i965: check if upload is 0 explicitely, when downsizing a format
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #include "brw_draw.h"
38 #include "brw_multisample_state.h"
39 #include "brw_state.h"
40 #include "brw_wm.h"
41 #include "brw_util.h"
42
43 #include "intel_batchbuffer.h"
44 #include "intel_buffer_objects.h"
45 #include "intel_fbo.h"
46
47 #include "main/enums.h"
48 #include "main/fbobject.h"
49 #include "main/framebuffer.h"
50 #include "main/glformats.h"
51 #include "main/samplerobj.h"
52 #include "main/shaderapi.h"
53 #include "main/stencil.h"
54 #include "main/transformfeedback.h"
55 #include "main/varray.h"
56 #include "main/viewport.h"
57 #include "util/half_float.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 unsigned reloc_flags;
72 uint32_t offset;
73 };
74
75 #define __gen_address_type struct brw_address
76 #define __gen_user_data struct brw_context
77
78 static uint64_t
79 __gen_combine_address(struct brw_context *brw, void *location,
80 struct brw_address address, uint32_t delta)
81 {
82 struct intel_batchbuffer *batch = &brw->batch;
83 uint32_t offset;
84
85 if (address.bo == NULL) {
86 return address.offset + delta;
87 } else {
88 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
89 offset = (char *) location - (char *) brw->batch.state.map;
90 return brw_state_reloc(batch, offset, address.bo,
91 address.offset + delta,
92 address.reloc_flags);
93 }
94
95 assert(!brw_ptr_in_state_buffer(batch, location));
96
97 offset = (char *) location - (char *) brw->batch.batch.map;
98 return brw_batch_reloc(batch, offset, address.bo,
99 address.offset + delta,
100 address.reloc_flags);
101 }
102 }
103
104 static struct brw_address
105 rw_bo(struct brw_bo *bo, uint32_t offset)
106 {
107 return (struct brw_address) {
108 .bo = bo,
109 .offset = offset,
110 .reloc_flags = RELOC_WRITE,
111 };
112 }
113
114 static struct brw_address
115 ro_bo(struct brw_bo *bo, uint32_t offset)
116 {
117 return (struct brw_address) {
118 .bo = bo,
119 .offset = offset,
120 };
121 }
122
123 UNUSED static struct brw_address
124 ggtt_bo(struct brw_bo *bo, uint32_t offset)
125 {
126 return (struct brw_address) {
127 .bo = bo,
128 .offset = offset,
129 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
130 };
131 }
132
133 #if GEN_GEN == 4
134 static struct brw_address
135 KSP(struct brw_context *brw, uint32_t offset)
136 {
137 return ro_bo(brw->cache.bo, offset);
138 }
139 #else
140 static uint32_t
141 KSP(struct brw_context *brw, uint32_t offset)
142 {
143 return offset;
144 }
145 #endif
146
147 #include "genxml/genX_pack.h"
148
149 #define _brw_cmd_length(cmd) cmd ## _length
150 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
151 #define _brw_cmd_header(cmd) cmd ## _header
152 #define _brw_cmd_pack(cmd) cmd ## _pack
153
154 #define brw_batch_emit(brw, cmd, name) \
155 for (struct cmd name = { _brw_cmd_header(cmd) }, \
156 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
157 __builtin_expect(_dst != NULL, 1); \
158 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
159 _dst = NULL)
160
161 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
162 uint32_t *_dw = emit_dwords(brw, n); \
163 struct cmd template = { \
164 _brw_cmd_header(cmd), \
165 .DWordLength = n - _brw_cmd_length_bias(cmd), \
166 __VA_ARGS__ \
167 }; \
168 _brw_cmd_pack(cmd)(brw, _dw, &template); \
169 _dw + 1; /* Array starts at dw[1] */ \
170 })
171
172 #define brw_state_emit(brw, cmd, align, offset, name) \
173 for (struct cmd name = {}, \
174 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
175 align, offset); \
176 __builtin_expect(_dst != NULL, 1); \
177 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
178 _dst = NULL)
179
180 /**
181 * Polygon stipple packet
182 */
183 static void
184 genX(upload_polygon_stipple)(struct brw_context *brw)
185 {
186 struct gl_context *ctx = &brw->ctx;
187
188 /* _NEW_POLYGON */
189 if (!ctx->Polygon.StippleFlag)
190 return;
191
192 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
193 /* Polygon stipple is provided in OpenGL order, i.e. bottom
194 * row first. If we're rendering to a window (i.e. the
195 * default frame buffer object, 0), then we need to invert
196 * it to match our pixel layout. But if we're rendering
197 * to a FBO (i.e. any named frame buffer object), we *don't*
198 * need to invert - we already match the layout.
199 */
200 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
201 for (unsigned i = 0; i < 32; i++)
202 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
203 } else {
204 for (unsigned i = 0; i < 32; i++)
205 poly.PatternRow[i] = ctx->PolygonStipple[i];
206 }
207 }
208 }
209
210 static const struct brw_tracked_state genX(polygon_stipple) = {
211 .dirty = {
212 .mesa = _NEW_POLYGON |
213 _NEW_POLYGONSTIPPLE,
214 .brw = BRW_NEW_CONTEXT,
215 },
216 .emit = genX(upload_polygon_stipple),
217 };
218
219 /**
220 * Polygon stipple offset packet
221 */
222 static void
223 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
224 {
225 struct gl_context *ctx = &brw->ctx;
226
227 /* _NEW_POLYGON */
228 if (!ctx->Polygon.StippleFlag)
229 return;
230
231 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
232 /* _NEW_BUFFERS
233 *
234 * If we're drawing to a system window we have to invert the Y axis
235 * in order to match the OpenGL pixel coordinate system, and our
236 * offset must be matched to the window position. If we're drawing
237 * to a user-created FBO then our native pixel coordinate system
238 * works just fine, and there's no window system to worry about.
239 */
240 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
241 poly.PolygonStippleYOffset =
242 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
243 }
244 }
245 }
246
247 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
248 .dirty = {
249 .mesa = _NEW_BUFFERS |
250 _NEW_POLYGON,
251 .brw = BRW_NEW_CONTEXT,
252 },
253 .emit = genX(upload_polygon_stipple_offset),
254 };
255
256 /**
257 * Line stipple packet
258 */
259 static void
260 genX(upload_line_stipple)(struct brw_context *brw)
261 {
262 struct gl_context *ctx = &brw->ctx;
263
264 if (!ctx->Line.StippleFlag)
265 return;
266
267 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
268 line.LineStipplePattern = ctx->Line.StipplePattern;
269
270 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
271 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
272 }
273 }
274
275 static const struct brw_tracked_state genX(line_stipple) = {
276 .dirty = {
277 .mesa = _NEW_LINE,
278 .brw = BRW_NEW_CONTEXT,
279 },
280 .emit = genX(upload_line_stipple),
281 };
282
283 /* Constant single cliprect for framebuffer object or DRI2 drawing */
284 static void
285 genX(upload_drawing_rect)(struct brw_context *brw)
286 {
287 struct gl_context *ctx = &brw->ctx;
288 const struct gl_framebuffer *fb = ctx->DrawBuffer;
289 const unsigned int fb_width = _mesa_geometric_width(fb);
290 const unsigned int fb_height = _mesa_geometric_height(fb);
291
292 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
293 rect.ClippedDrawingRectangleXMax = fb_width - 1;
294 rect.ClippedDrawingRectangleYMax = fb_height - 1;
295 }
296 }
297
298 static const struct brw_tracked_state genX(drawing_rect) = {
299 .dirty = {
300 .mesa = _NEW_BUFFERS,
301 .brw = BRW_NEW_BLORP |
302 BRW_NEW_CONTEXT,
303 },
304 .emit = genX(upload_drawing_rect),
305 };
306
307 static uint32_t *
308 genX(emit_vertex_buffer_state)(struct brw_context *brw,
309 uint32_t *dw,
310 unsigned buffer_nr,
311 struct brw_bo *bo,
312 unsigned start_offset,
313 unsigned end_offset,
314 unsigned stride,
315 unsigned step_rate)
316 {
317 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
318 .VertexBufferIndex = buffer_nr,
319 .BufferPitch = stride,
320 .BufferStartingAddress = ro_bo(bo, start_offset),
321 #if GEN_GEN >= 8
322 .BufferSize = end_offset - start_offset,
323 #endif
324
325 #if GEN_GEN >= 7
326 .AddressModifyEnable = true,
327 #endif
328
329 #if GEN_GEN < 8
330 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
331 .InstanceDataStepRate = step_rate,
332 #if GEN_GEN >= 5
333 .EndAddress = ro_bo(bo, end_offset - 1),
334 #endif
335 #endif
336
337 #if GEN_GEN == 10
338 .VertexBufferMOCS = CNL_MOCS_WB,
339 #elif GEN_GEN == 9
340 .VertexBufferMOCS = SKL_MOCS_WB,
341 #elif GEN_GEN == 8
342 .VertexBufferMOCS = BDW_MOCS_WB,
343 #elif GEN_GEN == 7
344 .VertexBufferMOCS = GEN7_MOCS_L3,
345 #endif
346 };
347
348 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
349 return dw + GENX(VERTEX_BUFFER_STATE_length);
350 }
351
352 UNUSED static bool
353 is_passthru_format(uint32_t format)
354 {
355 switch (format) {
356 case ISL_FORMAT_R64_PASSTHRU:
357 case ISL_FORMAT_R64G64_PASSTHRU:
358 case ISL_FORMAT_R64G64B64_PASSTHRU:
359 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
360 return true;
361 default:
362 return false;
363 }
364 }
365
366 UNUSED static int
367 uploads_needed(uint32_t format,
368 bool is_dual_slot)
369 {
370 if (!is_passthru_format(format))
371 return 1;
372
373 if (is_dual_slot)
374 return 2;
375
376 switch (format) {
377 case ISL_FORMAT_R64_PASSTHRU:
378 case ISL_FORMAT_R64G64_PASSTHRU:
379 return 1;
380 case ISL_FORMAT_R64G64B64_PASSTHRU:
381 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
382 return 2;
383 default:
384 unreachable("not reached");
385 }
386 }
387
388 /*
389 * Returns the format that we are finally going to use when upload a vertex
390 * element. It will only change if we are using *64*PASSTHRU formats, as for
391 * gen < 8 they need to be splitted on two *32*FLOAT formats.
392 *
393 * @upload points in which upload we are. Valid values are [0,1]
394 */
395 static uint32_t
396 downsize_format_if_needed(uint32_t format,
397 int upload)
398 {
399 assert(upload == 0 || upload == 1);
400
401 if (!is_passthru_format(format))
402 return format;
403
404 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
405 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
406 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
407 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
408 * flagging that we want to fill with zeroes this second forced upload.
409 */
410 switch (format) {
411 case ISL_FORMAT_R64_PASSTHRU:
412 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
413 : ISL_FORMAT_R32_FLOAT;
414 case ISL_FORMAT_R64G64_PASSTHRU:
415 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
416 : ISL_FORMAT_R32_FLOAT;
417 case ISL_FORMAT_R64G64B64_PASSTHRU:
418 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
419 : ISL_FORMAT_R32G32_FLOAT;
420 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
421 return ISL_FORMAT_R32G32B32A32_FLOAT;
422 default:
423 unreachable("not reached");
424 }
425 }
426
427 /*
428 * Returns the number of componentes associated with a format that is used on
429 * a 64 to 32 format split. See downsize_format()
430 */
431 static int
432 upload_format_size(uint32_t upload_format)
433 {
434 switch (upload_format) {
435 case ISL_FORMAT_R32_FLOAT:
436
437 /* downsized_format has returned this one in order to flag that we are
438 * performing a second upload which we want to have filled with
439 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
440 * vertex shader input variables.
441 */
442
443 return 0;
444 case ISL_FORMAT_R32G32_FLOAT:
445 return 2;
446 case ISL_FORMAT_R32G32B32A32_FLOAT:
447 return 4;
448 default:
449 unreachable("not reached");
450 }
451 }
452
453 static void
454 genX(emit_vertices)(struct brw_context *brw)
455 {
456 const struct gen_device_info *devinfo = &brw->screen->devinfo;
457 uint32_t *dw;
458
459 brw_prepare_vertices(brw);
460 brw_prepare_shader_draw_parameters(brw);
461
462 #if GEN_GEN < 6
463 brw_emit_query_begin(brw);
464 #endif
465
466 const struct brw_vs_prog_data *vs_prog_data =
467 brw_vs_prog_data(brw->vs.base.prog_data);
468
469 #if GEN_GEN >= 8
470 struct gl_context *ctx = &brw->ctx;
471 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
472 ctx->Polygon.BackMode != GL_FILL);
473
474 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
475 unsigned vue = brw->vb.nr_enabled;
476
477 /* The element for the edge flags must always be last, so we have to
478 * insert the SGVS before it in that case.
479 */
480 if (uses_edge_flag) {
481 assert(vue > 0);
482 vue--;
483 }
484
485 WARN_ONCE(vue >= 33,
486 "Trying to insert VID/IID past 33rd vertex element, "
487 "need to reorder the vertex attrbutes.");
488
489 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
490 if (vs_prog_data->uses_vertexid) {
491 vfs.VertexIDEnable = true;
492 vfs.VertexIDComponentNumber = 2;
493 vfs.VertexIDElementOffset = vue;
494 }
495
496 if (vs_prog_data->uses_instanceid) {
497 vfs.InstanceIDEnable = true;
498 vfs.InstanceIDComponentNumber = 3;
499 vfs.InstanceIDElementOffset = vue;
500 }
501 }
502
503 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
504 vfi.InstancingEnable = true;
505 vfi.VertexElementIndex = vue;
506 }
507 } else {
508 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
509 }
510
511 /* Normally we don't need an element for the SGVS attribute because the
512 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
513 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
514 * we're using draw parameters then we need an element for the those
515 * values. Additionally if there is an edge flag element then the SGVS
516 * can't be inserted past that so we need a dummy element to ensure that
517 * the edge flag is the last one.
518 */
519 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
520 vs_prog_data->uses_baseinstance ||
521 ((vs_prog_data->uses_instanceid ||
522 vs_prog_data->uses_vertexid)
523 && uses_edge_flag));
524 #else
525 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
526 vs_prog_data->uses_baseinstance ||
527 vs_prog_data->uses_instanceid ||
528 vs_prog_data->uses_vertexid);
529 #endif
530 unsigned nr_elements =
531 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
532
533 #if GEN_GEN < 8
534 /* If any of the formats of vb.enabled needs more that one upload, we need
535 * to add it to nr_elements
536 */
537 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
538 struct brw_vertex_element *input = brw->vb.enabled[i];
539 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
540
541 if (uploads_needed(format, input->is_dual_slot) > 1)
542 nr_elements++;
543 }
544 #endif
545
546 /* If the VS doesn't read any inputs (calculating vertex position from
547 * a state variable for some reason, for example), emit a single pad
548 * VERTEX_ELEMENT struct and bail.
549 *
550 * The stale VB state stays in place, but they don't do anything unless
551 * a VE loads from them.
552 */
553 if (nr_elements == 0) {
554 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
555 1 + GENX(VERTEX_ELEMENT_STATE_length));
556 struct GENX(VERTEX_ELEMENT_STATE) elem = {
557 .Valid = true,
558 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
559 .Component0Control = VFCOMP_STORE_0,
560 .Component1Control = VFCOMP_STORE_0,
561 .Component2Control = VFCOMP_STORE_0,
562 .Component3Control = VFCOMP_STORE_1_FP,
563 };
564 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
565 return;
566 }
567
568 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
569 const bool uses_draw_params =
570 vs_prog_data->uses_basevertex ||
571 vs_prog_data->uses_baseinstance;
572 const unsigned nr_buffers = brw->vb.nr_buffers +
573 uses_draw_params + vs_prog_data->uses_drawid;
574
575 if (nr_buffers) {
576 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
577
578 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
579 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
580
581 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
582 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
583 /* Prior to Haswell and Bay Trail we have to use 4-component formats
584 * to fake 3-component ones. In particular, we do this for
585 * half-float and 8 and 16-bit integer formats. This means that the
586 * vertex element may poke over the end of the buffer by 2 bytes.
587 */
588 const unsigned padding =
589 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
590 const unsigned end = buffer->offset + buffer->size + padding;
591 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
592 buffer->offset,
593 end,
594 buffer->stride,
595 buffer->step_rate);
596 }
597
598 if (uses_draw_params) {
599 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
600 brw->draw.draw_params_bo,
601 brw->draw.draw_params_offset,
602 brw->draw.draw_params_bo->size,
603 0 /* stride */,
604 0 /* step rate */);
605 }
606
607 if (vs_prog_data->uses_drawid) {
608 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
609 brw->draw.draw_id_bo,
610 brw->draw.draw_id_offset,
611 brw->draw.draw_id_bo->size,
612 0 /* stride */,
613 0 /* step rate */);
614 }
615 }
616
617 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
618 * presumably for VertexID/InstanceID.
619 */
620 #if GEN_GEN >= 6
621 assert(nr_elements <= 34);
622 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
623 #else
624 assert(nr_elements <= 18);
625 #endif
626
627 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
628 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
629 unsigned i;
630 for (i = 0; i < brw->vb.nr_enabled; i++) {
631 const struct brw_vertex_element *input = brw->vb.enabled[i];
632 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
633 uint32_t comp0 = VFCOMP_STORE_SRC;
634 uint32_t comp1 = VFCOMP_STORE_SRC;
635 uint32_t comp2 = VFCOMP_STORE_SRC;
636 uint32_t comp3 = VFCOMP_STORE_SRC;
637 const unsigned num_uploads = GEN_GEN < 8 ?
638 uploads_needed(format, input->is_dual_slot) : 1;
639
640 #if GEN_GEN >= 8
641 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
642 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
643 * element which has edge flag enabled."
644 */
645 assert(!(is_passthru_format(format) && uses_edge_flag));
646 #endif
647
648 /* The gen4 driver expects edgeflag to come in as a float, and passes
649 * that float on to the tests in the clipper. Mesa's current vertex
650 * attribute value for EdgeFlag is stored as a float, which works out.
651 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
652 * integer ubyte. Just rewrite that to convert to a float.
653 *
654 * Gen6+ passes edgeflag as sideband along with the vertex, instead
655 * of in the VUE. We have to upload it sideband as the last vertex
656 * element according to the B-Spec.
657 */
658 #if GEN_GEN >= 6
659 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
660 gen6_edgeflag_input = input;
661 continue;
662 }
663 #endif
664
665 for (unsigned c = 0; c < num_uploads; c++) {
666 const uint32_t upload_format = GEN_GEN >= 8 ? format :
667 downsize_format_if_needed(format, c);
668 /* If we need more that one upload, the offset stride would be 128
669 * bits (16 bytes), as for previous uploads we are using the full
670 * entry. */
671 const unsigned offset = input->offset + c * 16;
672
673 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
674 upload_format_size(upload_format) : input->glarray->Size;
675
676 switch (size) {
677 case 0: comp0 = VFCOMP_STORE_0;
678 case 1: comp1 = VFCOMP_STORE_0;
679 case 2: comp2 = VFCOMP_STORE_0;
680 case 3:
681 if (GEN_GEN >= 8 && input->glarray->Doubles) {
682 comp3 = VFCOMP_STORE_0;
683 } else if (input->glarray->Integer) {
684 comp3 = VFCOMP_STORE_1_INT;
685 } else {
686 comp3 = VFCOMP_STORE_1_FP;
687 }
688
689 break;
690 }
691
692 #if GEN_GEN >= 8
693 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
694 *
695 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
696 * formats, 64-bit components are stored in the URB without any
697 * conversion. In this case, vertex elements must be written as 128
698 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
699 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
700 * component into the URB, Component 1 must be specified as
701 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
702 * order to output a 128-bit vertex element, or Components 1-3 must
703 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
704 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
705 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
706 * vertex element."
707 */
708 if (input->glarray->Doubles && !input->is_dual_slot) {
709 /* Store vertex elements which correspond to double and dvec2 vertex
710 * shader inputs as 128-bit vertex elements, instead of 256-bits.
711 */
712 comp2 = VFCOMP_NOSTORE;
713 comp3 = VFCOMP_NOSTORE;
714 }
715 #endif
716
717 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
718 .VertexBufferIndex = input->buffer,
719 .Valid = true,
720 .SourceElementFormat = upload_format,
721 .SourceElementOffset = offset,
722 .Component0Control = comp0,
723 .Component1Control = comp1,
724 .Component2Control = comp2,
725 .Component3Control = comp3,
726 #if GEN_GEN < 5
727 .DestinationElementOffset = i * 4,
728 #endif
729 };
730
731 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
732 dw += GENX(VERTEX_ELEMENT_STATE_length);
733 }
734 }
735
736 if (needs_sgvs_element) {
737 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
738 .Valid = true,
739 .Component0Control = VFCOMP_STORE_0,
740 .Component1Control = VFCOMP_STORE_0,
741 .Component2Control = VFCOMP_STORE_0,
742 .Component3Control = VFCOMP_STORE_0,
743 #if GEN_GEN < 5
744 .DestinationElementOffset = i * 4,
745 #endif
746 };
747
748 #if GEN_GEN >= 8
749 if (vs_prog_data->uses_basevertex ||
750 vs_prog_data->uses_baseinstance) {
751 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
752 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
753 elem_state.Component0Control = VFCOMP_STORE_SRC;
754 elem_state.Component1Control = VFCOMP_STORE_SRC;
755 }
756 #else
757 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
758 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
759 if (vs_prog_data->uses_basevertex)
760 elem_state.Component0Control = VFCOMP_STORE_SRC;
761
762 if (vs_prog_data->uses_baseinstance)
763 elem_state.Component1Control = VFCOMP_STORE_SRC;
764
765 if (vs_prog_data->uses_vertexid)
766 elem_state.Component2Control = VFCOMP_STORE_VID;
767
768 if (vs_prog_data->uses_instanceid)
769 elem_state.Component3Control = VFCOMP_STORE_IID;
770 #endif
771
772 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
773 dw += GENX(VERTEX_ELEMENT_STATE_length);
774 }
775
776 if (vs_prog_data->uses_drawid) {
777 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
778 .Valid = true,
779 .VertexBufferIndex = brw->vb.nr_buffers + 1,
780 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
781 .Component0Control = VFCOMP_STORE_SRC,
782 .Component1Control = VFCOMP_STORE_0,
783 .Component2Control = VFCOMP_STORE_0,
784 .Component3Control = VFCOMP_STORE_0,
785 #if GEN_GEN < 5
786 .DestinationElementOffset = i * 4,
787 #endif
788 };
789
790 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
791 dw += GENX(VERTEX_ELEMENT_STATE_length);
792 }
793
794 #if GEN_GEN >= 6
795 if (gen6_edgeflag_input) {
796 const uint32_t format =
797 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
798
799 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
800 .Valid = true,
801 .VertexBufferIndex = gen6_edgeflag_input->buffer,
802 .EdgeFlagEnable = true,
803 .SourceElementFormat = format,
804 .SourceElementOffset = gen6_edgeflag_input->offset,
805 .Component0Control = VFCOMP_STORE_SRC,
806 .Component1Control = VFCOMP_STORE_0,
807 .Component2Control = VFCOMP_STORE_0,
808 .Component3Control = VFCOMP_STORE_0,
809 };
810
811 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
812 dw += GENX(VERTEX_ELEMENT_STATE_length);
813 }
814 #endif
815
816 #if GEN_GEN >= 8
817 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
818 const struct brw_vertex_element *input = brw->vb.enabled[i];
819 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
820 unsigned element_index;
821
822 /* The edge flag element is reordered to be the last one in the code
823 * above so we need to compensate for that in the element indices used
824 * below.
825 */
826 if (input == gen6_edgeflag_input)
827 element_index = nr_elements - 1;
828 else
829 element_index = j++;
830
831 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
832 vfi.VertexElementIndex = element_index;
833 vfi.InstancingEnable = buffer->step_rate != 0;
834 vfi.InstanceDataStepRate = buffer->step_rate;
835 }
836 }
837
838 if (vs_prog_data->uses_drawid) {
839 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
840
841 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
842 vfi.VertexElementIndex = element;
843 }
844 }
845 #endif
846 }
847
848 static const struct brw_tracked_state genX(vertices) = {
849 .dirty = {
850 .mesa = _NEW_POLYGON,
851 .brw = BRW_NEW_BATCH |
852 BRW_NEW_BLORP |
853 BRW_NEW_VERTICES |
854 BRW_NEW_VS_PROG_DATA,
855 },
856 .emit = genX(emit_vertices),
857 };
858
859 static void
860 genX(emit_index_buffer)(struct brw_context *brw)
861 {
862 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
863
864 if (index_buffer == NULL)
865 return;
866
867 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
868 #if GEN_GEN < 8 && !GEN_IS_HASWELL
869 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
870 #endif
871 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
872 ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
873 #if GEN_GEN >= 8
874 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
875 ib.BufferSize = brw->ib.size;
876 #else
877 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
878 #endif
879 }
880 }
881
882 static const struct brw_tracked_state genX(index_buffer) = {
883 .dirty = {
884 .mesa = 0,
885 .brw = BRW_NEW_BATCH |
886 BRW_NEW_BLORP |
887 BRW_NEW_INDEX_BUFFER,
888 },
889 .emit = genX(emit_index_buffer),
890 };
891
892 #if GEN_IS_HASWELL || GEN_GEN >= 8
893 static void
894 genX(upload_cut_index)(struct brw_context *brw)
895 {
896 const struct gl_context *ctx = &brw->ctx;
897
898 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
899 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
900 vf.IndexedDrawCutIndexEnable = true;
901 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
902 }
903 }
904 }
905
906 const struct brw_tracked_state genX(cut_index) = {
907 .dirty = {
908 .mesa = _NEW_TRANSFORM,
909 .brw = BRW_NEW_INDEX_BUFFER,
910 },
911 .emit = genX(upload_cut_index),
912 };
913 #endif
914
915 #if GEN_GEN >= 6
916 /**
917 * Determine the appropriate attribute override value to store into the
918 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
919 * override value contains two pieces of information: the location of the
920 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
921 * flag indicating whether to "swizzle" the attribute based on the direction
922 * the triangle is facing.
923 *
924 * If an attribute is "swizzled", then the given VUE location is used for
925 * front-facing triangles, and the VUE location that immediately follows is
926 * used for back-facing triangles. We use this to implement the mapping from
927 * gl_FrontColor/gl_BackColor to gl_Color.
928 *
929 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
930 * being instructed to begin reading attribute data. It can be set to a
931 * nonzero value to prevent the SF unit from wasting time reading elements of
932 * the VUE that are not needed by the fragment shader. It is measured in
933 * 256-bit increments.
934 */
935 static void
936 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
937 const struct brw_vue_map *vue_map,
938 int urb_entry_read_offset, int fs_attr,
939 bool two_side_color, uint32_t *max_source_attr)
940 {
941 /* Find the VUE slot for this attribute. */
942 int slot = vue_map->varying_to_slot[fs_attr];
943
944 /* Viewport and Layer are stored in the VUE header. We need to override
945 * them to zero if earlier stages didn't write them, as GL requires that
946 * they read back as zero when not explicitly set.
947 */
948 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
949 attr->ComponentOverrideX = true;
950 attr->ComponentOverrideW = true;
951 attr->ConstantSource = CONST_0000;
952
953 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
954 attr->ComponentOverrideY = true;
955 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
956 attr->ComponentOverrideZ = true;
957
958 return;
959 }
960
961 /* If there was only a back color written but not front, use back
962 * as the color instead of undefined
963 */
964 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
965 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
966 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
967 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
968
969 if (slot == -1) {
970 /* This attribute does not exist in the VUE--that means that the vertex
971 * shader did not write to it. This means that either:
972 *
973 * (a) This attribute is a texture coordinate, and it is going to be
974 * replaced with point coordinates (as a consequence of a call to
975 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
976 * hardware will ignore whatever attribute override we supply.
977 *
978 * (b) This attribute is read by the fragment shader but not written by
979 * the vertex shader, so its value is undefined. Therefore the
980 * attribute override we supply doesn't matter.
981 *
982 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
983 * previous shader stage.
984 *
985 * Note that we don't have to worry about the cases where the attribute
986 * is gl_PointCoord or is undergoing point sprite coordinate
987 * replacement, because in those cases, this function isn't called.
988 *
989 * In case (c), we need to program the attribute overrides so that the
990 * primitive ID will be stored in this slot. In every other case, the
991 * attribute override we supply doesn't matter. So just go ahead and
992 * program primitive ID in every case.
993 */
994 attr->ComponentOverrideW = true;
995 attr->ComponentOverrideX = true;
996 attr->ComponentOverrideY = true;
997 attr->ComponentOverrideZ = true;
998 attr->ConstantSource = PRIM_ID;
999 return;
1000 }
1001
1002 /* Compute the location of the attribute relative to urb_entry_read_offset.
1003 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1004 * it counts for two 128-bit VUE slots.
1005 */
1006 int source_attr = slot - 2 * urb_entry_read_offset;
1007 assert(source_attr >= 0 && source_attr < 32);
1008
1009 /* If we are doing two-sided color, and the VUE slot following this one
1010 * represents a back-facing color, then we need to instruct the SF unit to
1011 * do back-facing swizzling.
1012 */
1013 bool swizzling = two_side_color &&
1014 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1015 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1016 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1017 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1018
1019 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1020 if (*max_source_attr < source_attr + swizzling)
1021 *max_source_attr = source_attr + swizzling;
1022
1023 attr->SourceAttribute = source_attr;
1024 if (swizzling)
1025 attr->SwizzleSelect = INPUTATTR_FACING;
1026 }
1027
1028
1029 static void
1030 genX(calculate_attr_overrides)(const struct brw_context *brw,
1031 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1032 uint32_t *point_sprite_enables,
1033 uint32_t *urb_entry_read_length,
1034 uint32_t *urb_entry_read_offset)
1035 {
1036 const struct gl_context *ctx = &brw->ctx;
1037
1038 /* _NEW_POINT */
1039 const struct gl_point_attrib *point = &ctx->Point;
1040
1041 /* BRW_NEW_FRAGMENT_PROGRAM */
1042 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1043
1044 /* BRW_NEW_FS_PROG_DATA */
1045 const struct brw_wm_prog_data *wm_prog_data =
1046 brw_wm_prog_data(brw->wm.base.prog_data);
1047 uint32_t max_source_attr = 0;
1048
1049 *point_sprite_enables = 0;
1050
1051 int first_slot =
1052 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1053 &brw->vue_map_geom_out);
1054
1055 /* Each URB offset packs two varying slots */
1056 assert(first_slot % 2 == 0);
1057 *urb_entry_read_offset = first_slot / 2;
1058
1059 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1060 * description of dw10 Point Sprite Texture Coordinate Enable:
1061 *
1062 * "This field must be programmed to zero when non-point primitives
1063 * are rendered."
1064 *
1065 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1066 * must be programmed to zero when rendering non-point primitives, but
1067 * the IvyBridge PRM does, and if we don't, we get garbage.
1068 *
1069 * This is not required on Haswell, as the hardware ignores this state
1070 * when drawing non-points -- although we do still need to be careful to
1071 * correctly set the attr overrides.
1072 *
1073 * _NEW_POLYGON
1074 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1075 */
1076 bool drawing_points = brw_is_drawing_points(brw);
1077
1078 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1079 int input_index = wm_prog_data->urb_setup[attr];
1080
1081 if (input_index < 0)
1082 continue;
1083
1084 /* _NEW_POINT */
1085 bool point_sprite = false;
1086 if (drawing_points) {
1087 if (point->PointSprite &&
1088 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1089 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1090 point_sprite = true;
1091 }
1092
1093 if (attr == VARYING_SLOT_PNTC)
1094 point_sprite = true;
1095
1096 if (point_sprite)
1097 *point_sprite_enables |= (1 << input_index);
1098 }
1099
1100 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1101 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1102
1103 if (!point_sprite) {
1104 genX(get_attr_override)(&attribute,
1105 &brw->vue_map_geom_out,
1106 *urb_entry_read_offset, attr,
1107 _mesa_vertex_program_two_side_enabled(ctx),
1108 &max_source_attr);
1109 }
1110
1111 /* The hardware can only do the overrides on 16 overrides at a
1112 * time, and the other up to 16 have to be lined up so that the
1113 * input index = the output index. We'll need to do some
1114 * tweaking to make sure that's the case.
1115 */
1116 if (input_index < 16)
1117 attr_overrides[input_index] = attribute;
1118 else
1119 assert(attribute.SourceAttribute == input_index);
1120 }
1121
1122 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1123 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1124 *
1125 * "This field should be set to the minimum length required to read the
1126 * maximum source attribute. The maximum source attribute is indicated
1127 * by the maximum value of the enabled Attribute # Source Attribute if
1128 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1129 * enable is not set.
1130 * read_length = ceiling((max_source_attr + 1) / 2)
1131 *
1132 * [errata] Corruption/Hang possible if length programmed larger than
1133 * recommended"
1134 *
1135 * Similar text exists for Ivy Bridge.
1136 */
1137 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1138 }
1139 #endif
1140
1141 /* ---------------------------------------------------------------------- */
1142
1143 #if GEN_GEN >= 8
1144 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1145 #elif GEN_GEN >= 6
1146 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1147 #else
1148 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1149 #endif
1150
1151 static inline void
1152 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1153 {
1154 struct gl_context *ctx = &brw->ctx;
1155
1156 /* _NEW_BUFFERS */
1157 struct intel_renderbuffer *depth_irb =
1158 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1159
1160 /* _NEW_DEPTH */
1161 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1162
1163 /* _NEW_STENCIL */
1164 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1165 const int b = stencil->_BackFace;
1166
1167 if (depth->Test && depth_irb) {
1168 ds->DepthTestEnable = true;
1169 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1170 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1171 }
1172
1173 if (brw->stencil_enabled) {
1174 ds->StencilTestEnable = true;
1175 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1176 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1177
1178 ds->StencilTestFunction =
1179 intel_translate_compare_func(stencil->Function[0]);
1180 ds->StencilFailOp =
1181 intel_translate_stencil_op(stencil->FailFunc[0]);
1182 ds->StencilPassDepthPassOp =
1183 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1184 ds->StencilPassDepthFailOp =
1185 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1186
1187 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1188
1189 if (brw->stencil_two_sided) {
1190 ds->DoubleSidedStencilEnable = true;
1191 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1192 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1193
1194 ds->BackfaceStencilTestFunction =
1195 intel_translate_compare_func(stencil->Function[b]);
1196 ds->BackfaceStencilFailOp =
1197 intel_translate_stencil_op(stencil->FailFunc[b]);
1198 ds->BackfaceStencilPassDepthPassOp =
1199 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1200 ds->BackfaceStencilPassDepthFailOp =
1201 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1202 }
1203
1204 #if GEN_GEN <= 5 || GEN_GEN >= 9
1205 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1206 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1207 #endif
1208 }
1209 }
1210
1211 #if GEN_GEN >= 6
1212 static void
1213 genX(upload_depth_stencil_state)(struct brw_context *brw)
1214 {
1215 #if GEN_GEN >= 8
1216 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1217 set_depth_stencil_bits(brw, &wmds);
1218 }
1219 #else
1220 uint32_t ds_offset;
1221 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1222 set_depth_stencil_bits(brw, &ds);
1223 }
1224
1225 /* Now upload a pointer to the indirect state */
1226 #if GEN_GEN == 6
1227 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1228 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1229 ptr.DEPTH_STENCIL_STATEChange = true;
1230 }
1231 #else
1232 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1233 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1234 }
1235 #endif
1236 #endif
1237 }
1238
1239 static const struct brw_tracked_state genX(depth_stencil_state) = {
1240 .dirty = {
1241 .mesa = _NEW_BUFFERS |
1242 _NEW_DEPTH |
1243 _NEW_STENCIL,
1244 .brw = BRW_NEW_BLORP |
1245 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1246 : BRW_NEW_BATCH |
1247 BRW_NEW_STATE_BASE_ADDRESS),
1248 },
1249 .emit = genX(upload_depth_stencil_state),
1250 };
1251 #endif
1252
1253 /* ---------------------------------------------------------------------- */
1254
1255 #if GEN_GEN <= 5
1256
1257 static void
1258 genX(upload_clip_state)(struct brw_context *brw)
1259 {
1260 struct gl_context *ctx = &brw->ctx;
1261
1262 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1263 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1264 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1265 clip.GRFRegisterCount =
1266 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1267 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1268 clip.SingleProgramFlow = true;
1269 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1270 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1271
1272 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1273 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1274 clip.DispatchGRFStartRegisterForURBData = 1;
1275 clip.VertexURBEntryReadOffset = 0;
1276
1277 /* BRW_NEW_URB_FENCE */
1278 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1279 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1280
1281 if (brw->urb.nr_clip_entries >= 10) {
1282 /* Half of the URB entries go to each thread, and it has to be an
1283 * even number.
1284 */
1285 assert(brw->urb.nr_clip_entries % 2 == 0);
1286
1287 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1288 * only 2 threads can output VUEs at a time.
1289 */
1290 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1291 } else {
1292 assert(brw->urb.nr_clip_entries >= 5);
1293 clip.MaximumNumberofThreads = 1 - 1;
1294 }
1295
1296 clip.VertexPositionSpace = VPOS_NDCSPACE;
1297 clip.UserClipFlagsMustClipEnable = true;
1298 clip.GuardbandClipTestEnable = true;
1299
1300 clip.ClipperViewportStatePointer =
1301 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1302
1303 clip.ScreenSpaceViewportXMin = -1;
1304 clip.ScreenSpaceViewportXMax = 1;
1305 clip.ScreenSpaceViewportYMin = -1;
1306 clip.ScreenSpaceViewportYMax = 1;
1307
1308 clip.ViewportXYClipTestEnable = true;
1309 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1310
1311 /* _NEW_TRANSFORM */
1312 if (GEN_GEN == 5 || GEN_IS_G4X) {
1313 clip.UserClipDistanceClipTestEnableBitmask =
1314 ctx->Transform.ClipPlanesEnabled;
1315 } else {
1316 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1317 * workaround.
1318 */
1319 clip.UserClipDistanceClipTestEnableBitmask =
1320 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1321 }
1322
1323 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1324 clip.APIMode = APIMODE_D3D;
1325 else
1326 clip.APIMode = APIMODE_OGL;
1327
1328 clip.GuardbandClipTestEnable = true;
1329
1330 clip.ClipMode = brw->clip.prog_data->clip_mode;
1331
1332 #if GEN_IS_G4X
1333 clip.NegativeWClipTestEnable = true;
1334 #endif
1335 }
1336 }
1337
1338 const struct brw_tracked_state genX(clip_state) = {
1339 .dirty = {
1340 .mesa = _NEW_TRANSFORM |
1341 _NEW_VIEWPORT,
1342 .brw = BRW_NEW_BATCH |
1343 BRW_NEW_BLORP |
1344 BRW_NEW_CLIP_PROG_DATA |
1345 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1346 BRW_NEW_PROGRAM_CACHE |
1347 BRW_NEW_URB_FENCE,
1348 },
1349 .emit = genX(upload_clip_state),
1350 };
1351
1352 #else
1353
1354 static void
1355 genX(upload_clip_state)(struct brw_context *brw)
1356 {
1357 struct gl_context *ctx = &brw->ctx;
1358
1359 /* _NEW_BUFFERS */
1360 struct gl_framebuffer *fb = ctx->DrawBuffer;
1361
1362 /* BRW_NEW_FS_PROG_DATA */
1363 struct brw_wm_prog_data *wm_prog_data =
1364 brw_wm_prog_data(brw->wm.base.prog_data);
1365
1366 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1367 clip.StatisticsEnable = !brw->meta_in_progress;
1368
1369 if (wm_prog_data->barycentric_interp_modes &
1370 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1371 clip.NonPerspectiveBarycentricEnable = true;
1372
1373 #if GEN_GEN >= 7
1374 clip.EarlyCullEnable = true;
1375 #endif
1376
1377 #if GEN_GEN == 7
1378 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1379
1380 if (ctx->Polygon.CullFlag) {
1381 switch (ctx->Polygon.CullFaceMode) {
1382 case GL_FRONT:
1383 clip.CullMode = CULLMODE_FRONT;
1384 break;
1385 case GL_BACK:
1386 clip.CullMode = CULLMODE_BACK;
1387 break;
1388 case GL_FRONT_AND_BACK:
1389 clip.CullMode = CULLMODE_BOTH;
1390 break;
1391 default:
1392 unreachable("Should not get here: invalid CullFlag");
1393 }
1394 } else {
1395 clip.CullMode = CULLMODE_NONE;
1396 }
1397 #endif
1398
1399 #if GEN_GEN < 8
1400 clip.UserClipDistanceCullTestEnableBitmask =
1401 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1402
1403 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1404 #endif
1405
1406 /* _NEW_LIGHT */
1407 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1408 clip.TriangleStripListProvokingVertexSelect = 0;
1409 clip.TriangleFanProvokingVertexSelect = 1;
1410 clip.LineStripListProvokingVertexSelect = 0;
1411 } else {
1412 clip.TriangleStripListProvokingVertexSelect = 2;
1413 clip.TriangleFanProvokingVertexSelect = 2;
1414 clip.LineStripListProvokingVertexSelect = 1;
1415 }
1416
1417 /* _NEW_TRANSFORM */
1418 clip.UserClipDistanceClipTestEnableBitmask =
1419 ctx->Transform.ClipPlanesEnabled;
1420
1421 #if GEN_GEN >= 8
1422 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1423 #endif
1424
1425 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1426 clip.APIMode = APIMODE_D3D;
1427 else
1428 clip.APIMode = APIMODE_OGL;
1429
1430 clip.GuardbandClipTestEnable = true;
1431
1432 /* BRW_NEW_VIEWPORT_COUNT */
1433 const unsigned viewport_count = brw->clip.viewport_count;
1434
1435 if (ctx->RasterDiscard) {
1436 clip.ClipMode = CLIPMODE_REJECT_ALL;
1437 #if GEN_GEN == 6
1438 perf_debug("Rasterizer discard is currently implemented via the "
1439 "clipper; having the GS not write primitives would "
1440 "likely be faster.\n");
1441 #endif
1442 } else {
1443 clip.ClipMode = CLIPMODE_NORMAL;
1444 }
1445
1446 clip.ClipEnable = true;
1447
1448 /* _NEW_POLYGON,
1449 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1450 */
1451 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1452 clip.ViewportXYClipTestEnable = true;
1453
1454 clip.MinimumPointWidth = 0.125;
1455 clip.MaximumPointWidth = 255.875;
1456 clip.MaximumVPIndex = viewport_count - 1;
1457 if (_mesa_geometric_layers(fb) == 0)
1458 clip.ForceZeroRTAIndexEnable = true;
1459 }
1460 }
1461
1462 static const struct brw_tracked_state genX(clip_state) = {
1463 .dirty = {
1464 .mesa = _NEW_BUFFERS |
1465 _NEW_LIGHT |
1466 _NEW_POLYGON |
1467 _NEW_TRANSFORM,
1468 .brw = BRW_NEW_BLORP |
1469 BRW_NEW_CONTEXT |
1470 BRW_NEW_FS_PROG_DATA |
1471 BRW_NEW_GS_PROG_DATA |
1472 BRW_NEW_VS_PROG_DATA |
1473 BRW_NEW_META_IN_PROGRESS |
1474 BRW_NEW_PRIMITIVE |
1475 BRW_NEW_RASTERIZER_DISCARD |
1476 BRW_NEW_TES_PROG_DATA |
1477 BRW_NEW_VIEWPORT_COUNT,
1478 },
1479 .emit = genX(upload_clip_state),
1480 };
1481 #endif
1482
1483 /* ---------------------------------------------------------------------- */
1484
1485 static void
1486 genX(upload_sf)(struct brw_context *brw)
1487 {
1488 struct gl_context *ctx = &brw->ctx;
1489 float point_size;
1490
1491 #if GEN_GEN <= 7
1492 /* _NEW_BUFFERS */
1493 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1494 UNUSED const bool multisampled_fbo =
1495 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1496 #endif
1497
1498 #if GEN_GEN < 6
1499 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1500
1501 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1502
1503 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1504 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1505 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1506 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1507 sf.DispatchGRFStartRegisterForURBData = 3;
1508 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1509 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1510 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1511 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1512
1513 /* STATE_PREFETCH command description describes this state as being
1514 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1515 * domain.
1516 */
1517 sf.SetupViewportStateOffset =
1518 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1519
1520 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1521
1522 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1523 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1524
1525 sf.MaximumNumberofThreads =
1526 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1527
1528 sf.SpritePointEnable = ctx->Point.PointSprite;
1529
1530 sf.DestinationOriginHorizontalBias = 0.5;
1531 sf.DestinationOriginVerticalBias = 0.5;
1532 #else
1533 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1534 sf.StatisticsEnable = true;
1535 #endif
1536 sf.ViewportTransformEnable = true;
1537
1538 #if GEN_GEN == 7
1539 /* _NEW_BUFFERS */
1540 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1541 #endif
1542
1543 #if GEN_GEN <= 7
1544 /* _NEW_POLYGON */
1545 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1546 #if GEN_GEN >= 6
1547 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1548 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1549 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1550
1551 switch (ctx->Polygon.FrontMode) {
1552 case GL_FILL:
1553 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1554 break;
1555 case GL_LINE:
1556 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1557 break;
1558 case GL_POINT:
1559 sf.FrontFaceFillMode = FILL_MODE_POINT;
1560 break;
1561 default:
1562 unreachable("not reached");
1563 }
1564
1565 switch (ctx->Polygon.BackMode) {
1566 case GL_FILL:
1567 sf.BackFaceFillMode = FILL_MODE_SOLID;
1568 break;
1569 case GL_LINE:
1570 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1571 break;
1572 case GL_POINT:
1573 sf.BackFaceFillMode = FILL_MODE_POINT;
1574 break;
1575 default:
1576 unreachable("not reached");
1577 }
1578
1579 if (multisampled_fbo && ctx->Multisample.Enabled)
1580 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1581
1582 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1583 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1584 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1585 #endif
1586
1587 sf.ScissorRectangleEnable = true;
1588
1589 if (ctx->Polygon.CullFlag) {
1590 switch (ctx->Polygon.CullFaceMode) {
1591 case GL_FRONT:
1592 sf.CullMode = CULLMODE_FRONT;
1593 break;
1594 case GL_BACK:
1595 sf.CullMode = CULLMODE_BACK;
1596 break;
1597 case GL_FRONT_AND_BACK:
1598 sf.CullMode = CULLMODE_BOTH;
1599 break;
1600 default:
1601 unreachable("not reached");
1602 }
1603 } else {
1604 sf.CullMode = CULLMODE_NONE;
1605 }
1606
1607 #if GEN_IS_HASWELL
1608 sf.LineStippleEnable = ctx->Line.StippleFlag;
1609 #endif
1610
1611 #endif
1612
1613 /* _NEW_LINE */
1614 #if GEN_GEN == 8
1615 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1616
1617 if (devinfo->is_cherryview)
1618 sf.CHVLineWidth = brw_get_line_width(brw);
1619 else
1620 sf.LineWidth = brw_get_line_width(brw);
1621 #else
1622 sf.LineWidth = brw_get_line_width(brw);
1623 #endif
1624
1625 if (ctx->Line.SmoothFlag) {
1626 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1627 #if GEN_GEN <= 7
1628 sf.AntiAliasingEnable = true;
1629 #endif
1630 }
1631
1632 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1633 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1634 /* Clamp to the hardware limits */
1635 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1636
1637 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1638 if (use_state_point_size(brw))
1639 sf.PointWidthSource = State;
1640
1641 #if GEN_GEN >= 8
1642 /* _NEW_POINT | _NEW_MULTISAMPLE */
1643 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1644 !ctx->Point.PointSprite)
1645 sf.SmoothPointEnable = true;
1646 #endif
1647
1648 #if GEN_GEN == 10
1649 /* _NEW_BUFFERS
1650 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1651 */
1652 const bool multisampled_fbo =
1653 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1654 if (multisampled_fbo)
1655 sf.SmoothPointEnable = false;
1656 #endif
1657
1658 #if GEN_IS_G4X || GEN_GEN >= 5
1659 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1660 #endif
1661
1662 /* _NEW_LIGHT */
1663 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1664 sf.TriangleStripListProvokingVertexSelect = 2;
1665 sf.TriangleFanProvokingVertexSelect = 2;
1666 sf.LineStripListProvokingVertexSelect = 1;
1667 } else {
1668 sf.TriangleFanProvokingVertexSelect = 1;
1669 }
1670
1671 #if GEN_GEN == 6
1672 /* BRW_NEW_FS_PROG_DATA */
1673 const struct brw_wm_prog_data *wm_prog_data =
1674 brw_wm_prog_data(brw->wm.base.prog_data);
1675
1676 sf.AttributeSwizzleEnable = true;
1677 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1678
1679 /*
1680 * Window coordinates in an FBO are inverted, which means point
1681 * sprite origin must be inverted, too.
1682 */
1683 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1684 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1685 } else {
1686 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1687 }
1688
1689 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1690 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1691 */
1692 uint32_t urb_entry_read_length;
1693 uint32_t urb_entry_read_offset;
1694 uint32_t point_sprite_enables;
1695 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1696 &urb_entry_read_length,
1697 &urb_entry_read_offset);
1698 sf.VertexURBEntryReadLength = urb_entry_read_length;
1699 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1700 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1701 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1702 #endif
1703 }
1704 }
1705
1706 static const struct brw_tracked_state genX(sf_state) = {
1707 .dirty = {
1708 .mesa = _NEW_LIGHT |
1709 _NEW_LINE |
1710 _NEW_POINT |
1711 _NEW_PROGRAM |
1712 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1713 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1714 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1715 .brw = BRW_NEW_BLORP |
1716 BRW_NEW_VUE_MAP_GEOM_OUT |
1717 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1718 BRW_NEW_PROGRAM_CACHE |
1719 BRW_NEW_SF_PROG_DATA |
1720 BRW_NEW_SF_VP |
1721 BRW_NEW_URB_FENCE
1722 : 0) |
1723 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1724 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1725 BRW_NEW_GS_PROG_DATA |
1726 BRW_NEW_PRIMITIVE |
1727 BRW_NEW_TES_PROG_DATA
1728 : 0) |
1729 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1730 BRW_NEW_FRAGMENT_PROGRAM
1731 : 0),
1732 },
1733 .emit = genX(upload_sf),
1734 };
1735
1736 /* ---------------------------------------------------------------------- */
1737
1738 static bool
1739 brw_color_buffer_write_enabled(struct brw_context *brw)
1740 {
1741 struct gl_context *ctx = &brw->ctx;
1742 /* BRW_NEW_FRAGMENT_PROGRAM */
1743 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1744 unsigned i;
1745
1746 /* _NEW_BUFFERS */
1747 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1748 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1749 uint64_t outputs_written = fp->info.outputs_written;
1750
1751 /* _NEW_COLOR */
1752 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1753 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1754 (ctx->Color.ColorMask[i][0] ||
1755 ctx->Color.ColorMask[i][1] ||
1756 ctx->Color.ColorMask[i][2] ||
1757 ctx->Color.ColorMask[i][3])) {
1758 return true;
1759 }
1760 }
1761
1762 return false;
1763 }
1764
1765 static void
1766 genX(upload_wm)(struct brw_context *brw)
1767 {
1768 struct gl_context *ctx = &brw->ctx;
1769
1770 /* BRW_NEW_FS_PROG_DATA */
1771 const struct brw_wm_prog_data *wm_prog_data =
1772 brw_wm_prog_data(brw->wm.base.prog_data);
1773
1774 UNUSED bool writes_depth =
1775 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1776 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1777 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1778
1779 #if GEN_GEN == 6
1780 /* We can't fold this into gen6_upload_wm_push_constants(), because
1781 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1782 * (3DSTATE_CONSTANT_PS [DevSNB]):
1783 *
1784 * "[DevSNB]: This packet must be followed by WM_STATE."
1785 */
1786 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1787 if (wm_prog_data->base.nr_params != 0) {
1788 wmcp.Buffer0Valid = true;
1789 /* Pointer to the WM constant buffer. Covered by the set of
1790 * state flags from gen6_upload_wm_push_constants.
1791 */
1792 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1793 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1794 }
1795 }
1796 #endif
1797
1798 #if GEN_GEN >= 6
1799 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1800 wm.LineAntialiasingRegionWidth = _10pixels;
1801 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1802
1803 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1804 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1805 #else
1806 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1807 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1808 if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1809 /* These two fields should be the same pre-gen6, which is why we
1810 * only have one hardware field to program for both dispatch
1811 * widths.
1812 */
1813 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1814 wm_prog_data->dispatch_grf_start_reg_2);
1815 }
1816
1817 if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1818 wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1819
1820 if (stage_state->sampler_count)
1821 wm.SamplerStatePointer =
1822 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1823 #if GEN_GEN == 5
1824 if (wm_prog_data->prog_offset_2)
1825 wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1826 #endif
1827
1828 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1829 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1830 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1831 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1832 wm.EarlyDepthTestEnable = true;
1833 wm.LineAntialiasingRegionWidth = _05pixels;
1834 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1835
1836 /* _NEW_POLYGON */
1837 if (ctx->Polygon.OffsetFill) {
1838 wm.GlobalDepthOffsetEnable = true;
1839 /* Something weird going on with legacy_global_depth_bias,
1840 * offset_constant, scaling and MRD. This value passes glean
1841 * but gives some odd results elsewere (eg. the
1842 * quad-offset-units test).
1843 */
1844 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1845
1846 /* This is the only value that passes glean:
1847 */
1848 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1849 }
1850
1851 wm.DepthCoefficientURBReadOffset = 1;
1852 #endif
1853
1854 /* BRW_NEW_STATS_WM */
1855 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1856
1857 #if GEN_GEN < 7
1858 if (wm_prog_data->base.use_alt_mode)
1859 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1860
1861 wm.SamplerCount = GEN_GEN == 5 ?
1862 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1863
1864 wm.BindingTableEntryCount =
1865 wm_prog_data->base.binding_table.size_bytes / 4;
1866 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1867 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1868 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1869 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1870 wm_prog_data->base.dispatch_grf_start_reg;
1871 if (GEN_GEN == 6 ||
1872 wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1873 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1874 }
1875
1876 #if GEN_GEN >= 5
1877 if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1878 wm.KernelStartPointer2 =
1879 KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1880 }
1881 #endif
1882
1883 #if GEN_GEN == 6
1884 wm.DualSourceBlendEnable =
1885 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1886 ctx->Color.Blend[0]._UsesDualSrc;
1887 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1888 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1889
1890 /* From the SNB PRM, volume 2 part 1, page 281:
1891 * "If the PS kernel does not need the Position XY Offsets
1892 * to compute a Position XY value, then this field should be
1893 * programmed to POSOFFSET_NONE."
1894 *
1895 * "SW Recommendation: If the PS kernel needs the Position Offsets
1896 * to compute a Position XY value, this field should match Position
1897 * ZW Interpolation Mode to ensure a consistent position.xyzw
1898 * computation."
1899 * We only require XY sample offsets. So, this recommendation doesn't
1900 * look useful at the moment. We might need this in future.
1901 */
1902 if (wm_prog_data->uses_pos_offset)
1903 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1904 else
1905 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1906
1907 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1908 wm_prog_data->dispatch_grf_start_reg_2;
1909 #endif
1910
1911 if (wm_prog_data->base.total_scratch) {
1912 wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1913 wm.PerThreadScratchSpace =
1914 ffs(stage_state->per_thread_scratch) - 11;
1915 }
1916
1917 wm.PixelShaderComputedDepth = writes_depth;
1918 #endif
1919
1920 /* _NEW_LINE */
1921 wm.LineStippleEnable = ctx->Line.StippleFlag;
1922
1923 /* _NEW_POLYGON */
1924 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1925
1926 #if GEN_GEN < 8
1927
1928 #if GEN_GEN >= 6
1929 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1930
1931 /* _NEW_BUFFERS */
1932 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1933
1934 if (multisampled_fbo) {
1935 /* _NEW_MULTISAMPLE */
1936 if (ctx->Multisample.Enabled)
1937 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1938 else
1939 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1940
1941 if (wm_prog_data->persample_dispatch)
1942 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1943 else
1944 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1945 } else {
1946 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1947 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1948 }
1949 #endif
1950 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1951 if (wm_prog_data->uses_kill ||
1952 _mesa_is_alpha_test_enabled(ctx) ||
1953 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1954 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1955 wm.PixelShaderKillsPixel = true;
1956 }
1957
1958 /* _NEW_BUFFERS | _NEW_COLOR */
1959 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1960 wm.PixelShaderKillsPixel ||
1961 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1962 wm.ThreadDispatchEnable = true;
1963 }
1964
1965 #if GEN_GEN >= 7
1966 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1967 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1968 #endif
1969
1970 /* The "UAV access enable" bits are unnecessary on HSW because they only
1971 * seem to have an effect on the HW-assisted coherency mechanism which we
1972 * don't need, and the rasterization-related UAV_ONLY flag and the
1973 * DISPATCH_ENABLE bit can be set independently from it.
1974 * C.f. gen8_upload_ps_extra().
1975 *
1976 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1977 * _NEW_COLOR
1978 */
1979 #if GEN_IS_HASWELL
1980 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1981 wm_prog_data->has_side_effects)
1982 wm.PSUAVonly = ON;
1983 #endif
1984 #endif
1985
1986 #if GEN_GEN >= 7
1987 /* BRW_NEW_FS_PROG_DATA */
1988 if (wm_prog_data->early_fragment_tests)
1989 wm.EarlyDepthStencilControl = EDSC_PREPS;
1990 else if (wm_prog_data->has_side_effects)
1991 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1992 #endif
1993 }
1994
1995 #if GEN_GEN <= 5
1996 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1997 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1998 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1999 }
2000
2001 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2002 }
2003 #endif
2004 }
2005
2006 static const struct brw_tracked_state genX(wm_state) = {
2007 .dirty = {
2008 .mesa = _NEW_LINE |
2009 _NEW_POLYGON |
2010 (GEN_GEN < 8 ? _NEW_BUFFERS |
2011 _NEW_COLOR :
2012 0) |
2013 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2014 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2015 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2016 .brw = BRW_NEW_BLORP |
2017 BRW_NEW_FS_PROG_DATA |
2018 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2019 BRW_NEW_FRAGMENT_PROGRAM |
2020 BRW_NEW_PROGRAM_CACHE |
2021 BRW_NEW_SAMPLER_STATE_TABLE |
2022 BRW_NEW_STATS_WM
2023 : 0) |
2024 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2025 },
2026 .emit = genX(upload_wm),
2027 };
2028
2029 /* ---------------------------------------------------------------------- */
2030
2031 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2032 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2033 pkt.SamplerCount = \
2034 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2035 pkt.BindingTableEntryCount = \
2036 stage_prog_data->binding_table.size_bytes / 4; \
2037 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2038 \
2039 if (stage_prog_data->total_scratch) { \
2040 pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0); \
2041 pkt.PerThreadScratchSpace = \
2042 ffs(stage_state->per_thread_scratch) - 11; \
2043 } \
2044 \
2045 pkt.DispatchGRFStartRegisterForURBData = \
2046 stage_prog_data->dispatch_grf_start_reg; \
2047 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2048 pkt.prefix##URBEntryReadOffset = 0; \
2049 \
2050 pkt.StatisticsEnable = true; \
2051 pkt.Enable = true;
2052
2053 static void
2054 genX(upload_vs_state)(struct brw_context *brw)
2055 {
2056 UNUSED struct gl_context *ctx = &brw->ctx;
2057 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2058 struct brw_stage_state *stage_state = &brw->vs.base;
2059
2060 /* BRW_NEW_VS_PROG_DATA */
2061 const struct brw_vue_prog_data *vue_prog_data =
2062 brw_vue_prog_data(brw->vs.base.prog_data);
2063 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2064
2065 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2066 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2067
2068 #if GEN_GEN == 6
2069 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2070 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2071 *
2072 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2073 * command that causes the VS Function Enable to toggle. Pipeline
2074 * flush can be executed by sending a PIPE_CONTROL command with CS
2075 * stall bit set and a post sync operation.
2076 *
2077 * We've already done such a flush at the start of state upload, so we
2078 * don't need to do another one here.
2079 */
2080 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2081 if (stage_state->push_const_size != 0) {
2082 cvs.Buffer0Valid = true;
2083 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2084 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2085 }
2086 }
2087 #endif
2088
2089 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2090 gen7_emit_vs_workaround_flush(brw);
2091
2092 #if GEN_GEN >= 6
2093 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2094 #else
2095 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2096 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2097 #endif
2098 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2099
2100 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2101
2102 #if GEN_GEN < 6
2103 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2104 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2105 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2106
2107 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2108 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2109
2110 vs.MaximumNumberofThreads =
2111 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2112
2113 vs.StatisticsEnable = false;
2114 vs.SamplerStatePointer =
2115 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2116 #endif
2117
2118 #if GEN_GEN == 5
2119 /* Force single program flow on Ironlake. We cannot reliably get
2120 * all applications working without it. See:
2121 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2122 *
2123 * The most notable and reliably failing application is the Humus
2124 * demo "CelShading"
2125 */
2126 vs.SingleProgramFlow = true;
2127 vs.SamplerCount = 0; /* hardware requirement */
2128 #endif
2129
2130 #if GEN_GEN >= 8
2131 vs.SIMD8DispatchEnable =
2132 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2133
2134 vs.UserClipDistanceCullTestEnableBitmask =
2135 vue_prog_data->cull_distance_mask;
2136 #endif
2137 }
2138
2139 #if GEN_GEN == 6
2140 /* Based on my reading of the simulator, the VS constants don't get
2141 * pulled into the VS FF unit until an appropriate pipeline flush
2142 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2143 * references to them into a little FIFO. The flushes are common,
2144 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2145 * the primitive to use the wrong constants. Then the FIFO
2146 * containing the constant setup gets added to again on the next
2147 * constants change, and eventually when a flush does happen the
2148 * unit is overwhelmed by constant changes and dies.
2149 *
2150 * To avoid this, send a PIPE_CONTROL down the line that will
2151 * update the unit immediately loading the constants. The flush
2152 * type bits here were those set by the STATE_BASE_ADDRESS whose
2153 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2154 * bug reports that led to this workaround, and may be more than
2155 * what is strictly required to avoid the issue.
2156 */
2157 brw_emit_pipe_control_flush(brw,
2158 PIPE_CONTROL_DEPTH_STALL |
2159 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2160 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2161 #endif
2162 }
2163
2164 static const struct brw_tracked_state genX(vs_state) = {
2165 .dirty = {
2166 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2167 .brw = BRW_NEW_BATCH |
2168 BRW_NEW_BLORP |
2169 BRW_NEW_CONTEXT |
2170 BRW_NEW_VS_PROG_DATA |
2171 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2172 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2173 BRW_NEW_PROGRAM_CACHE |
2174 BRW_NEW_SAMPLER_STATE_TABLE |
2175 BRW_NEW_URB_FENCE
2176 : 0),
2177 },
2178 .emit = genX(upload_vs_state),
2179 };
2180
2181 /* ---------------------------------------------------------------------- */
2182
2183 static void
2184 genX(upload_cc_viewport)(struct brw_context *brw)
2185 {
2186 struct gl_context *ctx = &brw->ctx;
2187
2188 /* BRW_NEW_VIEWPORT_COUNT */
2189 const unsigned viewport_count = brw->clip.viewport_count;
2190
2191 struct GENX(CC_VIEWPORT) ccv;
2192 uint32_t cc_vp_offset;
2193 uint32_t *cc_map =
2194 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2195 32, &cc_vp_offset);
2196
2197 for (unsigned i = 0; i < viewport_count; i++) {
2198 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2199 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2200 if (ctx->Transform.DepthClamp) {
2201 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2202 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2203 } else {
2204 ccv.MinimumDepth = 0.0;
2205 ccv.MaximumDepth = 1.0;
2206 }
2207 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2208 cc_map += GENX(CC_VIEWPORT_length);
2209 }
2210
2211 #if GEN_GEN >= 7
2212 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2213 ptr.CCViewportPointer = cc_vp_offset;
2214 }
2215 #elif GEN_GEN == 6
2216 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2217 vp.CCViewportStateChange = 1;
2218 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2219 }
2220 #else
2221 brw->cc.vp_offset = cc_vp_offset;
2222 ctx->NewDriverState |= BRW_NEW_CC_VP;
2223 #endif
2224 }
2225
2226 const struct brw_tracked_state genX(cc_vp) = {
2227 .dirty = {
2228 .mesa = _NEW_TRANSFORM |
2229 _NEW_VIEWPORT,
2230 .brw = BRW_NEW_BATCH |
2231 BRW_NEW_BLORP |
2232 BRW_NEW_VIEWPORT_COUNT,
2233 },
2234 .emit = genX(upload_cc_viewport)
2235 };
2236
2237 /* ---------------------------------------------------------------------- */
2238
2239 static void
2240 set_scissor_bits(const struct gl_context *ctx, int i,
2241 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2242 struct GENX(SCISSOR_RECT) *sc)
2243 {
2244 int bbox[4];
2245
2246 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2247 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2248 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2249 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2250 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2251
2252 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2253 /* If the scissor was out of bounds and got clamped to 0 width/height
2254 * at the bounds, the subtraction of 1 from maximums could produce a
2255 * negative number and thus not clip anything. Instead, just provide
2256 * a min > max scissor inside the bounds, which produces the expected
2257 * no rendering.
2258 */
2259 sc->ScissorRectangleXMin = 1;
2260 sc->ScissorRectangleXMax = 0;
2261 sc->ScissorRectangleYMin = 1;
2262 sc->ScissorRectangleYMax = 0;
2263 } else if (render_to_fbo) {
2264 /* texmemory: Y=0=bottom */
2265 sc->ScissorRectangleXMin = bbox[0];
2266 sc->ScissorRectangleXMax = bbox[1] - 1;
2267 sc->ScissorRectangleYMin = bbox[2];
2268 sc->ScissorRectangleYMax = bbox[3] - 1;
2269 } else {
2270 /* memory: Y=0=top */
2271 sc->ScissorRectangleXMin = bbox[0];
2272 sc->ScissorRectangleXMax = bbox[1] - 1;
2273 sc->ScissorRectangleYMin = fb_height - bbox[3];
2274 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2275 }
2276 }
2277
2278 #if GEN_GEN >= 6
2279 static void
2280 genX(upload_scissor_state)(struct brw_context *brw)
2281 {
2282 struct gl_context *ctx = &brw->ctx;
2283 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2284 struct GENX(SCISSOR_RECT) scissor;
2285 uint32_t scissor_state_offset;
2286 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2287 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2288 uint32_t *scissor_map;
2289
2290 /* BRW_NEW_VIEWPORT_COUNT */
2291 const unsigned viewport_count = brw->clip.viewport_count;
2292
2293 scissor_map = brw_state_batch(
2294 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2295 32, &scissor_state_offset);
2296
2297 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2298
2299 /* The scissor only needs to handle the intersection of drawable and
2300 * scissor rect. Clipping to the boundaries of static shared buffers
2301 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2302 *
2303 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2304 * inclusive but max is exclusive.
2305 */
2306 for (unsigned i = 0; i < viewport_count; i++) {
2307 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2308 GENX(SCISSOR_RECT_pack)(
2309 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2310 }
2311
2312 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2313 ptr.ScissorRectPointer = scissor_state_offset;
2314 }
2315 }
2316
2317 static const struct brw_tracked_state genX(scissor_state) = {
2318 .dirty = {
2319 .mesa = _NEW_BUFFERS |
2320 _NEW_SCISSOR |
2321 _NEW_VIEWPORT,
2322 .brw = BRW_NEW_BATCH |
2323 BRW_NEW_BLORP |
2324 BRW_NEW_VIEWPORT_COUNT,
2325 },
2326 .emit = genX(upload_scissor_state),
2327 };
2328 #endif
2329
2330 /* ---------------------------------------------------------------------- */
2331
2332 static void
2333 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2334 float m00, float m11, float m30, float m31,
2335 float *xmin, float *xmax,
2336 float *ymin, float *ymax)
2337 {
2338 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2339 * Strips and Fans documentation:
2340 *
2341 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2342 * fixed-point "guardband" range supported by the rasterization hardware"
2343 *
2344 * and
2345 *
2346 * "In almost all circumstances, if an object’s vertices are actually
2347 * modified by this clamping (i.e., had X or Y coordinates outside of
2348 * the guardband extent the rendered object will not match the intended
2349 * result. Therefore software should take steps to ensure that this does
2350 * not happen - e.g., by clipping objects such that they do not exceed
2351 * these limits after the Drawing Rectangle is applied."
2352 *
2353 * I believe the fundamental restriction is that the rasterizer (in
2354 * the SF/WM stages) have a limit on the number of pixels that can be
2355 * rasterized. We need to ensure any coordinates beyond the rasterizer
2356 * limit are handled by the clipper. So effectively that limit becomes
2357 * the clipper's guardband size.
2358 *
2359 * It goes on to say:
2360 *
2361 * "In addition, in order to be correctly rendered, objects must have a
2362 * screenspace bounding box not exceeding 8K in the X or Y direction.
2363 * This additional restriction must also be comprehended by software,
2364 * i.e., enforced by use of clipping."
2365 *
2366 * This makes no sense. Gen7+ hardware supports 16K render targets,
2367 * and you definitely need to be able to draw polygons that fill the
2368 * surface. Our assumption is that the rasterizer was limited to 8K
2369 * on Sandybridge, which only supports 8K surfaces, and it was actually
2370 * increased to 16K on Ivybridge and later.
2371 *
2372 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2373 */
2374 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2375
2376 if (m00 != 0 && m11 != 0) {
2377 /* First, we compute the screen-space render area */
2378 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2379 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2380 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2381 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2382
2383 /* We want the guardband to be centered on that */
2384 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2385 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2386 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2387 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2388
2389 /* Now we need it in native device coordinates */
2390 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2391 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2392 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2393 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2394
2395 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2396 * flipped upside-down. X should be fine though.
2397 */
2398 assert(ndc_gb_xmin <= ndc_gb_xmax);
2399 *xmin = ndc_gb_xmin;
2400 *xmax = ndc_gb_xmax;
2401 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2402 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2403 } else {
2404 /* The viewport scales to 0, so nothing will be rendered. */
2405 *xmin = 0.0f;
2406 *xmax = 0.0f;
2407 *ymin = 0.0f;
2408 *ymax = 0.0f;
2409 }
2410 }
2411
2412 static void
2413 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2414 {
2415 struct gl_context *ctx = &brw->ctx;
2416 float y_scale, y_bias;
2417
2418 /* BRW_NEW_VIEWPORT_COUNT */
2419 const unsigned viewport_count = brw->clip.viewport_count;
2420
2421 /* _NEW_BUFFERS */
2422 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2423 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2424 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2425
2426 #if GEN_GEN >= 7
2427 #define clv sfv
2428 struct GENX(SF_CLIP_VIEWPORT) sfv;
2429 uint32_t sf_clip_vp_offset;
2430 uint32_t *sf_clip_map =
2431 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2432 64, &sf_clip_vp_offset);
2433 #else
2434 struct GENX(SF_VIEWPORT) sfv;
2435 struct GENX(CLIP_VIEWPORT) clv;
2436 uint32_t sf_vp_offset, clip_vp_offset;
2437 uint32_t *sf_map =
2438 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2439 32, &sf_vp_offset);
2440 uint32_t *clip_map =
2441 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2442 32, &clip_vp_offset);
2443 #endif
2444
2445 /* _NEW_BUFFERS */
2446 if (render_to_fbo) {
2447 y_scale = 1.0;
2448 y_bias = 0;
2449 } else {
2450 y_scale = -1.0;
2451 y_bias = (float)fb_height;
2452 }
2453
2454 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2455 /* _NEW_VIEWPORT: Guardband Clipping */
2456 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2457 _mesa_get_viewport_xform(ctx, i, scale, translate);
2458
2459 sfv.ViewportMatrixElementm00 = scale[0];
2460 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2461 sfv.ViewportMatrixElementm22 = scale[2],
2462 sfv.ViewportMatrixElementm30 = translate[0],
2463 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2464 sfv.ViewportMatrixElementm32 = translate[2],
2465 brw_calculate_guardband_size(fb_width, fb_height,
2466 sfv.ViewportMatrixElementm00,
2467 sfv.ViewportMatrixElementm11,
2468 sfv.ViewportMatrixElementm30,
2469 sfv.ViewportMatrixElementm31,
2470 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2471
2472
2473 clv.XMinClipGuardband = gb_xmin;
2474 clv.XMaxClipGuardband = gb_xmax;
2475 clv.YMinClipGuardband = gb_ymin;
2476 clv.YMaxClipGuardband = gb_ymax;
2477
2478 #if GEN_GEN < 6
2479 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2480 &sfv.ScissorRectangle);
2481 #elif GEN_GEN >= 8
2482 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2483 * The hardware will take the intersection of the drawing rectangle,
2484 * scissor rectangle, and the viewport extents. We don't need to be
2485 * smart, and can therefore just program the viewport extents.
2486 */
2487 const float viewport_Xmax =
2488 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2489 const float viewport_Ymax =
2490 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2491
2492 if (render_to_fbo) {
2493 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2494 sfv.XMaxViewPort = viewport_Xmax - 1;
2495 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2496 sfv.YMaxViewPort = viewport_Ymax - 1;
2497 } else {
2498 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2499 sfv.XMaxViewPort = viewport_Xmax - 1;
2500 sfv.YMinViewPort = fb_height - viewport_Ymax;
2501 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2502 }
2503 #endif
2504
2505 #if GEN_GEN >= 7
2506 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2507 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2508 #else
2509 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2510 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2511 sf_map += GENX(SF_VIEWPORT_length);
2512 clip_map += GENX(CLIP_VIEWPORT_length);
2513 #endif
2514 }
2515
2516 #if GEN_GEN >= 7
2517 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2518 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2519 }
2520 #elif GEN_GEN == 6
2521 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2522 vp.SFViewportStateChange = 1;
2523 vp.CLIPViewportStateChange = 1;
2524 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2525 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2526 }
2527 #else
2528 brw->sf.vp_offset = sf_vp_offset;
2529 brw->clip.vp_offset = clip_vp_offset;
2530 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2531 #endif
2532 }
2533
2534 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2535 .dirty = {
2536 .mesa = _NEW_BUFFERS |
2537 _NEW_VIEWPORT |
2538 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2539 .brw = BRW_NEW_BATCH |
2540 BRW_NEW_BLORP |
2541 BRW_NEW_VIEWPORT_COUNT,
2542 },
2543 .emit = genX(upload_sf_clip_viewport),
2544 };
2545
2546 /* ---------------------------------------------------------------------- */
2547
2548 static void
2549 genX(upload_gs_state)(struct brw_context *brw)
2550 {
2551 UNUSED struct gl_context *ctx = &brw->ctx;
2552 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2553 const struct brw_stage_state *stage_state = &brw->gs.base;
2554 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2555 /* BRW_NEW_GEOMETRY_PROGRAM */
2556 bool active = GEN_GEN >= 6 && gs_prog;
2557
2558 /* BRW_NEW_GS_PROG_DATA */
2559 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2560 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2561 brw_vue_prog_data(stage_prog_data);
2562 #if GEN_GEN >= 7
2563 const struct brw_gs_prog_data *gs_prog_data =
2564 brw_gs_prog_data(stage_prog_data);
2565 #endif
2566
2567 #if GEN_GEN == 6
2568 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2569 if (active && stage_state->push_const_size != 0) {
2570 cgs.Buffer0Valid = true;
2571 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2572 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2573 }
2574 }
2575 #endif
2576
2577 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2578 /**
2579 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2580 * Geometry > Geometry Shader > State:
2581 *
2582 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2583 * whole fixed function pipeline when the GS enable changes value in
2584 * the 3DSTATE_GS."
2585 *
2586 * The hardware architects have clarified that in this context "flush the
2587 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2588 * Stall" bit set.
2589 */
2590 if (devinfo->gt == 2 && brw->gs.enabled != active)
2591 gen7_emit_cs_stall_flush(brw);
2592 #endif
2593
2594 #if GEN_GEN >= 6
2595 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2596 #else
2597 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2598 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2599 #endif
2600
2601 #if GEN_GEN >= 6
2602 if (active) {
2603 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2604
2605 #if GEN_GEN >= 7
2606 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2607 gs.OutputTopology = gs_prog_data->output_topology;
2608 gs.ControlDataHeaderSize =
2609 gs_prog_data->control_data_header_size_hwords;
2610
2611 gs.InstanceControl = gs_prog_data->invocations - 1;
2612 gs.DispatchMode = vue_prog_data->dispatch_mode;
2613
2614 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2615
2616 gs.ControlDataFormat = gs_prog_data->control_data_format;
2617 #endif
2618
2619 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2620 * Ivy Bridge and Haswell.
2621 *
2622 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2623 * strip to be delivered to the geometry shader in an order that does
2624 * not strictly follow the OpenGL spec, but preserves triangle
2625 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2626 * the geometry shader sees triangles:
2627 *
2628 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2629 *
2630 * (Clearing the bit is even worse, because it fails to preserve
2631 * orientation).
2632 *
2633 * Triangle strips with adjacency always ordered in a way that preserves
2634 * triangle orientation but does not strictly follow the OpenGL spec,
2635 * regardless of the setting of this bit.
2636 *
2637 * On Haswell, both triangle strips and triangle strips with adjacency
2638 * are always ordered in a way that preserves triangle orientation.
2639 * Setting this bit causes the ordering to strictly follow the OpenGL
2640 * spec.
2641 *
2642 * So in either case we want to set the bit. Unfortunately on Ivy
2643 * Bridge this will get the order close to correct but not perfect.
2644 */
2645 gs.ReorderMode = TRAILING;
2646 gs.MaximumNumberofThreads =
2647 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2648 : (devinfo->max_gs_threads - 1);
2649
2650 #if GEN_GEN < 7
2651 gs.SOStatisticsEnable = true;
2652 if (gs_prog->info.has_transform_feedback_varyings)
2653 gs.SVBIPayloadEnable = true;
2654
2655 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2656 * was previously done for gen6.
2657 *
2658 * TODO: test with both disabled to see if the HW is behaving
2659 * as expected, like in gen7.
2660 */
2661 gs.SingleProgramFlow = true;
2662 gs.VectorMaskEnable = true;
2663 #endif
2664
2665 #if GEN_GEN >= 8
2666 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2667
2668 if (gs_prog_data->static_vertex_count != -1) {
2669 gs.StaticOutput = true;
2670 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2671 }
2672 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2673
2674 gs.UserClipDistanceCullTestEnableBitmask =
2675 vue_prog_data->cull_distance_mask;
2676
2677 const int urb_entry_write_offset = 1;
2678 const uint32_t urb_entry_output_length =
2679 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2680 urb_entry_write_offset;
2681
2682 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2683 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2684 #endif
2685 }
2686 #endif
2687
2688 #if GEN_GEN <= 6
2689 if (!active && brw->ff_gs.prog_active) {
2690 /* In gen6, transform feedback for the VS stage is done with an
2691 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2692 * for this.
2693 */
2694 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2695 gs.SingleProgramFlow = true;
2696 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2697 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2698
2699 #if GEN_GEN <= 5
2700 gs.GRFRegisterCount =
2701 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2702 /* BRW_NEW_URB_FENCE */
2703 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2704 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2705 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2706 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2707 #else
2708 gs.Enable = true;
2709 gs.VectorMaskEnable = true;
2710 gs.SVBIPayloadEnable = true;
2711 gs.SVBIPostIncrementEnable = true;
2712 gs.SVBIPostIncrementValue =
2713 brw->ff_gs.prog_data->svbi_postincrement_value;
2714 gs.SOStatisticsEnable = true;
2715 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2716 #endif
2717 }
2718 #endif
2719 if (!active && !brw->ff_gs.prog_active) {
2720 #if GEN_GEN < 8
2721 gs.DispatchGRFStartRegisterForURBData = 1;
2722 #if GEN_GEN >= 7
2723 gs.IncludeVertexHandles = true;
2724 #endif
2725 #endif
2726 }
2727
2728 #if GEN_GEN >= 6
2729 gs.StatisticsEnable = true;
2730 #endif
2731 #if GEN_GEN == 5 || GEN_GEN == 6
2732 gs.RenderingEnabled = true;
2733 #endif
2734 #if GEN_GEN <= 5
2735 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2736 #endif
2737 }
2738
2739 #if GEN_GEN == 6
2740 brw->gs.enabled = active;
2741 #endif
2742 }
2743
2744 static const struct brw_tracked_state genX(gs_state) = {
2745 .dirty = {
2746 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2747 .brw = BRW_NEW_BATCH |
2748 BRW_NEW_BLORP |
2749 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2750 BRW_NEW_PROGRAM_CACHE |
2751 BRW_NEW_URB_FENCE |
2752 BRW_NEW_VIEWPORT_COUNT
2753 : 0) |
2754 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2755 BRW_NEW_GEOMETRY_PROGRAM |
2756 BRW_NEW_GS_PROG_DATA
2757 : 0) |
2758 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2759 },
2760 .emit = genX(upload_gs_state),
2761 };
2762
2763 /* ---------------------------------------------------------------------- */
2764
2765 UNUSED static GLenum
2766 fix_dual_blend_alpha_to_one(GLenum function)
2767 {
2768 switch (function) {
2769 case GL_SRC1_ALPHA:
2770 return GL_ONE;
2771
2772 case GL_ONE_MINUS_SRC1_ALPHA:
2773 return GL_ZERO;
2774 }
2775
2776 return function;
2777 }
2778
2779 #define blend_factor(x) brw_translate_blend_factor(x)
2780 #define blend_eqn(x) brw_translate_blend_equation(x)
2781
2782 /**
2783 * Modify blend function to force destination alpha to 1.0
2784 *
2785 * If \c function specifies a blend function that uses destination alpha,
2786 * replace it with a function that hard-wires destination alpha to 1.0. This
2787 * is used when rendering to xRGB targets.
2788 */
2789 static GLenum
2790 brw_fix_xRGB_alpha(GLenum function)
2791 {
2792 switch (function) {
2793 case GL_DST_ALPHA:
2794 return GL_ONE;
2795
2796 case GL_ONE_MINUS_DST_ALPHA:
2797 case GL_SRC_ALPHA_SATURATE:
2798 return GL_ZERO;
2799 }
2800
2801 return function;
2802 }
2803
2804 #if GEN_GEN >= 6
2805 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2806 #else
2807 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2808 #endif
2809
2810 UNUSED static bool
2811 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2812 bool alpha_to_one)
2813 {
2814 struct gl_context *ctx = &brw->ctx;
2815
2816 /* _NEW_BUFFERS */
2817 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2818
2819 bool independent_alpha_blend = false;
2820
2821 /* Used for implementing the following bit of GL_EXT_texture_integer:
2822 * "Per-fragment operations that require floating-point color
2823 * components, including multisample alpha operations, alpha test,
2824 * blending, and dithering, have no effect when the corresponding
2825 * colors are written to an integer color buffer."
2826 */
2827 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2828
2829 const unsigned blend_enabled = GEN_GEN >= 6 ?
2830 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2831
2832 /* _NEW_COLOR */
2833 if (ctx->Color.ColorLogicOpEnabled) {
2834 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2835 : GL_UNSIGNED_NORMALIZED;
2836 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2837 rb_type != GL_UNSIGNED_NORMALIZED &&
2838 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2839 "renderbuffer\n",
2840 _mesa_enum_to_string(ctx->Color.LogicOp),
2841 _mesa_enum_to_string(rb_type));
2842 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2843 entry->LogicOpEnable = true;
2844 entry->LogicOpFunction = ctx->Color._LogicOp;
2845 }
2846 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2847 && (GEN_GEN <= 5 || !integer)) {
2848 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2849 GLenum eqA = ctx->Color.Blend[i].EquationA;
2850 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2851 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2852 GLenum srcA = ctx->Color.Blend[i].SrcA;
2853 GLenum dstA = ctx->Color.Blend[i].DstA;
2854
2855 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2856 srcRGB = dstRGB = GL_ONE;
2857
2858 if (eqA == GL_MIN || eqA == GL_MAX)
2859 srcA = dstA = GL_ONE;
2860
2861 /* Due to hardware limitations, the destination may have information
2862 * in an alpha channel even when the format specifies no alpha
2863 * channel. In order to avoid getting any incorrect blending due to
2864 * that alpha channel, coerce the blend factors to values that will
2865 * not read the alpha channel, but will instead use the correct
2866 * implicit value for alpha.
2867 */
2868 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2869 GL_TEXTURE_ALPHA_TYPE)) {
2870 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2871 srcA = brw_fix_xRGB_alpha(srcA);
2872 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2873 dstA = brw_fix_xRGB_alpha(dstA);
2874 }
2875
2876 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2877 * "If Dual Source Blending is enabled, this bit must be disabled."
2878 *
2879 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2880 * and leave it enabled anyway.
2881 */
2882 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2883 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2884 srcA = fix_dual_blend_alpha_to_one(srcA);
2885 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2886 dstA = fix_dual_blend_alpha_to_one(dstA);
2887 }
2888
2889 entry->ColorBufferBlendEnable = true;
2890 entry->DestinationBlendFactor = blend_factor(dstRGB);
2891 entry->SourceBlendFactor = blend_factor(srcRGB);
2892 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2893 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2894 entry->ColorBlendFunction = blend_eqn(eqRGB);
2895 entry->AlphaBlendFunction = blend_eqn(eqA);
2896
2897 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2898 independent_alpha_blend = true;
2899 }
2900
2901 return independent_alpha_blend;
2902 }
2903
2904 #if GEN_GEN >= 6
2905 static void
2906 genX(upload_blend_state)(struct brw_context *brw)
2907 {
2908 struct gl_context *ctx = &brw->ctx;
2909 int size;
2910
2911 /* We need at least one BLEND_STATE written, because we might do
2912 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2913 * for computed depth or alpha test), which will do an FB write
2914 * with render target 0, which will reference BLEND_STATE[0] for
2915 * alpha test enable.
2916 */
2917 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2918 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2919 nr_draw_buffers = 1;
2920
2921 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2922 #if GEN_GEN >= 8
2923 size += GENX(BLEND_STATE_length) * 4;
2924 #endif
2925
2926 uint32_t *blend_map;
2927 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2928
2929 #if GEN_GEN >= 8
2930 struct GENX(BLEND_STATE) blend = { 0 };
2931 {
2932 #else
2933 for (int i = 0; i < nr_draw_buffers; i++) {
2934 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2935 #define blend entry
2936 #endif
2937 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2938 * "If drawbuffer zero is not NONE and the buffer it references has an
2939 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2940 * operations are skipped."
2941 */
2942 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2943 /* _NEW_MULTISAMPLE */
2944 if (_mesa_is_multisample_enabled(ctx)) {
2945 if (ctx->Multisample.SampleAlphaToCoverage) {
2946 blend.AlphaToCoverageEnable = true;
2947 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2948 }
2949 if (ctx->Multisample.SampleAlphaToOne)
2950 blend.AlphaToOneEnable = true;
2951 }
2952
2953 /* _NEW_COLOR */
2954 if (ctx->Color.AlphaEnabled) {
2955 blend.AlphaTestEnable = true;
2956 blend.AlphaTestFunction =
2957 intel_translate_compare_func(ctx->Color.AlphaFunc);
2958 }
2959
2960 if (ctx->Color.DitherFlag) {
2961 blend.ColorDitherEnable = true;
2962 }
2963 }
2964
2965 #if GEN_GEN >= 8
2966 for (int i = 0; i < nr_draw_buffers; i++) {
2967 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2968 #else
2969 {
2970 #endif
2971 blend.IndependentAlphaBlendEnable =
2972 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2973 blend.IndependentAlphaBlendEnable;
2974
2975 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2976 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2977 *
2978 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2979 * clamping in the fragment shader. For its clamping of
2980 * blending, the spec says:
2981 *
2982 * "RESOLVED: For fixed-point color buffers, the inputs and
2983 * the result of the blending equation are clamped. For
2984 * floating-point color buffers, no clamping occurs."
2985 *
2986 * So, generally, we want clamping to the render target's range.
2987 * And, good news, the hardware tables for both pre- and
2988 * post-blend color clamping are either ignored, or any are
2989 * allowed, or clamping is required but RT range clamping is a
2990 * valid option.
2991 */
2992 entry.PreBlendColorClampEnable = true;
2993 entry.PostBlendColorClampEnable = true;
2994 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2995
2996 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2997 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2998 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2999 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
3000
3001 #if GEN_GEN >= 8
3002 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3003 #else
3004 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3005 #endif
3006 }
3007 }
3008
3009 #if GEN_GEN >= 8
3010 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3011 #endif
3012
3013 #if GEN_GEN < 7
3014 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3015 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3016 ptr.BLEND_STATEChange = true;
3017 }
3018 #else
3019 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3020 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3021 #if GEN_GEN >= 8
3022 ptr.BlendStatePointerValid = true;
3023 #endif
3024 }
3025 #endif
3026 }
3027
3028 static const struct brw_tracked_state genX(blend_state) = {
3029 .dirty = {
3030 .mesa = _NEW_BUFFERS |
3031 _NEW_COLOR |
3032 _NEW_MULTISAMPLE,
3033 .brw = BRW_NEW_BATCH |
3034 BRW_NEW_BLORP |
3035 BRW_NEW_STATE_BASE_ADDRESS,
3036 },
3037 .emit = genX(upload_blend_state),
3038 };
3039 #endif
3040
3041 /* ---------------------------------------------------------------------- */
3042
3043 #if GEN_GEN >= 7
3044 UNUSED static const uint32_t push_constant_opcodes[] = {
3045 [MESA_SHADER_VERTEX] = 21,
3046 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3047 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3048 [MESA_SHADER_GEOMETRY] = 22,
3049 [MESA_SHADER_FRAGMENT] = 23,
3050 [MESA_SHADER_COMPUTE] = 0,
3051 };
3052
3053 static void
3054 genX(upload_push_constant_packets)(struct brw_context *brw)
3055 {
3056 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3057 struct gl_context *ctx = &brw->ctx;
3058
3059 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3060
3061 struct brw_stage_state *stage_states[] = {
3062 &brw->vs.base,
3063 &brw->tcs.base,
3064 &brw->tes.base,
3065 &brw->gs.base,
3066 &brw->wm.base,
3067 };
3068
3069 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3070 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3071 gen7_emit_vs_workaround_flush(brw);
3072
3073 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3074 struct brw_stage_state *stage_state = stage_states[stage];
3075 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3076
3077 if (!stage_state->push_constants_dirty)
3078 continue;
3079
3080 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3081 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3082 if (stage_state->prog_data) {
3083 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3084 /* The Skylake PRM contains the following restriction:
3085 *
3086 * "The driver must ensure The following case does not occur
3087 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3088 * buffer 3 read length equal to zero committed followed by a
3089 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3090 * zero committed."
3091 *
3092 * To avoid this, we program the buffers in the highest slots.
3093 * This way, slot 0 is only used if slot 3 is also used.
3094 */
3095 int n = 3;
3096
3097 for (int i = 3; i >= 0; i--) {
3098 const struct brw_ubo_range *range =
3099 &stage_state->prog_data->ubo_ranges[i];
3100
3101 if (range->length == 0)
3102 continue;
3103
3104 const struct gl_uniform_block *block =
3105 prog->sh.UniformBlocks[range->block];
3106 const struct gl_buffer_binding *binding =
3107 &ctx->UniformBufferBindings[block->Binding];
3108
3109 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3110 static unsigned msg_id = 0;
3111 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3112 MESA_DEBUG_TYPE_UNDEFINED,
3113 MESA_DEBUG_SEVERITY_HIGH,
3114 "UBO %d unbound, %s shader uniform data "
3115 "will be undefined.",
3116 range->block,
3117 _mesa_shader_stage_to_string(stage));
3118 continue;
3119 }
3120
3121 assert(binding->Offset % 32 == 0);
3122
3123 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3124 intel_buffer_object(binding->BufferObject),
3125 binding->Offset, range->length * 32, false);
3126
3127 pkt.ConstantBody.ReadLength[n] = range->length;
3128 pkt.ConstantBody.Buffer[n] =
3129 ro_bo(bo, range->start * 32 + binding->Offset);
3130 n--;
3131 }
3132
3133 if (stage_state->push_const_size > 0) {
3134 assert(n >= 0);
3135 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3136 pkt.ConstantBody.Buffer[n] =
3137 ro_bo(stage_state->push_const_bo,
3138 stage_state->push_const_offset);
3139 }
3140 #else
3141 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3142 pkt.ConstantBody.Buffer[0].offset =
3143 stage_state->push_const_offset | mocs;
3144 #endif
3145 }
3146 }
3147
3148 stage_state->push_constants_dirty = false;
3149 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3150 }
3151 }
3152
3153 const struct brw_tracked_state genX(push_constant_packets) = {
3154 .dirty = {
3155 .mesa = 0,
3156 .brw = BRW_NEW_DRAW_CALL,
3157 },
3158 .emit = genX(upload_push_constant_packets),
3159 };
3160 #endif
3161
3162 #if GEN_GEN >= 6
3163 static void
3164 genX(upload_vs_push_constants)(struct brw_context *brw)
3165 {
3166 struct brw_stage_state *stage_state = &brw->vs.base;
3167
3168 /* BRW_NEW_VERTEX_PROGRAM */
3169 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3170 /* BRW_NEW_VS_PROG_DATA */
3171 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3172
3173 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3174 }
3175
3176 static const struct brw_tracked_state genX(vs_push_constants) = {
3177 .dirty = {
3178 .mesa = _NEW_PROGRAM_CONSTANTS |
3179 _NEW_TRANSFORM,
3180 .brw = BRW_NEW_BATCH |
3181 BRW_NEW_BLORP |
3182 BRW_NEW_VERTEX_PROGRAM |
3183 BRW_NEW_VS_PROG_DATA,
3184 },
3185 .emit = genX(upload_vs_push_constants),
3186 };
3187
3188 static void
3189 genX(upload_gs_push_constants)(struct brw_context *brw)
3190 {
3191 struct brw_stage_state *stage_state = &brw->gs.base;
3192
3193 /* BRW_NEW_GEOMETRY_PROGRAM */
3194 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3195
3196 /* BRW_NEW_GS_PROG_DATA */
3197 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3198
3199 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3200 }
3201
3202 static const struct brw_tracked_state genX(gs_push_constants) = {
3203 .dirty = {
3204 .mesa = _NEW_PROGRAM_CONSTANTS |
3205 _NEW_TRANSFORM,
3206 .brw = BRW_NEW_BATCH |
3207 BRW_NEW_BLORP |
3208 BRW_NEW_GEOMETRY_PROGRAM |
3209 BRW_NEW_GS_PROG_DATA,
3210 },
3211 .emit = genX(upload_gs_push_constants),
3212 };
3213
3214 static void
3215 genX(upload_wm_push_constants)(struct brw_context *brw)
3216 {
3217 struct brw_stage_state *stage_state = &brw->wm.base;
3218 /* BRW_NEW_FRAGMENT_PROGRAM */
3219 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3220 /* BRW_NEW_FS_PROG_DATA */
3221 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3222
3223 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3224 }
3225
3226 static const struct brw_tracked_state genX(wm_push_constants) = {
3227 .dirty = {
3228 .mesa = _NEW_PROGRAM_CONSTANTS,
3229 .brw = BRW_NEW_BATCH |
3230 BRW_NEW_BLORP |
3231 BRW_NEW_FRAGMENT_PROGRAM |
3232 BRW_NEW_FS_PROG_DATA,
3233 },
3234 .emit = genX(upload_wm_push_constants),
3235 };
3236 #endif
3237
3238 /* ---------------------------------------------------------------------- */
3239
3240 #if GEN_GEN >= 6
3241 static unsigned
3242 genX(determine_sample_mask)(struct brw_context *brw)
3243 {
3244 struct gl_context *ctx = &brw->ctx;
3245 float coverage = 1.0f;
3246 float coverage_invert = false;
3247 unsigned sample_mask = ~0u;
3248
3249 /* BRW_NEW_NUM_SAMPLES */
3250 unsigned num_samples = brw->num_samples;
3251
3252 if (_mesa_is_multisample_enabled(ctx)) {
3253 if (ctx->Multisample.SampleCoverage) {
3254 coverage = ctx->Multisample.SampleCoverageValue;
3255 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3256 }
3257 if (ctx->Multisample.SampleMask) {
3258 sample_mask = ctx->Multisample.SampleMaskValue;
3259 }
3260 }
3261
3262 if (num_samples > 1) {
3263 int coverage_int = (int) (num_samples * coverage + 0.5f);
3264 uint32_t coverage_bits = (1 << coverage_int) - 1;
3265 if (coverage_invert)
3266 coverage_bits ^= (1 << num_samples) - 1;
3267 return coverage_bits & sample_mask;
3268 } else {
3269 return 1;
3270 }
3271 }
3272
3273 static void
3274 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3275 unsigned num_samples)
3276 {
3277 unsigned log2_samples = ffs(num_samples) - 1;
3278
3279 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3280 multi.PixelLocation = CENTER;
3281 multi.NumberofMultisamples = log2_samples;
3282 #if GEN_GEN == 6
3283 GEN_SAMPLE_POS_4X(multi.Sample);
3284 #elif GEN_GEN == 7
3285 switch (num_samples) {
3286 case 1:
3287 GEN_SAMPLE_POS_1X(multi.Sample);
3288 break;
3289 case 2:
3290 GEN_SAMPLE_POS_2X(multi.Sample);
3291 break;
3292 case 4:
3293 GEN_SAMPLE_POS_4X(multi.Sample);
3294 break;
3295 case 8:
3296 GEN_SAMPLE_POS_8X(multi.Sample);
3297 break;
3298 default:
3299 break;
3300 }
3301 #endif
3302 }
3303 }
3304
3305 static void
3306 genX(upload_multisample_state)(struct brw_context *brw)
3307 {
3308 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3309
3310 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3311
3312 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3313 sm.SampleMask = genX(determine_sample_mask)(brw);
3314 }
3315 }
3316
3317 static const struct brw_tracked_state genX(multisample_state) = {
3318 .dirty = {
3319 .mesa = _NEW_MULTISAMPLE |
3320 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3321 .brw = BRW_NEW_BLORP |
3322 BRW_NEW_CONTEXT |
3323 BRW_NEW_NUM_SAMPLES,
3324 },
3325 .emit = genX(upload_multisample_state)
3326 };
3327 #endif
3328
3329 /* ---------------------------------------------------------------------- */
3330
3331 static void
3332 genX(upload_color_calc_state)(struct brw_context *brw)
3333 {
3334 struct gl_context *ctx = &brw->ctx;
3335
3336 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3337 #if GEN_GEN <= 5
3338 cc.IndependentAlphaBlendEnable =
3339 set_blend_entry_bits(brw, &cc, 0, false);
3340 set_depth_stencil_bits(brw, &cc);
3341
3342 if (ctx->Color.AlphaEnabled &&
3343 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3344 cc.AlphaTestEnable = true;
3345 cc.AlphaTestFunction =
3346 intel_translate_compare_func(ctx->Color.AlphaFunc);
3347 }
3348
3349 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3350
3351 cc.StatisticsEnable = brw->stats_wm;
3352
3353 cc.CCViewportStatePointer =
3354 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3355 #else
3356 /* _NEW_COLOR */
3357 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3358 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3359 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3360 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3361
3362 #if GEN_GEN < 9
3363 /* _NEW_STENCIL */
3364 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3365 cc.BackfaceStencilReferenceValue =
3366 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3367 #endif
3368
3369 #endif
3370
3371 /* _NEW_COLOR */
3372 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3373 ctx->Color.AlphaRef);
3374 }
3375
3376 #if GEN_GEN >= 6
3377 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3378 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3379 #if GEN_GEN != 7
3380 ptr.ColorCalcStatePointerValid = true;
3381 #endif
3382 }
3383 #else
3384 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3385 #endif
3386 }
3387
3388 static const struct brw_tracked_state genX(color_calc_state) = {
3389 .dirty = {
3390 .mesa = _NEW_COLOR |
3391 _NEW_STENCIL |
3392 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3393 _NEW_DEPTH
3394 : 0),
3395 .brw = BRW_NEW_BATCH |
3396 BRW_NEW_BLORP |
3397 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3398 BRW_NEW_STATS_WM
3399 : BRW_NEW_CC_STATE |
3400 BRW_NEW_STATE_BASE_ADDRESS),
3401 },
3402 .emit = genX(upload_color_calc_state),
3403 };
3404
3405
3406 /* ---------------------------------------------------------------------- */
3407
3408 #if GEN_GEN >= 7
3409 static void
3410 genX(upload_sbe)(struct brw_context *brw)
3411 {
3412 struct gl_context *ctx = &brw->ctx;
3413 /* BRW_NEW_FRAGMENT_PROGRAM */
3414 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3415 /* BRW_NEW_FS_PROG_DATA */
3416 const struct brw_wm_prog_data *wm_prog_data =
3417 brw_wm_prog_data(brw->wm.base.prog_data);
3418 #if GEN_GEN >= 8
3419 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3420 #else
3421 #define attr_overrides sbe.Attribute
3422 #endif
3423 uint32_t urb_entry_read_length;
3424 uint32_t urb_entry_read_offset;
3425 uint32_t point_sprite_enables;
3426
3427 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3428 sbe.AttributeSwizzleEnable = true;
3429 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3430
3431 /* _NEW_BUFFERS */
3432 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3433
3434 /* _NEW_POINT
3435 *
3436 * Window coordinates in an FBO are inverted, which means point
3437 * sprite origin must be inverted.
3438 */
3439 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3440 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3441 else
3442 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3443
3444 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3445 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3446 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3447 * BRW_NEW_VUE_MAP_GEOM_OUT
3448 */
3449 genX(calculate_attr_overrides)(brw,
3450 attr_overrides,
3451 &point_sprite_enables,
3452 &urb_entry_read_length,
3453 &urb_entry_read_offset);
3454
3455 /* Typically, the URB entry read length and offset should be programmed
3456 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3457 * stage which produces geometry. However, we don't know the proper
3458 * value until we call calculate_attr_overrides().
3459 *
3460 * To fit with our existing code, we override the inherited values and
3461 * specify it here directly, as we did on previous generations.
3462 */
3463 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3464 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3465 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3466 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3467
3468 #if GEN_GEN >= 8
3469 sbe.ForceVertexURBEntryReadLength = true;
3470 sbe.ForceVertexURBEntryReadOffset = true;
3471 #endif
3472
3473 #if GEN_GEN >= 9
3474 /* prepare the active component dwords */
3475 const int num_inputs = urb_entry_read_length * 2;
3476 for (int input_index = 0; input_index < num_inputs; input_index++) {
3477 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3478 }
3479 #endif
3480 }
3481
3482 #if GEN_GEN >= 8
3483 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3484 for (int i = 0; i < 16; i++)
3485 sbes.Attribute[i] = attr_overrides[i];
3486 }
3487 #endif
3488
3489 #undef attr_overrides
3490 }
3491
3492 static const struct brw_tracked_state genX(sbe_state) = {
3493 .dirty = {
3494 .mesa = _NEW_BUFFERS |
3495 _NEW_LIGHT |
3496 _NEW_POINT |
3497 _NEW_POLYGON |
3498 _NEW_PROGRAM,
3499 .brw = BRW_NEW_BLORP |
3500 BRW_NEW_CONTEXT |
3501 BRW_NEW_FRAGMENT_PROGRAM |
3502 BRW_NEW_FS_PROG_DATA |
3503 BRW_NEW_GS_PROG_DATA |
3504 BRW_NEW_TES_PROG_DATA |
3505 BRW_NEW_VUE_MAP_GEOM_OUT |
3506 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3507 : 0),
3508 },
3509 .emit = genX(upload_sbe),
3510 };
3511 #endif
3512
3513 /* ---------------------------------------------------------------------- */
3514
3515 #if GEN_GEN >= 7
3516 /**
3517 * Outputs the 3DSTATE_SO_DECL_LIST command.
3518 *
3519 * The data output is a series of 64-bit entries containing a SO_DECL per
3520 * stream. We only have one stream of rendering coming out of the GS unit, so
3521 * we only emit stream 0 (low 16 bits) SO_DECLs.
3522 */
3523 static void
3524 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3525 const struct brw_vue_map *vue_map)
3526 {
3527 struct gl_context *ctx = &brw->ctx;
3528 /* BRW_NEW_TRANSFORM_FEEDBACK */
3529 struct gl_transform_feedback_object *xfb_obj =
3530 ctx->TransformFeedback.CurrentObject;
3531 const struct gl_transform_feedback_info *linked_xfb_info =
3532 xfb_obj->program->sh.LinkedTransformFeedback;
3533 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3534 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3535 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3536 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3537 int max_decls = 0;
3538 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3539
3540 memset(so_decl, 0, sizeof(so_decl));
3541
3542 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3543 * command feels strange -- each dword pair contains a SO_DECL per stream.
3544 */
3545 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3546 const struct gl_transform_feedback_output *output =
3547 &linked_xfb_info->Outputs[i];
3548 const int buffer = output->OutputBuffer;
3549 const int varying = output->OutputRegister;
3550 const unsigned stream_id = output->StreamId;
3551 assert(stream_id < MAX_VERTEX_STREAMS);
3552
3553 buffer_mask[stream_id] |= 1 << buffer;
3554
3555 assert(vue_map->varying_to_slot[varying] >= 0);
3556
3557 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3558 * array. Instead, it simply increments DstOffset for the following
3559 * input by the number of components that should be skipped.
3560 *
3561 * Our hardware is unusual in that it requires us to program SO_DECLs
3562 * for fake "hole" components, rather than simply taking the offset
3563 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3564 * program as many size = 4 holes as we can, then a final hole to
3565 * accommodate the final 1, 2, or 3 remaining.
3566 */
3567 int skip_components = output->DstOffset - next_offset[buffer];
3568
3569 while (skip_components > 0) {
3570 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3571 .HoleFlag = 1,
3572 .OutputBufferSlot = output->OutputBuffer,
3573 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3574 };
3575 skip_components -= 4;
3576 }
3577
3578 next_offset[buffer] = output->DstOffset + output->NumComponents;
3579
3580 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3581 .OutputBufferSlot = output->OutputBuffer,
3582 .RegisterIndex = vue_map->varying_to_slot[varying],
3583 .ComponentMask =
3584 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3585 };
3586
3587 if (decls[stream_id] > max_decls)
3588 max_decls = decls[stream_id];
3589 }
3590
3591 uint32_t *dw;
3592 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3593 .StreamtoBufferSelects0 = buffer_mask[0],
3594 .StreamtoBufferSelects1 = buffer_mask[1],
3595 .StreamtoBufferSelects2 = buffer_mask[2],
3596 .StreamtoBufferSelects3 = buffer_mask[3],
3597 .NumEntries0 = decls[0],
3598 .NumEntries1 = decls[1],
3599 .NumEntries2 = decls[2],
3600 .NumEntries3 = decls[3]);
3601
3602 for (int i = 0; i < max_decls; i++) {
3603 GENX(SO_DECL_ENTRY_pack)(
3604 brw, dw + 2 + i * 2,
3605 &(struct GENX(SO_DECL_ENTRY)) {
3606 .Stream0Decl = so_decl[0][i],
3607 .Stream1Decl = so_decl[1][i],
3608 .Stream2Decl = so_decl[2][i],
3609 .Stream3Decl = so_decl[3][i],
3610 });
3611 }
3612 }
3613
3614 static void
3615 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3616 {
3617 struct gl_context *ctx = &brw->ctx;
3618 /* BRW_NEW_TRANSFORM_FEEDBACK */
3619 struct gl_transform_feedback_object *xfb_obj =
3620 ctx->TransformFeedback.CurrentObject;
3621 #if GEN_GEN < 8
3622 const struct gl_transform_feedback_info *linked_xfb_info =
3623 xfb_obj->program->sh.LinkedTransformFeedback;
3624 #else
3625 struct brw_transform_feedback_object *brw_obj =
3626 (struct brw_transform_feedback_object *) xfb_obj;
3627 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3628 #endif
3629
3630 /* Set up the up to 4 output buffers. These are the ranges defined in the
3631 * gl_transform_feedback_object.
3632 */
3633 for (int i = 0; i < 4; i++) {
3634 struct intel_buffer_object *bufferobj =
3635 intel_buffer_object(xfb_obj->Buffers[i]);
3636
3637 if (!bufferobj) {
3638 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3639 sob.SOBufferIndex = i;
3640 }
3641 continue;
3642 }
3643
3644 uint32_t start = xfb_obj->Offset[i];
3645 assert(start % 4 == 0);
3646 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3647 struct brw_bo *bo =
3648 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3649 assert(end <= bo->size);
3650
3651 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3652 sob.SOBufferIndex = i;
3653
3654 sob.SurfaceBaseAddress = rw_bo(bo, start);
3655 #if GEN_GEN < 8
3656 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3657 sob.SurfaceEndAddress = rw_bo(bo, end);
3658 #else
3659 sob.SOBufferEnable = true;
3660 sob.StreamOffsetWriteEnable = true;
3661 sob.StreamOutputBufferOffsetAddressEnable = true;
3662 sob.SOBufferMOCS = mocs_wb;
3663
3664 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3665 sob.StreamOutputBufferOffsetAddress =
3666 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3667
3668 if (brw_obj->zero_offsets) {
3669 /* Zero out the offset and write that to offset_bo */
3670 sob.StreamOffset = 0;
3671 } else {
3672 /* Use offset_bo as the "Stream Offset." */
3673 sob.StreamOffset = 0xFFFFFFFF;
3674 }
3675 #endif
3676 }
3677 }
3678
3679 #if GEN_GEN >= 8
3680 brw_obj->zero_offsets = false;
3681 #endif
3682 }
3683
3684 static bool
3685 query_active(struct gl_query_object *q)
3686 {
3687 return q && q->Active;
3688 }
3689
3690 static void
3691 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3692 const struct brw_vue_map *vue_map)
3693 {
3694 struct gl_context *ctx = &brw->ctx;
3695 /* BRW_NEW_TRANSFORM_FEEDBACK */
3696 struct gl_transform_feedback_object *xfb_obj =
3697 ctx->TransformFeedback.CurrentObject;
3698
3699 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3700 if (active) {
3701 int urb_entry_read_offset = 0;
3702 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3703 urb_entry_read_offset;
3704
3705 sos.SOFunctionEnable = true;
3706 sos.SOStatisticsEnable = true;
3707
3708 /* BRW_NEW_RASTERIZER_DISCARD */
3709 if (ctx->RasterDiscard) {
3710 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3711 sos.RenderingDisable = true;
3712 } else {
3713 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3714 "query active relies on the clipper.\n");
3715 }
3716 }
3717
3718 /* _NEW_LIGHT */
3719 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3720 sos.ReorderMode = TRAILING;
3721
3722 #if GEN_GEN < 8
3723 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3724 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3725 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3726 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3727 #else
3728 const struct gl_transform_feedback_info *linked_xfb_info =
3729 xfb_obj->program->sh.LinkedTransformFeedback;
3730 /* Set buffer pitches; 0 means unbound. */
3731 if (xfb_obj->Buffers[0])
3732 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3733 if (xfb_obj->Buffers[1])
3734 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3735 if (xfb_obj->Buffers[2])
3736 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3737 if (xfb_obj->Buffers[3])
3738 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3739 #endif
3740
3741 /* We always read the whole vertex. This could be reduced at some
3742 * point by reading less and offsetting the register index in the
3743 * SO_DECLs.
3744 */
3745 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3746 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3747 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3748 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3749 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3750 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3751 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3752 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3753 }
3754 }
3755 }
3756
3757 static void
3758 genX(upload_sol)(struct brw_context *brw)
3759 {
3760 struct gl_context *ctx = &brw->ctx;
3761 /* BRW_NEW_TRANSFORM_FEEDBACK */
3762 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3763
3764 if (active) {
3765 genX(upload_3dstate_so_buffers)(brw);
3766
3767 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3768 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3769 }
3770
3771 /* Finally, set up the SOL stage. This command must always follow updates to
3772 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3773 * MMIO register updates (current performed by the kernel at each batch
3774 * emit).
3775 */
3776 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3777 }
3778
3779 static const struct brw_tracked_state genX(sol_state) = {
3780 .dirty = {
3781 .mesa = _NEW_LIGHT,
3782 .brw = BRW_NEW_BATCH |
3783 BRW_NEW_BLORP |
3784 BRW_NEW_RASTERIZER_DISCARD |
3785 BRW_NEW_VUE_MAP_GEOM_OUT |
3786 BRW_NEW_TRANSFORM_FEEDBACK,
3787 },
3788 .emit = genX(upload_sol),
3789 };
3790 #endif
3791
3792 /* ---------------------------------------------------------------------- */
3793
3794 #if GEN_GEN >= 7
3795 static void
3796 genX(upload_ps)(struct brw_context *brw)
3797 {
3798 UNUSED const struct gl_context *ctx = &brw->ctx;
3799 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3800
3801 /* BRW_NEW_FS_PROG_DATA */
3802 const struct brw_wm_prog_data *prog_data =
3803 brw_wm_prog_data(brw->wm.base.prog_data);
3804 const struct brw_stage_state *stage_state = &brw->wm.base;
3805
3806 #if GEN_GEN < 8
3807 #endif
3808
3809 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3810 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3811 * incorrect for subspans where some of the pixels are unlit. We believe
3812 * the bit just didn't take effect in previous generations.
3813 */
3814 ps.VectorMaskEnable = GEN_GEN >= 8;
3815
3816 ps.SamplerCount =
3817 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3818
3819 /* BRW_NEW_FS_PROG_DATA */
3820 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3821
3822 if (prog_data->base.use_alt_mode)
3823 ps.FloatingPointMode = Alternate;
3824
3825 /* Haswell requires the sample mask to be set in this packet as well as
3826 * in 3DSTATE_SAMPLE_MASK; the values should match.
3827 */
3828
3829 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3830 #if GEN_IS_HASWELL
3831 ps.SampleMask = genX(determine_sample_mask(brw));
3832 #endif
3833
3834 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3835 * it implicitly scales for different GT levels (which have some # of
3836 * PSDs).
3837 *
3838 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3839 */
3840 #if GEN_GEN >= 9
3841 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3842 #elif GEN_GEN >= 8
3843 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3844 #else
3845 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3846 #endif
3847
3848 if (prog_data->base.nr_params > 0 ||
3849 prog_data->base.ubo_ranges[0].length > 0)
3850 ps.PushConstantEnable = true;
3851
3852 #if GEN_GEN < 8
3853 /* From the IVB PRM, volume 2 part 1, page 287:
3854 * "This bit is inserted in the PS payload header and made available to
3855 * the DataPort (either via the message header or via header bypass) to
3856 * indicate that oMask data (one or two phases) is included in Render
3857 * Target Write messages. If present, the oMask data is used to mask off
3858 * samples."
3859 */
3860 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3861
3862 /* The hardware wedges if you have this bit set but don't turn on any
3863 * dual source blend factors.
3864 *
3865 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3866 */
3867 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3868 (ctx->Color.BlendEnabled & 1) &&
3869 ctx->Color.Blend[0]._UsesDualSrc;
3870
3871 /* BRW_NEW_FS_PROG_DATA */
3872 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3873 #endif
3874
3875 /* From the documentation for this packet:
3876 * "If the PS kernel does not need the Position XY Offsets to
3877 * compute a Position Value, then this field should be programmed
3878 * to POSOFFSET_NONE."
3879 *
3880 * "SW Recommendation: If the PS kernel needs the Position Offsets
3881 * to compute a Position XY value, this field should match Position
3882 * ZW Interpolation Mode to ensure a consistent position.xyzw
3883 * computation."
3884 *
3885 * We only require XY sample offsets. So, this recommendation doesn't
3886 * look useful at the moment. We might need this in future.
3887 */
3888 if (prog_data->uses_pos_offset)
3889 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3890 else
3891 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3892
3893 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3894 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3895 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3896 prog_data->base.dispatch_grf_start_reg;
3897 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3898 prog_data->dispatch_grf_start_reg_2;
3899
3900 ps.KernelStartPointer0 = stage_state->prog_offset;
3901 ps.KernelStartPointer2 = stage_state->prog_offset +
3902 prog_data->prog_offset_2;
3903
3904 if (prog_data->base.total_scratch) {
3905 ps.ScratchSpaceBasePointer =
3906 rw_bo(stage_state->scratch_bo,
3907 ffs(stage_state->per_thread_scratch) - 11);
3908 }
3909 }
3910 }
3911
3912 static const struct brw_tracked_state genX(ps_state) = {
3913 .dirty = {
3914 .mesa = _NEW_MULTISAMPLE |
3915 (GEN_GEN < 8 ? _NEW_BUFFERS |
3916 _NEW_COLOR
3917 : 0),
3918 .brw = BRW_NEW_BATCH |
3919 BRW_NEW_BLORP |
3920 BRW_NEW_FS_PROG_DATA,
3921 },
3922 .emit = genX(upload_ps),
3923 };
3924 #endif
3925
3926 /* ---------------------------------------------------------------------- */
3927
3928 #if GEN_GEN >= 7
3929 static void
3930 genX(upload_hs_state)(struct brw_context *brw)
3931 {
3932 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3933 struct brw_stage_state *stage_state = &brw->tcs.base;
3934 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3935 const struct brw_vue_prog_data *vue_prog_data =
3936 brw_vue_prog_data(stage_prog_data);
3937
3938 /* BRW_NEW_TES_PROG_DATA */
3939 struct brw_tcs_prog_data *tcs_prog_data =
3940 brw_tcs_prog_data(stage_prog_data);
3941
3942 if (!tcs_prog_data) {
3943 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3944 } else {
3945 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3946 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3947
3948 hs.InstanceCount = tcs_prog_data->instances - 1;
3949 hs.IncludeVertexHandles = true;
3950
3951 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3952 }
3953 }
3954 }
3955
3956 static const struct brw_tracked_state genX(hs_state) = {
3957 .dirty = {
3958 .mesa = 0,
3959 .brw = BRW_NEW_BATCH |
3960 BRW_NEW_BLORP |
3961 BRW_NEW_TCS_PROG_DATA |
3962 BRW_NEW_TESS_PROGRAMS,
3963 },
3964 .emit = genX(upload_hs_state),
3965 };
3966
3967 static void
3968 genX(upload_ds_state)(struct brw_context *brw)
3969 {
3970 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3971 const struct brw_stage_state *stage_state = &brw->tes.base;
3972 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3973
3974 /* BRW_NEW_TES_PROG_DATA */
3975 const struct brw_tes_prog_data *tes_prog_data =
3976 brw_tes_prog_data(stage_prog_data);
3977 const struct brw_vue_prog_data *vue_prog_data =
3978 brw_vue_prog_data(stage_prog_data);
3979
3980 if (!tes_prog_data) {
3981 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3982 } else {
3983 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3984 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3985
3986 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3987 ds.ComputeWCoordinateEnable =
3988 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3989
3990 #if GEN_GEN >= 8
3991 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3992 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3993 ds.UserClipDistanceCullTestEnableBitmask =
3994 vue_prog_data->cull_distance_mask;
3995 #endif
3996 }
3997 }
3998 }
3999
4000 static const struct brw_tracked_state genX(ds_state) = {
4001 .dirty = {
4002 .mesa = 0,
4003 .brw = BRW_NEW_BATCH |
4004 BRW_NEW_BLORP |
4005 BRW_NEW_TESS_PROGRAMS |
4006 BRW_NEW_TES_PROG_DATA,
4007 },
4008 .emit = genX(upload_ds_state),
4009 };
4010
4011 /* ---------------------------------------------------------------------- */
4012
4013 static void
4014 upload_te_state(struct brw_context *brw)
4015 {
4016 /* BRW_NEW_TESS_PROGRAMS */
4017 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4018
4019 /* BRW_NEW_TES_PROG_DATA */
4020 const struct brw_tes_prog_data *tes_prog_data =
4021 brw_tes_prog_data(brw->tes.base.prog_data);
4022
4023 if (active) {
4024 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4025 te.Partitioning = tes_prog_data->partitioning;
4026 te.OutputTopology = tes_prog_data->output_topology;
4027 te.TEDomain = tes_prog_data->domain;
4028 te.TEEnable = true;
4029 te.MaximumTessellationFactorOdd = 63.0;
4030 te.MaximumTessellationFactorNotOdd = 64.0;
4031 }
4032 } else {
4033 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4034 }
4035 }
4036
4037 static const struct brw_tracked_state genX(te_state) = {
4038 .dirty = {
4039 .mesa = 0,
4040 .brw = BRW_NEW_BLORP |
4041 BRW_NEW_CONTEXT |
4042 BRW_NEW_TES_PROG_DATA |
4043 BRW_NEW_TESS_PROGRAMS,
4044 },
4045 .emit = upload_te_state,
4046 };
4047
4048 /* ---------------------------------------------------------------------- */
4049
4050 static void
4051 genX(upload_tes_push_constants)(struct brw_context *brw)
4052 {
4053 struct brw_stage_state *stage_state = &brw->tes.base;
4054 /* BRW_NEW_TESS_PROGRAMS */
4055 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4056
4057 /* BRW_NEW_TES_PROG_DATA */
4058 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4059 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4060 }
4061
4062 static const struct brw_tracked_state genX(tes_push_constants) = {
4063 .dirty = {
4064 .mesa = _NEW_PROGRAM_CONSTANTS,
4065 .brw = BRW_NEW_BATCH |
4066 BRW_NEW_BLORP |
4067 BRW_NEW_TESS_PROGRAMS |
4068 BRW_NEW_TES_PROG_DATA,
4069 },
4070 .emit = genX(upload_tes_push_constants),
4071 };
4072
4073 static void
4074 genX(upload_tcs_push_constants)(struct brw_context *brw)
4075 {
4076 struct brw_stage_state *stage_state = &brw->tcs.base;
4077 /* BRW_NEW_TESS_PROGRAMS */
4078 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4079
4080 /* BRW_NEW_TCS_PROG_DATA */
4081 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4082
4083 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4084 }
4085
4086 static const struct brw_tracked_state genX(tcs_push_constants) = {
4087 .dirty = {
4088 .mesa = _NEW_PROGRAM_CONSTANTS,
4089 .brw = BRW_NEW_BATCH |
4090 BRW_NEW_BLORP |
4091 BRW_NEW_DEFAULT_TESS_LEVELS |
4092 BRW_NEW_TESS_PROGRAMS |
4093 BRW_NEW_TCS_PROG_DATA,
4094 },
4095 .emit = genX(upload_tcs_push_constants),
4096 };
4097
4098 #endif
4099
4100 /* ---------------------------------------------------------------------- */
4101
4102 #if GEN_GEN >= 7
4103 static void
4104 genX(upload_cs_push_constants)(struct brw_context *brw)
4105 {
4106 struct brw_stage_state *stage_state = &brw->cs.base;
4107
4108 /* BRW_NEW_COMPUTE_PROGRAM */
4109 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4110
4111 if (cp) {
4112 /* BRW_NEW_CS_PROG_DATA */
4113 struct brw_cs_prog_data *cs_prog_data =
4114 brw_cs_prog_data(brw->cs.base.prog_data);
4115
4116 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4117 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4118 }
4119 }
4120
4121 const struct brw_tracked_state genX(cs_push_constants) = {
4122 .dirty = {
4123 .mesa = _NEW_PROGRAM_CONSTANTS,
4124 .brw = BRW_NEW_BATCH |
4125 BRW_NEW_BLORP |
4126 BRW_NEW_COMPUTE_PROGRAM |
4127 BRW_NEW_CS_PROG_DATA,
4128 },
4129 .emit = genX(upload_cs_push_constants),
4130 };
4131
4132 /**
4133 * Creates a new CS constant buffer reflecting the current CS program's
4134 * constants, if needed by the CS program.
4135 */
4136 static void
4137 genX(upload_cs_pull_constants)(struct brw_context *brw)
4138 {
4139 struct brw_stage_state *stage_state = &brw->cs.base;
4140
4141 /* BRW_NEW_COMPUTE_PROGRAM */
4142 struct brw_program *cp =
4143 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4144
4145 /* BRW_NEW_CS_PROG_DATA */
4146 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4147
4148 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4149 /* _NEW_PROGRAM_CONSTANTS */
4150 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4151 stage_state, prog_data);
4152 }
4153
4154 const struct brw_tracked_state genX(cs_pull_constants) = {
4155 .dirty = {
4156 .mesa = _NEW_PROGRAM_CONSTANTS,
4157 .brw = BRW_NEW_BATCH |
4158 BRW_NEW_BLORP |
4159 BRW_NEW_COMPUTE_PROGRAM |
4160 BRW_NEW_CS_PROG_DATA,
4161 },
4162 .emit = genX(upload_cs_pull_constants),
4163 };
4164
4165 static void
4166 genX(upload_cs_state)(struct brw_context *brw)
4167 {
4168 if (!brw->cs.base.prog_data)
4169 return;
4170
4171 uint32_t offset;
4172 uint32_t *desc = (uint32_t*) brw_state_batch(
4173 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4174 &offset);
4175
4176 struct brw_stage_state *stage_state = &brw->cs.base;
4177 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4178 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4179 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4180
4181 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4182 brw_emit_buffer_surface_state(
4183 brw, &stage_state->surf_offset[
4184 prog_data->binding_table.shader_time_start],
4185 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4186 brw->shader_time.bo->size, 1,
4187 RELOC_WRITE);
4188 }
4189
4190 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4191 32, &stage_state->bind_bo_offset);
4192
4193 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4194 *
4195 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4196 * the only bits that are changed are scoreboard related: Scoreboard
4197 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4198 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4199 *
4200 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4201 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4202 */
4203 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4204
4205 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4206 if (prog_data->total_scratch) {
4207 uint32_t per_thread_scratch_value;
4208
4209 if (GEN_GEN >= 8) {
4210 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4211 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4212 */
4213 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4214 } else if (GEN_IS_HASWELL) {
4215 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4216 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4217 */
4218 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4219 } else {
4220 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4221 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4222 */
4223 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4224 }
4225 vfe.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
4226 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4227 }
4228
4229 /* If brw->screen->subslice_total is greater than one, then
4230 * devinfo->max_cs_threads stores number of threads per sub-slice;
4231 * thus we need to multiply by that number by subslices to get
4232 * the actual maximum number of threads; the -1 is because the HW
4233 * has a bias of 1 (would not make sense to say the maximum number
4234 * of threads is 0).
4235 */
4236 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4237 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4238 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4239 vfe.ResetGatewayTimer =
4240 Resettingrelativetimerandlatchingtheglobaltimestamp;
4241 #if GEN_GEN < 9
4242 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4243 #endif
4244 #if GEN_GEN == 7
4245 vfe.GPGPUMode = 1;
4246 #endif
4247
4248 /* We are uploading duplicated copies of push constant uniforms for each
4249 * thread. Although the local id data needs to vary per thread, it won't
4250 * change for other uniform data. Unfortunately this duplication is
4251 * required for gen7. As of Haswell, this duplication can be avoided,
4252 * but this older mechanism with duplicated data continues to work.
4253 *
4254 * FINISHME: As of Haswell, we could make use of the
4255 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4256 * field to only store one copy of uniform data.
4257 *
4258 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4259 * which is described in the GPGPU_WALKER command and in the Broadwell
4260 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4261 * Operations => GPGPU Mode => Indirect Payload Storage.
4262 *
4263 * Note: The constant data is built in brw_upload_cs_push_constants
4264 * below.
4265 */
4266 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4267
4268 const uint32_t vfe_curbe_allocation =
4269 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4270 cs_prog_data->push.cross_thread.regs, 2);
4271 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4272 }
4273
4274 if (cs_prog_data->push.total.size > 0) {
4275 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4276 curbe.CURBETotalDataLength =
4277 ALIGN(cs_prog_data->push.total.size, 64);
4278 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4279 }
4280 }
4281
4282 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4283 memcpy(bind, stage_state->surf_offset,
4284 prog_data->binding_table.size_bytes);
4285 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4286 .KernelStartPointer = brw->cs.base.prog_offset,
4287 .SamplerStatePointer = stage_state->sampler_offset,
4288 .SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4289 .BindingTablePointer = stage_state->bind_bo_offset,
4290 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4291 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4292 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4293 prog_data->total_shared),
4294 .BarrierEnable = cs_prog_data->uses_barrier,
4295 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4296 .CrossThreadConstantDataReadLength =
4297 cs_prog_data->push.cross_thread.regs,
4298 #endif
4299 };
4300
4301 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4302
4303 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4304 load.InterfaceDescriptorTotalLength =
4305 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4306 load.InterfaceDescriptorDataStartAddress = offset;
4307 }
4308 }
4309
4310 static const struct brw_tracked_state genX(cs_state) = {
4311 .dirty = {
4312 .mesa = _NEW_PROGRAM_CONSTANTS,
4313 .brw = BRW_NEW_BATCH |
4314 BRW_NEW_BLORP |
4315 BRW_NEW_CS_PROG_DATA |
4316 BRW_NEW_SAMPLER_STATE_TABLE |
4317 BRW_NEW_SURFACES,
4318 },
4319 .emit = genX(upload_cs_state)
4320 };
4321
4322 #endif
4323
4324 /* ---------------------------------------------------------------------- */
4325
4326 #if GEN_GEN >= 8
4327 static void
4328 genX(upload_raster)(struct brw_context *brw)
4329 {
4330 const struct gl_context *ctx = &brw->ctx;
4331
4332 /* _NEW_BUFFERS */
4333 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4334
4335 /* _NEW_POLYGON */
4336 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4337
4338 /* _NEW_POINT */
4339 const struct gl_point_attrib *point = &ctx->Point;
4340
4341 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4342 if (brw->polygon_front_bit == render_to_fbo)
4343 raster.FrontWinding = CounterClockwise;
4344
4345 if (polygon->CullFlag) {
4346 switch (polygon->CullFaceMode) {
4347 case GL_FRONT:
4348 raster.CullMode = CULLMODE_FRONT;
4349 break;
4350 case GL_BACK:
4351 raster.CullMode = CULLMODE_BACK;
4352 break;
4353 case GL_FRONT_AND_BACK:
4354 raster.CullMode = CULLMODE_BOTH;
4355 break;
4356 default:
4357 unreachable("not reached");
4358 }
4359 } else {
4360 raster.CullMode = CULLMODE_NONE;
4361 }
4362
4363 raster.SmoothPointEnable = point->SmoothFlag;
4364
4365 raster.DXMultisampleRasterizationEnable =
4366 _mesa_is_multisample_enabled(ctx);
4367
4368 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4369 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4370 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4371
4372 switch (polygon->FrontMode) {
4373 case GL_FILL:
4374 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4375 break;
4376 case GL_LINE:
4377 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4378 break;
4379 case GL_POINT:
4380 raster.FrontFaceFillMode = FILL_MODE_POINT;
4381 break;
4382 default:
4383 unreachable("not reached");
4384 }
4385
4386 switch (polygon->BackMode) {
4387 case GL_FILL:
4388 raster.BackFaceFillMode = FILL_MODE_SOLID;
4389 break;
4390 case GL_LINE:
4391 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4392 break;
4393 case GL_POINT:
4394 raster.BackFaceFillMode = FILL_MODE_POINT;
4395 break;
4396 default:
4397 unreachable("not reached");
4398 }
4399
4400 /* _NEW_LINE */
4401 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4402
4403 #if GEN_GEN == 10
4404 /* _NEW_BUFFERS
4405 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4406 */
4407 const bool multisampled_fbo =
4408 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4409 if (multisampled_fbo)
4410 raster.AntialiasingEnable = false;
4411 #endif
4412
4413 /* _NEW_SCISSOR */
4414 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4415
4416 /* _NEW_TRANSFORM */
4417 if (!ctx->Transform.DepthClamp) {
4418 #if GEN_GEN >= 9
4419 raster.ViewportZFarClipTestEnable = true;
4420 raster.ViewportZNearClipTestEnable = true;
4421 #else
4422 raster.ViewportZClipTestEnable = true;
4423 #endif
4424 }
4425
4426 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4427 #if GEN_GEN >= 9
4428 raster.ConservativeRasterizationEnable =
4429 ctx->IntelConservativeRasterization;
4430 #endif
4431
4432 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4433 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4434
4435 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4436 }
4437 }
4438
4439 static const struct brw_tracked_state genX(raster_state) = {
4440 .dirty = {
4441 .mesa = _NEW_BUFFERS |
4442 _NEW_LINE |
4443 _NEW_MULTISAMPLE |
4444 _NEW_POINT |
4445 _NEW_POLYGON |
4446 _NEW_SCISSOR |
4447 _NEW_TRANSFORM,
4448 .brw = BRW_NEW_BLORP |
4449 BRW_NEW_CONTEXT |
4450 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4451 },
4452 .emit = genX(upload_raster),
4453 };
4454 #endif
4455
4456 /* ---------------------------------------------------------------------- */
4457
4458 #if GEN_GEN >= 8
4459 static void
4460 genX(upload_ps_extra)(struct brw_context *brw)
4461 {
4462 UNUSED struct gl_context *ctx = &brw->ctx;
4463
4464 const struct brw_wm_prog_data *prog_data =
4465 brw_wm_prog_data(brw->wm.base.prog_data);
4466
4467 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4468 psx.PixelShaderValid = true;
4469 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4470 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4471 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4472 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4473 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4474 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4475
4476 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4477 if (prog_data->uses_sample_mask) {
4478 #if GEN_GEN >= 9
4479 if (prog_data->post_depth_coverage)
4480 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4481 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4482 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4483 else
4484 psx.InputCoverageMaskState = ICMS_NORMAL;
4485 #else
4486 psx.PixelShaderUsesInputCoverageMask = true;
4487 #endif
4488 }
4489
4490 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4491 #if GEN_GEN >= 9
4492 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4493 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4494 #endif
4495
4496 /* The stricter cross-primitive coherency guarantees that the hardware
4497 * gives us with the "Accesses UAV" bit set for at least one shader stage
4498 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4499 * are redundant within the current image, atomic counter and SSBO GL
4500 * APIs, which all have very loose ordering and coherency requirements
4501 * and generally rely on the application to insert explicit barriers when
4502 * a shader invocation is expected to see the memory writes performed by
4503 * the invocations of some previous primitive. Regardless of the value
4504 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4505 * cause an in most cases useless DC flush when the lowermost stage with
4506 * the bit set finishes execution.
4507 *
4508 * It would be nice to disable it, but in some cases we can't because on
4509 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4510 * signal (which could be set independently from the coherency mechanism
4511 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4512 * determine whether the hardware skips execution of the fragment shader
4513 * or not via the ThreadDispatchEnable signal. However if we know that
4514 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4515 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4516 * difference so we may just disable it here.
4517 *
4518 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4519 * take into account KillPixels when no depth or stencil writes are
4520 * enabled. In order for occlusion queries to work correctly with no
4521 * attachments, we need to force-enable here.
4522 *
4523 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4524 * _NEW_COLOR
4525 */
4526 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4527 !brw_color_buffer_write_enabled(brw))
4528 psx.PixelShaderHasUAV = true;
4529 }
4530 }
4531
4532 const struct brw_tracked_state genX(ps_extra) = {
4533 .dirty = {
4534 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4535 .brw = BRW_NEW_BLORP |
4536 BRW_NEW_CONTEXT |
4537 BRW_NEW_FRAGMENT_PROGRAM |
4538 BRW_NEW_FS_PROG_DATA |
4539 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4540 },
4541 .emit = genX(upload_ps_extra),
4542 };
4543 #endif
4544
4545 /* ---------------------------------------------------------------------- */
4546
4547 #if GEN_GEN >= 8
4548 static void
4549 genX(upload_ps_blend)(struct brw_context *brw)
4550 {
4551 struct gl_context *ctx = &brw->ctx;
4552
4553 /* _NEW_BUFFERS */
4554 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4555 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4556
4557 /* _NEW_COLOR */
4558 struct gl_colorbuffer_attrib *color = &ctx->Color;
4559
4560 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4561 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4562 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4563
4564 bool alpha_to_one = false;
4565
4566 if (!buffer0_is_integer) {
4567 /* _NEW_MULTISAMPLE */
4568
4569 if (_mesa_is_multisample_enabled(ctx)) {
4570 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4571 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4572 }
4573
4574 pb.AlphaTestEnable = color->AlphaEnabled;
4575 }
4576
4577 /* Used for implementing the following bit of GL_EXT_texture_integer:
4578 * "Per-fragment operations that require floating-point color
4579 * components, including multisample alpha operations, alpha test,
4580 * blending, and dithering, have no effect when the corresponding
4581 * colors are written to an integer color buffer."
4582 *
4583 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4584 * "If drawbuffer zero is not NONE and the buffer it references has an
4585 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4586 * operations are skipped."
4587 */
4588 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4589 GLenum eqRGB = color->Blend[0].EquationRGB;
4590 GLenum eqA = color->Blend[0].EquationA;
4591 GLenum srcRGB = color->Blend[0].SrcRGB;
4592 GLenum dstRGB = color->Blend[0].DstRGB;
4593 GLenum srcA = color->Blend[0].SrcA;
4594 GLenum dstA = color->Blend[0].DstA;
4595
4596 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4597 srcRGB = dstRGB = GL_ONE;
4598
4599 if (eqA == GL_MIN || eqA == GL_MAX)
4600 srcA = dstA = GL_ONE;
4601
4602 /* Due to hardware limitations, the destination may have information
4603 * in an alpha channel even when the format specifies no alpha
4604 * channel. In order to avoid getting any incorrect blending due to
4605 * that alpha channel, coerce the blend factors to values that will
4606 * not read the alpha channel, but will instead use the correct
4607 * implicit value for alpha.
4608 */
4609 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4610 GL_TEXTURE_ALPHA_TYPE)) {
4611 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4612 srcA = brw_fix_xRGB_alpha(srcA);
4613 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4614 dstA = brw_fix_xRGB_alpha(dstA);
4615 }
4616
4617 /* Alpha to One doesn't work with Dual Color Blending. Override
4618 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4619 */
4620 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4621 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4622 srcA = fix_dual_blend_alpha_to_one(srcA);
4623 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4624 dstA = fix_dual_blend_alpha_to_one(dstA);
4625 }
4626
4627 pb.ColorBufferBlendEnable = true;
4628 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4629 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4630 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4631 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4632
4633 pb.IndependentAlphaBlendEnable =
4634 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4635 }
4636 }
4637 }
4638
4639 static const struct brw_tracked_state genX(ps_blend) = {
4640 .dirty = {
4641 .mesa = _NEW_BUFFERS |
4642 _NEW_COLOR |
4643 _NEW_MULTISAMPLE,
4644 .brw = BRW_NEW_BLORP |
4645 BRW_NEW_CONTEXT |
4646 BRW_NEW_FRAGMENT_PROGRAM,
4647 },
4648 .emit = genX(upload_ps_blend)
4649 };
4650 #endif
4651
4652 /* ---------------------------------------------------------------------- */
4653
4654 #if GEN_GEN >= 8
4655 static void
4656 genX(emit_vf_topology)(struct brw_context *brw)
4657 {
4658 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4659 vftopo.PrimitiveTopologyType = brw->primitive;
4660 }
4661 }
4662
4663 static const struct brw_tracked_state genX(vf_topology) = {
4664 .dirty = {
4665 .mesa = 0,
4666 .brw = BRW_NEW_BLORP |
4667 BRW_NEW_PRIMITIVE,
4668 },
4669 .emit = genX(emit_vf_topology),
4670 };
4671 #endif
4672
4673 /* ---------------------------------------------------------------------- */
4674
4675 #if GEN_GEN >= 7
4676 static void
4677 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4678 struct brw_bo *bo,
4679 uint32_t offset_in_bytes,
4680 uint32_t report_id)
4681 {
4682 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4683 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4684 mi_rpc.ReportID = report_id;
4685 }
4686 }
4687 #endif
4688
4689 /* ---------------------------------------------------------------------- */
4690
4691 /**
4692 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4693 */
4694 static void
4695 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4696 struct brw_stage_state *stage_state)
4697 {
4698 #if GEN_GEN >= 7
4699 static const uint16_t packet_headers[] = {
4700 [MESA_SHADER_VERTEX] = 43,
4701 [MESA_SHADER_TESS_CTRL] = 44,
4702 [MESA_SHADER_TESS_EVAL] = 45,
4703 [MESA_SHADER_GEOMETRY] = 46,
4704 [MESA_SHADER_FRAGMENT] = 47,
4705 };
4706
4707 /* Ivybridge requires a workaround flush before VS packets. */
4708 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4709 stage_state->stage == MESA_SHADER_VERTEX) {
4710 gen7_emit_vs_workaround_flush(brw);
4711 }
4712
4713 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4714 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4715 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4716 }
4717 #endif
4718 }
4719
4720 UNUSED static bool
4721 has_component(mesa_format format, int i)
4722 {
4723 if (_mesa_is_format_color_format(format))
4724 return _mesa_format_has_color_component(format, i);
4725
4726 /* depth and stencil have only one component */
4727 return i == 0;
4728 }
4729
4730 /**
4731 * Upload SAMPLER_BORDER_COLOR_STATE.
4732 */
4733 static void
4734 genX(upload_default_color)(struct brw_context *brw,
4735 const struct gl_sampler_object *sampler,
4736 mesa_format format, GLenum base_format,
4737 bool is_integer_format, bool is_stencil_sampling,
4738 uint32_t *sdc_offset)
4739 {
4740 union gl_color_union color;
4741
4742 switch (base_format) {
4743 case GL_DEPTH_COMPONENT:
4744 /* GL specs that border color for depth textures is taken from the
4745 * R channel, while the hardware uses A. Spam R into all the
4746 * channels for safety.
4747 */
4748 color.ui[0] = sampler->BorderColor.ui[0];
4749 color.ui[1] = sampler->BorderColor.ui[0];
4750 color.ui[2] = sampler->BorderColor.ui[0];
4751 color.ui[3] = sampler->BorderColor.ui[0];
4752 break;
4753 case GL_ALPHA:
4754 color.ui[0] = 0u;
4755 color.ui[1] = 0u;
4756 color.ui[2] = 0u;
4757 color.ui[3] = sampler->BorderColor.ui[3];
4758 break;
4759 case GL_INTENSITY:
4760 color.ui[0] = sampler->BorderColor.ui[0];
4761 color.ui[1] = sampler->BorderColor.ui[0];
4762 color.ui[2] = sampler->BorderColor.ui[0];
4763 color.ui[3] = sampler->BorderColor.ui[0];
4764 break;
4765 case GL_LUMINANCE:
4766 color.ui[0] = sampler->BorderColor.ui[0];
4767 color.ui[1] = sampler->BorderColor.ui[0];
4768 color.ui[2] = sampler->BorderColor.ui[0];
4769 color.ui[3] = float_as_int(1.0);
4770 break;
4771 case GL_LUMINANCE_ALPHA:
4772 color.ui[0] = sampler->BorderColor.ui[0];
4773 color.ui[1] = sampler->BorderColor.ui[0];
4774 color.ui[2] = sampler->BorderColor.ui[0];
4775 color.ui[3] = sampler->BorderColor.ui[3];
4776 break;
4777 default:
4778 color.ui[0] = sampler->BorderColor.ui[0];
4779 color.ui[1] = sampler->BorderColor.ui[1];
4780 color.ui[2] = sampler->BorderColor.ui[2];
4781 color.ui[3] = sampler->BorderColor.ui[3];
4782 break;
4783 }
4784
4785 /* In some cases we use an RGBA surface format for GL RGB textures,
4786 * where we've initialized the A channel to 1.0. We also have to set
4787 * the border color alpha to 1.0 in that case.
4788 */
4789 if (base_format == GL_RGB)
4790 color.ui[3] = float_as_int(1.0);
4791
4792 int alignment = 32;
4793 if (GEN_GEN >= 8) {
4794 alignment = 64;
4795 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4796 alignment = 512;
4797 }
4798
4799 uint32_t *sdc = brw_state_batch(
4800 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4801 alignment, sdc_offset);
4802
4803 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4804
4805 #define ASSIGN(dst, src) \
4806 do { \
4807 dst = src; \
4808 } while (0)
4809
4810 #define ASSIGNu16(dst, src) \
4811 do { \
4812 dst = (uint16_t)src; \
4813 } while (0)
4814
4815 #define ASSIGNu8(dst, src) \
4816 do { \
4817 dst = (uint8_t)src; \
4818 } while (0)
4819
4820 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4821 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4822 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4823 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4824 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4825
4826 #if GEN_GEN >= 8
4827 /* On Broadwell, the border color is represented as four 32-bit floats,
4828 * integers, or unsigned values, interpreted according to the surface
4829 * format. This matches the sampler->BorderColor union exactly; just
4830 * memcpy the values.
4831 */
4832 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4833 #elif GEN_IS_HASWELL
4834 if (is_integer_format || is_stencil_sampling) {
4835 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4836 const int bits_per_channel =
4837 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4838
4839 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4840 * "If any color channel is missing from the surface format,
4841 * corresponding border color should be programmed as zero and if
4842 * alpha channel is missing, corresponding Alpha border color should
4843 * be programmed as 1."
4844 */
4845 unsigned c[4] = { 0, 0, 0, 1 };
4846 for (int i = 0; i < 4; i++) {
4847 if (has_component(format, i))
4848 c[i] = color.ui[i];
4849 }
4850
4851 switch (bits_per_channel) {
4852 case 8:
4853 /* Copy RGBA in order. */
4854 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4855 break;
4856 case 10:
4857 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4858 case 16:
4859 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4860 break;
4861 case 32:
4862 if (base_format == GL_RG) {
4863 /* Careful inspection of the tables reveals that for RG32 formats,
4864 * the green channel needs to go where blue normally belongs.
4865 */
4866 state.BorderColor32bitRed = c[0];
4867 state.BorderColor32bitBlue = c[1];
4868 state.BorderColor32bitAlpha = 1;
4869 } else {
4870 /* Copy RGBA in order. */
4871 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4872 }
4873 break;
4874 default:
4875 assert(!"Invalid number of bits per channel in integer format.");
4876 break;
4877 }
4878 } else {
4879 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4880 }
4881 #elif GEN_GEN == 5 || GEN_GEN == 6
4882 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4883 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4884 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4885
4886 #define MESA_FLOAT_TO_HALF(dst, src) \
4887 dst = _mesa_float_to_half(src);
4888
4889 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4890
4891 #undef MESA_FLOAT_TO_HALF
4892
4893 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4894 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4895 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4896 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4897
4898 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4899 #elif GEN_GEN == 4
4900 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4901 #else
4902 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4903 #endif
4904
4905 #undef ASSIGN
4906 #undef BORDER_COLOR_ATTR
4907
4908 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4909 }
4910
4911 static uint32_t
4912 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4913 {
4914 switch (wrap) {
4915 case GL_REPEAT:
4916 return TCM_WRAP;
4917 case GL_CLAMP:
4918 #if GEN_GEN >= 8
4919 /* GL_CLAMP is the weird mode where coordinates are clamped to
4920 * [0.0, 1.0], so linear filtering of coordinates outside of
4921 * [0.0, 1.0] give you half edge texel value and half border
4922 * color.
4923 *
4924 * Gen8+ supports this natively.
4925 */
4926 return TCM_HALF_BORDER;
4927 #else
4928 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4929 * and set clamp_border here, which gets the result desired.
4930 * We just use clamp(_to_edge) for nearest, because for nearest
4931 * clamping to 1.0 gives border color instead of the desired
4932 * edge texels.
4933 */
4934 if (using_nearest)
4935 return TCM_CLAMP;
4936 else
4937 return TCM_CLAMP_BORDER;
4938 #endif
4939 case GL_CLAMP_TO_EDGE:
4940 return TCM_CLAMP;
4941 case GL_CLAMP_TO_BORDER:
4942 return TCM_CLAMP_BORDER;
4943 case GL_MIRRORED_REPEAT:
4944 return TCM_MIRROR;
4945 case GL_MIRROR_CLAMP_TO_EDGE:
4946 return TCM_MIRROR_ONCE;
4947 default:
4948 return TCM_WRAP;
4949 }
4950 }
4951
4952 /**
4953 * Return true if the given wrap mode requires the border color to exist.
4954 */
4955 static bool
4956 wrap_mode_needs_border_color(unsigned wrap_mode)
4957 {
4958 #if GEN_GEN >= 8
4959 return wrap_mode == TCM_CLAMP_BORDER ||
4960 wrap_mode == TCM_HALF_BORDER;
4961 #else
4962 return wrap_mode == TCM_CLAMP_BORDER;
4963 #endif
4964 }
4965
4966 /**
4967 * Sets the sampler state for a single unit based off of the sampler key
4968 * entry.
4969 */
4970 static void
4971 genX(update_sampler_state)(struct brw_context *brw,
4972 GLenum target, bool tex_cube_map_seamless,
4973 GLfloat tex_unit_lod_bias,
4974 mesa_format format, GLenum base_format,
4975 const struct gl_texture_object *texObj,
4976 const struct gl_sampler_object *sampler,
4977 uint32_t *sampler_state,
4978 uint32_t batch_offset_for_sampler_state)
4979 {
4980 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4981
4982 /* Select min and mip filters. */
4983 switch (sampler->MinFilter) {
4984 case GL_NEAREST:
4985 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4986 samp_st.MipModeFilter = MIPFILTER_NONE;
4987 break;
4988 case GL_LINEAR:
4989 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4990 samp_st.MipModeFilter = MIPFILTER_NONE;
4991 break;
4992 case GL_NEAREST_MIPMAP_NEAREST:
4993 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4994 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4995 break;
4996 case GL_LINEAR_MIPMAP_NEAREST:
4997 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4998 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4999 break;
5000 case GL_NEAREST_MIPMAP_LINEAR:
5001 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5002 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5003 break;
5004 case GL_LINEAR_MIPMAP_LINEAR:
5005 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5006 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5007 break;
5008 default:
5009 unreachable("not reached");
5010 }
5011
5012 /* Select mag filter. */
5013 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5014 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5015
5016 /* Enable anisotropic filtering if desired. */
5017 samp_st.MaximumAnisotropy = RATIO21;
5018
5019 if (sampler->MaxAnisotropy > 1.0f) {
5020 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5021 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5022 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5023 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5024
5025 if (sampler->MaxAnisotropy > 2.0f) {
5026 samp_st.MaximumAnisotropy =
5027 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5028 }
5029 }
5030
5031 /* Set address rounding bits if not using nearest filtering. */
5032 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5033 samp_st.UAddressMinFilterRoundingEnable = true;
5034 samp_st.VAddressMinFilterRoundingEnable = true;
5035 samp_st.RAddressMinFilterRoundingEnable = true;
5036 }
5037
5038 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5039 samp_st.UAddressMagFilterRoundingEnable = true;
5040 samp_st.VAddressMagFilterRoundingEnable = true;
5041 samp_st.RAddressMagFilterRoundingEnable = true;
5042 }
5043
5044 bool either_nearest =
5045 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5046 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
5047 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
5048 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
5049
5050 if (target == GL_TEXTURE_CUBE_MAP ||
5051 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5052 /* Cube maps must use the same wrap mode for all three coordinate
5053 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5054 *
5055 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5056 * integer formats. Fall back to CLAMP for now.
5057 */
5058 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5059 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5060 wrap_s = TCM_CUBE;
5061 wrap_t = TCM_CUBE;
5062 wrap_r = TCM_CUBE;
5063 } else {
5064 wrap_s = TCM_CLAMP;
5065 wrap_t = TCM_CLAMP;
5066 wrap_r = TCM_CLAMP;
5067 }
5068 } else if (target == GL_TEXTURE_1D) {
5069 /* There's a bug in 1D texture sampling - it actually pays
5070 * attention to the wrap_t value, though it should not.
5071 * Override the wrap_t value here to GL_REPEAT to keep
5072 * any nonexistent border pixels from floating in.
5073 */
5074 wrap_t = TCM_WRAP;
5075 }
5076
5077 samp_st.TCXAddressControlMode = wrap_s;
5078 samp_st.TCYAddressControlMode = wrap_t;
5079 samp_st.TCZAddressControlMode = wrap_r;
5080
5081 samp_st.ShadowFunction =
5082 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5083 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5084
5085 #if GEN_GEN >= 7
5086 /* Set shadow function. */
5087 samp_st.AnisotropicAlgorithm =
5088 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5089 EWAApproximation : LEGACY;
5090 #endif
5091
5092 #if GEN_GEN >= 6
5093 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5094 #endif
5095
5096 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5097 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5098 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5099 samp_st.TextureLODBias =
5100 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5101
5102 #if GEN_GEN == 6
5103 samp_st.BaseMipLevel =
5104 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5105 samp_st.MinandMagStateNotEqual =
5106 samp_st.MinModeFilter != samp_st.MagModeFilter;
5107 #endif
5108
5109 /* Upload the border color if necessary. If not, just point it at
5110 * offset 0 (the start of the batch) - the color should be ignored,
5111 * but that address won't fault in case something reads it anyway.
5112 */
5113 uint32_t border_color_offset = 0;
5114 if (wrap_mode_needs_border_color(wrap_s) ||
5115 wrap_mode_needs_border_color(wrap_t) ||
5116 wrap_mode_needs_border_color(wrap_r)) {
5117 genX(upload_default_color)(brw, sampler, format, base_format,
5118 texObj->_IsIntegerFormat,
5119 texObj->StencilSampling,
5120 &border_color_offset);
5121 }
5122 #if GEN_GEN < 6
5123 samp_st.BorderColorPointer =
5124 ro_bo(brw->batch.state.bo, border_color_offset);
5125 #else
5126 samp_st.BorderColorPointer = border_color_offset;
5127 #endif
5128
5129 #if GEN_GEN >= 8
5130 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5131 #else
5132 samp_st.LODPreClampEnable = true;
5133 #endif
5134
5135 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5136 }
5137
5138 static void
5139 update_sampler_state(struct brw_context *brw,
5140 int unit,
5141 uint32_t *sampler_state,
5142 uint32_t batch_offset_for_sampler_state)
5143 {
5144 struct gl_context *ctx = &brw->ctx;
5145 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5146 const struct gl_texture_object *texObj = texUnit->_Current;
5147 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5148
5149 /* These don't use samplers at all. */
5150 if (texObj->Target == GL_TEXTURE_BUFFER)
5151 return;
5152
5153 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5154 genX(update_sampler_state)(brw, texObj->Target,
5155 ctx->Texture.CubeMapSeamless,
5156 texUnit->LodBias,
5157 firstImage->TexFormat, firstImage->_BaseFormat,
5158 texObj, sampler,
5159 sampler_state, batch_offset_for_sampler_state);
5160 }
5161
5162 static void
5163 genX(upload_sampler_state_table)(struct brw_context *brw,
5164 struct gl_program *prog,
5165 struct brw_stage_state *stage_state)
5166 {
5167 struct gl_context *ctx = &brw->ctx;
5168 uint32_t sampler_count = stage_state->sampler_count;
5169
5170 GLbitfield SamplersUsed = prog->SamplersUsed;
5171
5172 if (sampler_count == 0)
5173 return;
5174
5175 /* SAMPLER_STATE is 4 DWords on all platforms. */
5176 const int dwords = GENX(SAMPLER_STATE_length);
5177 const int size_in_bytes = dwords * sizeof(uint32_t);
5178
5179 uint32_t *sampler_state = brw_state_batch(brw,
5180 sampler_count * size_in_bytes,
5181 32, &stage_state->sampler_offset);
5182 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5183
5184 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5185
5186 for (unsigned s = 0; s < sampler_count; s++) {
5187 if (SamplersUsed & (1 << s)) {
5188 const unsigned unit = prog->SamplerUnits[s];
5189 if (ctx->Texture.Unit[unit]._Current) {
5190 update_sampler_state(brw, unit, sampler_state,
5191 batch_offset_for_sampler_state);
5192 }
5193 }
5194
5195 sampler_state += dwords;
5196 batch_offset_for_sampler_state += size_in_bytes;
5197 }
5198
5199 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5200 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5201 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5202 } else {
5203 /* Flag that the sampler state table pointer has changed; later atoms
5204 * will handle it.
5205 */
5206 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5207 }
5208 }
5209
5210 static void
5211 genX(upload_fs_samplers)(struct brw_context *brw)
5212 {
5213 /* BRW_NEW_FRAGMENT_PROGRAM */
5214 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5215 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5216 }
5217
5218 static const struct brw_tracked_state genX(fs_samplers) = {
5219 .dirty = {
5220 .mesa = _NEW_TEXTURE,
5221 .brw = BRW_NEW_BATCH |
5222 BRW_NEW_BLORP |
5223 BRW_NEW_FRAGMENT_PROGRAM,
5224 },
5225 .emit = genX(upload_fs_samplers),
5226 };
5227
5228 static void
5229 genX(upload_vs_samplers)(struct brw_context *brw)
5230 {
5231 /* BRW_NEW_VERTEX_PROGRAM */
5232 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5233 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5234 }
5235
5236 static const struct brw_tracked_state genX(vs_samplers) = {
5237 .dirty = {
5238 .mesa = _NEW_TEXTURE,
5239 .brw = BRW_NEW_BATCH |
5240 BRW_NEW_BLORP |
5241 BRW_NEW_VERTEX_PROGRAM,
5242 },
5243 .emit = genX(upload_vs_samplers),
5244 };
5245
5246 #if GEN_GEN >= 6
5247 static void
5248 genX(upload_gs_samplers)(struct brw_context *brw)
5249 {
5250 /* BRW_NEW_GEOMETRY_PROGRAM */
5251 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5252 if (!gs)
5253 return;
5254
5255 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5256 }
5257
5258
5259 static const struct brw_tracked_state genX(gs_samplers) = {
5260 .dirty = {
5261 .mesa = _NEW_TEXTURE,
5262 .brw = BRW_NEW_BATCH |
5263 BRW_NEW_BLORP |
5264 BRW_NEW_GEOMETRY_PROGRAM,
5265 },
5266 .emit = genX(upload_gs_samplers),
5267 };
5268 #endif
5269
5270 #if GEN_GEN >= 7
5271 static void
5272 genX(upload_tcs_samplers)(struct brw_context *brw)
5273 {
5274 /* BRW_NEW_TESS_PROGRAMS */
5275 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5276 if (!tcs)
5277 return;
5278
5279 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5280 }
5281
5282 static const struct brw_tracked_state genX(tcs_samplers) = {
5283 .dirty = {
5284 .mesa = _NEW_TEXTURE,
5285 .brw = BRW_NEW_BATCH |
5286 BRW_NEW_BLORP |
5287 BRW_NEW_TESS_PROGRAMS,
5288 },
5289 .emit = genX(upload_tcs_samplers),
5290 };
5291 #endif
5292
5293 #if GEN_GEN >= 7
5294 static void
5295 genX(upload_tes_samplers)(struct brw_context *brw)
5296 {
5297 /* BRW_NEW_TESS_PROGRAMS */
5298 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5299 if (!tes)
5300 return;
5301
5302 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5303 }
5304
5305 static const struct brw_tracked_state genX(tes_samplers) = {
5306 .dirty = {
5307 .mesa = _NEW_TEXTURE,
5308 .brw = BRW_NEW_BATCH |
5309 BRW_NEW_BLORP |
5310 BRW_NEW_TESS_PROGRAMS,
5311 },
5312 .emit = genX(upload_tes_samplers),
5313 };
5314 #endif
5315
5316 #if GEN_GEN >= 7
5317 static void
5318 genX(upload_cs_samplers)(struct brw_context *brw)
5319 {
5320 /* BRW_NEW_COMPUTE_PROGRAM */
5321 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5322 if (!cs)
5323 return;
5324
5325 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5326 }
5327
5328 const struct brw_tracked_state genX(cs_samplers) = {
5329 .dirty = {
5330 .mesa = _NEW_TEXTURE,
5331 .brw = BRW_NEW_BATCH |
5332 BRW_NEW_BLORP |
5333 BRW_NEW_COMPUTE_PROGRAM,
5334 },
5335 .emit = genX(upload_cs_samplers),
5336 };
5337 #endif
5338
5339 /* ---------------------------------------------------------------------- */
5340
5341 #if GEN_GEN <= 5
5342
5343 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5344 {
5345 struct gl_context *ctx = &brw->ctx;
5346
5347 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5348 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5349 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5350 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5351 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5352 }
5353 }
5354
5355 static const struct brw_tracked_state genX(blend_constant_color) = {
5356 .dirty = {
5357 .mesa = _NEW_COLOR,
5358 .brw = BRW_NEW_CONTEXT |
5359 BRW_NEW_BLORP,
5360 },
5361 .emit = genX(upload_blend_constant_color)
5362 };
5363 #endif
5364
5365 /* ---------------------------------------------------------------------- */
5366
5367 void
5368 genX(init_atoms)(struct brw_context *brw)
5369 {
5370 #if GEN_GEN < 6
5371 static const struct brw_tracked_state *render_atoms[] =
5372 {
5373 /* Once all the programs are done, we know how large urb entry
5374 * sizes need to be and can decide if we need to change the urb
5375 * layout.
5376 */
5377 &brw_curbe_offsets,
5378 &brw_recalculate_urb_fence,
5379
5380 &genX(cc_vp),
5381 &genX(color_calc_state),
5382
5383 /* Surface state setup. Must come before the VS/WM unit. The binding
5384 * table upload must be last.
5385 */
5386 &brw_vs_pull_constants,
5387 &brw_wm_pull_constants,
5388 &brw_renderbuffer_surfaces,
5389 &brw_renderbuffer_read_surfaces,
5390 &brw_texture_surfaces,
5391 &brw_vs_binding_table,
5392 &brw_wm_binding_table,
5393
5394 &genX(fs_samplers),
5395 &genX(vs_samplers),
5396
5397 /* These set up state for brw_psp_urb_cbs */
5398 &genX(wm_state),
5399 &genX(sf_clip_viewport),
5400 &genX(sf_state),
5401 &genX(vs_state), /* always required, enabled or not */
5402 &genX(clip_state),
5403 &genX(gs_state),
5404
5405 /* Command packets:
5406 */
5407 &brw_binding_table_pointers,
5408 &genX(blend_constant_color),
5409
5410 &brw_depthbuffer,
5411
5412 &genX(polygon_stipple),
5413 &genX(polygon_stipple_offset),
5414
5415 &genX(line_stipple),
5416
5417 &brw_psp_urb_cbs,
5418
5419 &genX(drawing_rect),
5420 &brw_indices, /* must come before brw_vertices */
5421 &genX(index_buffer),
5422 &genX(vertices),
5423
5424 &brw_constant_buffer
5425 };
5426 #elif GEN_GEN == 6
5427 static const struct brw_tracked_state *render_atoms[] =
5428 {
5429 &genX(sf_clip_viewport),
5430
5431 /* Command packets: */
5432
5433 &genX(cc_vp),
5434
5435 &gen6_urb,
5436 &genX(blend_state), /* must do before cc unit */
5437 &genX(color_calc_state), /* must do before cc unit */
5438 &genX(depth_stencil_state), /* must do before cc unit */
5439
5440 &genX(vs_push_constants), /* Before vs_state */
5441 &genX(gs_push_constants), /* Before gs_state */
5442 &genX(wm_push_constants), /* Before wm_state */
5443
5444 /* Surface state setup. Must come before the VS/WM unit. The binding
5445 * table upload must be last.
5446 */
5447 &brw_vs_pull_constants,
5448 &brw_vs_ubo_surfaces,
5449 &brw_gs_pull_constants,
5450 &brw_gs_ubo_surfaces,
5451 &brw_wm_pull_constants,
5452 &brw_wm_ubo_surfaces,
5453 &gen6_renderbuffer_surfaces,
5454 &brw_renderbuffer_read_surfaces,
5455 &brw_texture_surfaces,
5456 &gen6_sol_surface,
5457 &brw_vs_binding_table,
5458 &gen6_gs_binding_table,
5459 &brw_wm_binding_table,
5460
5461 &genX(fs_samplers),
5462 &genX(vs_samplers),
5463 &genX(gs_samplers),
5464 &gen6_sampler_state,
5465 &genX(multisample_state),
5466
5467 &genX(vs_state),
5468 &genX(gs_state),
5469 &genX(clip_state),
5470 &genX(sf_state),
5471 &genX(wm_state),
5472
5473 &genX(scissor_state),
5474
5475 &gen6_binding_table_pointers,
5476
5477 &brw_depthbuffer,
5478
5479 &genX(polygon_stipple),
5480 &genX(polygon_stipple_offset),
5481
5482 &genX(line_stipple),
5483
5484 &genX(drawing_rect),
5485
5486 &brw_indices, /* must come before brw_vertices */
5487 &genX(index_buffer),
5488 &genX(vertices),
5489 };
5490 #elif GEN_GEN == 7
5491 static const struct brw_tracked_state *render_atoms[] =
5492 {
5493 /* Command packets: */
5494
5495 &genX(cc_vp),
5496 &genX(sf_clip_viewport),
5497
5498 &gen7_l3_state,
5499 &gen7_push_constant_space,
5500 &gen7_urb,
5501 &genX(blend_state), /* must do before cc unit */
5502 &genX(color_calc_state), /* must do before cc unit */
5503 &genX(depth_stencil_state), /* must do before cc unit */
5504
5505 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5506 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5507 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5508 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5509 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5510
5511 &genX(vs_push_constants), /* Before vs_state */
5512 &genX(tcs_push_constants),
5513 &genX(tes_push_constants),
5514 &genX(gs_push_constants), /* Before gs_state */
5515 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5516
5517 /* Surface state setup. Must come before the VS/WM unit. The binding
5518 * table upload must be last.
5519 */
5520 &brw_vs_pull_constants,
5521 &brw_vs_ubo_surfaces,
5522 &brw_tcs_pull_constants,
5523 &brw_tcs_ubo_surfaces,
5524 &brw_tes_pull_constants,
5525 &brw_tes_ubo_surfaces,
5526 &brw_gs_pull_constants,
5527 &brw_gs_ubo_surfaces,
5528 &brw_wm_pull_constants,
5529 &brw_wm_ubo_surfaces,
5530 &gen6_renderbuffer_surfaces,
5531 &brw_renderbuffer_read_surfaces,
5532 &brw_texture_surfaces,
5533
5534 &genX(push_constant_packets),
5535
5536 &brw_vs_binding_table,
5537 &brw_tcs_binding_table,
5538 &brw_tes_binding_table,
5539 &brw_gs_binding_table,
5540 &brw_wm_binding_table,
5541
5542 &genX(fs_samplers),
5543 &genX(vs_samplers),
5544 &genX(tcs_samplers),
5545 &genX(tes_samplers),
5546 &genX(gs_samplers),
5547 &genX(multisample_state),
5548
5549 &genX(vs_state),
5550 &genX(hs_state),
5551 &genX(te_state),
5552 &genX(ds_state),
5553 &genX(gs_state),
5554 &genX(sol_state),
5555 &genX(clip_state),
5556 &genX(sbe_state),
5557 &genX(sf_state),
5558 &genX(wm_state),
5559 &genX(ps_state),
5560
5561 &genX(scissor_state),
5562
5563 &gen7_depthbuffer,
5564
5565 &genX(polygon_stipple),
5566 &genX(polygon_stipple_offset),
5567
5568 &genX(line_stipple),
5569
5570 &genX(drawing_rect),
5571
5572 &brw_indices, /* must come before brw_vertices */
5573 &genX(index_buffer),
5574 &genX(vertices),
5575
5576 #if GEN_IS_HASWELL
5577 &genX(cut_index),
5578 #endif
5579 };
5580 #elif GEN_GEN >= 8
5581 static const struct brw_tracked_state *render_atoms[] =
5582 {
5583 &genX(cc_vp),
5584 &genX(sf_clip_viewport),
5585
5586 &gen7_l3_state,
5587 &gen7_push_constant_space,
5588 &gen7_urb,
5589 &genX(blend_state),
5590 &genX(color_calc_state),
5591
5592 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5593 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5594 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5595 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5596 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5597
5598 &genX(vs_push_constants), /* Before vs_state */
5599 &genX(tcs_push_constants),
5600 &genX(tes_push_constants),
5601 &genX(gs_push_constants), /* Before gs_state */
5602 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5603
5604 /* Surface state setup. Must come before the VS/WM unit. The binding
5605 * table upload must be last.
5606 */
5607 &brw_vs_pull_constants,
5608 &brw_vs_ubo_surfaces,
5609 &brw_tcs_pull_constants,
5610 &brw_tcs_ubo_surfaces,
5611 &brw_tes_pull_constants,
5612 &brw_tes_ubo_surfaces,
5613 &brw_gs_pull_constants,
5614 &brw_gs_ubo_surfaces,
5615 &brw_wm_pull_constants,
5616 &brw_wm_ubo_surfaces,
5617 &gen6_renderbuffer_surfaces,
5618 &brw_renderbuffer_read_surfaces,
5619 &brw_texture_surfaces,
5620
5621 &genX(push_constant_packets),
5622
5623 &brw_vs_binding_table,
5624 &brw_tcs_binding_table,
5625 &brw_tes_binding_table,
5626 &brw_gs_binding_table,
5627 &brw_wm_binding_table,
5628
5629 &genX(fs_samplers),
5630 &genX(vs_samplers),
5631 &genX(tcs_samplers),
5632 &genX(tes_samplers),
5633 &genX(gs_samplers),
5634 &genX(multisample_state),
5635
5636 &genX(vs_state),
5637 &genX(hs_state),
5638 &genX(te_state),
5639 &genX(ds_state),
5640 &genX(gs_state),
5641 &genX(sol_state),
5642 &genX(clip_state),
5643 &genX(raster_state),
5644 &genX(sbe_state),
5645 &genX(sf_state),
5646 &genX(ps_blend),
5647 &genX(ps_extra),
5648 &genX(ps_state),
5649 &genX(depth_stencil_state),
5650 &genX(wm_state),
5651
5652 &genX(scissor_state),
5653
5654 &gen7_depthbuffer,
5655
5656 &genX(polygon_stipple),
5657 &genX(polygon_stipple_offset),
5658
5659 &genX(line_stipple),
5660
5661 &genX(drawing_rect),
5662
5663 &genX(vf_topology),
5664
5665 &brw_indices,
5666 &genX(index_buffer),
5667 &genX(vertices),
5668
5669 &genX(cut_index),
5670 &gen8_pma_fix,
5671 };
5672 #endif
5673
5674 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5675 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5676 render_atoms, ARRAY_SIZE(render_atoms));
5677
5678 #if GEN_GEN >= 7
5679 static const struct brw_tracked_state *compute_atoms[] =
5680 {
5681 &gen7_l3_state,
5682 &brw_cs_image_surfaces,
5683 &genX(cs_push_constants),
5684 &genX(cs_pull_constants),
5685 &brw_cs_ubo_surfaces,
5686 &brw_cs_texture_surfaces,
5687 &brw_cs_work_groups_surface,
5688 &genX(cs_samplers),
5689 &genX(cs_state),
5690 };
5691
5692 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5693 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5694 compute_atoms, ARRAY_SIZE(compute_atoms));
5695
5696 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5697 #endif
5698 }