsigned buffer_nr,
347 struct brw_bo *bo,
348 unsigned start_offset,
349 unsigned end_offset,
350 unsigned stride,
351 unsigned step_rate)
352 {
353 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
354 .VertexBufferIndex = buffer_nr,
355 .BufferPitch = stride,
356 .BufferStartingAddress = vertex_bo(bo, start_offset),
357 #if GEN_GEN >= 8
358 .BufferSize = end_offset - start_offset,
359 #endif
360
361 #if GEN_GEN >= 7
362 .AddressModifyEnable = true,
363 #endif
364
365 #if GEN_GEN < 8
366 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
367 .InstanceDataStepRate = step_rate,
368 #if GEN_GEN >= 5
369 .EndAddress = vertex_bo(bo, end_offset - 1),
370 #endif
371 #endif
372
373 #if GEN_GEN == 10
374 .VertexBufferMOCS = CNL_MOCS_WB,
375 #elif GEN_GEN == 9
376 .VertexBufferMOCS = SKL_MOCS_WB,
377 #elif GEN_GEN == 8
378 .VertexBufferMOCS = BDW_MOCS_WB,
379 #elif GEN_GEN == 7
380 .VertexBufferMOCS = GEN7_MOCS_L3,
381 #endif
382 };
383
384 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
385 return dw + GENX(VERTEX_BUFFER_STATE_length);
386 }
387
388 UNUSED static bool
389 is_passthru_format(uint32_t format)
390 {
391 switch (format) {
392 case ISL_FORMAT_R64_PASSTHRU:
393 case ISL_FORMAT_R64G64_PASSTHRU:
394 case ISL_FORMAT_R64G64B64_PASSTHRU:
395 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
396 return true;
397 default:
398 return false;
399 }
400 }
401
402 UNUSED static int
403 uploads_needed(uint32_t format)
404 {
405 if (!is_passthru_format(format))
406 return 1;
407
408 switch (format) {
409 case ISL_FORMAT_R64_PASSTHRU:
410 case ISL_FORMAT_R64G64_PASSTHRU:
411 return 1;
412 case ISL_FORMAT_R64G64B64_PASSTHRU:
413 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
414 return 2;
415 default:
416 unreachable("not reached");
417 }
418 }
419
420 /*
421 * Returns the format that we are finally going to use when upload a vertex
422 * element. It will only change if we are using *64*PASSTHRU formats, as for
423 * gen < 8 they need to be splitted on two *32*FLOAT formats.
424 *
425 * @upload points in which upload we are. Valid values are [0,1]
426 */
427 static uint32_t
428 downsize_format_if_needed(uint32_t format,
429 int upload)
430 {
431 assert(upload == 0 || upload == 1);
432
433 if (!is_passthru_format(format))
434 return format;
435
436 switch (format) {
437 case ISL_FORMAT_R64_PASSTHRU:
438 return ISL_FORMAT_R32G32_FLOAT;
439 case ISL_FORMAT_R64G64_PASSTHRU:
440 return ISL_FORMAT_R32G32B32A32_FLOAT;
441 case ISL_FORMAT_R64G64B64_PASSTHRU:
442 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
443 : ISL_FORMAT_R32G32_FLOAT;
444 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
445 return ISL_FORMAT_R32G32B32A32_FLOAT;
446 default:
447 unreachable("not reached");
448 }
449 }
450
451 /*
452 * Returns the number of componentes associated with a format that is used on
453 * a 64 to 32 format split. See downsize_format()
454 */
455 static int
456 upload_format_size(uint32_t upload_format)
457 {
458 switch (upload_format) {
459 case ISL_FORMAT_R32G32_FLOAT:
460 return 2;
461 case ISL_FORMAT_R32G32B32A32_FLOAT:
462 return 4;
463 default:
464 unreachable("not reached");
465 }
466 }
467
468 static void
469 genX(emit_vertices)(struct brw_context *brw)
470 {
471 uint32_t *dw;
472
473 brw_prepare_vertices(brw);
474 brw_prepare_shader_draw_parameters(brw);
475
476 #if GEN_GEN < 6
477 brw_emit_query_begin(brw);
478 #endif
479
480 const struct brw_vs_prog_data *vs_prog_data =
481 brw_vs_prog_data(brw->vs.base.prog_data);
482
483 #if GEN_GEN >= 8
484 struct gl_context *ctx = &brw->ctx;
485 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
486 ctx->Polygon.BackMode != GL_FILL);
487
488 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
489 unsigned vue = brw->vb.nr_enabled;
490
491 /* The element for the edge flags must always be last, so we have to
492 * insert the SGVS before it in that case.
493 */
494 if (uses_edge_flag) {
495 assert(vue > 0);
496 vue--;
497 }
498
499 WARN_ONCE(vue >= 33,
500 "Trying to insert VID/IID past 33rd vertex element, "
501 "need to reorder the vertex attrbutes.");
502
503 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
504 if (vs_prog_data->uses_vertexid) {
505 vfs.VertexIDEnable = true;
506 vfs.VertexIDComponentNumber = 2;
507 vfs.VertexIDElementOffset = vue;
508 }
509
510 if (vs_prog_data->uses_instanceid) {
511 vfs.InstanceIDEnable = true;
512 vfs.InstanceIDComponentNumber = 3;
513 vfs.InstanceIDElementOffset = vue;
514 }
515 }
516
517 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
518 vfi.InstancingEnable = true;
519 vfi.VertexElementIndex = vue;
520 }
521 } else {
522 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
523 }
524
525 /* Normally we don't need an element for the SGVS attribute because the
526 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
527 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
528 * we're using draw parameters then we need an element for the those
529 * values. Additionally if there is an edge flag element then the SGVS
530 * can't be inserted past that so we need a dummy element to ensure that
531 * the edge flag is the last one.
532 */
533 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
534 vs_prog_data->uses_baseinstance ||
535 ((vs_prog_data->uses_instanceid ||
536 vs_prog_data->uses_vertexid)
537 && uses_edge_flag));
538 #else
539 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
540 vs_prog_data->uses_baseinstance ||
541 vs_prog_data->uses_instanceid ||
542 vs_prog_data->uses_vertexid);
543 #endif
544 unsigned nr_elements =
545 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
546
547 #if GEN_GEN < 8
548 /* If any of the formats of vb.enabled needs more that one upload, we need
549 * to add it to nr_elements
550 */
551 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
552 struct brw_vertex_element *input = brw->vb.enabled[i];
553 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
554
555 if (uploads_needed(format) > 1)
556 nr_elements++;
557 }
558 #endif
559
560 /* If the VS doesn't read any inputs (calculating vertex position from
561 * a state variable for some reason, for example), emit a single pad
562 * VERTEX_ELEMENT struct and bail.
563 *
564 * The stale VB state stays in place, but they don't do anything unless
565 * a VE loads from them.
566 */
567 if (nr_elements == 0) {
568 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
569 1 + GENX(VERTEX_ELEMENT_STATE_length));
570 struct GENX(VERTEX_ELEMENT_STATE) elem = {
571 .Valid = true,
572 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
573 .Component0Control = VFCOMP_STORE_0,
574 .Component1Control = VFCOMP_STORE_0,
575 .Component2Control = VFCOMP_STORE_0,
576 .Component3Control = VFCOMP_STORE_1_FP,
577 };
578 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
579 return;
580 }
581
582 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
583 const bool uses_draw_params =
584 vs_prog_data->uses_basevertex ||
585 vs_prog_data->uses_baseinstance;
586 const unsigned nr_buffers = brw->vb.nr_buffers +
587 uses_draw_params + vs_prog_data->uses_drawid;
588
589 if (nr_buffers) {
590 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
591
592 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
593 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
594
595 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
596 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
597 /* Prior to Haswell and Bay Trail we have to use 4-component formats
598 * to fake 3-component ones. In particular, we do this for
599 * half-float and 8 and 16-bit integer formats. This means that the
600 * vertex element may poke over the end of the buffer by 2 bytes.
601 */
602 const unsigned padding =
603 (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
604 const unsigned end = buffer->offset + buffer->size + padding;
605 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
606 buffer->offset,
607 end,
608 buffer->stride,
609 buffer->step_rate);
610 }
611
612 if (uses_draw_params) {
613 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
614 brw->draw.draw_params_bo,
615 brw->draw.draw_params_offset,
616 brw->draw.draw_params_bo->size,
617 0 /* stride */,
618 0 /* step rate */);
619 }
620
621 if (vs_prog_data->uses_drawid) {
622 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
623 brw->draw.draw_id_bo,
624 brw->draw.draw_id_offset,
625 brw->draw.draw_id_bo->size,
626 0 /* stride */,
627 0 /* step rate */);
628 }
629 }
630
631 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
632 * presumably for VertexID/InstanceID.
633 */
634 #if GEN_GEN >= 6
635 assert(nr_elements <= 34);
636 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
637 #else
638 assert(nr_elements <= 18);
639 #endif
640
641 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
642 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
643 unsigned i;
644 for (i = 0; i < brw->vb.nr_enabled; i++) {
645 const struct brw_vertex_element *input = brw->vb.enabled[i];
646 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
647 uint32_t comp0 = VFCOMP_STORE_SRC;
648 uint32_t comp1 = VFCOMP_STORE_SRC;
649 uint32_t comp2 = VFCOMP_STORE_SRC;
650 uint32_t comp3 = VFCOMP_STORE_SRC;
651 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
652
653 #if GEN_GEN >= 8
654 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
655 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
656 * element which has edge flag enabled."
657 */
658 assert(!(is_passthru_format(format) && uses_edge_flag));
659 #endif
660
661 /* The gen4 driver expects edgeflag to come in as a float, and passes
662 * that float on to the tests in the clipper. Mesa's current vertex
663 * attribute value for EdgeFlag is stored as a float, which works out.
664 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
665 * integer ubyte. Just rewrite that to convert to a float.
666 *
667 * Gen6+ passes edgeflag as sideband along with the vertex, instead
668 * of in the VUE. We have to upload it sideband as the last vertex
669 * element according to the B-Spec.
670 */
671 #if GEN_GEN >= 6
672 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
673 gen6_edgeflag_input = input;
674 continue;
675 }
676 #endif
677
678 for (unsigned c = 0; c < num_uploads; c++) {
679 const uint32_t upload_format = GEN_GEN >= 8 ? format :
680 downsize_format_if_needed(format, c);
681 /* If we need more that one upload, the offset stride would be 128
682 * bits (16 bytes), as for previous uploads we are using the full
683 * entry. */
684 const unsigned offset = input->offset + c * 16;
685
686 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
687 upload_format_size(upload_format) : input->glarray->Size;
688
689 switch (size) {
690 case 0: comp0 = VFCOMP_STORE_0;
691 case 1: comp1 = VFCOMP_STORE_0;
692 case 2: comp2 = VFCOMP_STORE_0;
693 case 3:
694 if (GEN_GEN >= 8 && input->glarray->Doubles) {
695 comp3 = VFCOMP_STORE_0;
696 } else if (input->glarray->Integer) {
697 comp3 = VFCOMP_STORE_1_INT;
698 } else {
699 comp3 = VFCOMP_STORE_1_FP;
700 }
701
702 break;
703 }
704
705 #if GEN_GEN >= 8
706 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
707 *
708 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
709 * formats, 64-bit components are stored in the URB without any
710 * conversion. In this case, vertex elements must be written as 128
711 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
712 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
713 * component into the URB, Component 1 must be specified as
714 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
715 * order to output a 128-bit vertex element, or Components 1-3 must
716 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
717 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
718 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
719 * vertex element."
720 */
721 if (input->glarray->Doubles && !input->is_dual_slot) {
722 /* Store vertex elements which correspond to double and dvec2 vertex
723 * shader inputs as 128-bit vertex elements, instead of 256-bits.
724 */
725 comp2 = VFCOMP_NOSTORE;
726 comp3 = VFCOMP_NOSTORE;
727 }
728 #endif
729
730 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
731 .VertexBufferIndex = input->buffer,
732 .Valid = true,
733 .SourceElementFormat = upload_format,
734 .SourceElementOffset = offset,
735 .Component0Control = comp0,
736 .Component1Control = comp1,
737 .Component2Control = comp2,
738 .Component3Control = comp3,
739 #if GEN_GEN < 5
740 .DestinationElementOffset = i * 4,
741 #endif
742 };
743
744 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
745 dw += GENX(VERTEX_ELEMENT_STATE_length);
746 }
747 }
748
749 if (needs_sgvs_element) {
750 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
751 .Valid = true,
752 .Component0Control = VFCOMP_STORE_0,
753 .Component1Control = VFCOMP_STORE_0,
754 .Component2Control = VFCOMP_STORE_0,
755 .Component3Control = VFCOMP_STORE_0,
756 #if GEN_GEN < 5
757 .DestinationElementOffset = i * 4,
758 #endif
759 };
760
761 #if GEN_GEN >= 8
762 if (vs_prog_data->uses_basevertex ||
763 vs_prog_data->uses_baseinstance) {
764 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
765 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
766 elem_state.Component0Control = VFCOMP_STORE_SRC;
767 elem_state.Component1Control = VFCOMP_STORE_SRC;
768 }
769 #else
770 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
771 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
772 if (vs_prog_data->uses_basevertex)
773 elem_state.Component0Control = VFCOMP_STORE_SRC;
774
775 if (vs_prog_data->uses_baseinstance)
776 elem_state.Component1Control = VFCOMP_STORE_SRC;
777
778 if (vs_prog_data->uses_vertexid)
779 elem_state.Component2Control = VFCOMP_STORE_VID;
780
781 if (vs_prog_data->uses_instanceid)
782 elem_state.Component3Control = VFCOMP_STORE_IID;
783 #endif
784
785 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
786 dw += GENX(VERTEX_ELEMENT_STATE_length);
787 }
788
789 if (vs_prog_data->uses_drawid) {
790 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
791 .Valid = true,
792 .VertexBufferIndex = brw->vb.nr_buffers + 1,
793 .SourceElementFormat = ISL_FORMAT_R32_UINT,
794 .Component0Control = VFCOMP_STORE_SRC,
795 .Component1Control = VFCOMP_STORE_0,
796 .Component2Control = VFCOMP_STORE_0,
797 .Component3Control = VFCOMP_STORE_0,
798 #if GEN_GEN < 5
799 .DestinationElementOffset = i * 4,
800 #endif
801 };
802
803 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
804 dw += GENX(VERTEX_ELEMENT_STATE_length);
805 }
806
807 #if GEN_GEN >= 6
808 if (gen6_edgeflag_input) {
809 const uint32_t format =
810 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
811
812 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
813 .Valid = true,
814 .VertexBufferIndex = gen6_edgeflag_input->buffer,
815 .EdgeFlagEnable = true,
816 .SourceElementFormat = format,
817 .SourceElementOffset = gen6_edgeflag_input->offset,
818 .Component0Control = VFCOMP_STORE_SRC,
819 .Component1Control = VFCOMP_STORE_0,
820 .Component2Control = VFCOMP_STORE_0,
821 .Component3Control = VFCOMP_STORE_0,
822 };
823
824 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
825 dw += GENX(VERTEX_ELEMENT_STATE_length);
826 }
827 #endif
828
829 #if GEN_GEN >= 8
830 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
831 const struct brw_vertex_element *input = brw->vb.enabled[i];
832 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
833 unsigned element_index;
834
835 /* The edge flag element is reordered to be the last one in the code
836 * above so we need to compensate for that in the element indices used
837 * below.
838 */
839 if (input == gen6_edgeflag_input)
840 element_index = nr_elements - 1;
841 else
842 element_index = j++;
843
844 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
845 vfi.VertexElementIndex = element_index;
846 vfi.InstancingEnable = buffer->step_rate != 0;
847 vfi.InstanceDataStepRate = buffer->step_rate;
848 }
849 }
850
851 if (vs_prog_data->uses_drawid) {
852 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
853
854 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
855 vfi.VertexElementIndex = element;
856 }
857 }
858 #endif
859 }
860
861 static const struct brw_tracked_state genX(vertices) = {
862 .dirty = {
863 .mesa = _NEW_POLYGON,
864 .brw = BRW_NEW_BATCH |
865 BRW_NEW_BLORP |
866 BRW_NEW_VERTICES |
867 BRW_NEW_VS_PROG_DATA,
868 },
869 .emit = genX(emit_vertices),
870 };
871
872 static void
873 genX(emit_index_buffer)(struct brw_context *brw)
874 {
875 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
876
877 if (index_buffer == NULL)
878 return;
879
880 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
881 #if GEN_GEN < 8 && !GEN_IS_HASWELL
882 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
883 #endif
884 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
885 ib.BufferStartingAddress = vertex_bo(brw->ib.bo, 0);
886 #if GEN_GEN >= 8
887 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
888 ib.BufferSize = brw->ib.size;
889 #else
890 ib.BufferEndingAddress = vertex_bo(brw->ib.bo, brw->ib.size - 1);
891 #endif
892 }
893 }
894
895 static const struct brw_tracked_state genX(index_buffer) = {
896 .dirty = {
897 .mesa = 0,
898 .brw = BRW_NEW_BATCH |
899 BRW_NEW_BLORP |
900 BRW_NEW_INDEX_BUFFER,
901 },
902 .emit = genX(emit_index_buffer),
903 };
904
905 #if GEN_IS_HASWELL || GEN_GEN >= 8
906 static void
907 genX(upload_cut_index)(struct brw_context *brw)
908 {
909 const struct gl_context *ctx = &brw->ctx;
910
911 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
912 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
913 vf.IndexedDrawCutIndexEnable = true;
914 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
915 }
916 }
917 }
918
919 const struct brw_tracked_state genX(cut_index) = {
920 .dirty = {
921 .mesa = _NEW_TRANSFORM,
922 .brw = BRW_NEW_INDEX_BUFFER,
923 },
924 .emit = genX(upload_cut_index),
925 };
926 #endif
927
928 #if GEN_GEN >= 6
929 /**
930 * Determine the appropriate attribute override value to store into the
931 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
932 * override value contains two pieces of information: the location of the
933 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
934 * flag indicating whether to "swizzle" the attribute based on the direction
935 * the triangle is facing.
936 *
937 * If an attribute is "swizzled", then the given VUE location is used for
938 * front-facing triangles, and the VUE location that immediately follows is
939 * used for back-facing triangles. We use this to implement the mapping from
940 * gl_FrontColor/gl_BackColor to gl_Color.
941 *
942 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
943 * being instructed to begin reading attribute data. It can be set to a
944 * nonzero value to prevent the SF unit from wasting time reading elements of
945 * the VUE that are not needed by the fragment shader. It is measured in
946 * 256-bit increments.
947 */
948 static void
949 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
950 const struct brw_vue_map *vue_map,
951 int urb_entry_read_offset, int fs_attr,
952 bool two_side_color, uint32_t *max_source_attr)
953 {
954 /* Find the VUE slot for this attribute. */
955 int slot = vue_map->varying_to_slot[fs_attr];
956
957 /* Viewport and Layer are stored in the VUE header. We need to override
958 * them to zero if earlier stages didn't write them, as GL requires that
959 * they read back as zero when not explicitly set.
960 */
961 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
962 attr->ComponentOverrideX = true;
963 attr->ComponentOverrideW = true;
964 attr->ConstantSource = CONST_0000;
965
966 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
967 attr->ComponentOverrideY = true;
968 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
969 attr->ComponentOverrideZ = true;
970
971 return;
972 }
973
974 /* If there was only a back color written but not front, use back
975 * as the color instead of undefined
976 */
977 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
978 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
979 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
980 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
981
982 if (slot == -1) {
983 /* This attribute does not exist in the VUE--that means that the vertex
984 * shader did not write to it. This means that either:
985 *
986 * (a) This attribute is a texture coordinate, and it is going to be
987 * replaced with point coordinates (as a consequence of a call to
988 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
989 * hardware will ignore whatever attribute override we supply.
990 *
991 * (b) This attribute is read by the fragment shader but not written by
992 * the vertex shader, so its value is undefined. Therefore the
993 * attribute override we supply doesn't matter.
994 *
995 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
996 * previous shader stage.
997 *
998 * Note that we don't have to worry about the cases where the attribute
999 * is gl_PointCoord or is undergoing point sprite coordinate
1000 * replacement, because in those cases, this function isn't called.
1001 *
1002 * In case (c), we need to program the attribute overrides so that the
1003 * primitive ID will be stored in this slot. In every other case, the
1004 * attribute override we supply doesn't matter. So just go ahead and
1005 * program primitive ID in every case.
1006 */
1007 attr->ComponentOverrideW = true;
1008 attr->ComponentOverrideX = true;
1009 attr->ComponentOverrideY = true;
1010 attr->ComponentOverrideZ = true;
1011 attr->ConstantSource = PRIM_ID;
1012 return;
1013 }
1014
1015 /* Compute the location of the attribute relative to urb_entry_read_offset.
1016 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1017 * it counts for two 128-bit VUE slots.
1018 */
1019 int source_attr = slot - 2 * urb_entry_read_offset;
1020 assert(source_attr >= 0 && source_attr < 32);
1021
1022 /* If we are doing two-sided color, and the VUE slot following this one
1023 * represents a back-facing color, then we need to instruct the SF unit to
1024 * do back-facing swizzling.
1025 */
1026 bool swizzling = two_side_color &&
1027 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1028 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1029 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1030 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1031
1032 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1033 if (*max_source_attr < source_attr + swizzling)
1034 *max_source_attr = source_attr + swizzling;
1035
1036 attr->SourceAttribute = source_attr;
1037 if (swizzling)
1038 attr->SwizzleSelect = INPUTATTR_FACING;
1039 }
1040
1041
1042 static void
1043 genX(calculate_attr_overrides)(const struct brw_context *brw,
1044 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1045 uint32_t *point_sprite_enables,
1046 uint32_t *urb_entry_read_length,
1047 uint32_t *urb_entry_read_offset)
1048 {
1049 const struct gl_context *ctx = &brw->ctx;
1050
1051 /* _NEW_POINT */
1052 const struct gl_point_attrib *point = &ctx->Point;
1053
1054 /* BRW_NEW_FS_PROG_DATA */
1055 const struct brw_wm_prog_data *wm_prog_data =
1056 brw_wm_prog_data(brw->wm.base.prog_data);
1057 uint32_t max_source_attr = 0;
1058
1059 *point_sprite_enables = 0;
1060
1061 /* BRW_NEW_FRAGMENT_PROGRAM
1062 *
1063 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
1064 * the full vertex header. Otherwise, we can program the SF to start
1065 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
1066 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1067 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
1068 */
1069
1070 bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
1071 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1072
1073 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
1074
1075 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1076 * description of dw10 Point Sprite Texture Coordinate Enable:
1077 *
1078 * "This field must be programmed to zero when non-point primitives
1079 * are rendered."
1080 *
1081 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1082 * must be programmed to zero when rendering non-point primitives, but
1083 * the IvyBridge PRM does, and if we don't, we get garbage.
1084 *
1085 * This is not required on Haswell, as the hardware ignores this state
1086 * when drawing non-points -- although we do still need to be careful to
1087 * correctly set the attr overrides.
1088 *
1089 * _NEW_POLYGON
1090 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1091 */
1092 bool drawing_points = brw_is_drawing_points(brw);
1093
1094 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1095 int input_index = wm_prog_data->urb_setup[attr];
1096
1097 if (input_index < 0)
1098 continue;
1099
1100 /* _NEW_POINT */
1101 bool point_sprite = false;
1102 if (drawing_points) {
1103 if (point->PointSprite &&
1104 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1105 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1106 point_sprite = true;
1107 }
1108
1109 if (attr == VARYING_SLOT_PNTC)
1110 point_sprite = true;
1111
1112 if (point_sprite)
1113 *point_sprite_enables |= (1 << input_index);
1114 }
1115
1116 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1117 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1118
1119 if (!point_sprite) {
1120 genX(get_attr_override)(&attribute,
1121 &brw->vue_map_geom_out,
1122 *urb_entry_read_offset, attr,
1123 _mesa_vertex_program_two_side_enabled(ctx),
1124 &max_source_attr);
1125 }
1126
1127 /* The hardware can only do the overrides on 16 overrides at a
1128 * time, and the other up to 16 have to be lined up so that the
1129 * input index = the output index. We'll need to do some
1130 * tweaking to make sure that's the case.
1131 */
1132 if (input_index < 16)
1133 attr_overrides[input_index] = attribute;
1134 else
1135 assert(attribute.SourceAttribute == input_index);
1136 }
1137
1138 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1139 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1140 *
1141 * "This field should be set to the minimum length required to read the
1142 * maximum source attribute. The maximum source attribute is indicated
1143 * by the maximum value of the enabled Attribute # Source Attribute if
1144 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1145 * enable is not set.
1146 * read_length = ceiling((max_source_attr + 1) / 2)
1147 *
1148 * [errata] Corruption/Hang possible if length programmed larger than
1149 * recommended"
1150 *
1151 * Similar text exists for Ivy Bridge.
1152 */
1153 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1154 }
1155 #endif
1156
1157 /* ---------------------------------------------------------------------- */
1158
1159 #if GEN_GEN >= 8
1160 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1161 #elif GEN_GEN >= 6
1162 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1163 #else
1164 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1165 #endif
1166
1167 static inline void
1168 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1169 {
1170 struct gl_context *ctx = &brw->ctx;
1171
1172 /* _NEW_BUFFERS */
1173 struct intel_renderbuffer *depth_irb =
1174 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1175
1176 /* _NEW_DEPTH */
1177 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1178
1179 /* _NEW_STENCIL */
1180 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1181 const int b = stencil->_BackFace;
1182
1183 if (depth->Test && depth_irb) {
1184 ds->DepthTestEnable = true;
1185 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1186 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1187 }
1188
1189 if (brw->stencil_enabled) {
1190 ds->StencilTestEnable = true;
1191 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1192 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1193
1194 ds->StencilTestFunction =
1195 intel_translate_compare_func(stencil->Function[0]);
1196 ds->StencilFailOp =
1197 intel_translate_stencil_op(stencil->FailFunc[0]);
1198 ds->StencilPassDepthPassOp =
1199 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1200 ds->StencilPassDepthFailOp =
1201 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1202
1203 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1204
1205 if (brw->stencil_two_sided) {
1206 ds->DoubleSidedStencilEnable = true;
1207 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1208 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1209
1210 ds->BackfaceStencilTestFunction =
1211 intel_translate_compare_func(stencil->Function[b]);
1212 ds->BackfaceStencilFailOp =
1213 intel_translate_stencil_op(stencil->FailFunc[b]);
1214 ds->BackfaceStencilPassDepthPassOp =
1215 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1216 ds->BackfaceStencilPassDepthFailOp =
1217 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1218 }
1219
1220 #if GEN_GEN <= 5 || GEN_GEN >= 9
1221 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1222 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1223 #endif
1224 }
1225 }
1226
1227 #if GEN_GEN >= 6
1228 static void
1229 genX(upload_depth_stencil_state)(struct brw_context *brw)
1230 {
1231 #if GEN_GEN >= 8
1232 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1233 set_depth_stencil_bits(brw, &wmds);
1234 }
1235 #else
1236 uint32_t ds_offset;
1237 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1238 set_depth_stencil_bits(brw, &ds);
1239 }
1240
1241 /* Now upload a pointer to the indirect state */
1242 #if GEN_GEN == 6
1243 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1244 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1245 ptr.DEPTH_STENCIL_STATEChange = true;
1246 }
1247 #else
1248 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1249 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1250 }
1251 #endif
1252 #endif
1253 }
1254
1255 static const struct brw_tracked_state genX(depth_stencil_state) = {
1256 .dirty = {
1257 .mesa = _NEW_BUFFERS |
1258 _NEW_DEPTH |
1259 _NEW_STENCIL,
1260 .brw = BRW_NEW_BLORP |
1261 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1262 : BRW_NEW_BATCH |
1263 BRW_NEW_STATE_BASE_ADDRESS),
1264 },
1265 .emit = genX(upload_depth_stencil_state),
1266 };
1267 #endif
1268
1269 /* ---------------------------------------------------------------------- */
1270
1271 #if GEN_GEN >= 6
1272 static void
1273 genX(upload_clip_state)(struct brw_context *brw)
1274 {
1275 struct gl_context *ctx = &brw->ctx;
1276
1277 /* _NEW_BUFFERS */
1278 struct gl_framebuffer *fb = ctx->DrawBuffer;
1279
1280 /* BRW_NEW_FS_PROG_DATA */
1281 struct brw_wm_prog_data *wm_prog_data =
1282 brw_wm_prog_data(brw->wm.base.prog_data);
1283
1284 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1285 clip.StatisticsEnable = !brw->meta_in_progress;
1286
1287 if (wm_prog_data->barycentric_interp_modes &
1288 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1289 clip.NonPerspectiveBarycentricEnable = true;
1290
1291 #if GEN_GEN >= 7
1292 clip.EarlyCullEnable = true;
1293 #endif
1294
1295 #if GEN_GEN == 7
1296 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1297
1298 if (ctx->Polygon.CullFlag) {
1299 switch (ctx->Polygon.CullFaceMode) {
1300 case GL_FRONT:
1301 clip.CullMode = CULLMODE_FRONT;
1302 break;
1303 case GL_BACK:
1304 clip.CullMode = CULLMODE_BACK;
1305 break;
1306 case GL_FRONT_AND_BACK:
1307 clip.CullMode = CULLMODE_BOTH;
1308 break;
1309 default:
1310 unreachable("Should not get here: invalid CullFlag");
1311 }
1312 } else {
1313 clip.CullMode = CULLMODE_NONE;
1314 }
1315 #endif
1316
1317 #if GEN_GEN < 8
1318 clip.UserClipDistanceCullTestEnableBitmask =
1319 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1320
1321 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1322 #endif
1323
1324 /* _NEW_LIGHT */
1325 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1326 clip.TriangleStripListProvokingVertexSelect = 0;
1327 clip.TriangleFanProvokingVertexSelect = 1;
1328 clip.LineStripListProvokingVertexSelect = 0;
1329 } else {
1330 clip.TriangleStripListProvokingVertexSelect = 2;
1331 clip.TriangleFanProvokingVertexSelect = 2;
1332 clip.LineStripListProvokingVertexSelect = 1;
1333 }
1334
1335 /* _NEW_TRANSFORM */
1336 clip.UserClipDistanceClipTestEnableBitmask =
1337 ctx->Transform.ClipPlanesEnabled;
1338
1339 #if GEN_GEN >= 8
1340 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1341 #endif
1342
1343 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1344 clip.APIMode = APIMODE_D3D;
1345 else
1346 clip.APIMode = APIMODE_OGL;
1347
1348 clip.GuardbandClipTestEnable = true;
1349
1350 /* BRW_NEW_VIEWPORT_COUNT */
1351 const unsigned viewport_count = brw->clip.viewport_count;
1352
1353 if (ctx->RasterDiscard) {
1354 clip.ClipMode = CLIPMODE_REJECT_ALL;
1355 #if GEN_GEN == 6
1356 perf_debug("Rasterizer discard is currently implemented via the "
1357 "clipper; having the GS not write primitives would "
1358 "likely be faster.\n");
1359 #endif
1360 } else {
1361 clip.ClipMode = CLIPMODE_NORMAL;
1362 }
1363
1364 clip.ClipEnable = true;
1365
1366 /* _NEW_POLYGON,
1367 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1368 */
1369 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1370 clip.ViewportXYClipTestEnable = true;
1371
1372 clip.MinimumPointWidth = 0.125;
1373 clip.MaximumPointWidth = 255.875;
1374 clip.MaximumVPIndex = viewport_count - 1;
1375 if (_mesa_geometric_layers(fb) == 0)
1376 clip.ForceZeroRTAIndexEnable = true;
1377 }
1378 }
1379
1380 static const struct brw_tracked_state genX(clip_state) = {
1381 .dirty = {
1382 .mesa = _NEW_BUFFERS |
1383 _NEW_LIGHT |
1384 _NEW_POLYGON |
1385 _NEW_TRANSFORM,
1386 .brw = BRW_NEW_BLORP |
1387 BRW_NEW_CONTEXT |
1388 BRW_NEW_FS_PROG_DATA |
1389 BRW_NEW_GS_PROG_DATA |
1390 BRW_NEW_VS_PROG_DATA |
1391 BRW_NEW_META_IN_PROGRESS |
1392 BRW_NEW_PRIMITIVE |
1393 BRW_NEW_RASTERIZER_DISCARD |
1394 BRW_NEW_TES_PROG_DATA |
1395 BRW_NEW_VIEWPORT_COUNT,
1396 },
1397 .emit = genX(upload_clip_state),
1398 };
1399 #endif
1400
1401 /* ---------------------------------------------------------------------- */
1402
1403 static void
1404 genX(upload_sf)(struct brw_context *brw)
1405 {
1406 struct gl_context *ctx = &brw->ctx;
1407 float point_size;
1408
1409 #if GEN_GEN <= 7
1410 /* _NEW_BUFFERS */
1411 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1412 UNUSED const bool multisampled_fbo =
1413 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1414 #endif
1415
1416 #if GEN_GEN < 6
1417 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1418
1419 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1420
1421 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1422 sf.KernelStartPointer = KSP_ro(brw, brw->sf.prog_offset);
1423 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1424 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1425 sf.DispatchGRFStartRegisterForURBData = 3;
1426 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1427 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1428 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1429 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1430
1431 /* STATE_PREFETCH command description describes this state as being
1432 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1433 * domain.
1434 */
1435 sf.SetupViewportStateOffset =
1436 instruction_ro_bo(brw->batch.bo, brw->sf.vp_offset);
1437
1438 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1439
1440 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1441 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1442
1443 sf.MaximumNumberofThreads =
1444 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1445
1446 sf.SpritePointEnable = ctx->Point.PointSprite;
1447
1448 sf.DestinationOriginHorizontalBias = 0.5;
1449 sf.DestinationOriginVerticalBias = 0.5;
1450 #else
1451 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1452 sf.StatisticsEnable = true;
1453 #endif
1454 sf.ViewportTransformEnable = true;
1455
1456 #if GEN_GEN == 7
1457 /* _NEW_BUFFERS */
1458 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1459 #endif
1460
1461 #if GEN_GEN <= 7
1462 /* _NEW_POLYGON */
1463 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1464 #if GEN_GEN >= 6
1465 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1466 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1467 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1468
1469 switch (ctx->Polygon.FrontMode) {
1470 case GL_FILL:
1471 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1472 break;
1473 case GL_LINE:
1474 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1475 break;
1476 case GL_POINT:
1477 sf.FrontFaceFillMode = FILL_MODE_POINT;
1478 break;
1479 default:
1480 unreachable("not reached");
1481 }
1482
1483 switch (ctx->Polygon.BackMode) {
1484 case GL_FILL:
1485 sf.BackFaceFillMode = FILL_MODE_SOLID;
1486 break;
1487 case GL_LINE:
1488 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1489 break;
1490 case GL_POINT:
1491 sf.BackFaceFillMode = FILL_MODE_POINT;
1492 break;
1493 default:
1494 unreachable("not reached");
1495 }
1496
1497 if (multisampled_fbo && ctx->Multisample.Enabled)
1498 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1499
1500 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1501 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1502 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1503 #endif
1504
1505 sf.ScissorRectangleEnable = true;
1506
1507 if (ctx->Polygon.CullFlag) {
1508 switch (ctx->Polygon.CullFaceMode) {
1509 case GL_FRONT:
1510 sf.CullMode = CULLMODE_FRONT;
1511 break;
1512 case GL_BACK:
1513 sf.CullMode = CULLMODE_BACK;
1514 break;
1515 case GL_FRONT_AND_BACK:
1516 sf.CullMode = CULLMODE_BOTH;
1517 break;
1518 default:
1519 unreachable("not reached");
1520 }
1521 } else {
1522 sf.CullMode = CULLMODE_NONE;
1523 }
1524
1525 #if GEN_IS_HASWELL
1526 sf.LineStippleEnable = ctx->Line.StippleFlag;
1527 #endif
1528
1529 #endif
1530
1531 /* _NEW_LINE */
1532 #if GEN_GEN == 8
1533 if (brw->is_cherryview)
1534 sf.CHVLineWidth = brw_get_line_width(brw);
1535 else
1536 sf.LineWidth = brw_get_line_width(brw);
1537 #else
1538 sf.LineWidth = brw_get_line_width(brw);
1539 #endif
1540
1541 if (ctx->Line.SmoothFlag) {
1542 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1543 #if GEN_GEN <= 7
1544 sf.AntiAliasingEnable = true;
1545 #endif
1546 }
1547
1548 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1549 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1550 /* Clamp to the hardware limits */
1551 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1552
1553 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1554 if (use_state_point_size(brw))
1555 sf.PointWidthSource = State;
1556
1557 #if GEN_GEN >= 8
1558 /* _NEW_POINT | _NEW_MULTISAMPLE */
1559 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1560 !ctx->Point.PointSprite)
1561 sf.SmoothPointEnable = true;
1562 #endif
1563
1564 #if GEN_IS_G4X || GEN_GEN >= 5
1565 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1566 #endif
1567
1568 /* _NEW_LIGHT */
1569 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1570 sf.TriangleStripListProvokingVertexSelect = 2;
1571 sf.TriangleFanProvokingVertexSelect = 2;
1572 sf.LineStripListProvokingVertexSelect = 1;
1573 } else {
1574 sf.TriangleFanProvokingVertexSelect = 1;
1575 }
1576
1577 #if GEN_GEN == 6
1578 /* BRW_NEW_FS_PROG_DATA */
1579 const struct brw_wm_prog_data *wm_prog_data =
1580 brw_wm_prog_data(brw->wm.base.prog_data);
1581
1582 sf.AttributeSwizzleEnable = true;
1583 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1584
1585 /*
1586 * Window coordinates in an FBO are inverted, which means point
1587 * sprite origin must be inverted, too.
1588 */
1589 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1590 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1591 } else {
1592 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1593 }
1594
1595 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1596 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1597 */
1598 uint32_t urb_entry_read_length;
1599 uint32_t urb_entry_read_offset;
1600 uint32_t point_sprite_enables;
1601 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1602 &urb_entry_read_length,
1603 &urb_entry_read_offset);
1604 sf.VertexURBEntryReadLength = urb_entry_read_length;
1605 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1606 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1607 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1608 #endif
1609 }
1610 }
1611
1612 static const struct brw_tracked_state genX(sf_state) = {
1613 .dirty = {
1614 .mesa = _NEW_LIGHT |
1615 _NEW_LINE |
1616 _NEW_POINT |
1617 _NEW_PROGRAM |
1618 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1619 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1620 .brw = BRW_NEW_BLORP |
1621 BRW_NEW_VUE_MAP_GEOM_OUT |
1622 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1623 BRW_NEW_PROGRAM_CACHE |
1624 BRW_NEW_SF_PROG_DATA |
1625 BRW_NEW_SF_VP |
1626 BRW_NEW_URB_FENCE
1627 : 0) |
1628 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1629 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1630 BRW_NEW_GS_PROG_DATA |
1631 BRW_NEW_PRIMITIVE |
1632 BRW_NEW_TES_PROG_DATA
1633 : 0) |
1634 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1635 BRW_NEW_FRAGMENT_PROGRAM
1636 : 0),
1637 },
1638 .emit = genX(upload_sf),
1639 };
1640
1641 /* ---------------------------------------------------------------------- */
1642
1643 #if GEN_GEN >= 6
1644 static void
1645 genX(upload_wm)(struct brw_context *brw)
1646 {
1647 struct gl_context *ctx = &brw->ctx;
1648
1649 /* BRW_NEW_FS_PROG_DATA */
1650 const struct brw_wm_prog_data *wm_prog_data =
1651 brw_wm_prog_data(brw->wm.base.prog_data);
1652
1653 UNUSED bool writes_depth =
1654 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1655
1656 #if GEN_GEN < 7
1657 const struct brw_stage_state *stage_state = &brw->wm.base;
1658 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1659
1660 /* We can't fold this into gen6_upload_wm_push_constants(), because
1661 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1662 * (3DSTATE_CONSTANT_PS [DevSNB]):
1663 *
1664 * "[DevSNB]: This packet must be followed by WM_STATE."
1665 */
1666 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1667 if (wm_prog_data->base.nr_params != 0) {
1668 wmcp.Buffer0Valid = true;
1669 /* Pointer to the WM constant buffer. Covered by the set of
1670 * state flags from gen6_upload_wm_push_constants.
1671 */
1672 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1673 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1674 }
1675 }
1676 #endif
1677
1678 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1679 wm.StatisticsEnable = true;
1680 wm.LineAntialiasingRegionWidth = _10pixels;
1681 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1682
1683 #if GEN_GEN < 7
1684 if (wm_prog_data->base.use_alt_mode)
1685 wm.FloatingPointMode = Alternate;
1686
1687 wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4);
1688 wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4;
1689 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1690 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1691 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1692 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1693 wm_prog_data->base.dispatch_grf_start_reg;
1694 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1695 wm_prog_data->dispatch_grf_start_reg_2;
1696 wm.KernelStartPointer0 = stage_state->prog_offset;
1697 wm.KernelStartPointer2 = stage_state->prog_offset +
1698 wm_prog_data->prog_offset_2;
1699 wm.DualSourceBlendEnable =
1700 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1701 ctx->Color.Blend[0]._UsesDualSrc;
1702 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1703 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1704
1705 /* From the SNB PRM, volume 2 part 1, page 281:
1706 * "If the PS kernel does not need the Position XY Offsets
1707 * to compute a Position XY value, then this field should be
1708 * programmed to POSOFFSET_NONE."
1709 *
1710 * "SW Recommendation: If the PS kernel needs the Position Offsets
1711 * to compute a Position XY value, this field should match Position
1712 * ZW Interpolation Mode to ensure a consistent position.xyzw
1713 * computation."
1714 * We only require XY sample offsets. So, this recommendation doesn't
1715 * look useful at the moment. We might need this in future.
1716 */
1717 if (wm_prog_data->uses_pos_offset)
1718 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1719 else
1720 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1721
1722 if (wm_prog_data->base.total_scratch) {
1723 wm.ScratchSpaceBasePointer =
1724 render_bo(stage_state->scratch_bo,
1725 ffs(stage_state->per_thread_scratch) - 11);
1726 }
1727
1728 wm.PixelShaderComputedDepth = writes_depth;
1729 #endif
1730
1731 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1732
1733 /* _NEW_LINE */
1734 wm.LineStippleEnable = ctx->Line.StippleFlag;
1735
1736 /* _NEW_POLYGON */
1737 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1738 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1739
1740 #if GEN_GEN < 8
1741 /* _NEW_BUFFERS */
1742 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1743
1744 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1745 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1746 if (wm_prog_data->uses_kill ||
1747 _mesa_is_alpha_test_enabled(ctx) ||
1748 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1749 wm_prog_data->uses_omask) {
1750 wm.PixelShaderKillsPixel = true;
1751 }
1752
1753 /* _NEW_BUFFERS | _NEW_COLOR */
1754 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1755 wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) {
1756 wm.ThreadDispatchEnable = true;
1757 }
1758 if (multisampled_fbo) {
1759 /* _NEW_MULTISAMPLE */
1760 if (ctx->Multisample.Enabled)
1761 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1762 else
1763 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1764
1765 if (wm_prog_data->persample_dispatch)
1766 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1767 else
1768 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1769 } else {
1770 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1771 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1772 }
1773
1774 #if GEN_GEN >= 7
1775 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1776 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1777 #endif
1778
1779 /* The "UAV access enable" bits are unnecessary on HSW because they only
1780 * seem to have an effect on the HW-assisted coherency mechanism which we
1781 * don't need, and the rasterization-related UAV_ONLY flag and the
1782 * DISPATCH_ENABLE bit can be set independently from it.
1783 * C.f. gen8_upload_ps_extra().
1784 *
1785 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1786 * _NEW_COLOR
1787 */
1788 #if GEN_IS_HASWELL
1789 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1790 wm_prog_data->has_side_effects)
1791 wm.PSUAVonly = ON;
1792 #endif
1793 #endif
1794
1795 #if GEN_GEN >= 7
1796 /* BRW_NEW_FS_PROG_DATA */
1797 if (wm_prog_data->early_fragment_tests)
1798 wm.EarlyDepthStencilControl = EDSC_PREPS;
1799 else if (wm_prog_data->has_side_effects)
1800 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1801 #endif
1802 }
1803 }
1804
1805 static const struct brw_tracked_state genX(wm_state) = {
1806 .dirty = {
1807 .mesa = _NEW_LINE |
1808 _NEW_POLYGON |
1809 (GEN_GEN < 8 ? _NEW_BUFFERS |
1810 _NEW_COLOR |
1811 _NEW_MULTISAMPLE :
1812 0) |
1813 (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
1814 .brw = BRW_NEW_BLORP |
1815 BRW_NEW_FS_PROG_DATA |
1816 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1817 },
1818 .emit = genX(upload_wm),
1819 };
1820 #endif
1821
1822 /* ---------------------------------------------------------------------- */
1823
1824 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1825 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
1826 pkt.SamplerCount = \
1827 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1828 pkt.BindingTableEntryCount = \
1829 stage_prog_data->binding_table.size_bytes / 4; \
1830 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
1831 \
1832 if (stage_prog_data->total_scratch) { \
1833 pkt.ScratchSpaceBasePointer = \
1834 render_bo(stage_state->scratch_bo, 0); \
1835 pkt.PerThreadScratchSpace = \
1836 ffs(stage_state->per_thread_scratch) - 11; \
1837 } \
1838 \
1839 pkt.DispatchGRFStartRegisterForURBData = \
1840 stage_prog_data->dispatch_grf_start_reg; \
1841 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1842 pkt.prefix##URBEntryReadOffset = 0; \
1843 \
1844 pkt.StatisticsEnable = true; \
1845 pkt.Enable = true;
1846
1847 static void
1848 genX(upload_vs_state)(struct brw_context *brw)
1849 {
1850 UNUSED struct gl_context *ctx = &brw->ctx;
1851 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1852 struct brw_stage_state *stage_state = &brw->vs.base;
1853
1854 /* BRW_NEW_VS_PROG_DATA */
1855 const struct brw_vue_prog_data *vue_prog_data =
1856 brw_vue_prog_data(brw->vs.base.prog_data);
1857 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
1858
1859 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
1860 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
1861
1862 #if GEN_GEN == 6
1863 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
1864 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
1865 *
1866 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
1867 * command that causes the VS Function Enable to toggle. Pipeline
1868 * flush can be executed by sending a PIPE_CONTROL command with CS
1869 * stall bit set and a post sync operation.
1870 *
1871 * We've already done such a flush at the start of state upload, so we
1872 * don't need to do another one here.
1873 */
1874 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
1875 if (stage_state->push_const_size != 0) {
1876 cvs.Buffer0Valid = true;
1877 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
1878 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1879 }
1880 }
1881 #endif
1882
1883 if (GEN_GEN == 7 && devinfo->is_ivybridge)
1884 gen7_emit_vs_workaround_flush(brw);
1885
1886 #if GEN_GEN >= 6
1887 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
1888 #else
1889 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1890 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
1891 #endif
1892 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1893
1894 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1895
1896 #if GEN_GEN < 6
1897 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
1898 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
1899 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
1900
1901 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
1902 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
1903
1904 vs.MaximumNumberofThreads =
1905 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
1906
1907 vs.StatisticsEnable = false;
1908 vs.SamplerStatePointer =
1909 instruction_ro_bo(brw->batch.bo, stage_state->sampler_offset);
1910 #endif
1911
1912 #if GEN_GEN == 5
1913 /* Force single program flow on Ironlake. We cannot reliably get
1914 * all applications working without it. See:
1915 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
1916 *
1917 * The most notable and reliably failing application is the Humus
1918 * demo "CelShading"
1919 */
1920 vs.SingleProgramFlow = true;
1921 vs.SamplerCount = 0; /* hardware requirement */
1922 #endif
1923
1924 #if GEN_GEN >= 8
1925 vs.SIMD8DispatchEnable =
1926 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
1927
1928 vs.UserClipDistanceCullTestEnableBitmask =
1929 vue_prog_data->cull_distance_mask;
1930 #endif
1931 }
1932
1933 #if GEN_GEN == 6
1934 /* Based on my reading of the simulator, the VS constants don't get
1935 * pulled into the VS FF unit until an appropriate pipeline flush
1936 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
1937 * references to them into a little FIFO. The flushes are common,
1938 * but don't reliably happen between this and a 3DPRIMITIVE, causing
1939 * the primitive to use the wrong constants. Then the FIFO
1940 * containing the constant setup gets added to again on the next
1941 * constants change, and eventually when a flush does happen the
1942 * unit is overwhelmed by constant changes and dies.
1943 *
1944 * To avoid this, send a PIPE_CONTROL down the line that will
1945 * update the unit immediately loading the constants. The flush
1946 * type bits here were those set by the STATE_BASE_ADDRESS whose
1947 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
1948 * bug reports that led to this workaround, and may be more than
1949 * what is strictly required to avoid the issue.
1950 */
1951 brw_emit_pipe_control_flush(brw,
1952 PIPE_CONTROL_DEPTH_STALL |
1953 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1954 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1955 #endif
1956 }
1957
1958 static const struct brw_tracked_state genX(vs_state) = {
1959 .dirty = {
1960 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
1961 .brw = BRW_NEW_BATCH |
1962 BRW_NEW_BLORP |
1963 BRW_NEW_CONTEXT |
1964 BRW_NEW_VS_PROG_DATA |
1965 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
1966 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1967 BRW_NEW_PROGRAM_CACHE |
1968 BRW_NEW_SAMPLER_STATE_TABLE |
1969 BRW_NEW_URB_FENCE
1970 : 0),
1971 },
1972 .emit = genX(upload_vs_state),
1973 };
1974
1975 /* ---------------------------------------------------------------------- */
1976
1977 static void
1978 genX(upload_cc_viewport)(struct brw_context *brw)
1979 {
1980 struct gl_context *ctx = &brw->ctx;
1981
1982 /* BRW_NEW_VIEWPORT_COUNT */
1983 const unsigned viewport_count = brw->clip.viewport_count;
1984
1985 struct GENX(CC_VIEWPORT) ccv;
1986 uint32_t cc_vp_offset;
1987 uint32_t *cc_map =
1988 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
1989 32, &cc_vp_offset);
1990
1991 for (unsigned i = 0; i < viewport_count; i++) {
1992 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
1993 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
1994 if (ctx->Transform.DepthClamp) {
1995 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
1996 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
1997 } else {
1998 ccv.MinimumDepth = 0.0;
1999 ccv.MaximumDepth = 1.0;
2000 }
2001 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2002 cc_map += GENX(CC_VIEWPORT_length);
2003 }
2004
2005 #if GEN_GEN >= 7
2006 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2007 ptr.CCViewportPointer = cc_vp_offset;
2008 }
2009 #elif GEN_GEN == 6
2010 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2011 vp.CCViewportStateChange = 1;
2012 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2013 }
2014 #else
2015 brw->cc.vp_offset = cc_vp_offset;
2016 ctx->NewDriverState |= BRW_NEW_CC_VP;
2017 #endif
2018 }
2019
2020 const struct brw_tracked_state genX(cc_vp) = {
2021 .dirty = {
2022 .mesa = _NEW_TRANSFORM |
2023 _NEW_VIEWPORT,
2024 .brw = BRW_NEW_BATCH |
2025 BRW_NEW_BLORP |
2026 BRW_NEW_VIEWPORT_COUNT,
2027 },
2028 .emit = genX(upload_cc_viewport)
2029 };
2030
2031 /* ---------------------------------------------------------------------- */
2032
2033 static inline void
2034 set_scissor_bits(const struct gl_context *ctx, int i,
2035 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2036 struct GENX(SCISSOR_RECT) *sc)
2037 {
2038 int bbox[4];
2039
2040 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2041 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2042 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2043 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2044 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2045
2046 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2047 /* If the scissor was out of bounds and got clamped to 0 width/height
2048 * at the bounds, the subtraction of 1 from maximums could produce a
2049 * negative number and thus not clip anything. Instead, just provide
2050 * a min > max scissor inside the bounds, which produces the expected
2051 * no rendering.
2052 */
2053 sc->ScissorRectangleXMin = 1;
2054 sc->ScissorRectangleXMax = 0;
2055 sc->ScissorRectangleYMin = 1;
2056 sc->ScissorRectangleYMax = 0;
2057 } else if (render_to_fbo) {
2058 /* texmemory: Y=0=bottom */
2059 sc->ScissorRectangleXMin = bbox[0];
2060 sc->ScissorRectangleXMax = bbox[1] - 1;
2061 sc->ScissorRectangleYMin = bbox[2];
2062 sc->ScissorRectangleYMax = bbox[3] - 1;
2063 } else {
2064 /* memory: Y=0=top */
2065 sc->ScissorRectangleXMin = bbox[0];
2066 sc->ScissorRectangleXMax = bbox[1] - 1;
2067 sc->ScissorRectangleYMin = fb_height - bbox[3];
2068 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2069 }
2070 }
2071
2072 #if GEN_GEN >= 6
2073 static void
2074 genX(upload_scissor_state)(struct brw_context *brw)
2075 {
2076 struct gl_context *ctx = &brw->ctx;
2077 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2078 struct GENX(SCISSOR_RECT) scissor;
2079 uint32_t scissor_state_offset;
2080 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2081 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2082 uint32_t *scissor_map;
2083
2084 /* BRW_NEW_VIEWPORT_COUNT */
2085 const unsigned viewport_count = brw->clip.viewport_count;
2086
2087 scissor_map = brw_state_batch(
2088 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2089 32, &scissor_state_offset);
2090
2091 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2092
2093 /* The scissor only needs to handle the intersection of drawable and
2094 * scissor rect. Clipping to the boundaries of static shared buffers
2095 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2096 *
2097 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2098 * inclusive but max is exclusive.
2099 */
2100 for (unsigned i = 0; i < viewport_count; i++) {
2101 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2102 GENX(SCISSOR_RECT_pack)(
2103 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2104 }
2105
2106 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2107 ptr.ScissorRectPointer = scissor_state_offset;
2108 }
2109 }
2110
2111 static const struct brw_tracked_state genX(scissor_state) = {
2112 .dirty = {
2113 .mesa = _NEW_BUFFERS |
2114 _NEW_SCISSOR |
2115 _NEW_VIEWPORT,
2116 .brw = BRW_NEW_BATCH |
2117 BRW_NEW_BLORP |
2118 BRW_NEW_VIEWPORT_COUNT,
2119 },
2120 .emit = genX(upload_scissor_state),
2121 };
2122 #endif
2123
2124 /* ---------------------------------------------------------------------- */
2125
2126 static void
2127 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2128 float m00, float m11, float m30, float m31,
2129 float *xmin, float *xmax,
2130 float *ymin, float *ymax)
2131 {
2132 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2133 * Strips and Fans documentation:
2134 *
2135 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2136 * fixed-point "guardband" range supported by the rasterization hardware"
2137 *
2138 * and
2139 *
2140 * "In almost all circumstances, if an object’s vertices are actually
2141 * modified by this clamping (i.e., had X or Y coordinates outside of
2142 * the guardband extent the rendered object will not match the intended
2143 * result. Therefore software should take steps to ensure that this does
2144 * not happen - e.g., by clipping objects such that they do not exceed
2145 * these limits after the Drawing Rectangle is applied."
2146 *
2147 * I believe the fundamental restriction is that the rasterizer (in
2148 * the SF/WM stages) have a limit on the number of pixels that can be
2149 * rasterized. We need to ensure any coordinates beyond the rasterizer
2150 * limit are handled by the clipper. So effectively that limit becomes
2151 * the clipper's guardband size.
2152 *
2153 * It goes on to say:
2154 *
2155 * "In addition, in order to be correctly rendered, objects must have a
2156 * screenspace bounding box not exceeding 8K in the X or Y direction.
2157 * This additional restriction must also be comprehended by software,
2158 * i.e., enforced by use of clipping."
2159 *
2160 * This makes no sense. Gen7+ hardware supports 16K render targets,
2161 * and you definitely need to be able to draw polygons that fill the
2162 * surface. Our assumption is that the rasterizer was limited to 8K
2163 * on Sandybridge, which only supports 8K surfaces, and it was actually
2164 * increased to 16K on Ivybridge and later.
2165 *
2166 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2167 */
2168 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2169
2170 if (m00 != 0 && m11 != 0) {
2171 /* First, we compute the screen-space render area */
2172 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2173 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2174 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2175 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2176
2177 /* We want the guardband to be centered on that */
2178 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2179 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2180 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2181 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2182
2183 /* Now we need it in native device coordinates */
2184 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2185 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2186 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2187 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2188
2189 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2190 * flipped upside-down. X should be fine though.
2191 */
2192 assert(ndc_gb_xmin <= ndc_gb_xmax);
2193 *xmin = ndc_gb_xmin;
2194 *xmax = ndc_gb_xmax;
2195 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2196 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2197 } else {
2198 /* The viewport scales to 0, so nothing will be rendered. */
2199 *xmin = 0.0f;
2200 *xmax = 0.0f;
2201 *ymin = 0.0f;
2202 *ymax = 0.0f;
2203 }
2204 }
2205
2206 static void
2207 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2208 {
2209 struct gl_context *ctx = &brw->ctx;
2210 float y_scale, y_bias;
2211
2212 /* BRW_NEW_VIEWPORT_COUNT */
2213 const unsigned viewport_count = brw->clip.viewport_count;
2214
2215 /* _NEW_BUFFERS */
2216 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2217 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2218 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2219
2220 #if GEN_GEN >= 7
2221 #define clv sfv
2222 struct GENX(SF_CLIP_VIEWPORT) sfv;
2223 uint32_t sf_clip_vp_offset;
2224 uint32_t *sf_clip_map =
2225 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2226 64, &sf_clip_vp_offset);
2227 #else
2228 struct GENX(SF_VIEWPORT) sfv;
2229 struct GENX(CLIP_VIEWPORT) clv;
2230 uint32_t sf_vp_offset, clip_vp_offset;
2231 uint32_t *sf_map =
2232 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2233 32, &sf_vp_offset);
2234 uint32_t *clip_map =
2235 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2236 32, &clip_vp_offset);
2237 #endif
2238
2239 /* _NEW_BUFFERS */
2240 if (render_to_fbo) {
2241 y_scale = 1.0;
2242 y_bias = 0;
2243 } else {
2244 y_scale = -1.0;
2245 y_bias = (float)fb_height;
2246 }
2247
2248 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2249 /* _NEW_VIEWPORT: Guardband Clipping */
2250 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2251 _mesa_get_viewport_xform(ctx, i, scale, translate);
2252
2253 sfv.ViewportMatrixElementm00 = scale[0];
2254 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2255 sfv.ViewportMatrixElementm22 = scale[2],
2256 sfv.ViewportMatrixElementm30 = translate[0],
2257 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2258 sfv.ViewportMatrixElementm32 = translate[2],
2259 brw_calculate_guardband_size(fb_width, fb_height,
2260 sfv.ViewportMatrixElementm00,
2261 sfv.ViewportMatrixElementm11,
2262 sfv.ViewportMatrixElementm30,
2263 sfv.ViewportMatrixElementm31,
2264 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2265
2266
2267 clv.XMinClipGuardband = gb_xmin;
2268 clv.XMaxClipGuardband = gb_xmax;
2269 clv.YMinClipGuardband = gb_ymin;
2270 clv.YMaxClipGuardband = gb_ymax;
2271
2272 #if GEN_GEN < 6
2273 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2274 &sfv.ScissorRectangle);
2275 #elif GEN_GEN >= 8
2276 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2277 * The hardware will take the intersection of the drawing rectangle,
2278 * scissor rectangle, and the viewport extents. We don't need to be
2279 * smart, and can therefore just program the viewport extents.
2280 */
2281 const float viewport_Xmax =
2282 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2283 const float viewport_Ymax =
2284 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2285
2286 if (render_to_fbo) {
2287 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2288 sfv.XMaxViewPort = viewport_Xmax - 1;
2289 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2290 sfv.YMaxViewPort = viewport_Ymax - 1;
2291 } else {
2292 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2293 sfv.XMaxViewPort = viewport_Xmax - 1;
2294 sfv.YMinViewPort = fb_height - viewport_Ymax;
2295 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2296 }
2297 #endif
2298
2299 #if GEN_GEN >= 7
2300 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2301 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2302 #else
2303 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2304 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2305 sf_map += GENX(SF_VIEWPORT_length);
2306 clip_map += GENX(CLIP_VIEWPORT_length);
2307 #endif
2308 }
2309
2310 #if GEN_GEN >= 7
2311 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2312 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2313 }
2314 #elif GEN_GEN == 6
2315 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2316 vp.SFViewportStateChange = 1;
2317 vp.CLIPViewportStateChange = 1;
2318 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2319 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2320 }
2321 #else
2322 brw->sf.vp_offset = sf_vp_offset;
2323 brw->clip.vp_offset = clip_vp_offset;
2324 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2325 #endif
2326 }
2327
2328 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2329 .dirty = {
2330 .mesa = _NEW_BUFFERS |
2331 _NEW_VIEWPORT |
2332 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2333 .brw = BRW_NEW_BATCH |
2334 BRW_NEW_BLORP |
2335 BRW_NEW_VIEWPORT_COUNT,
2336 },
2337 .emit = genX(upload_sf_clip_viewport),
2338 };
2339
2340 /* ---------------------------------------------------------------------- */
2341
2342 #if GEN_GEN >= 6
2343 static void
2344 genX(upload_gs_state)(struct brw_context *brw)
2345 {
2346 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2347 const struct brw_stage_state *stage_state = &brw->gs.base;
2348 /* BRW_NEW_GEOMETRY_PROGRAM */
2349 bool active = brw->geometry_program;
2350
2351 /* BRW_NEW_GS_PROG_DATA */
2352 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2353 const struct brw_vue_prog_data *vue_prog_data =
2354 brw_vue_prog_data(stage_prog_data);
2355 #if GEN_GEN >= 7
2356 const struct brw_gs_prog_data *gs_prog_data =
2357 brw_gs_prog_data(stage_prog_data);
2358 #endif
2359
2360 #if GEN_GEN == 6
2361 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2362 if (active && stage_state->push_const_size != 0) {
2363 cgs.Buffer0Valid = true;
2364 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2365 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2366 }
2367 }
2368 #endif
2369
2370 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2371 /**
2372 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2373 * Geometry > Geometry Shader > State:
2374 *
2375 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2376 * whole fixed function pipeline when the GS enable changes value in
2377 * the 3DSTATE_GS."
2378 *
2379 * The hardware architects have clarified that in this context "flush the
2380 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2381 * Stall" bit set.
2382 */
2383 if (brw->gt == 2 && brw->gs.enabled != active)
2384 gen7_emit_cs_stall_flush(brw);
2385 #endif
2386
2387 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2388 if (active) {
2389 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2390
2391 #if GEN_GEN >= 7
2392 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2393 gs.OutputTopology = gs_prog_data->output_topology;
2394 gs.ControlDataHeaderSize =
2395 gs_prog_data->control_data_header_size_hwords;
2396
2397 gs.InstanceControl = gs_prog_data->invocations - 1;
2398 gs.DispatchMode = vue_prog_data->dispatch_mode;
2399
2400 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2401
2402 gs.ControlDataFormat = gs_prog_data->control_data_format;
2403 #endif
2404
2405 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2406 * Ivy Bridge and Haswell.
2407 *
2408 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2409 * strip to be delivered to the geometry shader in an order that does
2410 * not strictly follow the OpenGL spec, but preserves triangle
2411 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2412 * the geometry shader sees triangles:
2413 *
2414 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2415 *
2416 * (Clearing the bit is even worse, because it fails to preserve
2417 * orientation).
2418 *
2419 * Triangle strips with adjacency always ordered in a way that preserves
2420 * triangle orientation but does not strictly follow the OpenGL spec,
2421 * regardless of the setting of this bit.
2422 *
2423 * On Haswell, both triangle strips and triangle strips with adjacency
2424 * are always ordered in a way that preserves triangle orientation.
2425 * Setting this bit causes the ordering to strictly follow the OpenGL
2426 * spec.
2427 *
2428 * So in either case we want to set the bit. Unfortunately on Ivy
2429 * Bridge this will get the order close to correct but not perfect.
2430 */
2431 gs.ReorderMode = TRAILING;
2432 gs.MaximumNumberofThreads =
2433 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2434 : (devinfo->max_gs_threads - 1);
2435
2436 #if GEN_GEN < 7
2437 gs.SOStatisticsEnable = true;
2438 gs.RenderingEnabled = 1;
2439 if (brw->geometry_program->info.has_transform_feedback_varyings)
2440 gs.SVBIPayloadEnable = true;
2441
2442 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2443 * was previously done for gen6.
2444 *
2445 * TODO: test with both disabled to see if the HW is behaving
2446 * as expected, like in gen7.
2447 */
2448 gs.SingleProgramFlow = true;
2449 gs.VectorMaskEnable = true;
2450 #endif
2451
2452 #if GEN_GEN >= 8
2453 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2454
2455 if (gs_prog_data->static_vertex_count != -1) {
2456 gs.StaticOutput = true;
2457 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2458 }
2459 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2460
2461 gs.UserClipDistanceCullTestEnableBitmask =
2462 vue_prog_data->cull_distance_mask;
2463
2464 const int urb_entry_write_offset = 1;
2465 const uint32_t urb_entry_output_length =
2466 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2467 urb_entry_write_offset;
2468
2469 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2470 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2471 #endif
2472 #if GEN_GEN < 7
2473 } else if (brw->ff_gs.prog_active) {
2474 /* In gen6, transform feedback for the VS stage is done with an
2475 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2476 * for this.
2477 */
2478 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2479 gs.SingleProgramFlow = true;
2480 gs.VectorMaskEnable = true;
2481 gs.DispatchGRFStartRegisterForURBData = 2;
2482 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2483 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2484 gs.StatisticsEnable = true;
2485 gs.SOStatisticsEnable = true;
2486 gs.RenderingEnabled = true;
2487 gs.SVBIPayloadEnable = true;
2488 gs.SVBIPostIncrementEnable = true;
2489 gs.SVBIPostIncrementValue =
2490 brw->ff_gs.prog_data->svbi_postincrement_value;
2491 gs.Enable = true;
2492 #endif
2493 } else {
2494 gs.StatisticsEnable = true;
2495 #if GEN_GEN < 7
2496 gs.RenderingEnabled = true;
2497 #endif
2498
2499 #if GEN_GEN < 8
2500 gs.DispatchGRFStartRegisterForURBData = 1;
2501 #if GEN_GEN >= 7
2502 gs.IncludeVertexHandles = true;
2503 #endif
2504 #endif
2505 }
2506 }
2507
2508 #if GEN_GEN == 6
2509 brw->gs.enabled = active;
2510 #endif
2511 }
2512
2513 static const struct brw_tracked_state genX(gs_state) = {
2514 .dirty = {
2515 .mesa = (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
2516 .brw = BRW_NEW_BATCH |
2517 BRW_NEW_BLORP |
2518 BRW_NEW_CONTEXT |
2519 BRW_NEW_GEOMETRY_PROGRAM |
2520 BRW_NEW_GS_PROG_DATA |
2521 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2522 },
2523 .emit = genX(upload_gs_state),
2524 };
2525 #endif
2526
2527 /* ---------------------------------------------------------------------- */
2528
2529 UNUSED static GLenum
2530 fix_dual_blend_alpha_to_one(GLenum function)
2531 {
2532 switch (function) {
2533 case GL_SRC1_ALPHA:
2534 return GL_ONE;
2535
2536 case GL_ONE_MINUS_SRC1_ALPHA:
2537 return GL_ZERO;
2538 }
2539
2540 return function;
2541 }
2542
2543 #define blend_factor(x) brw_translate_blend_factor(x)
2544 #define blend_eqn(x) brw_translate_blend_equation(x)
2545
2546 /**
2547 * Modify blend function to force destination alpha to 1.0
2548 *
2549 * If \c function specifies a blend function that uses destination alpha,
2550 * replace it with a function that hard-wires destination alpha to 1.0. This
2551 * is used when rendering to xRGB targets.
2552 */
2553 static GLenum
2554 brw_fix_xRGB_alpha(GLenum function)
2555 {
2556 switch (function) {
2557 case GL_DST_ALPHA:
2558 return GL_ONE;
2559
2560 case GL_ONE_MINUS_DST_ALPHA:
2561 case GL_SRC_ALPHA_SATURATE:
2562 return GL_ZERO;
2563 }
2564
2565 return function;
2566 }
2567
2568 #if GEN_GEN >= 6
2569 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2570 #else
2571 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2572 #endif
2573
2574 UNUSED static bool
2575 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2576 bool alpha_to_one)
2577 {
2578 struct gl_context *ctx = &brw->ctx;
2579
2580 /* _NEW_BUFFERS */
2581 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2582
2583 bool independent_alpha_blend = false;
2584
2585 /* Used for implementing the following bit of GL_EXT_texture_integer:
2586 * "Per-fragment operations that require floating-point color
2587 * components, including multisample alpha operations, alpha test,
2588 * blending, and dithering, have no effect when the corresponding
2589 * colors are written to an integer color buffer."
2590 */
2591 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2592
2593 const unsigned blend_enabled = GEN_GEN >= 6 ?
2594 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2595
2596 /* _NEW_COLOR */
2597 if (ctx->Color.ColorLogicOpEnabled) {
2598 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2599 : GL_UNSIGNED_NORMALIZED;
2600 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2601 rb_type != GL_UNSIGNED_NORMALIZED &&
2602 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2603 "renderbuffer\n",
2604 _mesa_enum_to_string(ctx->Color.LogicOp),
2605 _mesa_enum_to_string(rb_type));
2606 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2607 entry->LogicOpEnable = true;
2608 entry->LogicOpFunction =
2609 intel_translate_logic_op(ctx->Color.LogicOp);
2610 }
2611 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2612 && (GEN_GEN <= 5 || !integer)) {
2613 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2614 GLenum eqA = ctx->Color.Blend[i].EquationA;
2615 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2616 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2617 GLenum srcA = ctx->Color.Blend[i].SrcA;
2618 GLenum dstA = ctx->Color.Blend[i].DstA;
2619
2620 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2621 srcRGB = dstRGB = GL_ONE;
2622
2623 if (eqA == GL_MIN || eqA == GL_MAX)
2624 srcA = dstA = GL_ONE;
2625
2626 /* Due to hardware limitations, the destination may have information
2627 * in an alpha channel even when the format specifies no alpha
2628 * channel. In order to avoid getting any incorrect blending due to
2629 * that alpha channel, coerce the blend factors to values that will
2630 * not read the alpha channel, but will instead use the correct
2631 * implicit value for alpha.
2632 */
2633 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2634 GL_TEXTURE_ALPHA_TYPE)) {
2635 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2636 srcA = brw_fix_xRGB_alpha(srcA);
2637 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2638 dstA = brw_fix_xRGB_alpha(dstA);
2639 }
2640
2641 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2642 * "If Dual Source Blending is enabled, this bit must be disabled."
2643 *
2644 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2645 * and leave it enabled anyway.
2646 */
2647 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2648 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2649 srcA = fix_dual_blend_alpha_to_one(srcA);
2650 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2651 dstA = fix_dual_blend_alpha_to_one(dstA);
2652 }
2653
2654 entry->ColorBufferBlendEnable = true;
2655 entry->DestinationBlendFactor = blend_factor(dstRGB);
2656 entry->SourceBlendFactor = blend_factor(srcRGB);
2657 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2658 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2659 entry->ColorBlendFunction = blend_eqn(eqRGB);
2660 entry->AlphaBlendFunction = blend_eqn(eqA);
2661
2662 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2663 independent_alpha_blend = true;
2664 }
2665
2666 return independent_alpha_blend;
2667 }
2668
2669 #if GEN_GEN >= 6
2670 static void
2671 genX(upload_blend_state)(struct brw_context *brw)
2672 {
2673 struct gl_context *ctx = &brw->ctx;
2674 int size;
2675
2676 /* We need at least one BLEND_STATE written, because we might do
2677 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2678 * for computed depth or alpha test), which will do an FB write
2679 * with render target 0, which will reference BLEND_STATE[0] for
2680 * alpha test enable.
2681 */
2682 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2683 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2684 nr_draw_buffers = 1;
2685
2686 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2687 #if GEN_GEN >= 8
2688 size += GENX(BLEND_STATE_length) * 4;
2689 #endif
2690
2691 uint32_t *blend_map;
2692 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2693
2694 #if GEN_GEN >= 8
2695 struct GENX(BLEND_STATE) blend = { 0 };
2696 {
2697 #else
2698 for (int i = 0; i < nr_draw_buffers; i++) {
2699 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2700 #define blend entry
2701 #endif
2702 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2703 * "If drawbuffer zero is not NONE and the buffer it references has an
2704 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2705 * operations are skipped."
2706 */
2707 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2708 /* _NEW_MULTISAMPLE */
2709 if (_mesa_is_multisample_enabled(ctx)) {
2710 if (ctx->Multisample.SampleAlphaToCoverage) {
2711 blend.AlphaToCoverageEnable = true;
2712 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2713 }
2714 if (ctx->Multisample.SampleAlphaToOne)
2715 blend.AlphaToOneEnable = true;
2716 }
2717
2718 /* _NEW_COLOR */
2719 if (ctx->Color.AlphaEnabled) {
2720 blend.AlphaTestEnable = true;
2721 blend.AlphaTestFunction =
2722 intel_translate_compare_func(ctx->Color.AlphaFunc);
2723 }
2724
2725 if (ctx->Color.DitherFlag) {
2726 blend.ColorDitherEnable = true;
2727 }
2728 }
2729
2730 #if GEN_GEN >= 8
2731 for (int i = 0; i < nr_draw_buffers; i++) {
2732 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2733 #else
2734 {
2735 #endif
2736 blend.IndependentAlphaBlendEnable =
2737 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2738 blend.IndependentAlphaBlendEnable;
2739
2740 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2741 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2742 *
2743 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2744 * clamping in the fragment shader. For its clamping of
2745 * blending, the spec says:
2746 *
2747 * "RESOLVED: For fixed-point color buffers, the inputs and
2748 * the result of the blending equation are clamped. For
2749 * floating-point color buffers, no clamping occurs."
2750 *
2751 * So, generally, we want clamping to the render target's range.
2752 * And, good news, the hardware tables for both pre- and
2753 * post-blend color clamping are either ignored, or any are
2754 * allowed, or clamping is required but RT range clamping is a
2755 * valid option.
2756 */
2757 entry.PreBlendColorClampEnable = true;
2758 entry.PostBlendColorClampEnable = true;
2759 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2760
2761 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2762 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2763 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2764 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2765
2766 #if GEN_GEN >= 8
2767 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2768 #else
2769 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2770 #endif
2771 }
2772 }
2773
2774 #if GEN_GEN >= 8
2775 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2776 #endif
2777
2778 #if GEN_GEN < 7
2779 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2780 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2781 ptr.BLEND_STATEChange = true;
2782 }
2783 #else
2784 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2785 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2786 #if GEN_GEN >= 8
2787 ptr.BlendStatePointerValid = true;
2788 #endif
2789 }
2790 #endif
2791 }
2792
2793 static const struct brw_tracked_state genX(blend_state) = {
2794 .dirty = {
2795 .mesa = _NEW_BUFFERS |
2796 _NEW_COLOR |
2797 _NEW_MULTISAMPLE,
2798 .brw = BRW_NEW_BATCH |
2799 BRW_NEW_BLORP |
2800 BRW_NEW_STATE_BASE_ADDRESS,
2801 },
2802 .emit = genX(upload_blend_state),
2803 };
2804 #endif
2805
2806 /* ---------------------------------------------------------------------- */
2807
2808 #if GEN_GEN >= 7
2809 UNUSED static const uint32_t push_constant_opcodes[] = {
2810 [MESA_SHADER_VERTEX] = 21,
2811 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2812 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2813 [MESA_SHADER_GEOMETRY] = 22,
2814 [MESA_SHADER_FRAGMENT] = 23,
2815 [MESA_SHADER_COMPUTE] = 0,
2816 };
2817
2818 static void
2819 upload_constant_state(struct brw_context *brw,
2820 struct brw_stage_state *stage_state,
2821 bool active, uint32_t stage)
2822 {
2823 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
2824 active = active && stage_state->push_const_size != 0;
2825
2826 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
2827 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2828 if (active) {
2829 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2830 pkt.ConstantBody.ReadLength[2] = stage_state->push_const_size;
2831 pkt.ConstantBody.Buffer[2] =
2832 render_ro_bo(brw->curbe.curbe_bo, stage_state->push_const_offset);
2833 #else
2834 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
2835 pkt.ConstantBody.Buffer[0].offset =
2836 stage_state->push_const_offset | mocs;
2837 #endif
2838 }
2839 }
2840
2841 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
2842 }
2843 #endif
2844
2845 #if GEN_GEN >= 6
2846 static void
2847 genX(upload_vs_push_constants)(struct brw_context *brw)
2848 {
2849 struct brw_stage_state *stage_state = &brw->vs.base;
2850
2851 /* _BRW_NEW_VERTEX_PROGRAM */
2852 const struct brw_program *vp = brw_program_const(brw->vertex_program);
2853 /* BRW_NEW_VS_PROG_DATA */
2854 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
2855
2856 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
2857 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
2858
2859 #if GEN_GEN >= 7
2860 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail)
2861 gen7_emit_vs_workaround_flush(brw);
2862
2863 upload_constant_state(brw, stage_state, true /* active */,
2864 MESA_SHADER_VERTEX);
2865 #endif
2866 }
2867
2868 static const struct brw_tracked_state genX(vs_push_constants) = {
2869 .dirty = {
2870 .mesa = _NEW_PROGRAM_CONSTANTS |
2871 _NEW_TRANSFORM,
2872 .brw = BRW_NEW_BATCH |
2873 BRW_NEW_BLORP |
2874 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2875 BRW_NEW_VERTEX_PROGRAM |
2876 BRW_NEW_VS_PROG_DATA,
2877 },
2878 .emit = genX(upload_vs_push_constants),
2879 };
2880
2881 static void
2882 genX(upload_gs_push_constants)(struct brw_context *brw)
2883 {
2884 struct brw_stage_state *stage_state = &brw->gs.base;
2885
2886 /* BRW_NEW_GEOMETRY_PROGRAM */
2887 const struct brw_program *gp = brw_program_const(brw->geometry_program);
2888
2889 if (gp) {
2890 /* BRW_NEW_GS_PROG_DATA */
2891 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
2892
2893 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
2894 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
2895 }
2896
2897 #if GEN_GEN >= 7
2898 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY);
2899 #endif
2900 }
2901
2902 static const struct brw_tracked_state genX(gs_push_constants) = {
2903 .dirty = {
2904 .mesa = _NEW_PROGRAM_CONSTANTS |
2905 _NEW_TRANSFORM,
2906 .brw = BRW_NEW_BATCH |
2907 BRW_NEW_BLORP |
2908 BRW_NEW_GEOMETRY_PROGRAM |
2909 BRW_NEW_GS_PROG_DATA |
2910 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2911 },
2912 .emit = genX(upload_gs_push_constants),
2913 };
2914
2915 static void
2916 genX(upload_wm_push_constants)(struct brw_context *brw)
2917 {
2918 struct brw_stage_state *stage_state = &brw->wm.base;
2919 /* BRW_NEW_FRAGMENT_PROGRAM */
2920 const struct brw_program *fp = brw_program_const(brw->fragment_program);
2921 /* BRW_NEW_FS_PROG_DATA */
2922 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
2923
2924 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
2925
2926 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
2927
2928 #if GEN_GEN >= 7
2929 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT);
2930 #endif
2931 }
2932
2933 static const struct brw_tracked_state genX(wm_push_constants) = {
2934 .dirty = {
2935 .mesa = _NEW_PROGRAM_CONSTANTS,
2936 .brw = BRW_NEW_BATCH |
2937 BRW_NEW_BLORP |
2938 BRW_NEW_FRAGMENT_PROGRAM |
2939 BRW_NEW_FS_PROG_DATA |
2940 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2941 },
2942 .emit = genX(upload_wm_push_constants),
2943 };
2944 #endif
2945
2946 /* ---------------------------------------------------------------------- */
2947
2948 #if GEN_GEN >= 6
2949 static unsigned
2950 genX(determine_sample_mask)(struct brw_context *brw)
2951 {
2952 struct gl_context *ctx = &brw->ctx;
2953 float coverage = 1.0f;
2954 float coverage_invert = false;
2955 unsigned sample_mask = ~0u;
2956
2957 /* BRW_NEW_NUM_SAMPLES */
2958 unsigned num_samples = brw->num_samples;
2959
2960 if (_mesa_is_multisample_enabled(ctx)) {
2961 if (ctx->Multisample.SampleCoverage) {
2962 coverage = ctx->Multisample.SampleCoverageValue;
2963 coverage_invert = ctx->Multisample.SampleCoverageInvert;
2964 }
2965 if (ctx->Multisample.SampleMask) {
2966 sample_mask = ctx->Multisample.SampleMaskValue;
2967 }
2968 }
2969
2970 if (num_samples > 1) {
2971 int coverage_int = (int) (num_samples * coverage + 0.5f);
2972 uint32_t coverage_bits = (1 << coverage_int) - 1;
2973 if (coverage_invert)
2974 coverage_bits ^= (1 << num_samples) - 1;
2975 return coverage_bits & sample_mask;
2976 } else {
2977 return 1;
2978 }
2979 }
2980
2981 static void
2982 genX(emit_3dstate_multisample2)(struct brw_context *brw,
2983 unsigned num_samples)
2984 {
2985 assert(brw->num_samples <= 16);
2986
2987 unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1;
2988
2989 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
2990 multi.PixelLocation = CENTER;
2991 multi.NumberofMultisamples = log2_samples;
2992 #if GEN_GEN == 6
2993 GEN_SAMPLE_POS_4X(multi.Sample);
2994 #elif GEN_GEN == 7
2995 switch (num_samples) {
2996 case 1:
2997 GEN_SAMPLE_POS_1X(multi.Sample);
2998 break;
2999 case 2:
3000 GEN_SAMPLE_POS_2X(multi.Sample);
3001 break;
3002 case 4:
3003 GEN_SAMPLE_POS_4X(multi.Sample);
3004 break;
3005 case 8:
3006 GEN_SAMPLE_POS_8X(multi.Sample);
3007 break;
3008 default:
3009 break;
3010 }
3011 #endif
3012 }
3013 }
3014
3015 static void
3016 genX(upload_multisample_state)(struct brw_context *brw)
3017 {
3018 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3019
3020 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3021 sm.SampleMask = genX(determine_sample_mask)(brw);
3022 }
3023 }
3024
3025 static const struct brw_tracked_state genX(multisample_state) = {
3026 .dirty = {
3027 .mesa = _NEW_MULTISAMPLE,
3028 .brw = BRW_NEW_BLORP |
3029 BRW_NEW_CONTEXT |
3030 BRW_NEW_NUM_SAMPLES,
3031 },
3032 .emit = genX(upload_multisample_state)
3033 };
3034 #endif
3035
3036 /* ---------------------------------------------------------------------- */
3037
3038 static void
3039 genX(upload_color_calc_state)(struct brw_context *brw)
3040 {
3041 struct gl_context *ctx = &brw->ctx;
3042
3043 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3044 #if GEN_GEN <= 5
3045 cc.IndependentAlphaBlendEnable =
3046 set_blend_entry_bits(brw, &cc, 0, false);
3047 set_depth_stencil_bits(brw, &cc);
3048
3049 if (ctx->Color.AlphaEnabled &&
3050 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3051 cc.AlphaTestEnable = true;
3052 cc.AlphaTestFunction =
3053 intel_translate_compare_func(ctx->Color.AlphaFunc);
3054 }
3055
3056 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3057
3058 cc.StatisticsEnable = brw->stats_wm;
3059
3060 cc.CCViewportStatePointer =
3061 instruction_ro_bo(brw->batch.bo, brw->cc.vp_offset);
3062 #else
3063 /* _NEW_COLOR */
3064 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3065 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3066 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3067 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3068
3069 #if GEN_GEN < 9
3070 /* _NEW_STENCIL */
3071 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3072 cc.BackfaceStencilReferenceValue =
3073 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3074 #endif
3075
3076 #endif
3077
3078 /* _NEW_COLOR */
3079 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3080 ctx->Color.AlphaRef);
3081 }
3082
3083 #if GEN_GEN >= 6
3084 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3085 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3086 #if GEN_GEN != 7
3087 ptr.ColorCalcStatePointerValid = true;
3088 #endif
3089 }
3090 #else
3091 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3092 #endif
3093 }
3094
3095 static const struct brw_tracked_state genX(color_calc_state) = {
3096 .dirty = {
3097 .mesa = _NEW_COLOR |
3098 _NEW_STENCIL |
3099 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3100 _NEW_DEPTH
3101 : 0),
3102 .brw = BRW_NEW_BATCH |
3103 BRW_NEW_BLORP |
3104 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3105 BRW_NEW_STATS_WM
3106 : BRW_NEW_CC_STATE |
3107 BRW_NEW_STATE_BASE_ADDRESS),
3108 },
3109 .emit = genX(upload_color_calc_state),
3110 };
3111
3112
3113 /* ---------------------------------------------------------------------- */
3114
3115 #if GEN_GEN >= 7
3116 static void
3117 genX(upload_sbe)(struct brw_context *brw)
3118 {
3119 struct gl_context *ctx = &brw->ctx;
3120 /* BRW_NEW_FS_PROG_DATA */
3121 const struct brw_wm_prog_data *wm_prog_data =
3122 brw_wm_prog_data(brw->wm.base.prog_data);
3123 #if GEN_GEN >= 8
3124 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3125 #else
3126 #define attr_overrides sbe.Attribute
3127 #endif
3128 uint32_t urb_entry_read_length;
3129 uint32_t urb_entry_read_offset;
3130 uint32_t point_sprite_enables;
3131
3132 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3133 sbe.AttributeSwizzleEnable = true;
3134 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3135
3136 /* _NEW_BUFFERS */
3137 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3138
3139 /* _NEW_POINT
3140 *
3141 * Window coordinates in an FBO are inverted, which means point
3142 * sprite origin must be inverted.
3143 */
3144 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3145 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3146 else
3147 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3148
3149 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3150 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3151 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3152 * BRW_NEW_VUE_MAP_GEOM_OUT
3153 */
3154 genX(calculate_attr_overrides)(brw,
3155 attr_overrides,
3156 &point_sprite_enables,
3157 &urb_entry_read_length,
3158 &urb_entry_read_offset);
3159
3160 /* Typically, the URB entry read length and offset should be programmed
3161 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3162 * stage which produces geometry. However, we don't know the proper
3163 * value until we call calculate_attr_overrides().
3164 *
3165 * To fit with our existing code, we override the inherited values and
3166 * specify it here directly, as we did on previous generations.
3167 */
3168 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3169 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3170 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3171 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3172
3173 #if GEN_GEN >= 8
3174 sbe.ForceVertexURBEntryReadLength = true;
3175 sbe.ForceVertexURBEntryReadOffset = true;
3176 #endif
3177
3178 #if GEN_GEN >= 9
3179 /* prepare the active component dwords */
3180 int input_index = 0;
3181 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
3182 if (!(brw->fragment_program->info.inputs_read &
3183 BITFIELD64_BIT(attr))) {
3184 continue;
3185 }
3186
3187 assert(input_index < 32);
3188
3189 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3190 ++input_index;
3191 }
3192 #endif
3193 }
3194
3195 #if GEN_GEN >= 8
3196 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3197 for (int i = 0; i < 16; i++)
3198 sbes.Attribute[i] = attr_overrides[i];
3199 }
3200 #endif
3201
3202 #undef attr_overrides
3203 }
3204
3205 static const struct brw_tracked_state genX(sbe_state) = {
3206 .dirty = {
3207 .mesa = _NEW_BUFFERS |
3208 _NEW_LIGHT |
3209 _NEW_POINT |
3210 _NEW_POLYGON |
3211 _NEW_PROGRAM,
3212 .brw = BRW_NEW_BLORP |
3213 BRW_NEW_CONTEXT |
3214 BRW_NEW_FRAGMENT_PROGRAM |
3215 BRW_NEW_FS_PROG_DATA |
3216 BRW_NEW_GS_PROG_DATA |
3217 BRW_NEW_TES_PROG_DATA |
3218 BRW_NEW_VUE_MAP_GEOM_OUT |
3219 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3220 : 0),
3221 },
3222 .emit = genX(upload_sbe),
3223 };
3224 #endif
3225
3226 /* ---------------------------------------------------------------------- */
3227
3228 #if GEN_GEN >= 7
3229 /**
3230 * Outputs the 3DSTATE_SO_DECL_LIST command.
3231 *
3232 * The data output is a series of 64-bit entries containing a SO_DECL per
3233 * stream. We only have one stream of rendering coming out of the GS unit, so
3234 * we only emit stream 0 (low 16 bits) SO_DECLs.
3235 */
3236 static void
3237 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3238 const struct brw_vue_map *vue_map)
3239 {
3240 struct gl_context *ctx = &brw->ctx;
3241 /* BRW_NEW_TRANSFORM_FEEDBACK */
3242 struct gl_transform_feedback_object *xfb_obj =
3243 ctx->TransformFeedback.CurrentObject;
3244 const struct gl_transform_feedback_info *linked_xfb_info =
3245 xfb_obj->program->sh.LinkedTransformFeedback;
3246 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3247 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3248 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3249 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3250 int max_decls = 0;
3251 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3252
3253 memset(so_decl, 0, sizeof(so_decl));
3254
3255 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3256 * command feels strange -- each dword pair contains a SO_DECL per stream.
3257 */
3258 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3259 const struct gl_transform_feedback_output *output =
3260 &linked_xfb_info->Outputs[i];
3261 const int buffer = output->OutputBuffer;
3262 const int varying = output->OutputRegister;
3263 const unsigned stream_id = output->StreamId;
3264 assert(stream_id < MAX_VERTEX_STREAMS);
3265
3266 buffer_mask[stream_id] |= 1 << buffer;
3267
3268 assert(vue_map->varying_to_slot[varying] >= 0);
3269
3270 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3271 * array. Instead, it simply increments DstOffset for the following
3272 * input by the number of components that should be skipped.
3273 *
3274 * Our hardware is unusual in that it requires us to program SO_DECLs
3275 * for fake "hole" components, rather than simply taking the offset
3276 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3277 * program as many size = 4 holes as we can, then a final hole to
3278 * accommodate the final 1, 2, or 3 remaining.
3279 */
3280 int skip_components = output->DstOffset - next_offset[buffer];
3281
3282 while (skip_components > 0) {
3283 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3284 .HoleFlag = 1,
3285 .OutputBufferSlot = output->OutputBuffer,
3286 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3287 };
3288 skip_components -= 4;
3289 }
3290
3291 next_offset[buffer] = output->DstOffset + output->NumComponents;
3292
3293 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3294 .OutputBufferSlot = output->OutputBuffer,
3295 .RegisterIndex = vue_map->varying_to_slot[varying],
3296 .ComponentMask =
3297 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3298 };
3299
3300 if (decls[stream_id] > max_decls)
3301 max_decls = decls[stream_id];
3302 }
3303
3304 uint32_t *dw;
3305 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3306 .StreamtoBufferSelects0 = buffer_mask[0],
3307 .StreamtoBufferSelects1 = buffer_mask[1],
3308 .StreamtoBufferSelects2 = buffer_mask[2],
3309 .StreamtoBufferSelects3 = buffer_mask[3],
3310 .NumEntries0 = decls[0],
3311 .NumEntries1 = decls[1],
3312 .NumEntries2 = decls[2],
3313 .NumEntries3 = decls[3]);
3314
3315 for (int i = 0; i < max_decls; i++) {
3316 GENX(SO_DECL_ENTRY_pack)(
3317 brw, dw + 2 + i * 2,
3318 &(struct GENX(SO_DECL_ENTRY)) {
3319 .Stream0Decl = so_decl[0][i],
3320 .Stream1Decl = so_decl[1][i],
3321 .Stream2Decl = so_decl[2][i],
3322 .Stream3Decl = so_decl[3][i],
3323 });
3324 }
3325 }
3326
3327 static void
3328 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3329 {
3330 struct gl_context *ctx = &brw->ctx;
3331 /* BRW_NEW_TRANSFORM_FEEDBACK */
3332 struct gl_transform_feedback_object *xfb_obj =
3333 ctx->TransformFeedback.CurrentObject;
3334 #if GEN_GEN < 8
3335 const struct gl_transform_feedback_info *linked_xfb_info =
3336 xfb_obj->program->sh.LinkedTransformFeedback;
3337 #else
3338 struct brw_transform_feedback_object *brw_obj =
3339 (struct brw_transform_feedback_object *) xfb_obj;
3340 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3341 #endif
3342
3343 /* Set up the up to 4 output buffers. These are the ranges defined in the
3344 * gl_transform_feedback_object.
3345 */
3346 for (int i = 0; i < 4; i++) {
3347 struct intel_buffer_object *bufferobj =
3348 intel_buffer_object(xfb_obj->Buffers[i]);
3349
3350 if (!bufferobj) {
3351 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3352 sob.SOBufferIndex = i;
3353 }
3354 continue;
3355 }
3356
3357 uint32_t start = xfb_obj->Offset[i];
3358 assert(start % 4 == 0);
3359 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3360 struct brw_bo *bo =
3361 intel_bufferobj_buffer(brw, bufferobj, start, end - start);
3362 assert(end <= bo->size);
3363
3364 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3365 sob.SOBufferIndex = i;
3366
3367 sob.SurfaceBaseAddress = render_bo(bo, start);
3368 #if GEN_GEN < 8
3369 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3370 sob.SurfaceEndAddress = render_bo(bo, end);
3371 #else
3372 sob.SOBufferEnable = true;
3373 sob.StreamOffsetWriteEnable = true;
3374 sob.StreamOutputBufferOffsetAddressEnable = true;
3375 sob.SOBufferMOCS = mocs_wb;
3376
3377 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3378 sob.StreamOutputBufferOffsetAddress =
3379 instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3380
3381 if (brw_obj->zero_offsets) {
3382 /* Zero out the offset and write that to offset_bo */
3383 sob.StreamOffset = 0;
3384 } else {
3385 /* Use offset_bo as the "Stream Offset." */
3386 sob.StreamOffset = 0xFFFFFFFF;
3387 }
3388 #endif
3389 }
3390 }
3391
3392 #if GEN_GEN >= 8
3393 brw_obj->zero_offsets = false;
3394 #endif
3395 }
3396
3397 static inline bool
3398 query_active(struct gl_query_object *q)
3399 {
3400 return q && q->Active;
3401 }
3402
3403 static void
3404 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3405 const struct brw_vue_map *vue_map)
3406 {
3407 struct gl_context *ctx = &brw->ctx;
3408 /* BRW_NEW_TRANSFORM_FEEDBACK */
3409 struct gl_transform_feedback_object *xfb_obj =
3410 ctx->TransformFeedback.CurrentObject;
3411
3412 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3413 if (active) {
3414 int urb_entry_read_offset = 0;
3415 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3416 urb_entry_read_offset;
3417
3418 sos.SOFunctionEnable = true;
3419 sos.SOStatisticsEnable = true;
3420
3421 /* BRW_NEW_RASTERIZER_DISCARD */
3422 if (ctx->RasterDiscard) {
3423 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3424 sos.RenderingDisable = true;
3425 } else {
3426 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3427 "query active relies on the clipper.");
3428 }
3429 }
3430
3431 /* _NEW_LIGHT */
3432 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3433 sos.ReorderMode = TRAILING;
3434
3435 #if GEN_GEN < 8
3436 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3437 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3438 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3439 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3440 #else
3441 const struct gl_transform_feedback_info *linked_xfb_info =
3442 xfb_obj->program->sh.LinkedTransformFeedback;
3443 /* Set buffer pitches; 0 means unbound. */
3444 if (xfb_obj->Buffers[0])
3445 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3446 if (xfb_obj->Buffers[1])
3447 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3448 if (xfb_obj->Buffers[2])
3449 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3450 if (xfb_obj->Buffers[3])
3451 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3452 #endif
3453
3454 /* We always read the whole vertex. This could be reduced at some
3455 * point by reading less and offsetting the register index in the
3456 * SO_DECLs.
3457 */
3458 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3459 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3460 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3461 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3462 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3463 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3464 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3465 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3466 }
3467 }
3468 }
3469
3470 static void
3471 genX(upload_sol)(struct brw_context *brw)
3472 {
3473 struct gl_context *ctx = &brw->ctx;
3474 /* BRW_NEW_TRANSFORM_FEEDBACK */
3475 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3476
3477 if (active) {
3478 genX(upload_3dstate_so_buffers)(brw);
3479
3480 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3481 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3482 }
3483
3484 /* Finally, set up the SOL stage. This command must always follow updates to
3485 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3486 * MMIO register updates (current performed by the kernel at each batch
3487 * emit).
3488 */
3489 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3490 }
3491
3492 static const struct brw_tracked_state genX(sol_state) = {
3493 .dirty = {
3494 .mesa = _NEW_LIGHT,
3495 .brw = BRW_NEW_BATCH |
3496 BRW_NEW_BLORP |
3497 BRW_NEW_RASTERIZER_DISCARD |
3498 BRW_NEW_VUE_MAP_GEOM_OUT |
3499 BRW_NEW_TRANSFORM_FEEDBACK,
3500 },
3501 .emit = genX(upload_sol),
3502 };
3503 #endif
3504
3505 /* ---------------------------------------------------------------------- */
3506
3507 #if GEN_GEN >= 7
3508 static void
3509 genX(upload_ps)(struct brw_context *brw)
3510 {
3511 UNUSED const struct gl_context *ctx = &brw->ctx;
3512 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3513
3514 /* BRW_NEW_FS_PROG_DATA */
3515 const struct brw_wm_prog_data *prog_data =
3516 brw_wm_prog_data(brw->wm.base.prog_data);
3517 const struct brw_stage_state *stage_state = &brw->wm.base;
3518
3519 #if GEN_GEN < 8
3520 #endif
3521
3522 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3523 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3524 * incorrect for subspans where some of the pixels are unlit. We believe
3525 * the bit just didn't take effect in previous generations.
3526 */
3527 ps.VectorMaskEnable = GEN_GEN >= 8;
3528
3529 ps.SamplerCount =
3530 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3531
3532 /* BRW_NEW_FS_PROG_DATA */
3533 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3534
3535 if (prog_data->base.use_alt_mode)
3536 ps.FloatingPointMode = Alternate;
3537
3538 /* Haswell requires the sample mask to be set in this packet as well as
3539 * in 3DSTATE_SAMPLE_MASK; the values should match.
3540 */
3541
3542 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3543 #if GEN_IS_HASWELL
3544 ps.SampleMask = genX(determine_sample_mask(brw));
3545 #endif
3546
3547 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3548 * it implicitly scales for different GT levels (which have some # of
3549 * PSDs).
3550 *
3551 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3552 */
3553 #if GEN_GEN >= 9
3554 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3555 #elif GEN_GEN >= 8
3556 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3557 #else
3558 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3559 #endif
3560
3561 if (prog_data->base.nr_params > 0)
3562 ps.PushConstantEnable = true;
3563
3564 #if GEN_GEN < 8
3565 /* From the IVB PRM, volume 2 part 1, page 287:
3566 * "This bit is inserted in the PS payload header and made available to
3567 * the DataPort (either via the message header or via header bypass) to
3568 * indicate that oMask data (one or two phases) is included in Render
3569 * Target Write messages. If present, the oMask data is used to mask off
3570 * samples."
3571 */
3572 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3573
3574 /* The hardware wedges if you have this bit set but don't turn on any
3575 * dual source blend factors.
3576 *
3577 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3578 */
3579 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3580 (ctx->Color.BlendEnabled & 1) &&
3581 ctx->Color.Blend[0]._UsesDualSrc;
3582
3583 /* BRW_NEW_FS_PROG_DATA */
3584 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3585 #endif
3586
3587 /* From the documentation for this packet:
3588 * "If the PS kernel does not need the Position XY Offsets to
3589 * compute a Position Value, then this field should be programmed
3590 * to POSOFFSET_NONE."
3591 *
3592 * "SW Recommendation: If the PS kernel needs the Position Offsets
3593 * to compute a Position XY value, this field should match Position
3594 * ZW Interpolation Mode to ensure a consistent position.xyzw
3595 * computation."
3596 *
3597 * We only require XY sample offsets. So, this recommendation doesn't
3598 * look useful at the moment. We might need this in future.
3599 */
3600 if (prog_data->uses_pos_offset)
3601 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3602 else
3603 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3604
3605 ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op;
3606 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3607 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3608 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3609 prog_data->base.dispatch_grf_start_reg;
3610 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3611 prog_data->dispatch_grf_start_reg_2;
3612
3613 ps.KernelStartPointer0 = stage_state->prog_offset;
3614 ps.KernelStartPointer2 = stage_state->prog_offset +
3615 prog_data->prog_offset_2;
3616
3617 if (prog_data->base.total_scratch) {
3618 ps.ScratchSpaceBasePointer =
3619 render_bo(stage_state->scratch_bo,
3620 ffs(stage_state->per_thread_scratch) - 11);
3621 }
3622 }
3623 }
3624
3625 static const struct brw_tracked_state genX(ps_state) = {
3626 .dirty = {
3627 .mesa = _NEW_MULTISAMPLE |
3628 (GEN_GEN < 8 ? _NEW_BUFFERS |
3629 _NEW_COLOR
3630 : 0),
3631 .brw = BRW_NEW_BATCH |
3632 BRW_NEW_BLORP |
3633 BRW_NEW_FS_PROG_DATA,
3634 },
3635 .emit = genX(upload_ps),
3636 };
3637 #endif
3638
3639 /* ---------------------------------------------------------------------- */
3640
3641 #if GEN_GEN >= 7
3642 static void
3643 genX(upload_hs_state)(struct brw_context *brw)
3644 {
3645 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3646 struct brw_stage_state *stage_state = &brw->tcs.base;
3647 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3648 const struct brw_vue_prog_data *vue_prog_data =
3649 brw_vue_prog_data(stage_prog_data);
3650
3651 /* BRW_NEW_TES_PROG_DATA */
3652 struct brw_tcs_prog_data *tcs_prog_data =
3653 brw_tcs_prog_data(stage_prog_data);
3654
3655 if (!tcs_prog_data) {
3656 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3657 } else {
3658 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3659 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3660
3661 hs.InstanceCount = tcs_prog_data->instances - 1;
3662 hs.IncludeVertexHandles = true;
3663
3664 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3665 }
3666 }
3667 }
3668
3669 static const struct brw_tracked_state genX(hs_state) = {
3670 .dirty = {
3671 .mesa = 0,
3672 .brw = BRW_NEW_BATCH |
3673 BRW_NEW_BLORP |
3674 BRW_NEW_TCS_PROG_DATA |
3675 BRW_NEW_TESS_PROGRAMS,
3676 },
3677 .emit = genX(upload_hs_state),
3678 };
3679
3680 static void
3681 genX(upload_ds_state)(struct brw_context *brw)
3682 {
3683 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3684 const struct brw_stage_state *stage_state = &brw->tes.base;
3685 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3686
3687 /* BRW_NEW_TES_PROG_DATA */
3688 const struct brw_tes_prog_data *tes_prog_data =
3689 brw_tes_prog_data(stage_prog_data);
3690 const struct brw_vue_prog_data *vue_prog_data =
3691 brw_vue_prog_data(stage_prog_data);
3692
3693 if (!tes_prog_data) {
3694 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3695 } else {
3696 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3697 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3698
3699 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3700 ds.ComputeWCoordinateEnable =
3701 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3702
3703 #if GEN_GEN >= 8
3704 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3705 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3706 ds.UserClipDistanceCullTestEnableBitmask =
3707 vue_prog_data->cull_distance_mask;
3708 #endif
3709 }
3710 }
3711 }
3712
3713 static const struct brw_tracked_state genX(ds_state) = {
3714 .dirty = {
3715 .mesa = 0,
3716 .brw = BRW_NEW_BATCH |
3717 BRW_NEW_BLORP |
3718 BRW_NEW_TESS_PROGRAMS |
3719 BRW_NEW_TES_PROG_DATA,
3720 },
3721 .emit = genX(upload_ds_state),
3722 };
3723
3724 /* ---------------------------------------------------------------------- */
3725
3726 static void
3727 upload_te_state(struct brw_context *brw)
3728 {
3729 /* BRW_NEW_TESS_PROGRAMS */
3730 bool active = brw->tess_eval_program;
3731
3732 /* BRW_NEW_TES_PROG_DATA */
3733 const struct brw_tes_prog_data *tes_prog_data =
3734 brw_tes_prog_data(brw->tes.base.prog_data);
3735
3736 if (active) {
3737 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3738 te.Partitioning = tes_prog_data->partitioning;
3739 te.OutputTopology = tes_prog_data->output_topology;
3740 te.TEDomain = tes_prog_data->domain;
3741 te.TEEnable = true;
3742 te.MaximumTessellationFactorOdd = 63.0;
3743 te.MaximumTessellationFactorNotOdd = 64.0;
3744 }
3745 } else {
3746 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
3747 }
3748 }
3749
3750 static const struct brw_tracked_state genX(te_state) = {
3751 .dirty = {
3752 .mesa = 0,
3753 .brw = BRW_NEW_BLORP |
3754 BRW_NEW_CONTEXT |
3755 BRW_NEW_TES_PROG_DATA |
3756 BRW_NEW_TESS_PROGRAMS,
3757 },
3758 .emit = upload_te_state,
3759 };
3760
3761 /* ---------------------------------------------------------------------- */
3762
3763 static void
3764 genX(upload_tes_push_constants)(struct brw_context *brw)
3765 {
3766 struct brw_stage_state *stage_state = &brw->tes.base;
3767 /* BRW_NEW_TESS_PROGRAMS */
3768 const struct brw_program *tep = brw_program_const(brw->tess_eval_program);
3769
3770 if (tep) {
3771 /* BRW_NEW_TES_PROG_DATA */
3772 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
3773 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
3774 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
3775 }
3776
3777 upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL);
3778 }
3779
3780 static const struct brw_tracked_state genX(tes_push_constants) = {
3781 .dirty = {
3782 .mesa = _NEW_PROGRAM_CONSTANTS,
3783 .brw = BRW_NEW_BATCH |
3784 BRW_NEW_BLORP |
3785 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3786 BRW_NEW_TESS_PROGRAMS |
3787 BRW_NEW_TES_PROG_DATA,
3788 },
3789 .emit = genX(upload_tes_push_constants),
3790 };
3791
3792 static void
3793 genX(upload_tcs_push_constants)(struct brw_context *brw)
3794 {
3795 struct brw_stage_state *stage_state = &brw->tcs.base;
3796 /* BRW_NEW_TESS_PROGRAMS */
3797 const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program);
3798 bool active = brw->tess_eval_program;
3799
3800 if (active) {
3801 /* BRW_NEW_TCS_PROG_DATA */
3802 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
3803
3804 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
3805 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
3806 }
3807
3808 upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL);
3809 }
3810
3811 static const struct brw_tracked_state genX(tcs_push_constants) = {
3812 .dirty = {
3813 .mesa = _NEW_PROGRAM_CONSTANTS,
3814 .brw = BRW_NEW_BATCH |
3815 BRW_NEW_BLORP |
3816 BRW_NEW_DEFAULT_TESS_LEVELS |
3817 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3818 BRW_NEW_TESS_PROGRAMS |
3819 BRW_NEW_TCS_PROG_DATA,
3820 },
3821 .emit = genX(upload_tcs_push_constants),
3822 };
3823
3824 #endif
3825
3826 /* ---------------------------------------------------------------------- */
3827
3828 #if GEN_GEN >= 7
3829 static void
3830 genX(upload_cs_state)(struct brw_context *brw)
3831 {
3832 if (!brw->cs.base.prog_data)
3833 return;
3834
3835 uint32_t offset;
3836 uint32_t *desc = (uint32_t*) brw_state_batch(
3837 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
3838 &offset);
3839
3840 struct brw_stage_state *stage_state = &brw->cs.base;
3841 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
3842 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3843 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3844
3845 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
3846 brw_emit_buffer_surface_state(
3847 brw, &stage_state->surf_offset[
3848 prog_data->binding_table.shader_time_start],
3849 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
3850 brw->shader_time.bo->size, 1, true);
3851 }
3852
3853 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
3854 32, &stage_state->bind_bo_offset);
3855
3856 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
3857 if (prog_data->total_scratch) {
3858 uint32_t bo_offset;
3859
3860 if (GEN_GEN >= 8) {
3861 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
3862 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
3863 */
3864 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
3865 } else if (GEN_IS_HASWELL) {
3866 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
3867 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
3868 */
3869 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
3870 } else {
3871 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
3872 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
3873 */
3874 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
3875 }
3876 vfe.ScratchSpaceBasePointer =
3877 render_bo(stage_state->scratch_bo, bo_offset);
3878 }
3879
3880 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
3881 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
3882 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
3883 vfe.ResetGatewayTimer =
3884 Resettingrelativetimerandlatchingtheglobaltimestamp;
3885 #if GEN_GEN < 9
3886 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
3887 #endif
3888 #if GEN_GEN == 7
3889 vfe.GPGPUMode = 1;
3890 #endif
3891
3892 /* We are uploading duplicated copies of push constant uniforms for each
3893 * thread. Although the local id data needs to vary per thread, it won't
3894 * change for other uniform data. Unfortunately this duplication is
3895 * required for gen7. As of Haswell, this duplication can be avoided,
3896 * but this older mechanism with duplicated data continues to work.
3897 *
3898 * FINISHME: As of Haswell, we could make use of the
3899 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
3900 * field to only store one copy of uniform data.
3901 *
3902 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
3903 * which is described in the GPGPU_WALKER command and in the Broadwell
3904 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
3905 * Operations => GPGPU Mode => Indirect Payload Storage.
3906 *
3907 * Note: The constant data is built in brw_upload_cs_push_constants
3908 * below.
3909 */
3910 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
3911
3912 const uint32_t vfe_curbe_allocation =
3913 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
3914 cs_prog_data->push.cross_thread.regs, 2);
3915 vfe.CURBEAllocationSize = vfe_curbe_allocation;
3916 }
3917
3918 if (cs_prog_data->push.total.size > 0) {
3919 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
3920 curbe.CURBETotalDataLength =
3921 ALIGN(cs_prog_data->push.total.size, 64);
3922 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
3923 }
3924 }
3925
3926 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
3927 memcpy(bind, stage_state->surf_offset,
3928 prog_data->binding_table.size_bytes);
3929 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
3930 .KernelStartPointer = brw->cs.base.prog_offset,
3931 .SamplerStatePointer = stage_state->sampler_offset,
3932 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
3933 .BindingTablePointer = stage_state->bind_bo_offset,
3934 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
3935 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
3936 .SharedLocalMemorySize = encode_slm_size(devinfo->gen,
3937 prog_data->total_shared),
3938 .BarrierEnable = cs_prog_data->uses_barrier,
3939 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3940 .CrossThreadConstantDataReadLength =
3941 cs_prog_data->push.cross_thread.regs,
3942 #endif
3943 };
3944
3945 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
3946
3947 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
3948 load.InterfaceDescriptorTotalLength =
3949 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3950 load.InterfaceDescriptorDataStartAddress = offset;
3951 }
3952 }
3953
3954 static const struct brw_tracked_state genX(cs_state) = {
3955 .dirty = {
3956 .mesa = _NEW_PROGRAM_CONSTANTS,
3957 .brw = BRW_NEW_BATCH |
3958 BRW_NEW_BLORP |
3959 BRW_NEW_CS_PROG_DATA |
3960 BRW_NEW_SAMPLER_STATE_TABLE |
3961 BRW_NEW_SURFACES,
3962 },
3963 .emit = genX(upload_cs_state)
3964 };
3965
3966 #endif
3967
3968 /* ---------------------------------------------------------------------- */
3969
3970 #if GEN_GEN >= 8
3971 static void
3972 genX(upload_raster)(struct brw_context *brw)
3973 {
3974 struct gl_context *ctx = &brw->ctx;
3975
3976 /* _NEW_BUFFERS */
3977 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3978
3979 /* _NEW_POLYGON */
3980 struct gl_polygon_attrib *polygon = &ctx->Polygon;
3981
3982 /* _NEW_POINT */
3983 struct gl_point_attrib *point = &ctx->Point;
3984
3985 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
3986 if (brw->polygon_front_bit == render_to_fbo)
3987 raster.FrontWinding = CounterClockwise;
3988
3989 if (polygon->CullFlag) {
3990 switch (polygon->CullFaceMode) {
3991 case GL_FRONT:
3992 raster.CullMode = CULLMODE_FRONT;
3993 break;
3994 case GL_BACK:
3995 raster.CullMode = CULLMODE_BACK;
3996 break;
3997 case GL_FRONT_AND_BACK:
3998 raster.CullMode = CULLMODE_BOTH;
3999 break;
4000 default:
4001 unreachable("not reached");
4002 }
4003 } else {
4004 raster.CullMode = CULLMODE_NONE;
4005 }
4006
4007 point->SmoothFlag = raster.SmoothPointEnable;
4008
4009 raster.DXMultisampleRasterizationEnable =
4010 _mesa_is_multisample_enabled(ctx);
4011
4012 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4013 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4014 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4015
4016 switch (polygon->FrontMode) {
4017 case GL_FILL:
4018 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4019 break;
4020 case GL_LINE:
4021 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4022 break;
4023 case GL_POINT:
4024 raster.FrontFaceFillMode = FILL_MODE_POINT;
4025 break;
4026 default:
4027 unreachable("not reached");
4028 }
4029
4030 switch (polygon->BackMode) {
4031 case GL_FILL:
4032 raster.BackFaceFillMode = FILL_MODE_SOLID;
4033 break;
4034 case GL_LINE:
4035 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4036 break;
4037 case GL_POINT:
4038 raster.BackFaceFillMode = FILL_MODE_POINT;
4039 break;
4040 default:
4041 unreachable("not reached");
4042 }
4043
4044 /* _NEW_LINE */
4045 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4046
4047 /* _NEW_SCISSOR */
4048 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4049
4050 /* _NEW_TRANSFORM */
4051 if (!ctx->Transform.DepthClamp) {
4052 #if GEN_GEN >= 9
4053 raster.ViewportZFarClipTestEnable = true;
4054 raster.ViewportZNearClipTestEnable = true;
4055 #else
4056 raster.ViewportZClipTestEnable = true;
4057 #endif
4058 }
4059
4060 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4061 #if GEN_GEN >= 9
4062 raster.ConservativeRasterizationEnable =
4063 ctx->IntelConservativeRasterization;
4064 #endif
4065
4066 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4067 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4068
4069 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4070 }
4071 }
4072
4073 static const struct brw_tracked_state genX(raster_state) = {
4074 .dirty = {
4075 .mesa = _NEW_BUFFERS |
4076 _NEW_LINE |
4077 _NEW_MULTISAMPLE |
4078 _NEW_POINT |
4079 _NEW_POLYGON |
4080 _NEW_SCISSOR |
4081 _NEW_TRANSFORM,
4082 .brw = BRW_NEW_BLORP |
4083 BRW_NEW_CONTEXT |
4084 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4085 },
4086 .emit = genX(upload_raster),
4087 };
4088 #endif
4089
4090 /* ---------------------------------------------------------------------- */
4091
4092 #if GEN_GEN >= 8
4093 static void
4094 genX(upload_ps_extra)(struct brw_context *brw)
4095 {
4096 UNUSED struct gl_context *ctx = &brw->ctx;
4097
4098 const struct brw_wm_prog_data *prog_data =
4099 brw_wm_prog_data(brw->wm.base.prog_data);
4100
4101 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4102 psx.PixelShaderValid = true;
4103 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4104 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4105 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4106 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4107 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4108 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4109
4110 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4111 if (prog_data->uses_sample_mask) {
4112 #if GEN_GEN >= 9
4113 if (prog_data->post_depth_coverage)
4114 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4115 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4116 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4117 else
4118 psx.InputCoverageMaskState = ICMS_NORMAL;
4119 #else
4120 psx.PixelShaderUsesInputCoverageMask = true;
4121 #endif
4122 }
4123
4124 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4125 #if GEN_GEN >= 9
4126 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4127 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4128 #endif
4129
4130 /* The stricter cross-primitive coherency guarantees that the hardware
4131 * gives us with the "Accesses UAV" bit set for at least one shader stage
4132 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4133 * are redundant within the current image, atomic counter and SSBO GL
4134 * APIs, which all have very loose ordering and coherency requirements
4135 * and generally rely on the application to insert explicit barriers when
4136 * a shader invocation is expected to see the memory writes performed by
4137 * the invocations of some previous primitive. Regardless of the value
4138 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4139 * cause an in most cases useless DC flush when the lowermost stage with
4140 * the bit set finishes execution.
4141 *
4142 * It would be nice to disable it, but in some cases we can't because on
4143 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4144 * signal (which could be set independently from the coherency mechanism
4145 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4146 * determine whether the hardware skips execution of the fragment shader
4147 * or not via the ThreadDispatchEnable signal. However if we know that
4148 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4149 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4150 * difference so we may just disable it here.
4151 *
4152 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4153 * take into account KillPixels when no depth or stencil writes are
4154 * enabled. In order for occlusion queries to work correctly with no
4155 * attachments, we need to force-enable here.
4156 *
4157 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4158 * _NEW_COLOR
4159 */
4160 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4161 !brw_color_buffer_write_enabled(brw))
4162 psx.PixelShaderHasUAV = true;
4163 }
4164 }
4165
4166 const struct brw_tracked_state genX(ps_extra) = {
4167 .dirty = {
4168 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4169 .brw = BRW_NEW_BLORP |
4170 BRW_NEW_CONTEXT |
4171 BRW_NEW_FRAGMENT_PROGRAM |
4172 BRW_NEW_FS_PROG_DATA |
4173 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4174 },
4175 .emit = genX(upload_ps_extra),
4176 };
4177 #endif
4178
4179 /* ---------------------------------------------------------------------- */
4180
4181 #if GEN_GEN >= 8
4182 static void
4183 genX(upload_ps_blend)(struct brw_context *brw)
4184 {
4185 struct gl_context *ctx = &brw->ctx;
4186
4187 /* _NEW_BUFFERS */
4188 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4189 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4190
4191 /* _NEW_COLOR */
4192 struct gl_colorbuffer_attrib *color = &ctx->Color;
4193
4194 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4195 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4196 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4197
4198 bool alpha_to_one = false;
4199
4200 if (!buffer0_is_integer) {
4201 /* _NEW_MULTISAMPLE */
4202
4203 if (_mesa_is_multisample_enabled(ctx)) {
4204 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4205 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4206 }
4207
4208 pb.AlphaTestEnable = color->AlphaEnabled;
4209 }
4210
4211 /* Used for implementing the following bit of GL_EXT_texture_integer:
4212 * "Per-fragment operations that require floating-point color
4213 * components, including multisample alpha operations, alpha test,
4214 * blending, and dithering, have no effect when the corresponding
4215 * colors are written to an integer color buffer."
4216 *
4217 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4218 * "If drawbuffer zero is not NONE and the buffer it references has an
4219 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4220 * operations are skipped."
4221 */
4222 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4223 GLenum eqRGB = color->Blend[0].EquationRGB;
4224 GLenum eqA = color->Blend[0].EquationA;
4225 GLenum srcRGB = color->Blend[0].SrcRGB;
4226 GLenum dstRGB = color->Blend[0].DstRGB;
4227 GLenum srcA = color->Blend[0].SrcA;
4228 GLenum dstA = color->Blend[0].DstA;
4229
4230 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4231 srcRGB = dstRGB = GL_ONE;
4232
4233 if (eqA == GL_MIN || eqA == GL_MAX)
4234 srcA = dstA = GL_ONE;
4235
4236 /* Due to hardware limitations, the destination may have information
4237 * in an alpha channel even when the format specifies no alpha
4238 * channel. In order to avoid getting any incorrect blending due to
4239 * that alpha channel, coerce the blend factors to values that will
4240 * not read the alpha channel, but will instead use the correct
4241 * implicit value for alpha.
4242 */
4243 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4244 GL_TEXTURE_ALPHA_TYPE)) {
4245 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4246 srcA = brw_fix_xRGB_alpha(srcA);
4247 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4248 dstA = brw_fix_xRGB_alpha(dstA);
4249 }
4250
4251 /* Alpha to One doesn't work with Dual Color Blending. Override
4252 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4253 */
4254 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4255 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4256 srcA = fix_dual_blend_alpha_to_one(srcA);
4257 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4258 dstA = fix_dual_blend_alpha_to_one(dstA);
4259 }
4260
4261 pb.ColorBufferBlendEnable = true;
4262 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4263 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4264 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4265 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4266
4267 pb.IndependentAlphaBlendEnable =
4268 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4269 }
4270 }
4271 }
4272
4273 static const struct brw_tracked_state genX(ps_blend) = {
4274 .dirty = {
4275 .mesa = _NEW_BUFFERS |
4276 _NEW_COLOR |
4277 _NEW_MULTISAMPLE,
4278 .brw = BRW_NEW_BLORP |
4279 BRW_NEW_CONTEXT |
4280 BRW_NEW_FRAGMENT_PROGRAM,
4281 },
4282 .emit = genX(upload_ps_blend)
4283 };
4284 #endif
4285
4286 /* ---------------------------------------------------------------------- */
4287
4288 #if GEN_GEN >= 8
4289 static void
4290 genX(emit_vf_topology)(struct brw_context *brw)
4291 {
4292 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4293 vftopo.PrimitiveTopologyType = brw->primitive;
4294 }
4295 }
4296
4297 static const struct brw_tracked_state genX(vf_topology) = {
4298 .dirty = {
4299 .mesa = 0,
4300 .brw = BRW_NEW_BLORP |
4301 BRW_NEW_PRIMITIVE,
4302 },
4303 .emit = genX(emit_vf_topology),
4304 };
4305 #endif
4306
4307 /* ---------------------------------------------------------------------- */
4308
4309 #if GEN_GEN >= 7
4310 static void
4311 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4312 struct brw_bo *bo,
4313 uint32_t offset_in_bytes,
4314 uint32_t report_id)
4315 {
4316 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4317 mi_rpc.MemoryAddress = instruction_bo(bo, offset_in_bytes);
4318 mi_rpc.ReportID = report_id;
4319 }
4320 }
4321 #endif
4322
4323 /* ---------------------------------------------------------------------- */
4324
4325 /**
4326 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4327 */
4328 static void
4329 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4330 struct brw_stage_state *stage_state)
4331 {
4332 #if GEN_GEN >= 7
4333 static const uint16_t packet_headers[] = {
4334 [MESA_SHADER_VERTEX] = 43,
4335 [MESA_SHADER_TESS_CTRL] = 44,
4336 [MESA_SHADER_TESS_EVAL] = 45,
4337 [MESA_SHADER_GEOMETRY] = 46,
4338 [MESA_SHADER_FRAGMENT] = 47,
4339 };
4340
4341 /* Ivybridge requires a workaround flush before VS packets. */
4342 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4343 stage_state->stage == MESA_SHADER_VERTEX) {
4344 gen7_emit_vs_workaround_flush(brw);
4345 }
4346
4347 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4348 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4349 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4350 }
4351 #endif
4352 }
4353
4354 UNUSED static bool
4355 has_component(mesa_format format, int i)
4356 {
4357 if (_mesa_is_format_color_format(format))
4358 return _mesa_format_has_color_component(format, i);
4359
4360 /* depth and stencil have only one component */
4361 return i == 0;
4362 }
4363
4364 /**
4365 * Upload SAMPLER_BORDER_COLOR_STATE.
4366 */
4367 static void
4368 genX(upload_default_color)(struct brw_context *brw,
4369 const struct gl_sampler_object *sampler,
4370 mesa_format format, GLenum base_format,
4371 bool is_integer_format, bool is_stencil_sampling,
4372 uint32_t *sdc_offset)
4373 {
4374 union gl_color_union color;
4375
4376 switch (base_format) {
4377 case GL_DEPTH_COMPONENT:
4378 /* GL specs that border color for depth textures is taken from the
4379 * R channel, while the hardware uses A. Spam R into all the
4380 * channels for safety.
4381 */
4382 color.ui[0] = sampler->BorderColor.ui[0];
4383 color.ui[1] = sampler->BorderColor.ui[0];
4384 color.ui[2] = sampler->BorderColor.ui[0];
4385 color.ui[3] = sampler->BorderColor.ui[0];
4386 break;
4387 case GL_ALPHA:
4388 color.ui[0] = 0u;
4389 color.ui[1] = 0u;
4390 color.ui[2] = 0u;
4391 color.ui[3] = sampler->BorderColor.ui[3];
4392 break;
4393 case GL_INTENSITY:
4394 color.ui[0] = sampler->BorderColor.ui[0];
4395 color.ui[1] = sampler->BorderColor.ui[0];
4396 color.ui[2] = sampler->BorderColor.ui[0];
4397 color.ui[3] = sampler->BorderColor.ui[0];
4398 break;
4399 case GL_LUMINANCE:
4400 color.ui[0] = sampler->BorderColor.ui[0];
4401 color.ui[1] = sampler->BorderColor.ui[0];
4402 color.ui[2] = sampler->BorderColor.ui[0];
4403 color.ui[3] = float_as_int(1.0);
4404 break;
4405 case GL_LUMINANCE_ALPHA:
4406 color.ui[0] = sampler->BorderColor.ui[0];
4407 color.ui[1] = sampler->BorderColor.ui[0];
4408 color.ui[2] = sampler->BorderColor.ui[0];
4409 color.ui[3] = sampler->BorderColor.ui[3];
4410 break;
4411 default:
4412 color.ui[0] = sampler->BorderColor.ui[0];
4413 color.ui[1] = sampler->BorderColor.ui[1];
4414 color.ui[2] = sampler->BorderColor.ui[2];
4415 color.ui[3] = sampler->BorderColor.ui[3];
4416 break;
4417 }
4418
4419 /* In some cases we use an RGBA surface format for GL RGB textures,
4420 * where we've initialized the A channel to 1.0. We also have to set
4421 * the border color alpha to 1.0 in that case.
4422 */
4423 if (base_format == GL_RGB)
4424 color.ui[3] = float_as_int(1.0);
4425
4426 int alignment = 32;
4427 if (brw->gen >= 8) {
4428 alignment = 64;
4429 } else if (brw->is_haswell && (is_integer_format || is_stencil_sampling)) {
4430 alignment = 512;
4431 }
4432
4433 uint32_t *sdc = brw_state_batch(
4434 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4435 alignment, sdc_offset);
4436
4437 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4438
4439 #define ASSIGN(dst, src) \
4440 do { \
4441 dst = src; \
4442 } while (0)
4443
4444 #define ASSIGNu16(dst, src) \
4445 do { \
4446 dst = (uint16_t)src; \
4447 } while (0)
4448
4449 #define ASSIGNu8(dst, src) \
4450 do { \
4451 dst = (uint8_t)src; \
4452 } while (0)
4453
4454 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4455 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4456 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4457 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4458 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4459
4460 #if GEN_GEN >= 8
4461 /* On Broadwell, the border color is represented as four 32-bit floats,
4462 * integers, or unsigned values, interpreted according to the surface
4463 * format. This matches the sampler->BorderColor union exactly; just
4464 * memcpy the values.
4465 */
4466 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4467 #elif GEN_IS_HASWELL
4468 if (is_integer_format || is_stencil_sampling) {
4469 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4470 const int bits_per_channel =
4471 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4472
4473 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4474 * "If any color channel is missing from the surface format,
4475 * corresponding border color should be programmed as zero and if
4476 * alpha channel is missing, corresponding Alpha border color should
4477 * be programmed as 1."
4478 */
4479 unsigned c[4] = { 0, 0, 0, 1 };
4480 for (int i = 0; i < 4; i++) {
4481 if (has_component(format, i))
4482 c[i] = color.ui[i];
4483 }
4484
4485 switch (bits_per_channel) {
4486 case 8:
4487 /* Copy RGBA in order. */
4488 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4489 break;
4490 case 10:
4491 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4492 case 16:
4493 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4494 break;
4495 case 32:
4496 if (base_format == GL_RG) {
4497 /* Careful inspection of the tables reveals that for RG32 formats,
4498 * the green channel needs to go where blue normally belongs.
4499 */
4500 state.BorderColor32bitRed = c[0];
4501 state.BorderColor32bitBlue = c[1];
4502 state.BorderColor32bitAlpha = 1;
4503 } else {
4504 /* Copy RGBA in order. */
4505 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4506 }
4507 break;
4508 default:
4509 assert(!"Invalid number of bits per channel in integer format.");
4510 break;
4511 }
4512 } else {
4513 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4514 }
4515 #elif GEN_GEN == 5 || GEN_GEN == 6
4516 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4517 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4518 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4519
4520 #define MESA_FLOAT_TO_HALF(dst, src) \
4521 dst = _mesa_float_to_half(src);
4522
4523 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4524
4525 #undef MESA_FLOAT_TO_HALF
4526
4527 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4528 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4529 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4530 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4531
4532 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4533 #elif GEN_GEN == 4
4534 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4535 #else
4536 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4537 #endif
4538
4539 #undef ASSIGN
4540 #undef BORDER_COLOR_ATTR
4541
4542 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4543 }
4544
4545 static uint32_t
4546 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4547 {
4548 switch (wrap) {
4549 case GL_REPEAT:
4550 return TCM_WRAP;
4551 case GL_CLAMP:
4552 #if GEN_GEN >= 8
4553 /* GL_CLAMP is the weird mode where coordinates are clamped to
4554 * [0.0, 1.0], so linear filtering of coordinates outside of
4555 * [0.0, 1.0] give you half edge texel value and half border
4556 * color.
4557 *
4558 * Gen8+ supports this natively.
4559 */
4560 return TCM_HALF_BORDER;
4561 #else
4562 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4563 * and set clamp_border here, which gets the result desired.
4564 * We just use clamp(_to_edge) for nearest, because for nearest
4565 * clamping to 1.0 gives border color instead of the desired
4566 * edge texels.
4567 */
4568 if (using_nearest)
4569 return TCM_CLAMP;
4570 else
4571 return TCM_CLAMP_BORDER;
4572 #endif
4573 case GL_CLAMP_TO_EDGE:
4574 return TCM_CLAMP;
4575 case GL_CLAMP_TO_BORDER:
4576 return TCM_CLAMP_BORDER;
4577 case GL_MIRRORED_REPEAT:
4578 return TCM_MIRROR;
4579 case GL_MIRROR_CLAMP_TO_EDGE:
4580 return TCM_MIRROR_ONCE;
4581 default:
4582 return TCM_WRAP;
4583 }
4584 }
4585
4586 /**
4587 * Return true if the given wrap mode requires the border color to exist.
4588 */
4589 static bool
4590 wrap_mode_needs_border_color(unsigned wrap_mode)
4591 {
4592 #if GEN_GEN >= 8
4593 return wrap_mode == TCM_CLAMP_BORDER ||
4594 wrap_mode == TCM_HALF_BORDER;
4595 #else
4596 return wrap_mode == TCM_CLAMP_BORDER;
4597 #endif
4598 }
4599
4600 /**
4601 * Sets the sampler state for a single unit based off of the sampler key
4602 * entry.
4603 */
4604 static void
4605 genX(update_sampler_state)(struct brw_context *brw,
4606 GLenum target, bool tex_cube_map_seamless,
4607 GLfloat tex_unit_lod_bias,
4608 mesa_format format, GLenum base_format,
4609 const struct gl_texture_object *texObj,
4610 const struct gl_sampler_object *sampler,
4611 uint32_t *sampler_state,
4612 uint32_t batch_offset_for_sampler_state)
4613 {
4614 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4615
4616 /* Select min and mip filters. */
4617 switch (sampler->MinFilter) {
4618 case GL_NEAREST:
4619 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4620 samp_st.MipModeFilter = MIPFILTER_NONE;
4621 break;
4622 case GL_LINEAR:
4623 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4624 samp_st.MipModeFilter = MIPFILTER_NONE;
4625 break;
4626 case GL_NEAREST_MIPMAP_NEAREST:
4627 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4628 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4629 break;
4630 case GL_LINEAR_MIPMAP_NEAREST:
4631 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4632 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4633 break;
4634 case GL_NEAREST_MIPMAP_LINEAR:
4635 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4636 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4637 break;
4638 case GL_LINEAR_MIPMAP_LINEAR:
4639 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4640 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4641 break;
4642 default:
4643 unreachable("not reached");
4644 }
4645
4646 /* Select mag filter. */
4647 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
4648 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
4649
4650 /* Enable anisotropic filtering if desired. */
4651 samp_st.MaximumAnisotropy = RATIO21;
4652
4653 if (sampler->MaxAnisotropy > 1.0f) {
4654 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
4655 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
4656 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
4657 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
4658
4659 if (sampler->MaxAnisotropy > 2.0f) {
4660 samp_st.MaximumAnisotropy =
4661 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
4662 }
4663 }
4664
4665 /* Set address rounding bits if not using nearest filtering. */
4666 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
4667 samp_st.UAddressMinFilterRoundingEnable = true;
4668 samp_st.VAddressMinFilterRoundingEnable = true;
4669 samp_st.RAddressMinFilterRoundingEnable = true;
4670 }
4671
4672 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
4673 samp_st.UAddressMagFilterRoundingEnable = true;
4674 samp_st.VAddressMagFilterRoundingEnable = true;
4675 samp_st.RAddressMagFilterRoundingEnable = true;
4676 }
4677
4678 bool either_nearest =
4679 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
4680 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
4681 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
4682 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
4683
4684 if (target == GL_TEXTURE_CUBE_MAP ||
4685 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
4686 /* Cube maps must use the same wrap mode for all three coordinate
4687 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
4688 *
4689 * Ivybridge and Baytrail seem to have problems with CUBE mode and
4690 * integer formats. Fall back to CLAMP for now.
4691 */
4692 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
4693 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
4694 wrap_s = TCM_CUBE;
4695 wrap_t = TCM_CUBE;
4696 wrap_r = TCM_CUBE;
4697 } else {
4698 wrap_s = TCM_CLAMP;
4699 wrap_t = TCM_CLAMP;
4700 wrap_r = TCM_CLAMP;
4701 }
4702 } else if (target == GL_TEXTURE_1D) {
4703 /* There's a bug in 1D texture sampling - it actually pays
4704 * attention to the wrap_t value, though it should not.
4705 * Override the wrap_t value here to GL_REPEAT to keep
4706 * any nonexistent border pixels from floating in.
4707 */
4708 wrap_t = TCM_WRAP;
4709 }
4710
4711 samp_st.TCXAddressControlMode = wrap_s;
4712 samp_st.TCYAddressControlMode = wrap_t;
4713 samp_st.TCZAddressControlMode = wrap_r;
4714
4715 samp_st.ShadowFunction =
4716 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
4717 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
4718
4719 #if GEN_GEN >= 7
4720 /* Set shadow function. */
4721 samp_st.AnisotropicAlgorithm =
4722 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
4723 EWAApproximation : LEGACY;
4724 #endif
4725
4726 #if GEN_GEN >= 6
4727 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
4728 #endif
4729
4730 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
4731 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
4732 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
4733 samp_st.TextureLODBias =
4734 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
4735
4736 #if GEN_GEN == 6
4737 samp_st.BaseMipLevel =
4738 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
4739 samp_st.MinandMagStateNotEqual =
4740 samp_st.MinModeFilter != samp_st.MagModeFilter;
4741 #endif
4742
4743 /* Upload the border color if necessary. If not, just point it at
4744 * offset 0 (the start of the batch) - the color should be ignored,
4745 * but that address won't fault in case something reads it anyway.
4746 */
4747 uint32_t border_color_offset = 0;
4748 if (wrap_mode_needs_border_color(wrap_s) ||
4749 wrap_mode_needs_border_color(wrap_t) ||
4750 wrap_mode_needs_border_color(wrap_r)) {
4751 genX(upload_default_color)(brw, sampler, format, base_format,
4752 texObj->_IsIntegerFormat,
4753 texObj->StencilSampling,
4754 &border_color_offset);
4755 }
4756
4757 samp_st.BorderColorPointer = border_color_offset;
4758
4759 if (GEN_GEN < 6) {
4760 samp_st.BorderColorPointer += brw->batch.bo->offset64; /* reloc */
4761 brw_emit_reloc(&brw->batch, batch_offset_for_sampler_state + 8,
4762 brw->batch.bo, border_color_offset,
4763 I915_GEM_DOMAIN_SAMPLER, 0);
4764 }
4765
4766 #if GEN_GEN >= 8
4767 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
4768 #else
4769 samp_st.LODPreClampEnable = true;
4770 #endif
4771
4772 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
4773 }
4774
4775 static void
4776 update_sampler_state(struct brw_context *brw,
4777 int unit,
4778 uint32_t *sampler_state,
4779 uint32_t batch_offset_for_sampler_state)
4780 {
4781 struct gl_context *ctx = &brw->ctx;
4782 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
4783 const struct gl_texture_object *texObj = texUnit->_Current;
4784 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
4785
4786 /* These don't use samplers at all. */
4787 if (texObj->Target == GL_TEXTURE_BUFFER)
4788 return;
4789
4790 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
4791 genX(update_sampler_state)(brw, texObj->Target,
4792 ctx->Texture.CubeMapSeamless,
4793 texUnit->LodBias,
4794 firstImage->TexFormat, firstImage->_BaseFormat,
4795 texObj, sampler,
4796 sampler_state, batch_offset_for_sampler_state);
4797 }
4798
4799 static void
4800 genX(upload_sampler_state_table)(struct brw_context *brw,
4801 struct gl_program *prog,
4802 struct brw_stage_state *stage_state)
4803 {
4804 struct gl_context *ctx = &brw->ctx;
4805 uint32_t sampler_count = stage_state->sampler_count;
4806
4807 GLbitfield SamplersUsed = prog->SamplersUsed;
4808
4809 if (sampler_count == 0)
4810 return;
4811
4812 /* SAMPLER_STATE is 4 DWords on all platforms. */
4813 const int dwords = GENX(SAMPLER_STATE_length);
4814 const int size_in_bytes = dwords * sizeof(uint32_t);
4815
4816 uint32_t *sampler_state = brw_state_batch(brw,
4817 sampler_count * size_in_bytes,
4818 32, &stage_state->sampler_offset);
4819 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
4820
4821 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
4822
4823 for (unsigned s = 0; s < sampler_count; s++) {
4824 if (SamplersUsed & (1 << s)) {
4825 const unsigned unit = prog->SamplerUnits[s];
4826 if (ctx->Texture.Unit[unit]._Current) {
4827 update_sampler_state(brw, unit, sampler_state,
4828 batch_offset_for_sampler_state);
4829 }
4830 }
4831
4832 sampler_state += dwords;
4833 batch_offset_for_sampler_state += size_in_bytes;
4834 }
4835
4836 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
4837 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
4838 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
4839 } else {
4840 /* Flag that the sampler state table pointer has changed; later atoms
4841 * will handle it.
4842 */
4843 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
4844 }
4845 }
4846
4847 static void
4848 genX(upload_fs_samplers)(struct brw_context *brw)
4849 {
4850 /* BRW_NEW_FRAGMENT_PROGRAM */
4851 struct gl_program *fs = (struct gl_program *) brw->fragment_program;
4852 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
4853 }
4854
4855 static const struct brw_tracked_state genX(fs_samplers) = {
4856 .dirty = {
4857 .mesa = _NEW_TEXTURE,
4858 .brw = BRW_NEW_BATCH |
4859 BRW_NEW_BLORP |
4860 BRW_NEW_FRAGMENT_PROGRAM,
4861 },
4862 .emit = genX(upload_fs_samplers),
4863 };
4864
4865 static void
4866 genX(upload_vs_samplers)(struct brw_context *brw)
4867 {
4868 /* BRW_NEW_VERTEX_PROGRAM */
4869 struct gl_program *vs = (struct gl_program *) brw->vertex_program;
4870 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
4871 }
4872
4873 static const struct brw_tracked_state genX(vs_samplers) = {
4874 .dirty = {
4875 .mesa = _NEW_TEXTURE,
4876 .brw = BRW_NEW_BATCH |
4877 BRW_NEW_BLORP |
4878 BRW_NEW_VERTEX_PROGRAM,
4879 },
4880 .emit = genX(upload_vs_samplers),
4881 };
4882
4883 #if GEN_GEN >= 6
4884 static void
4885 genX(upload_gs_samplers)(struct brw_context *brw)
4886 {
4887 /* BRW_NEW_GEOMETRY_PROGRAM */
4888 struct gl_program *gs = (struct gl_program *) brw->geometry_program;
4889 if (!gs)
4890 return;
4891
4892 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
4893 }
4894
4895
4896 static const struct brw_tracked_state genX(gs_samplers) = {
4897 .dirty = {
4898 .mesa = _NEW_TEXTURE,
4899 .brw = BRW_NEW_BATCH |
4900 BRW_NEW_BLORP |
4901 BRW_NEW_GEOMETRY_PROGRAM,
4902 },
4903 .emit = genX(upload_gs_samplers),
4904 };
4905 #endif
4906
4907 #if GEN_GEN >= 7
4908 static void
4909 genX(upload_tcs_samplers)(struct brw_context *brw)
4910 {
4911 /* BRW_NEW_TESS_PROGRAMS */
4912 struct gl_program *tcs = (struct gl_program *) brw->tess_ctrl_program;
4913 if (!tcs)
4914 return;
4915
4916 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
4917 }
4918
4919 static const struct brw_tracked_state genX(tcs_samplers) = {
4920 .dirty = {
4921 .mesa = _NEW_TEXTURE,
4922 .brw = BRW_NEW_BATCH |
4923 BRW_NEW_BLORP |
4924 BRW_NEW_TESS_PROGRAMS,
4925 },
4926 .emit = genX(upload_tcs_samplers),
4927 };
4928 #endif
4929
4930 #if GEN_GEN >= 7
4931 static void
4932 genX(upload_tes_samplers)(struct brw_context *brw)
4933 {
4934 /* BRW_NEW_TESS_PROGRAMS */
4935 struct gl_program *tes = (struct gl_program *) brw->tess_eval_program;
4936 if (!tes)
4937 return;
4938
4939 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
4940 }
4941
4942 static const struct brw_tracked_state genX(tes_samplers) = {
4943 .dirty = {
4944 .mesa = _NEW_TEXTURE,
4945 .brw = BRW_NEW_BATCH |
4946 BRW_NEW_BLORP |
4947 BRW_NEW_TESS_PROGRAMS,
4948 },
4949 .emit = genX(upload_tes_samplers),
4950 };
4951 #endif
4952
4953 #if GEN_GEN >= 7
4954 static void
4955 genX(upload_cs_samplers)(struct brw_context *brw)
4956 {
4957 /* BRW_NEW_COMPUTE_PROGRAM */
4958 struct gl_program *cs = (struct gl_program *) brw->compute_program;
4959 if (!cs)
4960 return;
4961
4962 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
4963 }
4964
4965 const struct brw_tracked_state genX(cs_samplers) = {
4966 .dirty = {
4967 .mesa = _NEW_TEXTURE,
4968 .brw = BRW_NEW_BATCH |
4969 BRW_NEW_BLORP |
4970 BRW_NEW_COMPUTE_PROGRAM,
4971 },
4972 .emit = genX(upload_cs_samplers),
4973 };
4974 #endif
4975
4976 /* ---------------------------------------------------------------------- */
4977
4978 #if GEN_GEN <= 5
4979
4980 static void genX(upload_blend_constant_color)(struct brw_context *brw)
4981 {
4982 struct gl_context *ctx = &brw->ctx;
4983
4984 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
4985 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
4986 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
4987 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
4988 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
4989 }
4990 }
4991
4992 static const struct brw_tracked_state genX(blend_constant_color) = {
4993 .dirty = {
4994 .mesa = _NEW_COLOR,
4995 .brw = BRW_NEW_CONTEXT |
4996 BRW_NEW_BLORP,
4997 },
4998 .emit = genX(upload_blend_constant_color)
4999 };
5000 #endif
5001
5002 /* ---------------------------------------------------------------------- */
5003
5004 void
5005 genX(init_atoms)(struct brw_context *brw)
5006 {
5007 #if GEN_GEN < 6
5008 static const struct brw_tracked_state *render_atoms[] =
5009 {
5010 /* Once all the programs are done, we know how large urb entry
5011 * sizes need to be and can decide if we need to change the urb
5012 * layout.
5013 */
5014 &brw_curbe_offsets,
5015 &brw_recalculate_urb_fence,
5016
5017 &genX(cc_vp),
5018 &genX(color_calc_state),
5019
5020 /* Surface state setup. Must come before the VS/WM unit. The binding
5021 * table upload must be last.
5022 */
5023 &brw_vs_pull_constants,
5024 &brw_wm_pull_constants,
5025 &brw_renderbuffer_surfaces,
5026 &brw_renderbuffer_read_surfaces,
5027 &brw_texture_surfaces,
5028 &brw_vs_binding_table,
5029 &brw_wm_binding_table,
5030
5031 &genX(fs_samplers),
5032 &genX(vs_samplers),
5033
5034 /* These set up state for brw_psp_urb_cbs */
5035 &brw_wm_unit,
5036 &genX(sf_clip_viewport),
5037 &genX(sf_state),
5038 &genX(vs_state), /* always required, enabled or not */
5039 &brw_clip_unit,
5040 &brw_gs_unit,
5041
5042 /* Command packets:
5043 */
5044 &brw_invariant_state,
5045
5046 &brw_binding_table_pointers,
5047 &genX(blend_constant_color),
5048
5049 &brw_depthbuffer,
5050
5051 &genX(polygon_stipple),
5052 &genX(polygon_stipple_offset),
5053
5054 &genX(line_stipple),
5055
5056 &brw_psp_urb_cbs,
5057
5058 &genX(drawing_rect),
5059 &brw_indices, /* must come before brw_vertices */
5060 &genX(index_buffer),
5061 &genX(vertices),
5062
5063 &brw_constant_buffer
5064 };
5065 #elif GEN_GEN == 6
5066 static const struct brw_tracked_state *render_atoms[] =
5067 {
5068 &genX(sf_clip_viewport),
5069
5070 /* Command packets: */
5071
5072 &genX(cc_vp),
5073
5074 &gen6_urb,
5075 &genX(blend_state), /* must do before cc unit */
5076 &genX(color_calc_state), /* must do before cc unit */
5077 &genX(depth_stencil_state), /* must do before cc unit */
5078
5079 &genX(vs_push_constants), /* Before vs_state */
5080 &genX(gs_push_constants), /* Before gs_state */
5081 &genX(wm_push_constants), /* Before wm_state */
5082
5083 /* Surface state setup. Must come before the VS/WM unit. The binding
5084 * table upload must be last.
5085 */
5086 &brw_vs_pull_constants,
5087 &brw_vs_ubo_surfaces,
5088 &brw_gs_pull_constants,
5089 &brw_gs_ubo_surfaces,
5090 &brw_wm_pull_constants,
5091 &brw_wm_ubo_surfaces,
5092 &gen6_renderbuffer_surfaces,
5093 &brw_renderbuffer_read_surfaces,
5094 &brw_texture_surfaces,
5095 &gen6_sol_surface,
5096 &brw_vs_binding_table,
5097 &gen6_gs_binding_table,
5098 &brw_wm_binding_table,
5099
5100 &genX(fs_samplers),
5101 &genX(vs_samplers),
5102 &genX(gs_samplers),
5103 &gen6_sampler_state,
5104 &genX(multisample_state),
5105
5106 &genX(vs_state),
5107 &genX(gs_state),
5108 &genX(clip_state),
5109 &genX(sf_state),
5110 &genX(wm_state),
5111
5112 &genX(scissor_state),
5113
5114 &gen6_binding_table_pointers,
5115
5116 &brw_depthbuffer,
5117
5118 &genX(polygon_stipple),
5119 &genX(polygon_stipple_offset),
5120
5121 &genX(line_stipple),
5122
5123 &genX(drawing_rect),
5124
5125 &brw_indices, /* must come before brw_vertices */
5126 &genX(index_buffer),
5127 &genX(vertices),
5128 };
5129 #elif GEN_GEN == 7
5130 static const struct brw_tracked_state *render_atoms[] =
5131 {
5132 /* Command packets: */
5133
5134 &genX(cc_vp),
5135 &genX(sf_clip_viewport),
5136
5137 &gen7_l3_state,
5138 &gen7_push_constant_space,
5139 &gen7_urb,
5140 &genX(blend_state), /* must do before cc unit */
5141 &genX(color_calc_state), /* must do before cc unit */
5142 &genX(depth_stencil_state), /* must do before cc unit */
5143
5144 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5145 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5146 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5147 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5148 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5149
5150 &genX(vs_push_constants), /* Before vs_state */
5151 &genX(tcs_push_constants),
5152 &genX(tes_push_constants),
5153 &genX(gs_push_constants), /* Before gs_state */
5154 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5155
5156 /* Surface state setup. Must come before the VS/WM unit. The binding
5157 * table upload must be last.
5158 */
5159 &brw_vs_pull_constants,
5160 &brw_vs_ubo_surfaces,
5161 &brw_vs_abo_surfaces,
5162 &brw_tcs_pull_constants,
5163 &brw_tcs_ubo_surfaces,
5164 &brw_tcs_abo_surfaces,
5165 &brw_tes_pull_constants,
5166 &brw_tes_ubo_surfaces,
5167 &brw_tes_abo_surfaces,
5168 &brw_gs_pull_constants,
5169 &brw_gs_ubo_surfaces,
5170 &brw_gs_abo_surfaces,
5171 &brw_wm_pull_constants,
5172 &brw_wm_ubo_surfaces,
5173 &brw_wm_abo_surfaces,
5174 &gen6_renderbuffer_surfaces,
5175 &brw_renderbuffer_read_surfaces,
5176 &brw_texture_surfaces,
5177 &brw_vs_binding_table,
5178 &brw_tcs_binding_table,
5179 &brw_tes_binding_table,
5180 &brw_gs_binding_table,
5181 &brw_wm_binding_table,
5182
5183 &genX(fs_samplers),
5184 &genX(vs_samplers),
5185 &genX(tcs_samplers),
5186 &genX(tes_samplers),
5187 &genX(gs_samplers),
5188 &genX(multisample_state),
5189
5190 &genX(vs_state),
5191 &genX(hs_state),
5192 &genX(te_state),
5193 &genX(ds_state),
5194 &genX(gs_state),
5195 &genX(sol_state),
5196 &genX(clip_state),
5197 &genX(sbe_state),
5198 &genX(sf_state),
5199 &genX(wm_state),
5200 &genX(ps_state),
5201
5202 &genX(scissor_state),
5203
5204 &gen7_depthbuffer,
5205
5206 &genX(polygon_stipple),
5207 &genX(polygon_stipple_offset),
5208
5209 &genX(line_stipple),
5210
5211 &genX(drawing_rect),
5212
5213 &brw_indices, /* must come before brw_vertices */
5214 &genX(index_buffer),
5215 &genX(vertices),
5216
5217 #if GEN_IS_HASWELL
5218 &genX(cut_index),
5219 #endif
5220 };
5221 #elif GEN_GEN >= 8
5222 static const struct brw_tracked_state *render_atoms[] =
5223 {
5224 &genX(cc_vp),
5225 &genX(sf_clip_viewport),
5226
5227 &gen7_l3_state,
5228 &gen7_push_constant_space,
5229 &gen7_urb,
5230 &genX(blend_state),
5231 &genX(color_calc_state),
5232
5233 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5234 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5235 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5236 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5237 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5238
5239 &genX(vs_push_constants), /* Before vs_state */
5240 &genX(tcs_push_constants),
5241 &genX(tes_push_constants),
5242 &genX(gs_push_constants), /* Before gs_state */
5243 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5244
5245 /* Surface state setup. Must come before the VS/WM unit. The binding
5246 * table upload must be last.
5247 */
5248 &brw_vs_pull_constants,
5249 &brw_vs_ubo_surfaces,
5250 &brw_vs_abo_surfaces,
5251 &brw_tcs_pull_constants,
5252 &brw_tcs_ubo_surfaces,
5253 &brw_tcs_abo_surfaces,
5254 &brw_tes_pull_constants,
5255 &brw_tes_ubo_surfaces,
5256 &brw_tes_abo_surfaces,
5257 &brw_gs_pull_constants,
5258 &brw_gs_ubo_surfaces,
5259 &brw_gs_abo_surfaces,
5260 &brw_wm_pull_constants,
5261 &brw_wm_ubo_surfaces,
5262 &brw_wm_abo_surfaces,
5263 &gen6_renderbuffer_surfaces,
5264 &brw_renderbuffer_read_surfaces,
5265 &brw_texture_surfaces,
5266 &brw_vs_binding_table,
5267 &brw_tcs_binding_table,
5268 &brw_tes_binding_table,
5269 &brw_gs_binding_table,
5270 &brw_wm_binding_table,
5271
5272 &genX(fs_samplers),
5273 &genX(vs_samplers),
5274 &genX(tcs_samplers),
5275 &genX(tes_samplers),
5276 &genX(gs_samplers),
5277 &genX(multisample_state),
5278
5279 &genX(vs_state),
5280 &genX(hs_state),
5281 &genX(te_state),
5282 &genX(ds_state),
5283 &genX(gs_state),
5284 &genX(sol_state),
5285 &genX(clip_state),
5286 &genX(raster_state),
5287 &genX(sbe_state),
5288 &genX(sf_state),
5289 &genX(ps_blend),
5290 &genX(ps_extra),
5291 &genX(ps_state),
5292 &genX(depth_stencil_state),
5293 &genX(wm_state),
5294
5295 &genX(scissor_state),
5296
5297 &gen7_depthbuffer,
5298
5299 &genX(polygon_stipple),
5300 &genX(polygon_stipple_offset),
5301
5302 &genX(line_stipple),
5303
5304 &genX(drawing_rect),
5305
5306 &genX(vf_topology),
5307
5308 &brw_indices,
5309 &genX(index_buffer),
5310 &genX(vertices),
5311
5312 &genX(cut_index),
5313 &gen8_pma_fix,
5314 };
5315 #endif
5316
5317 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5318 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5319 render_atoms, ARRAY_SIZE(render_atoms));
5320
5321 #if GEN_GEN >= 7
5322 static const struct brw_tracked_state *compute_atoms[] =
5323 {
5324 &gen7_l3_state,
5325 &brw_cs_image_surfaces,
5326 &gen7_cs_push_constants,
5327 &brw_cs_pull_constants,
5328 &brw_cs_ubo_surfaces,
5329 &brw_cs_abo_surfaces,
5330 &brw_cs_texture_surfaces,
5331 &brw_cs_work_groups_surface,
5332 &genX(cs_samplers),
5333 &genX(cs_state),
5334 };
5335
5336 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5337 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5338 compute_atoms, ARRAY_SIZE(compute_atoms));
5339
5340 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5341 #endif
5342 }