i965: Change GEN_GEN < 7 to GEN_GEN == 6 in 3DSTATE_VS code.
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34
35 #include "brw_context.h"
36 #if GEN_GEN == 6
37 #include "brw_defines.h"
38 #endif
39 #include "brw_draw.h"
40 #include "brw_multisample_state.h"
41 #include "brw_state.h"
42 #include "brw_wm.h"
43 #include "brw_util.h"
44
45 #include "intel_batchbuffer.h"
46 #include "intel_buffer_objects.h"
47 #include "intel_fbo.h"
48
49 #include "main/enums.h"
50 #include "main/fbobject.h"
51 #include "main/framebuffer.h"
52 #include "main/glformats.h"
53 #include "main/shaderapi.h"
54 #include "main/stencil.h"
55 #include "main/transformfeedback.h"
56 #include "main/varray.h"
57 #include "main/viewport.h"
58
59 UNUSED static void *
60 emit_dwords(struct brw_context *brw, unsigned n)
61 {
62 intel_batchbuffer_begin(brw, n, RENDER_RING);
63 uint32_t *map = brw->batch.map_next;
64 brw->batch.map_next += n;
65 intel_batchbuffer_advance(brw);
66 return map;
67 }
68
69 struct brw_address {
70 struct brw_bo *bo;
71 uint32_t read_domains;
72 uint32_t write_domain;
73 uint32_t offset;
74 };
75
76 static uint64_t
77 emit_reloc(struct brw_context *brw,
78 void *location, struct brw_address address, uint32_t delta)
79 {
80 uint32_t offset = (char *) location - (char *) brw->batch.map;
81
82 return brw_emit_reloc(&brw->batch, offset, address.bo,
83 address.offset + delta,
84 address.read_domains,
85 address.write_domain);
86 }
87
88 #define __gen_address_type struct brw_address
89 #define __gen_user_data struct brw_context
90
91 static uint64_t
92 __gen_combine_address(struct brw_context *brw, void *location,
93 struct brw_address address, uint32_t delta)
94 {
95 if (address.bo == NULL) {
96 return address.offset + delta;
97 } else {
98 return emit_reloc(brw, location, address, delta);
99 }
100 }
101
102 static inline struct brw_address
103 render_bo(struct brw_bo *bo, uint32_t offset)
104 {
105 return (struct brw_address) {
106 .bo = bo,
107 .offset = offset,
108 .read_domains = I915_GEM_DOMAIN_RENDER,
109 .write_domain = I915_GEM_DOMAIN_RENDER,
110 };
111 }
112
113 static inline struct brw_address
114 render_ro_bo(struct brw_bo *bo, uint32_t offset)
115 {
116 return (struct brw_address) {
117 .bo = bo,
118 .offset = offset,
119 .read_domains = I915_GEM_DOMAIN_RENDER,
120 .write_domain = 0,
121 };
122 }
123
124 static inline struct brw_address
125 instruction_bo(struct brw_bo *bo, uint32_t offset)
126 {
127 return (struct brw_address) {
128 .bo = bo,
129 .offset = offset,
130 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
131 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
132 };
133 }
134
135 static inline struct brw_address
136 vertex_bo(struct brw_bo *bo, uint32_t offset)
137 {
138 return (struct brw_address) {
139 .bo = bo,
140 .offset = offset,
141 .read_domains = I915_GEM_DOMAIN_VERTEX,
142 .write_domain = 0,
143 };
144 }
145
146 #include "genxml/genX_pack.h"
147
148 #define _brw_cmd_length(cmd) cmd ## _length
149 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
150 #define _brw_cmd_header(cmd) cmd ## _header
151 #define _brw_cmd_pack(cmd) cmd ## _pack
152
153 #define brw_batch_emit(brw, cmd, name) \
154 for (struct cmd name = { _brw_cmd_header(cmd) }, \
155 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
156 __builtin_expect(_dst != NULL, 1); \
157 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
158 _dst = NULL)
159
160 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
161 uint32_t *_dw = emit_dwords(brw, n); \
162 struct cmd template = { \
163 _brw_cmd_header(cmd), \
164 .DWordLength = n - _brw_cmd_length_bias(cmd), \
165 __VA_ARGS__ \
166 }; \
167 _brw_cmd_pack(cmd)(brw, _dw, &template); \
168 _dw + 1; /* Array starts at dw[1] */ \
169 })
170
171 #define brw_state_emit(brw, cmd, align, offset, name) \
172 for (struct cmd name = { 0, }, \
173 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
174 align, offset); \
175 __builtin_expect(_dst != NULL, 1); \
176 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
177 _dst = NULL)
178
179 /**
180 * Polygon stipple packet
181 */
182 static void
183 genX(upload_polygon_stipple)(struct brw_context *brw)
184 {
185 struct gl_context *ctx = &brw->ctx;
186
187 /* _NEW_POLYGON */
188 if (!ctx->Polygon.StippleFlag)
189 return;
190
191 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
192 /* Polygon stipple is provided in OpenGL order, i.e. bottom
193 * row first. If we're rendering to a window (i.e. the
194 * default frame buffer object, 0), then we need to invert
195 * it to match our pixel layout. But if we're rendering
196 * to a FBO (i.e. any named frame buffer object), we *don't*
197 * need to invert - we already match the layout.
198 */
199 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
200 for (unsigned i = 0; i < 32; i++)
201 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
202 } else {
203 for (unsigned i = 0; i < 32; i++)
204 poly.PatternRow[i] = ctx->PolygonStipple[i];
205 }
206 }
207 }
208
209 static const struct brw_tracked_state genX(polygon_stipple) = {
210 .dirty = {
211 .mesa = _NEW_POLYGON |
212 _NEW_POLYGONSTIPPLE,
213 .brw = BRW_NEW_CONTEXT,
214 },
215 .emit = genX(upload_polygon_stipple),
216 };
217
218 /**
219 * Polygon stipple offset packet
220 */
221 static void
222 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
223 {
224 struct gl_context *ctx = &brw->ctx;
225
226 /* _NEW_POLYGON */
227 if (!ctx->Polygon.StippleFlag)
228 return;
229
230 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
231 /* _NEW_BUFFERS
232 *
233 * If we're drawing to a system window we have to invert the Y axis
234 * in order to match the OpenGL pixel coordinate system, and our
235 * offset must be matched to the window position. If we're drawing
236 * to a user-created FBO then our native pixel coordinate system
237 * works just fine, and there's no window system to worry about.
238 */
239 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
240 poly.PolygonStippleYOffset =
241 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
242 }
243 }
244 }
245
246 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
247 .dirty = {
248 .mesa = _NEW_BUFFERS |
249 _NEW_POLYGON,
250 .brw = BRW_NEW_CONTEXT,
251 },
252 .emit = genX(upload_polygon_stipple_offset),
253 };
254
255 /**
256 * Line stipple packet
257 */
258 static void
259 genX(upload_line_stipple)(struct brw_context *brw)
260 {
261 struct gl_context *ctx = &brw->ctx;
262
263 if (!ctx->Line.StippleFlag)
264 return;
265
266 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
267 line.LineStipplePattern = ctx->Line.StipplePattern;
268
269 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
270 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
271 }
272 }
273
274 static const struct brw_tracked_state genX(line_stipple) = {
275 .dirty = {
276 .mesa = _NEW_LINE,
277 .brw = BRW_NEW_CONTEXT,
278 },
279 .emit = genX(upload_line_stipple),
280 };
281
282 /* Constant single cliprect for framebuffer object or DRI2 drawing */
283 static void
284 genX(upload_drawing_rect)(struct brw_context *brw)
285 {
286 struct gl_context *ctx = &brw->ctx;
287 const struct gl_framebuffer *fb = ctx->DrawBuffer;
288 const unsigned int fb_width = _mesa_geometric_width(fb);
289 const unsigned int fb_height = _mesa_geometric_height(fb);
290
291 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
292 rect.ClippedDrawingRectangleXMax = fb_width - 1;
293 rect.ClippedDrawingRectangleYMax = fb_height - 1;
294 }
295 }
296
297 static const struct brw_tracked_state genX(drawing_rect) = {
298 .dirty = {
299 .mesa = _NEW_BUFFERS,
300 .brw = BRW_NEW_BLORP |
301 BRW_NEW_CONTEXT,
302 },
303 .emit = genX(upload_drawing_rect),
304 };
305
306 static uint32_t *
307 genX(emit_vertex_buffer_state)(struct brw_context *brw,
308 uint32_t *dw,
309 unsigned buffer_nr,
310 struct brw_bo *bo,
311 unsigned start_offset,
312 unsigned end_offset,
313 unsigned stride,
314 unsigned step_rate)
315 {
316 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
317 .VertexBufferIndex = buffer_nr,
318 .BufferPitch = stride,
319 .BufferStartingAddress = vertex_bo(bo, start_offset),
320 #if GEN_GEN >= 8
321 .BufferSize = end_offset - start_offset,
322 #endif
323
324 #if GEN_GEN >= 7
325 .AddressModifyEnable = true,
326 #endif
327
328 #if GEN_GEN < 8
329 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
330 .InstanceDataStepRate = step_rate,
331 #if GEN_GEN >= 5
332 .EndAddress = vertex_bo(bo, end_offset - 1),
333 #endif
334 #endif
335
336 #if GEN_GEN == 9
337 .VertexBufferMOCS = SKL_MOCS_WB,
338 #elif GEN_GEN == 8
339 .VertexBufferMOCS = BDW_MOCS_WB,
340 #elif GEN_GEN == 7
341 .VertexBufferMOCS = GEN7_MOCS_L3,
342 #endif
343 };
344
345 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
346 return dw + GENX(VERTEX_BUFFER_STATE_length);
347 }
348
349 UNUSED static bool
350 is_passthru_format(uint32_t format)
351 {
352 switch (format) {
353 case ISL_FORMAT_R64_PASSTHRU:
354 case ISL_FORMAT_R64G64_PASSTHRU:
355 case ISL_FORMAT_R64G64B64_PASSTHRU:
356 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
357 return true;
358 default:
359 return false;
360 }
361 }
362
363 UNUSED static int
364 genX(uploads_needed)(uint32_t format)
365 {
366 if (!is_passthru_format(format))
367 return 1;
368
369 switch (format) {
370 case ISL_FORMAT_R64_PASSTHRU:
371 case ISL_FORMAT_R64G64_PASSTHRU:
372 return 1;
373 case ISL_FORMAT_R64G64B64_PASSTHRU:
374 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
375 return 2;
376 default:
377 unreachable("not reached");
378 }
379 }
380
381 /*
382 * Returns the format that we are finally going to use when upload a vertex
383 * element. It will only change if we are using *64*PASSTHRU formats, as for
384 * gen < 8 they need to be splitted on two *32*FLOAT formats.
385 *
386 * @upload points in which upload we are. Valid values are [0,1]
387 */
388 static uint32_t
389 downsize_format_if_needed(uint32_t format,
390 int upload)
391 {
392 assert(upload == 0 || upload == 1);
393
394 if (!is_passthru_format(format))
395 return format;
396
397 switch (format) {
398 case ISL_FORMAT_R64_PASSTHRU:
399 return ISL_FORMAT_R32G32_FLOAT;
400 case ISL_FORMAT_R64G64_PASSTHRU:
401 return ISL_FORMAT_R32G32B32A32_FLOAT;
402 case ISL_FORMAT_R64G64B64_PASSTHRU:
403 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
404 : ISL_FORMAT_R32G32_FLOAT;
405 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
406 return ISL_FORMAT_R32G32B32A32_FLOAT;
407 default:
408 unreachable("not reached");
409 }
410 }
411
412 /*
413 * Returns the number of componentes associated with a format that is used on
414 * a 64 to 32 format split. See downsize_format()
415 */
416 static int
417 upload_format_size(uint32_t upload_format)
418 {
419 switch (upload_format) {
420 case ISL_FORMAT_R32G32_FLOAT:
421 return 2;
422 case ISL_FORMAT_R32G32B32A32_FLOAT:
423 return 4;
424 default:
425 unreachable("not reached");
426 }
427 }
428
429 static void
430 genX(emit_vertices)(struct brw_context *brw)
431 {
432 uint32_t *dw;
433
434 brw_prepare_vertices(brw);
435 brw_prepare_shader_draw_parameters(brw);
436
437 #if GEN_GEN < 6
438 brw_emit_query_begin(brw);
439 #endif
440
441 const struct brw_vs_prog_data *vs_prog_data =
442 brw_vs_prog_data(brw->vs.base.prog_data);
443
444 #if GEN_GEN >= 8
445 struct gl_context *ctx = &brw->ctx;
446 bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
447 ctx->Polygon.BackMode != GL_FILL);
448
449 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
450 unsigned vue = brw->vb.nr_enabled;
451
452 /* The element for the edge flags must always be last, so we have to
453 * insert the SGVS before it in that case.
454 */
455 if (uses_edge_flag) {
456 assert(vue > 0);
457 vue--;
458 }
459
460 WARN_ONCE(vue >= 33,
461 "Trying to insert VID/IID past 33rd vertex element, "
462 "need to reorder the vertex attrbutes.");
463
464 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
465 if (vs_prog_data->uses_vertexid) {
466 vfs.VertexIDEnable = true;
467 vfs.VertexIDComponentNumber = 2;
468 vfs.VertexIDElementOffset = vue;
469 }
470
471 if (vs_prog_data->uses_instanceid) {
472 vfs.InstanceIDEnable = true;
473 vfs.InstanceIDComponentNumber = 3;
474 vfs.InstanceIDElementOffset = vue;
475 }
476 }
477
478 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
479 vfi.InstancingEnable = true;
480 vfi.VertexElementIndex = vue;
481 }
482 } else {
483 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
484 }
485
486 /* Normally we don't need an element for the SGVS attribute because the
487 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
488 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
489 * we're using draw parameters then we need an element for the those
490 * values. Additionally if there is an edge flag element then the SGVS
491 * can't be inserted past that so we need a dummy element to ensure that
492 * the edge flag is the last one.
493 */
494 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
495 vs_prog_data->uses_baseinstance ||
496 ((vs_prog_data->uses_instanceid ||
497 vs_prog_data->uses_vertexid)
498 && uses_edge_flag));
499 #else
500 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
501 vs_prog_data->uses_baseinstance ||
502 vs_prog_data->uses_instanceid ||
503 vs_prog_data->uses_vertexid);
504 #endif
505 unsigned nr_elements =
506 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
507
508 #if GEN_GEN < 8
509 /* If any of the formats of vb.enabled needs more that one upload, we need
510 * to add it to nr_elements
511 */
512 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
513 struct brw_vertex_element *input = brw->vb.enabled[i];
514 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
515
516 if (genX(uploads_needed(format)) > 1)
517 nr_elements++;
518 }
519 #endif
520
521 /* If the VS doesn't read any inputs (calculating vertex position from
522 * a state variable for some reason, for example), emit a single pad
523 * VERTEX_ELEMENT struct and bail.
524 *
525 * The stale VB state stays in place, but they don't do anything unless
526 * a VE loads from them.
527 */
528 if (nr_elements == 0) {
529 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS), 1 + GENX(VERTEX_ELEMENT_STATE_length));
530 struct GENX(VERTEX_ELEMENT_STATE) elem = {
531 .Valid = true,
532 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
533 .Component0Control = VFCOMP_STORE_0,
534 .Component1Control = VFCOMP_STORE_0,
535 .Component2Control = VFCOMP_STORE_0,
536 .Component3Control = VFCOMP_STORE_1_FP,
537 };
538 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
539 return;
540 }
541
542 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
543 const bool uses_draw_params =
544 vs_prog_data->uses_basevertex ||
545 vs_prog_data->uses_baseinstance;
546 const unsigned nr_buffers = brw->vb.nr_buffers +
547 uses_draw_params + vs_prog_data->uses_drawid;
548
549 if (nr_buffers) {
550 #if GEN_GEN >= 6
551 assert(nr_buffers <= 33);
552 #else
553 assert(nr_buffers <= 17);
554 #endif
555 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
556
557 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
558 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
559
560 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
561 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
562 /* Prior to Haswell and Bay Trail we have to use 4-component formats
563 * to fake 3-component ones. In particular, we do this for
564 * half-float and 8 and 16-bit integer formats. This means that the
565 * vertex element may poke over the end of the buffer by 2 bytes.
566 */
567 unsigned padding =
568 (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
569 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
570 buffer->offset,
571 buffer->offset + buffer->size + padding,
572 buffer->stride,
573 buffer->step_rate);
574 }
575
576 if (uses_draw_params) {
577 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
578 brw->draw.draw_params_bo,
579 brw->draw.draw_params_offset,
580 brw->draw.draw_params_bo->size,
581 0 /* stride */,
582 0 /* step rate */);
583 }
584
585 if (vs_prog_data->uses_drawid) {
586 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
587 brw->draw.draw_id_bo,
588 brw->draw.draw_id_offset,
589 brw->draw.draw_id_bo->size,
590 0 /* stride */,
591 0 /* step rate */);
592 }
593 }
594
595 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
596 * presumably for VertexID/InstanceID.
597 */
598 #if GEN_GEN >= 6
599 assert(nr_elements <= 34);
600 struct brw_vertex_element *gen6_edgeflag_input = NULL;
601 #else
602 assert(nr_elements <= 18);
603 #endif
604
605 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
606 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
607 unsigned i;
608 for (i = 0; i < brw->vb.nr_enabled; i++) {
609 struct brw_vertex_element *input = brw->vb.enabled[i];
610 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
611 uint32_t comp0 = VFCOMP_STORE_SRC;
612 uint32_t comp1 = VFCOMP_STORE_SRC;
613 uint32_t comp2 = VFCOMP_STORE_SRC;
614 uint32_t comp3 = VFCOMP_STORE_SRC;
615 unsigned num_uploads = 1;
616
617 #if GEN_GEN >= 8
618 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
619 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
620 * element which has edge flag enabled."
621 */
622 assert(!(is_passthru_format(format) && uses_edge_flag));
623 #endif
624
625 /* The gen4 driver expects edgeflag to come in as a float, and passes
626 * that float on to the tests in the clipper. Mesa's current vertex
627 * attribute value for EdgeFlag is stored as a float, which works out.
628 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
629 * integer ubyte. Just rewrite that to convert to a float.
630 *
631 * Gen6+ passes edgeflag as sideband along with the vertex, instead
632 * of in the VUE. We have to upload it sideband as the last vertex
633 * element according to the B-Spec.
634 */
635 #if GEN_GEN >= 6
636 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
637 gen6_edgeflag_input = input;
638 continue;
639 }
640 #endif
641
642 #if GEN_GEN < 8
643 num_uploads = genX(uploads_needed(format));
644 #endif
645
646 for (unsigned c = 0; c < num_uploads; c++) {
647 uint32_t upload_format = GEN_GEN >= 8 ? format :
648 downsize_format_if_needed(format, c);
649 /* If we need more that one upload, the offset stride would be 128
650 * bits (16 bytes), as for previous uploads we are using the full
651 * entry. */
652 unsigned int offset = input->offset + c * 16;
653 int size = input->glarray->Size;
654
655 if (GEN_GEN < 8 && is_passthru_format(format))
656 size = upload_format_size(upload_format);
657
658 switch (size) {
659 case 0: comp0 = VFCOMP_STORE_0;
660 case 1: comp1 = VFCOMP_STORE_0;
661 case 2: comp2 = VFCOMP_STORE_0;
662 case 3:
663 if (GEN_GEN >= 8 && input->glarray->Doubles) {
664 comp3 = VFCOMP_STORE_0;
665 } else if (input->glarray->Integer) {
666 comp3 = VFCOMP_STORE_1_INT;
667 } else {
668 comp3 = VFCOMP_STORE_1_FP;
669 }
670
671 break;
672 }
673
674 #if GEN_GEN >= 8
675 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
676 *
677 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
678 * formats, 64-bit components are stored in the URB without any
679 * conversion. In this case, vertex elements must be written as 128
680 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
681 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
682 * component into the URB, Component 1 must be specified as
683 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
684 * order to output a 128-bit vertex element, or Components 1-3 must
685 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
686 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
687 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
688 * vertex element."
689 */
690 if (input->glarray->Doubles && !input->is_dual_slot) {
691 /* Store vertex elements which correspond to double and dvec2 vertex
692 * shader inputs as 128-bit vertex elements, instead of 256-bits.
693 */
694 comp2 = VFCOMP_NOSTORE;
695 comp3 = VFCOMP_NOSTORE;
696 }
697 #endif
698
699 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
700 .VertexBufferIndex = input->buffer,
701 .Valid = true,
702 .SourceElementFormat = upload_format,
703 .SourceElementOffset = offset,
704 .Component0Control = comp0,
705 .Component1Control = comp1,
706 .Component2Control = comp2,
707 .Component3Control = comp3,
708 #if GEN_GEN < 5
709 .DestinationElementOffset = i * 4,
710 #endif
711 };
712
713 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
714 dw += GENX(VERTEX_ELEMENT_STATE_length);
715 }
716 }
717
718 if (needs_sgvs_element) {
719 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
720 .Valid = true,
721 .Component0Control = VFCOMP_STORE_0,
722 .Component1Control = VFCOMP_STORE_0,
723 .Component2Control = VFCOMP_STORE_0,
724 .Component3Control = VFCOMP_STORE_0,
725 #if GEN_GEN < 5
726 .DestinationElementOffset = i * 4,
727 #endif
728 };
729
730 #if GEN_GEN >= 8
731 if (vs_prog_data->uses_basevertex ||
732 vs_prog_data->uses_baseinstance) {
733 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
734 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
735 elem_state.Component0Control = VFCOMP_STORE_SRC;
736 elem_state.Component1Control = VFCOMP_STORE_SRC;
737 }
738 #else
739 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
740 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
741 if (vs_prog_data->uses_basevertex)
742 elem_state.Component0Control = VFCOMP_STORE_SRC;
743
744 if (vs_prog_data->uses_baseinstance)
745 elem_state.Component1Control = VFCOMP_STORE_SRC;
746
747 if (vs_prog_data->uses_vertexid)
748 elem_state.Component2Control = VFCOMP_STORE_VID;
749
750 if (vs_prog_data->uses_instanceid)
751 elem_state.Component3Control = VFCOMP_STORE_IID;
752 #endif
753
754 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
755 dw += GENX(VERTEX_ELEMENT_STATE_length);
756 }
757
758 if (vs_prog_data->uses_drawid) {
759 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
760 .Valid = true,
761 .VertexBufferIndex = brw->vb.nr_buffers + 1,
762 .SourceElementFormat = ISL_FORMAT_R32_UINT,
763 .Component0Control = VFCOMP_STORE_SRC,
764 .Component1Control = VFCOMP_STORE_0,
765 .Component2Control = VFCOMP_STORE_0,
766 .Component3Control = VFCOMP_STORE_0,
767 #if GEN_GEN < 5
768 .DestinationElementOffset = i * 4,
769 #endif
770 };
771
772 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
773 dw += GENX(VERTEX_ELEMENT_STATE_length);
774 }
775
776 #if GEN_GEN >= 6
777 if (gen6_edgeflag_input) {
778 uint32_t format =
779 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
780
781 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
782 .Valid = true,
783 .VertexBufferIndex = gen6_edgeflag_input->buffer,
784 .EdgeFlagEnable = true,
785 .SourceElementFormat = format,
786 .SourceElementOffset = gen6_edgeflag_input->offset,
787 .Component0Control = VFCOMP_STORE_SRC,
788 .Component1Control = VFCOMP_STORE_0,
789 .Component2Control = VFCOMP_STORE_0,
790 .Component3Control = VFCOMP_STORE_0,
791 };
792
793 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
794 dw += GENX(VERTEX_ELEMENT_STATE_length);
795 }
796 #endif
797
798 #if GEN_GEN >= 8
799 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
800 const struct brw_vertex_element *input = brw->vb.enabled[i];
801 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
802 unsigned element_index;
803
804 /* The edge flag element is reordered to be the last one in the code
805 * above so we need to compensate for that in the element indices used
806 * below.
807 */
808 if (input == gen6_edgeflag_input)
809 element_index = nr_elements - 1;
810 else
811 element_index = j++;
812
813 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
814 vfi.VertexElementIndex = element_index;
815 vfi.InstancingEnable = buffer->step_rate != 0;
816 vfi.InstanceDataStepRate = buffer->step_rate;
817 }
818 }
819
820 if (vs_prog_data->uses_drawid) {
821 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
822
823 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
824 vfi.VertexElementIndex = element;
825 }
826 }
827 #endif
828 }
829
830 static const struct brw_tracked_state genX(vertices) = {
831 .dirty = {
832 .mesa = _NEW_POLYGON,
833 .brw = BRW_NEW_BATCH |
834 BRW_NEW_BLORP |
835 BRW_NEW_VERTICES |
836 BRW_NEW_VS_PROG_DATA,
837 },
838 .emit = genX(emit_vertices),
839 };
840
841 #if GEN_IS_HASWELL || GEN_GEN >= 8
842 static void
843 genX(upload_cut_index)(struct brw_context *brw)
844 {
845 const struct gl_context *ctx = &brw->ctx;
846
847 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
848 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
849 vf.IndexedDrawCutIndexEnable = true;
850 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
851 }
852 }
853 }
854
855 const struct brw_tracked_state genX(cut_index) = {
856 .dirty = {
857 .mesa = _NEW_TRANSFORM,
858 .brw = BRW_NEW_INDEX_BUFFER,
859 },
860 .emit = genX(upload_cut_index),
861 };
862 #endif
863
864 #if GEN_GEN >= 6
865 /**
866 * Determine the appropriate attribute override value to store into the
867 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
868 * override value contains two pieces of information: the location of the
869 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
870 * flag indicating whether to "swizzle" the attribute based on the direction
871 * the triangle is facing.
872 *
873 * If an attribute is "swizzled", then the given VUE location is used for
874 * front-facing triangles, and the VUE location that immediately follows is
875 * used for back-facing triangles. We use this to implement the mapping from
876 * gl_FrontColor/gl_BackColor to gl_Color.
877 *
878 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
879 * being instructed to begin reading attribute data. It can be set to a
880 * nonzero value to prevent the SF unit from wasting time reading elements of
881 * the VUE that are not needed by the fragment shader. It is measured in
882 * 256-bit increments.
883 */
884 static void
885 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
886 const struct brw_vue_map *vue_map,
887 int urb_entry_read_offset, int fs_attr,
888 bool two_side_color, uint32_t *max_source_attr)
889 {
890 /* Find the VUE slot for this attribute. */
891 int slot = vue_map->varying_to_slot[fs_attr];
892
893 /* Viewport and Layer are stored in the VUE header. We need to override
894 * them to zero if earlier stages didn't write them, as GL requires that
895 * they read back as zero when not explicitly set.
896 */
897 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
898 attr->ComponentOverrideX = true;
899 attr->ComponentOverrideW = true;
900 attr->ConstantSource = CONST_0000;
901
902 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
903 attr->ComponentOverrideY = true;
904 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
905 attr->ComponentOverrideZ = true;
906
907 return;
908 }
909
910 /* If there was only a back color written but not front, use back
911 * as the color instead of undefined
912 */
913 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
914 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
915 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
916 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
917
918 if (slot == -1) {
919 /* This attribute does not exist in the VUE--that means that the vertex
920 * shader did not write to it. This means that either:
921 *
922 * (a) This attribute is a texture coordinate, and it is going to be
923 * replaced with point coordinates (as a consequence of a call to
924 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
925 * hardware will ignore whatever attribute override we supply.
926 *
927 * (b) This attribute is read by the fragment shader but not written by
928 * the vertex shader, so its value is undefined. Therefore the
929 * attribute override we supply doesn't matter.
930 *
931 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
932 * previous shader stage.
933 *
934 * Note that we don't have to worry about the cases where the attribute
935 * is gl_PointCoord or is undergoing point sprite coordinate
936 * replacement, because in those cases, this function isn't called.
937 *
938 * In case (c), we need to program the attribute overrides so that the
939 * primitive ID will be stored in this slot. In every other case, the
940 * attribute override we supply doesn't matter. So just go ahead and
941 * program primitive ID in every case.
942 */
943 attr->ComponentOverrideW = true;
944 attr->ComponentOverrideX = true;
945 attr->ComponentOverrideY = true;
946 attr->ComponentOverrideZ = true;
947 attr->ConstantSource = PRIM_ID;
948 return;
949 }
950
951 /* Compute the location of the attribute relative to urb_entry_read_offset.
952 * Each increment of urb_entry_read_offset represents a 256-bit value, so
953 * it counts for two 128-bit VUE slots.
954 */
955 int source_attr = slot - 2 * urb_entry_read_offset;
956 assert(source_attr >= 0 && source_attr < 32);
957
958 /* If we are doing two-sided color, and the VUE slot following this one
959 * represents a back-facing color, then we need to instruct the SF unit to
960 * do back-facing swizzling.
961 */
962 bool swizzling = two_side_color &&
963 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
964 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
965 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
966 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
967
968 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
969 if (*max_source_attr < source_attr + swizzling)
970 *max_source_attr = source_attr + swizzling;
971
972 attr->SourceAttribute = source_attr;
973 if (swizzling)
974 attr->SwizzleSelect = INPUTATTR_FACING;
975 }
976
977
978 static void
979 genX(calculate_attr_overrides)(const struct brw_context *brw,
980 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
981 uint32_t *point_sprite_enables,
982 uint32_t *urb_entry_read_length,
983 uint32_t *urb_entry_read_offset)
984 {
985 const struct gl_context *ctx = &brw->ctx;
986
987 /* _NEW_POINT */
988 const struct gl_point_attrib *point = &ctx->Point;
989
990 /* BRW_NEW_FS_PROG_DATA */
991 const struct brw_wm_prog_data *wm_prog_data =
992 brw_wm_prog_data(brw->wm.base.prog_data);
993 uint32_t max_source_attr = 0;
994
995 *point_sprite_enables = 0;
996
997 /* BRW_NEW_FRAGMENT_PROGRAM
998 *
999 * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in
1000 * the full vertex header. Otherwise, we can program the SF to start
1001 * reading at an offset of 1 (2 varying slots) to skip unnecessary data:
1002 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
1003 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+
1004 */
1005
1006 bool fs_needs_vue_header = brw->fragment_program->info.inputs_read &
1007 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1008
1009 *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1;
1010
1011 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1012 * description of dw10 Point Sprite Texture Coordinate Enable:
1013 *
1014 * "This field must be programmed to zero when non-point primitives
1015 * are rendered."
1016 *
1017 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1018 * must be programmed to zero when rendering non-point primitives, but
1019 * the IvyBridge PRM does, and if we don't, we get garbage.
1020 *
1021 * This is not required on Haswell, as the hardware ignores this state
1022 * when drawing non-points -- although we do still need to be careful to
1023 * correctly set the attr overrides.
1024 *
1025 * _NEW_POLYGON
1026 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1027 */
1028 bool drawing_points = brw_is_drawing_points(brw);
1029
1030 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1031 int input_index = wm_prog_data->urb_setup[attr];
1032
1033 if (input_index < 0)
1034 continue;
1035
1036 /* _NEW_POINT */
1037 bool point_sprite = false;
1038 if (drawing_points) {
1039 if (point->PointSprite &&
1040 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1041 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1042 point_sprite = true;
1043 }
1044
1045 if (attr == VARYING_SLOT_PNTC)
1046 point_sprite = true;
1047
1048 if (point_sprite)
1049 *point_sprite_enables |= (1 << input_index);
1050 }
1051
1052 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1053 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1054
1055 if (!point_sprite) {
1056 genX(get_attr_override)(&attribute,
1057 &brw->vue_map_geom_out,
1058 *urb_entry_read_offset, attr,
1059 brw->ctx.VertexProgram._TwoSideEnabled,
1060 &max_source_attr);
1061 }
1062
1063 /* The hardware can only do the overrides on 16 overrides at a
1064 * time, and the other up to 16 have to be lined up so that the
1065 * input index = the output index. We'll need to do some
1066 * tweaking to make sure that's the case.
1067 */
1068 if (input_index < 16)
1069 attr_overrides[input_index] = attribute;
1070 else
1071 assert(attribute.SourceAttribute == input_index);
1072 }
1073
1074 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1075 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1076 *
1077 * "This field should be set to the minimum length required to read the
1078 * maximum source attribute. The maximum source attribute is indicated
1079 * by the maximum value of the enabled Attribute # Source Attribute if
1080 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1081 * enable is not set.
1082 * read_length = ceiling((max_source_attr + 1) / 2)
1083 *
1084 * [errata] Corruption/Hang possible if length programmed larger than
1085 * recommended"
1086 *
1087 * Similar text exists for Ivy Bridge.
1088 */
1089 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1090 }
1091 #endif
1092
1093 /* ---------------------------------------------------------------------- */
1094
1095 #if GEN_GEN >= 6
1096 static void
1097 genX(upload_depth_stencil_state)(struct brw_context *brw)
1098 {
1099 struct gl_context *ctx = &brw->ctx;
1100
1101 /* _NEW_BUFFERS */
1102 struct intel_renderbuffer *depth_irb =
1103 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1104
1105 /* _NEW_DEPTH */
1106 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1107
1108 /* _NEW_STENCIL */
1109 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1110 const int b = stencil->_BackFace;
1111
1112 #if GEN_GEN >= 8
1113 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1114 #else
1115 uint32_t ds_offset;
1116 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, wmds) {
1117 #endif
1118 if (depth->Test && depth_irb) {
1119 wmds.DepthTestEnable = true;
1120 wmds.DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1121 wmds.DepthTestFunction = intel_translate_compare_func(depth->Func);
1122 }
1123
1124 if (stencil->_Enabled) {
1125 wmds.StencilTestEnable = true;
1126 wmds.StencilWriteMask = stencil->WriteMask[0] & 0xff;
1127 wmds.StencilTestMask = stencil->ValueMask[0] & 0xff;
1128
1129 wmds.StencilTestFunction =
1130 intel_translate_compare_func(stencil->Function[0]);
1131 wmds.StencilFailOp =
1132 intel_translate_stencil_op(stencil->FailFunc[0]);
1133 wmds.StencilPassDepthPassOp =
1134 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1135 wmds.StencilPassDepthFailOp =
1136 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1137
1138 wmds.StencilBufferWriteEnable = stencil->_WriteEnabled;
1139
1140 if (stencil->_TestTwoSide) {
1141 wmds.DoubleSidedStencilEnable = true;
1142 wmds.BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1143 wmds.BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1144
1145 wmds.BackfaceStencilTestFunction =
1146 intel_translate_compare_func(stencil->Function[b]);
1147 wmds.BackfaceStencilFailOp =
1148 intel_translate_stencil_op(stencil->FailFunc[b]);
1149 wmds.BackfaceStencilPassDepthPassOp =
1150 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1151 wmds.BackfaceStencilPassDepthFailOp =
1152 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1153 }
1154
1155 #if GEN_GEN >= 9
1156 wmds.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1157 wmds.BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1158 #endif
1159 }
1160 }
1161
1162 #if GEN_GEN == 6
1163 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1164 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1165 ptr.DEPTH_STENCIL_STATEChange = true;
1166 }
1167 #elif GEN_GEN == 7
1168 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1169 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1170 }
1171 #endif
1172 }
1173
1174 static const struct brw_tracked_state genX(depth_stencil_state) = {
1175 .dirty = {
1176 .mesa = _NEW_BUFFERS |
1177 _NEW_DEPTH |
1178 _NEW_STENCIL,
1179 .brw = BRW_NEW_BLORP |
1180 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1181 : BRW_NEW_BATCH |
1182 BRW_NEW_STATE_BASE_ADDRESS),
1183 },
1184 .emit = genX(upload_depth_stencil_state),
1185 };
1186 #endif
1187
1188 /* ---------------------------------------------------------------------- */
1189
1190 #if GEN_GEN >= 6
1191 static void
1192 genX(upload_clip_state)(struct brw_context *brw)
1193 {
1194 struct gl_context *ctx = &brw->ctx;
1195
1196 /* _NEW_BUFFERS */
1197 struct gl_framebuffer *fb = ctx->DrawBuffer;
1198
1199 /* BRW_NEW_FS_PROG_DATA */
1200 struct brw_wm_prog_data *wm_prog_data =
1201 brw_wm_prog_data(brw->wm.base.prog_data);
1202
1203 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1204 clip.StatisticsEnable = !brw->meta_in_progress;
1205
1206 if (wm_prog_data->barycentric_interp_modes &
1207 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1208 clip.NonPerspectiveBarycentricEnable = true;
1209
1210 #if GEN_GEN >= 7
1211 clip.EarlyCullEnable = true;
1212 #endif
1213
1214 #if GEN_GEN == 7
1215 clip.FrontWinding = ctx->Polygon._FrontBit == _mesa_is_user_fbo(fb);
1216
1217 if (ctx->Polygon.CullFlag) {
1218 switch (ctx->Polygon.CullFaceMode) {
1219 case GL_FRONT:
1220 clip.CullMode = CULLMODE_FRONT;
1221 break;
1222 case GL_BACK:
1223 clip.CullMode = CULLMODE_BACK;
1224 break;
1225 case GL_FRONT_AND_BACK:
1226 clip.CullMode = CULLMODE_BOTH;
1227 break;
1228 default:
1229 unreachable("Should not get here: invalid CullFlag");
1230 }
1231 } else {
1232 clip.CullMode = CULLMODE_NONE;
1233 }
1234 #endif
1235
1236 #if GEN_GEN < 8
1237 clip.UserClipDistanceCullTestEnableBitmask =
1238 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1239
1240 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1241 #endif
1242
1243 /* _NEW_LIGHT */
1244 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1245 clip.TriangleStripListProvokingVertexSelect = 0;
1246 clip.TriangleFanProvokingVertexSelect = 1;
1247 clip.LineStripListProvokingVertexSelect = 0;
1248 } else {
1249 clip.TriangleStripListProvokingVertexSelect = 2;
1250 clip.TriangleFanProvokingVertexSelect = 2;
1251 clip.LineStripListProvokingVertexSelect = 1;
1252 }
1253
1254 /* _NEW_TRANSFORM */
1255 clip.UserClipDistanceClipTestEnableBitmask =
1256 ctx->Transform.ClipPlanesEnabled;
1257
1258 #if GEN_GEN >= 8
1259 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1260 #endif
1261
1262 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1263 clip.APIMode = APIMODE_D3D;
1264 else
1265 clip.APIMode = APIMODE_OGL;
1266
1267 clip.GuardbandClipTestEnable = true;
1268
1269 /* BRW_NEW_VIEWPORT_COUNT */
1270 const unsigned viewport_count = brw->clip.viewport_count;
1271
1272 if (ctx->RasterDiscard) {
1273 clip.ClipMode = CLIPMODE_REJECT_ALL;
1274 #if GEN_GEN == 6
1275 perf_debug("Rasterizer discard is currently implemented via the "
1276 "clipper; having the GS not write primitives would "
1277 "likely be faster.\n");
1278 #endif
1279 } else {
1280 clip.ClipMode = CLIPMODE_NORMAL;
1281 }
1282
1283 clip.ClipEnable = brw->primitive != _3DPRIM_RECTLIST;
1284
1285 /* _NEW_POLYGON,
1286 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1287 */
1288 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1289 clip.ViewportXYClipTestEnable = true;
1290
1291 clip.MinimumPointWidth = 0.125;
1292 clip.MaximumPointWidth = 255.875;
1293 clip.MaximumVPIndex = viewport_count - 1;
1294 if (_mesa_geometric_layers(fb) == 0)
1295 clip.ForceZeroRTAIndexEnable = true;
1296 }
1297 }
1298
1299 static const struct brw_tracked_state genX(clip_state) = {
1300 .dirty = {
1301 .mesa = _NEW_BUFFERS |
1302 _NEW_LIGHT |
1303 _NEW_POLYGON |
1304 _NEW_TRANSFORM,
1305 .brw = BRW_NEW_BLORP |
1306 BRW_NEW_CONTEXT |
1307 BRW_NEW_FS_PROG_DATA |
1308 BRW_NEW_GS_PROG_DATA |
1309 BRW_NEW_VS_PROG_DATA |
1310 BRW_NEW_META_IN_PROGRESS |
1311 BRW_NEW_PRIMITIVE |
1312 BRW_NEW_RASTERIZER_DISCARD |
1313 BRW_NEW_TES_PROG_DATA |
1314 BRW_NEW_VIEWPORT_COUNT,
1315 },
1316 .emit = genX(upload_clip_state),
1317 };
1318 #endif
1319
1320 /* ---------------------------------------------------------------------- */
1321
1322 #if GEN_GEN >= 6
1323 static void
1324 genX(upload_sf)(struct brw_context *brw)
1325 {
1326 struct gl_context *ctx = &brw->ctx;
1327 float point_size;
1328
1329 #if GEN_GEN <= 7
1330 /* _NEW_BUFFERS */
1331 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1332 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1333 #endif
1334
1335 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1336 sf.StatisticsEnable = true;
1337 sf.ViewportTransformEnable = brw->sf.viewport_transform_enable;
1338
1339 #if GEN_GEN == 7
1340 /* _NEW_BUFFERS */
1341 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1342 #endif
1343
1344 #if GEN_GEN <= 7
1345 /* _NEW_POLYGON */
1346 sf.FrontWinding = ctx->Polygon._FrontBit == render_to_fbo;
1347 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1348 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1349 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1350
1351 switch (ctx->Polygon.FrontMode) {
1352 case GL_FILL:
1353 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1354 break;
1355 case GL_LINE:
1356 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1357 break;
1358 case GL_POINT:
1359 sf.FrontFaceFillMode = FILL_MODE_POINT;
1360 break;
1361 default:
1362 unreachable("not reached");
1363 }
1364
1365 switch (ctx->Polygon.BackMode) {
1366 case GL_FILL:
1367 sf.BackFaceFillMode = FILL_MODE_SOLID;
1368 break;
1369 case GL_LINE:
1370 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1371 break;
1372 case GL_POINT:
1373 sf.BackFaceFillMode = FILL_MODE_POINT;
1374 break;
1375 default:
1376 unreachable("not reached");
1377 }
1378
1379 sf.ScissorRectangleEnable = true;
1380
1381 if (ctx->Polygon.CullFlag) {
1382 switch (ctx->Polygon.CullFaceMode) {
1383 case GL_FRONT:
1384 sf.CullMode = CULLMODE_FRONT;
1385 break;
1386 case GL_BACK:
1387 sf.CullMode = CULLMODE_BACK;
1388 break;
1389 case GL_FRONT_AND_BACK:
1390 sf.CullMode = CULLMODE_BOTH;
1391 break;
1392 default:
1393 unreachable("not reached");
1394 }
1395 } else {
1396 sf.CullMode = CULLMODE_NONE;
1397 }
1398
1399 #if GEN_IS_HASWELL
1400 sf.LineStippleEnable = ctx->Line.StippleFlag;
1401 #endif
1402
1403 if (multisampled_fbo && ctx->Multisample.Enabled)
1404 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1405
1406 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1407 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1408 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1409 #endif
1410
1411 /* _NEW_LINE */
1412 #if GEN_GEN == 8
1413 if (brw->is_cherryview)
1414 sf.CHVLineWidth = brw_get_line_width(brw);
1415 else
1416 sf.LineWidth = brw_get_line_width(brw);
1417 #else
1418 sf.LineWidth = brw_get_line_width(brw);
1419 #endif
1420
1421 if (ctx->Line.SmoothFlag) {
1422 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1423 #if GEN_GEN <= 7
1424 sf.AntiAliasingEnable = true;
1425 #endif
1426 }
1427
1428 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1429 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1430 /* Clamp to the hardware limits */
1431 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1432
1433 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1434 if (use_state_point_size(brw))
1435 sf.PointWidthSource = State;
1436
1437 #if GEN_GEN >= 8
1438 /* _NEW_POINT | _NEW_MULTISAMPLE */
1439 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1440 !ctx->Point.PointSprite)
1441 sf.SmoothPointEnable = true;
1442 #endif
1443
1444 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1445
1446 /* _NEW_LIGHT */
1447 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1448 sf.TriangleStripListProvokingVertexSelect = 2;
1449 sf.TriangleFanProvokingVertexSelect = 2;
1450 sf.LineStripListProvokingVertexSelect = 1;
1451 } else {
1452 sf.TriangleFanProvokingVertexSelect = 1;
1453 }
1454
1455 #if GEN_GEN == 6
1456 /* BRW_NEW_FS_PROG_DATA */
1457 const struct brw_wm_prog_data *wm_prog_data =
1458 brw_wm_prog_data(brw->wm.base.prog_data);
1459
1460 sf.AttributeSwizzleEnable = true;
1461 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1462
1463 /*
1464 * Window coordinates in an FBO are inverted, which means point
1465 * sprite origin must be inverted, too.
1466 */
1467 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1468 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1469 } else {
1470 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1471 }
1472
1473 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1474 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1475 */
1476 uint32_t urb_entry_read_length;
1477 uint32_t urb_entry_read_offset;
1478 uint32_t point_sprite_enables;
1479 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1480 &urb_entry_read_length,
1481 &urb_entry_read_offset);
1482 sf.VertexURBEntryReadLength = urb_entry_read_length;
1483 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1484 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1485 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1486 #endif
1487 }
1488 }
1489
1490 static const struct brw_tracked_state genX(sf_state) = {
1491 .dirty = {
1492 .mesa = _NEW_LIGHT |
1493 _NEW_LINE |
1494 _NEW_MULTISAMPLE |
1495 _NEW_POINT |
1496 _NEW_PROGRAM |
1497 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1498 .brw = BRW_NEW_BLORP |
1499 BRW_NEW_CONTEXT |
1500 BRW_NEW_VUE_MAP_GEOM_OUT |
1501 (GEN_GEN <= 7 ? BRW_NEW_GS_PROG_DATA |
1502 BRW_NEW_PRIMITIVE |
1503 BRW_NEW_TES_PROG_DATA
1504 : 0) |
1505 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1506 BRW_NEW_FRAGMENT_PROGRAM
1507 : 0),
1508 },
1509 .emit = genX(upload_sf),
1510 };
1511 #endif
1512
1513 /* ---------------------------------------------------------------------- */
1514
1515 #if GEN_GEN >= 6
1516 static void
1517 genX(upload_wm)(struct brw_context *brw)
1518 {
1519 struct gl_context *ctx = &brw->ctx;
1520
1521 /* BRW_NEW_FS_PROG_DATA */
1522 const struct brw_wm_prog_data *wm_prog_data =
1523 brw_wm_prog_data(brw->wm.base.prog_data);
1524
1525 UNUSED bool writes_depth =
1526 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1527
1528 #if GEN_GEN < 7
1529 const struct brw_stage_state *stage_state = &brw->wm.base;
1530 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1531
1532 /* We can't fold this into gen6_upload_wm_push_constants(), because
1533 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1534 * (3DSTATE_CONSTANT_PS [DevSNB]):
1535 *
1536 * "[DevSNB]: This packet must be followed by WM_STATE."
1537 */
1538 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1539 if (wm_prog_data->base.nr_params != 0) {
1540 wmcp.Buffer0Valid = true;
1541 /* Pointer to the WM constant buffer. Covered by the set of
1542 * state flags from gen6_upload_wm_push_constants.
1543 */
1544 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1545 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1546 }
1547 }
1548 #endif
1549
1550 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1551 wm.StatisticsEnable = true;
1552 wm.LineAntialiasingRegionWidth = _10pixels;
1553 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1554
1555 #if GEN_GEN < 7
1556 if (wm_prog_data->base.use_alt_mode)
1557 wm.FloatingPointMode = Alternate;
1558
1559 wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4);
1560 wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4;
1561 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1562 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1563 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1564 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1565 wm_prog_data->base.dispatch_grf_start_reg;
1566 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1567 wm_prog_data->dispatch_grf_start_reg_2;
1568 wm.KernelStartPointer0 = stage_state->prog_offset;
1569 wm.KernelStartPointer2 = stage_state->prog_offset +
1570 wm_prog_data->prog_offset_2;
1571 wm.DualSourceBlendEnable =
1572 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1573 ctx->Color.Blend[0]._UsesDualSrc;
1574 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1575 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1576
1577 /* From the SNB PRM, volume 2 part 1, page 281:
1578 * "If the PS kernel does not need the Position XY Offsets
1579 * to compute a Position XY value, then this field should be
1580 * programmed to POSOFFSET_NONE."
1581 *
1582 * "SW Recommendation: If the PS kernel needs the Position Offsets
1583 * to compute a Position XY value, this field should match Position
1584 * ZW Interpolation Mode to ensure a consistent position.xyzw
1585 * computation."
1586 * We only require XY sample offsets. So, this recommendation doesn't
1587 * look useful at the moment. We might need this in future.
1588 */
1589 if (wm_prog_data->uses_pos_offset)
1590 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1591 else
1592 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1593
1594 if (wm_prog_data->base.total_scratch) {
1595 wm.ScratchSpaceBasePointer =
1596 render_bo(stage_state->scratch_bo,
1597 ffs(stage_state->per_thread_scratch) - 11);
1598 }
1599
1600 wm.PixelShaderComputedDepth = writes_depth;
1601 #endif
1602
1603 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1604
1605 /* _NEW_LINE */
1606 wm.LineStippleEnable = ctx->Line.StippleFlag;
1607
1608 /* _NEW_POLYGON */
1609 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1610 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1611
1612 #if GEN_GEN < 8
1613 /* _NEW_BUFFERS */
1614 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1615
1616 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1617 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1618 if (wm_prog_data->uses_kill ||
1619 _mesa_is_alpha_test_enabled(ctx) ||
1620 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1621 wm_prog_data->uses_omask) {
1622 wm.PixelShaderKillsPixel = true;
1623 }
1624
1625 /* _NEW_BUFFERS | _NEW_COLOR */
1626 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1627 wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) {
1628 wm.ThreadDispatchEnable = true;
1629 }
1630 if (multisampled_fbo) {
1631 /* _NEW_MULTISAMPLE */
1632 if (ctx->Multisample.Enabled)
1633 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1634 else
1635 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1636
1637 if (wm_prog_data->persample_dispatch)
1638 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1639 else
1640 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1641 } else {
1642 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1643 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1644 }
1645
1646 #if GEN_GEN >= 7
1647 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1648 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1649 #endif
1650
1651 /* The "UAV access enable" bits are unnecessary on HSW because they only
1652 * seem to have an effect on the HW-assisted coherency mechanism which we
1653 * don't need, and the rasterization-related UAV_ONLY flag and the
1654 * DISPATCH_ENABLE bit can be set independently from it.
1655 * C.f. gen8_upload_ps_extra().
1656 *
1657 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1658 * _NEW_COLOR
1659 */
1660 #if GEN_IS_HASWELL
1661 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1662 wm_prog_data->has_side_effects)
1663 wm.PSUAVonly = ON;
1664 #endif
1665 #endif
1666
1667 #if GEN_GEN >= 7
1668 /* BRW_NEW_FS_PROG_DATA */
1669 if (wm_prog_data->early_fragment_tests)
1670 wm.EarlyDepthStencilControl = EDSC_PREPS;
1671 else if (wm_prog_data->has_side_effects)
1672 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1673 #endif
1674 }
1675 }
1676
1677 static const struct brw_tracked_state genX(wm_state) = {
1678 .dirty = {
1679 .mesa = _NEW_LINE |
1680 _NEW_POLYGON |
1681 (GEN_GEN < 8 ? _NEW_BUFFERS |
1682 _NEW_COLOR |
1683 _NEW_MULTISAMPLE :
1684 0) |
1685 (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
1686 .brw = BRW_NEW_BLORP |
1687 BRW_NEW_FS_PROG_DATA |
1688 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1689 },
1690 .emit = genX(upload_wm),
1691 };
1692 #endif
1693
1694 /* ---------------------------------------------------------------------- */
1695
1696 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1697 pkt.KernelStartPointer = stage_state->prog_offset; \
1698 pkt.SamplerCount = \
1699 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1700 pkt.BindingTableEntryCount = \
1701 stage_prog_data->binding_table.size_bytes / 4; \
1702 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
1703 \
1704 if (stage_prog_data->total_scratch) { \
1705 pkt.ScratchSpaceBasePointer = \
1706 render_bo(stage_state->scratch_bo, 0); \
1707 pkt.PerThreadScratchSpace = \
1708 ffs(stage_state->per_thread_scratch) - 11; \
1709 } \
1710 \
1711 pkt.DispatchGRFStartRegisterForURBData = \
1712 stage_prog_data->dispatch_grf_start_reg; \
1713 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1714 pkt.prefix##URBEntryReadOffset = 0; \
1715 \
1716 pkt.StatisticsEnable = true; \
1717 pkt.Enable = true;
1718
1719 #if GEN_GEN >= 6
1720 static void
1721 genX(upload_vs_state)(struct brw_context *brw)
1722 {
1723 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1724 const struct brw_stage_state *stage_state = &brw->vs.base;
1725
1726 /* BRW_NEW_VS_PROG_DATA */
1727 const struct brw_vue_prog_data *vue_prog_data =
1728 brw_vue_prog_data(brw->vs.base.prog_data);
1729 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
1730
1731 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
1732 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
1733
1734 #if GEN_GEN == 6
1735 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
1736 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
1737 *
1738 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
1739 * command that causes the VS Function Enable to toggle. Pipeline
1740 * flush can be executed by sending a PIPE_CONTROL command with CS
1741 * stall bit set and a post sync operation.
1742 *
1743 * We've already done such a flush at the start of state upload, so we
1744 * don't need to do another one here.
1745 */
1746 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
1747 if (stage_state->push_const_size != 0) {
1748 cvs.Buffer0Valid = true;
1749 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
1750 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1751 }
1752 }
1753 #endif
1754
1755 if (GEN_GEN == 7 && devinfo->is_ivybridge)
1756 gen7_emit_vs_workaround_flush(brw);
1757
1758 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
1759 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1760
1761 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1762
1763 #if GEN_GEN >= 8
1764 vs.SIMD8DispatchEnable =
1765 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
1766
1767 vs.UserClipDistanceCullTestEnableBitmask =
1768 vue_prog_data->cull_distance_mask;
1769 #endif
1770 }
1771
1772 #if GEN_GEN == 6
1773 /* Based on my reading of the simulator, the VS constants don't get
1774 * pulled into the VS FF unit until an appropriate pipeline flush
1775 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
1776 * references to them into a little FIFO. The flushes are common,
1777 * but don't reliably happen between this and a 3DPRIMITIVE, causing
1778 * the primitive to use the wrong constants. Then the FIFO
1779 * containing the constant setup gets added to again on the next
1780 * constants change, and eventually when a flush does happen the
1781 * unit is overwhelmed by constant changes and dies.
1782 *
1783 * To avoid this, send a PIPE_CONTROL down the line that will
1784 * update the unit immediately loading the constants. The flush
1785 * type bits here were those set by the STATE_BASE_ADDRESS whose
1786 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
1787 * bug reports that led to this workaround, and may be more than
1788 * what is strictly required to avoid the issue.
1789 */
1790 brw_emit_pipe_control_flush(brw,
1791 PIPE_CONTROL_DEPTH_STALL |
1792 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1793 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
1794 #endif
1795 }
1796
1797 static const struct brw_tracked_state genX(vs_state) = {
1798 .dirty = {
1799 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
1800 .brw = BRW_NEW_BATCH |
1801 BRW_NEW_BLORP |
1802 BRW_NEW_CONTEXT |
1803 BRW_NEW_VS_PROG_DATA |
1804 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0),
1805 },
1806 .emit = genX(upload_vs_state),
1807 };
1808 #endif
1809
1810 /* ---------------------------------------------------------------------- */
1811
1812 #if GEN_GEN >= 6
1813 static void
1814 brw_calculate_guardband_size(const struct gen_device_info *devinfo,
1815 uint32_t fb_width, uint32_t fb_height,
1816 float m00, float m11, float m30, float m31,
1817 float *xmin, float *xmax,
1818 float *ymin, float *ymax)
1819 {
1820 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1821 * Strips and Fans documentation:
1822 *
1823 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1824 * fixed-point "guardband" range supported by the rasterization hardware"
1825 *
1826 * and
1827 *
1828 * "In almost all circumstances, if an object’s vertices are actually
1829 * modified by this clamping (i.e., had X or Y coordinates outside of
1830 * the guardband extent the rendered object will not match the intended
1831 * result. Therefore software should take steps to ensure that this does
1832 * not happen - e.g., by clipping objects such that they do not exceed
1833 * these limits after the Drawing Rectangle is applied."
1834 *
1835 * I believe the fundamental restriction is that the rasterizer (in
1836 * the SF/WM stages) have a limit on the number of pixels that can be
1837 * rasterized. We need to ensure any coordinates beyond the rasterizer
1838 * limit are handled by the clipper. So effectively that limit becomes
1839 * the clipper's guardband size.
1840 *
1841 * It goes on to say:
1842 *
1843 * "In addition, in order to be correctly rendered, objects must have a
1844 * screenspace bounding box not exceeding 8K in the X or Y direction.
1845 * This additional restriction must also be comprehended by software,
1846 * i.e., enforced by use of clipping."
1847 *
1848 * This makes no sense. Gen7+ hardware supports 16K render targets,
1849 * and you definitely need to be able to draw polygons that fill the
1850 * surface. Our assumption is that the rasterizer was limited to 8K
1851 * on Sandybridge, which only supports 8K surfaces, and it was actually
1852 * increased to 16K on Ivybridge and later.
1853 *
1854 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1855 */
1856 const float gb_size = devinfo->gen >= 7 ? 16384.0f : 8192.0f;
1857
1858 if (m00 != 0 && m11 != 0) {
1859 /* First, we compute the screen-space render area */
1860 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1861 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1862 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1863 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1864
1865 /* We want the guardband to be centered on that */
1866 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1867 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1868 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1869 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1870
1871 /* Now we need it in native device coordinates */
1872 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1873 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1874 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1875 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1876
1877 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1878 * flipped upside-down. X should be fine though.
1879 */
1880 assert(ndc_gb_xmin <= ndc_gb_xmax);
1881 *xmin = ndc_gb_xmin;
1882 *xmax = ndc_gb_xmax;
1883 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1884 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1885 } else {
1886 /* The viewport scales to 0, so nothing will be rendered. */
1887 *xmin = 0.0f;
1888 *xmax = 0.0f;
1889 *ymin = 0.0f;
1890 *ymax = 0.0f;
1891 }
1892 }
1893
1894 static void
1895 genX(upload_sf_clip_viewport)(struct brw_context *brw)
1896 {
1897 struct gl_context *ctx = &brw->ctx;
1898 float y_scale, y_bias;
1899 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1900
1901 /* BRW_NEW_VIEWPORT_COUNT */
1902 const unsigned viewport_count = brw->clip.viewport_count;
1903
1904 /* _NEW_BUFFERS */
1905 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1906 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
1907 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
1908
1909 #if GEN_GEN >= 7
1910 #define clv sfv
1911 struct GENX(SF_CLIP_VIEWPORT) sfv;
1912 uint32_t sf_clip_vp_offset;
1913 uint32_t *sf_clip_map = brw_state_batch(brw, 16 * 4 * viewport_count,
1914 64, &sf_clip_vp_offset);
1915 #else
1916 struct GENX(SF_VIEWPORT) sfv;
1917 struct GENX(CLIP_VIEWPORT) clv;
1918 uint32_t *sf_map = brw_state_batch(brw, 8 * 4 * viewport_count,
1919 32, &brw->sf.vp_offset);
1920 uint32_t *clip_map = brw_state_batch(brw, 4 * 4 * viewport_count,
1921 32, &brw->clip.vp_offset);
1922 #endif
1923
1924 /* _NEW_BUFFERS */
1925 if (render_to_fbo) {
1926 y_scale = 1.0;
1927 y_bias = 0;
1928 } else {
1929 y_scale = -1.0;
1930 y_bias = (float)fb_height;
1931 }
1932
1933 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
1934 /* _NEW_VIEWPORT: Guardband Clipping */
1935 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
1936 _mesa_get_viewport_xform(ctx, i, scale, translate);
1937
1938 sfv.ViewportMatrixElementm00 = scale[0];
1939 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
1940 sfv.ViewportMatrixElementm22 = scale[2],
1941 sfv.ViewportMatrixElementm30 = translate[0],
1942 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
1943 sfv.ViewportMatrixElementm32 = translate[2],
1944 brw_calculate_guardband_size(devinfo, fb_width, fb_height,
1945 sfv.ViewportMatrixElementm00,
1946 sfv.ViewportMatrixElementm11,
1947 sfv.ViewportMatrixElementm30,
1948 sfv.ViewportMatrixElementm31,
1949 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
1950
1951
1952 clv.XMinClipGuardband = gb_xmin;
1953 clv.XMaxClipGuardband = gb_xmax;
1954 clv.YMinClipGuardband = gb_ymin;
1955 clv.YMaxClipGuardband = gb_ymax;
1956
1957 #if GEN_GEN >= 8
1958 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
1959 * The hardware will take the intersection of the drawing rectangle,
1960 * scissor rectangle, and the viewport extents. We don't need to be
1961 * smart, and can therefore just program the viewport extents.
1962 */
1963 const float viewport_Xmax =
1964 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
1965 const float viewport_Ymax =
1966 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
1967
1968 if (render_to_fbo) {
1969 sfv.XMinViewPort = ctx->ViewportArray[i].X;
1970 sfv.XMaxViewPort = viewport_Xmax - 1;
1971 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
1972 sfv.YMaxViewPort = viewport_Ymax - 1;
1973 } else {
1974 sfv.XMinViewPort = ctx->ViewportArray[i].X;
1975 sfv.XMaxViewPort = viewport_Xmax - 1;
1976 sfv.YMinViewPort = fb_height - viewport_Ymax;
1977 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
1978 }
1979 #endif
1980
1981 #if GEN_GEN >= 7
1982 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
1983 sf_clip_map += 16;
1984 #else
1985 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
1986 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
1987 sf_map += 8;
1988 clip_map += 4;
1989 #endif
1990 }
1991
1992 #if GEN_GEN >= 7
1993 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
1994 ptr.SFClipViewportPointer = sf_clip_vp_offset;
1995 }
1996 #else
1997 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
1998 #endif
1999 }
2000
2001 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2002 .dirty = {
2003 .mesa = _NEW_BUFFERS |
2004 _NEW_VIEWPORT,
2005 .brw = BRW_NEW_BATCH |
2006 BRW_NEW_BLORP |
2007 BRW_NEW_VIEWPORT_COUNT,
2008 },
2009 .emit = genX(upload_sf_clip_viewport),
2010 };
2011 #endif
2012
2013 /* ---------------------------------------------------------------------- */
2014
2015 #if GEN_GEN >= 6
2016 static void
2017 genX(upload_gs_state)(struct brw_context *brw)
2018 {
2019 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2020 const struct brw_stage_state *stage_state = &brw->gs.base;
2021 /* BRW_NEW_GEOMETRY_PROGRAM */
2022 bool active = brw->geometry_program;
2023
2024 /* BRW_NEW_GS_PROG_DATA */
2025 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2026 const struct brw_vue_prog_data *vue_prog_data =
2027 brw_vue_prog_data(stage_prog_data);
2028 #if GEN_GEN >= 7
2029 const struct brw_gs_prog_data *gs_prog_data =
2030 brw_gs_prog_data(stage_prog_data);
2031 #endif
2032
2033 #if GEN_GEN < 7
2034 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2035 if (active && stage_state->push_const_size != 0) {
2036 cgs.Buffer0Valid = true;
2037 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2038 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2039 }
2040 }
2041 #endif
2042
2043 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2044 /**
2045 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2046 * Geometry > Geometry Shader > State:
2047 *
2048 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2049 * whole fixed function pipeline when the GS enable changes value in
2050 * the 3DSTATE_GS."
2051 *
2052 * The hardware architects have clarified that in this context "flush the
2053 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2054 * Stall" bit set.
2055 */
2056 if (brw->gt == 2 && brw->gs.enabled != active)
2057 gen7_emit_cs_stall_flush(brw);
2058 #endif
2059
2060 if (active) {
2061 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2062 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2063
2064 #if GEN_GEN >= 7
2065 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2066 gs.OutputTopology = gs_prog_data->output_topology;
2067 gs.ControlDataHeaderSize =
2068 gs_prog_data->control_data_header_size_hwords;
2069
2070 gs.InstanceControl = gs_prog_data->invocations - 1;
2071 gs.DispatchMode = vue_prog_data->dispatch_mode;
2072
2073 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2074
2075 gs.ControlDataFormat = gs_prog_data->control_data_format;
2076 #endif
2077
2078 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2079 * Ivy Bridge and Haswell.
2080 *
2081 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2082 * strip to be delivered to the geometry shader in an order that does
2083 * not strictly follow the OpenGL spec, but preserves triangle
2084 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2085 * the geometry shader sees triangles:
2086 *
2087 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2088 *
2089 * (Clearing the bit is even worse, because it fails to preserve
2090 * orientation).
2091 *
2092 * Triangle strips with adjacency always ordered in a way that preserves
2093 * triangle orientation but does not strictly follow the OpenGL spec,
2094 * regardless of the setting of this bit.
2095 *
2096 * On Haswell, both triangle strips and triangle strips with adjacency
2097 * are always ordered in a way that preserves triangle orientation.
2098 * Setting this bit causes the ordering to strictly follow the OpenGL
2099 * spec.
2100 *
2101 * So in either case we want to set the bit. Unfortunately on Ivy
2102 * Bridge this will get the order close to correct but not perfect.
2103 */
2104 gs.ReorderMode = TRAILING;
2105 gs.MaximumNumberofThreads =
2106 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2107 : (devinfo->max_gs_threads - 1);
2108
2109 #if GEN_GEN < 7
2110 gs.SOStatisticsEnable = true;
2111 gs.RenderingEnabled = 1;
2112 if (brw->geometry_program->info.has_transform_feedback_varyings)
2113 gs.SVBIPayloadEnable = true;
2114
2115 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2116 * was previously done for gen6.
2117 *
2118 * TODO: test with both disabled to see if the HW is behaving
2119 * as expected, like in gen7.
2120 */
2121 gs.SingleProgramFlow = true;
2122 gs.VectorMaskEnable = true;
2123 #endif
2124
2125 #if GEN_GEN >= 8
2126 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2127
2128 if (gs_prog_data->static_vertex_count != -1) {
2129 gs.StaticOutput = true;
2130 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2131 }
2132 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2133
2134 gs.UserClipDistanceCullTestEnableBitmask =
2135 vue_prog_data->cull_distance_mask;
2136
2137 const int urb_entry_write_offset = 1;
2138 const uint32_t urb_entry_output_length =
2139 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2140 urb_entry_write_offset;
2141
2142 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2143 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2144 #endif
2145 }
2146 #if GEN_GEN < 7
2147 } else if (brw->ff_gs.prog_active) {
2148 /* In gen6, transform feedback for the VS stage is done with an ad-hoc GS
2149 * program. This function provides the needed 3DSTATE_GS for this.
2150 */
2151 upload_gs_state_for_tf(brw);
2152 #endif
2153 } else {
2154 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2155 gs.StatisticsEnable = true;
2156 #if GEN_GEN < 7
2157 gs.RenderingEnabled = true;
2158 #endif
2159
2160 #if GEN_GEN < 8
2161 gs.DispatchGRFStartRegisterForURBData = 1;
2162 #if GEN_GEN >= 7
2163 gs.IncludeVertexHandles = true;
2164 #endif
2165 #endif
2166 }
2167 }
2168 #if GEN_GEN < 7
2169 brw->gs.enabled = active;
2170 #endif
2171 }
2172
2173 static const struct brw_tracked_state genX(gs_state) = {
2174 .dirty = {
2175 .mesa = (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0),
2176 .brw = BRW_NEW_BATCH |
2177 BRW_NEW_BLORP |
2178 BRW_NEW_CONTEXT |
2179 BRW_NEW_GEOMETRY_PROGRAM |
2180 BRW_NEW_GS_PROG_DATA |
2181 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2182 },
2183 .emit = genX(upload_gs_state),
2184 };
2185 #endif
2186
2187 /* ---------------------------------------------------------------------- */
2188
2189 #define blend_factor(x) brw_translate_blend_factor(x)
2190 #define blend_eqn(x) brw_translate_blend_equation(x)
2191
2192 #if GEN_GEN >= 6
2193 static void
2194 genX(upload_blend_state)(struct brw_context *brw)
2195 {
2196 struct gl_context *ctx = &brw->ctx;
2197 int size;
2198
2199 /* We need at least one BLEND_STATE written, because we might do
2200 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2201 * for computed depth or alpha test), which will do an FB write
2202 * with render target 0, which will reference BLEND_STATE[0] for
2203 * alpha test enable.
2204 */
2205 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2206 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2207 nr_draw_buffers = 1;
2208
2209 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2210 #if GEN_GEN >= 8
2211 size += GENX(BLEND_STATE_length) * 4;
2212 #endif
2213
2214 uint32_t *blend_map;
2215 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2216
2217 #if GEN_GEN >= 8
2218 struct GENX(BLEND_STATE) blend = { 0 };
2219 {
2220 #else
2221 for (int i = 0; i < nr_draw_buffers; i++) {
2222 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2223 #define blend entry
2224 #endif
2225 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2226 * "If drawbuffer zero is not NONE and the buffer it references has an
2227 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2228 * operations are skipped."
2229 */
2230 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2231 /* _NEW_MULTISAMPLE */
2232 if (_mesa_is_multisample_enabled(ctx)) {
2233 if (ctx->Multisample.SampleAlphaToCoverage) {
2234 blend.AlphaToCoverageEnable = true;
2235 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2236 }
2237 if (ctx->Multisample.SampleAlphaToOne)
2238 blend.AlphaToOneEnable = true;
2239 }
2240
2241 /* _NEW_COLOR */
2242 if (ctx->Color.AlphaEnabled) {
2243 blend.AlphaTestEnable = true;
2244 blend.AlphaTestFunction =
2245 intel_translate_compare_func(ctx->Color.AlphaFunc);
2246 }
2247
2248 if (ctx->Color.DitherFlag) {
2249 blend.ColorDitherEnable = true;
2250 }
2251 }
2252
2253 #if GEN_GEN >= 8
2254 for (int i = 0; i < nr_draw_buffers; i++) {
2255 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2256 #else
2257 {
2258 #endif
2259
2260 /* _NEW_BUFFERS */
2261 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2262
2263 /* Used for implementing the following bit of GL_EXT_texture_integer:
2264 * "Per-fragment operations that require floating-point color
2265 * components, including multisample alpha operations, alpha test,
2266 * blending, and dithering, have no effect when the corresponding
2267 * colors are written to an integer color buffer."
2268 */
2269 bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2270
2271 /* _NEW_COLOR */
2272 if (ctx->Color.ColorLogicOpEnabled) {
2273 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2274 : GL_UNSIGNED_NORMALIZED;
2275 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2276 rb_type != GL_UNSIGNED_NORMALIZED &&
2277 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2278 "renderbuffer\n",
2279 _mesa_enum_to_string(ctx->Color.LogicOp),
2280 _mesa_enum_to_string(rb_type));
2281 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2282 entry.LogicOpEnable = true;
2283 entry.LogicOpFunction =
2284 intel_translate_logic_op(ctx->Color.LogicOp);
2285 }
2286 } else if (ctx->Color.BlendEnabled & (1 << i) && !integer &&
2287 !ctx->Color._AdvancedBlendMode) {
2288 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2289 GLenum eqA = ctx->Color.Blend[i].EquationA;
2290 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2291 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2292 GLenum srcA = ctx->Color.Blend[i].SrcA;
2293 GLenum dstA = ctx->Color.Blend[i].DstA;
2294
2295 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2296 srcRGB = dstRGB = GL_ONE;
2297
2298 if (eqA == GL_MIN || eqA == GL_MAX)
2299 srcA = dstA = GL_ONE;
2300
2301 /* Due to hardware limitations, the destination may have information
2302 * in an alpha channel even when the format specifies no alpha
2303 * channel. In order to avoid getting any incorrect blending due to
2304 * that alpha channel, coerce the blend factors to values that will
2305 * not read the alpha channel, but will instead use the correct
2306 * implicit value for alpha.
2307 */
2308 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2309 GL_TEXTURE_ALPHA_TYPE)) {
2310 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2311 srcA = brw_fix_xRGB_alpha(srcA);
2312 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2313 dstA = brw_fix_xRGB_alpha(dstA);
2314 }
2315
2316 entry.ColorBufferBlendEnable = true;
2317 entry.DestinationBlendFactor = blend_factor(dstRGB);
2318 entry.SourceBlendFactor = blend_factor(srcRGB);
2319 entry.DestinationAlphaBlendFactor = blend_factor(dstA);
2320 entry.SourceAlphaBlendFactor = blend_factor(srcA);
2321 entry.ColorBlendFunction = blend_eqn(eqRGB);
2322 entry.AlphaBlendFunction = blend_eqn(eqA);
2323
2324 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2325 blend.IndependentAlphaBlendEnable = true;
2326 }
2327
2328 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2329 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2330 *
2331 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2332 * clamping in the fragment shader. For its clamping of
2333 * blending, the spec says:
2334 *
2335 * "RESOLVED: For fixed-point color buffers, the inputs and
2336 * the result of the blending equation are clamped. For
2337 * floating-point color buffers, no clamping occurs."
2338 *
2339 * So, generally, we want clamping to the render target's range.
2340 * And, good news, the hardware tables for both pre- and
2341 * post-blend color clamping are either ignored, or any are
2342 * allowed, or clamping is required but RT range clamping is a
2343 * valid option.
2344 */
2345 entry.PreBlendColorClampEnable = true;
2346 entry.PostBlendColorClampEnable = true;
2347 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2348
2349 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2350 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2351 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2352 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2353
2354 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2355 * "If Dual Source Blending is enabled, this bit must be disabled."
2356 */
2357 WARN_ONCE(ctx->Color.Blend[i]._UsesDualSrc &&
2358 _mesa_is_multisample_enabled(ctx) &&
2359 ctx->Multisample.SampleAlphaToOne,
2360 "HW workaround: disabling alpha to one with dual src "
2361 "blending\n");
2362 if (ctx->Color.Blend[i]._UsesDualSrc)
2363 blend.AlphaToOneEnable = false;
2364 #if GEN_GEN >= 8
2365 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2366 #else
2367 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2368 #endif
2369 }
2370 }
2371
2372 #if GEN_GEN >= 8
2373 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2374 #endif
2375
2376 #if GEN_GEN < 7
2377 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2378 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2379 ptr.BLEND_STATEChange = true;
2380 }
2381 #else
2382 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2383 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2384 #if GEN_GEN >= 8
2385 ptr.BlendStatePointerValid = true;
2386 #endif
2387 }
2388 #endif
2389 }
2390
2391 static const struct brw_tracked_state genX(blend_state) = {
2392 .dirty = {
2393 .mesa = _NEW_BUFFERS |
2394 _NEW_COLOR |
2395 _NEW_MULTISAMPLE,
2396 .brw = BRW_NEW_BATCH |
2397 BRW_NEW_BLORP |
2398 BRW_NEW_STATE_BASE_ADDRESS,
2399 },
2400 .emit = genX(upload_blend_state),
2401 };
2402 #endif
2403
2404 /* ---------------------------------------------------------------------- */
2405
2406 #if GEN_GEN >= 6
2407 static void
2408 genX(upload_scissor_state)(struct brw_context *brw)
2409 {
2410 struct gl_context *ctx = &brw->ctx;
2411 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2412 struct GENX(SCISSOR_RECT) scissor;
2413 uint32_t scissor_state_offset;
2414 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2415 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2416 uint32_t *scissor_map;
2417
2418 /* BRW_NEW_VIEWPORT_COUNT */
2419 const unsigned viewport_count = brw->clip.viewport_count;
2420
2421 scissor_map = brw_state_batch(
2422 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2423 32, &scissor_state_offset);
2424
2425 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2426
2427 /* The scissor only needs to handle the intersection of drawable and
2428 * scissor rect. Clipping to the boundaries of static shared buffers
2429 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2430 *
2431 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2432 * inclusive but max is exclusive.
2433 */
2434 for (unsigned i = 0; i < viewport_count; i++) {
2435 int bbox[4];
2436
2437 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2438 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2439 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2440 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2441 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2442
2443 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2444 /* If the scissor was out of bounds and got clamped to 0 width/height
2445 * at the bounds, the subtraction of 1 from maximums could produce a
2446 * negative number and thus not clip anything. Instead, just provide
2447 * a min > max scissor inside the bounds, which produces the expected
2448 * no rendering.
2449 */
2450 scissor.ScissorRectangleXMin = 1;
2451 scissor.ScissorRectangleXMax = 0;
2452 scissor.ScissorRectangleYMin = 1;
2453 scissor.ScissorRectangleYMax = 0;
2454 } else if (render_to_fbo) {
2455 /* texmemory: Y=0=bottom */
2456 scissor.ScissorRectangleXMin = bbox[0];
2457 scissor.ScissorRectangleXMax = bbox[1] - 1;
2458 scissor.ScissorRectangleYMin = bbox[2];
2459 scissor.ScissorRectangleYMax = bbox[3] - 1;
2460 } else {
2461 /* memory: Y=0=top */
2462 scissor.ScissorRectangleXMin = bbox[0];
2463 scissor.ScissorRectangleXMax = bbox[1] - 1;
2464 scissor.ScissorRectangleYMin = fb_height - bbox[3];
2465 scissor.ScissorRectangleYMax = fb_height - bbox[2] - 1;
2466 }
2467
2468 GENX(SCISSOR_RECT_pack)(
2469 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2470 }
2471
2472 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2473 ptr.ScissorRectPointer = scissor_state_offset;
2474 }
2475 }
2476
2477 static const struct brw_tracked_state genX(scissor_state) = {
2478 .dirty = {
2479 .mesa = _NEW_BUFFERS |
2480 _NEW_SCISSOR |
2481 _NEW_VIEWPORT,
2482 .brw = BRW_NEW_BATCH |
2483 BRW_NEW_BLORP |
2484 BRW_NEW_VIEWPORT_COUNT,
2485 },
2486 .emit = genX(upload_scissor_state),
2487 };
2488 #endif
2489
2490 /* ---------------------------------------------------------------------- */
2491
2492 #if GEN_GEN >= 7
2493 UNUSED static const uint32_t push_constant_opcodes[] = {
2494 [MESA_SHADER_VERTEX] = 21,
2495 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2496 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2497 [MESA_SHADER_GEOMETRY] = 22,
2498 [MESA_SHADER_FRAGMENT] = 23,
2499 [MESA_SHADER_COMPUTE] = 0,
2500 };
2501
2502 static void
2503 upload_constant_state(struct brw_context *brw,
2504 struct brw_stage_state *stage_state,
2505 bool active, uint32_t stage)
2506 {
2507 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
2508 active = active && stage_state->push_const_size != 0;
2509
2510 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
2511 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2512 if (active) {
2513 #if GEN_GEN >= 9
2514 pkt.ConstantBody.ConstantBuffer2ReadLength =
2515 stage_state->push_const_size;
2516 pkt.ConstantBody.PointerToConstantBuffer2 =
2517 render_ro_bo(brw->batch.bo, stage_state->push_const_offset);
2518 #else
2519 pkt.ConstantBody.ConstantBuffer0ReadLength =
2520 stage_state->push_const_size;
2521 pkt.ConstantBody.PointerToConstantBuffer0.offset =
2522 stage_state->push_const_offset | mocs;
2523 #endif
2524 }
2525 }
2526
2527 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
2528 }
2529 #endif
2530
2531 #if GEN_GEN >= 6
2532 static void
2533 genX(upload_vs_push_constants)(struct brw_context *brw)
2534 {
2535 struct brw_stage_state *stage_state = &brw->vs.base;
2536
2537 /* _BRW_NEW_VERTEX_PROGRAM */
2538 const struct brw_program *vp = brw_program_const(brw->vertex_program);
2539 /* BRW_NEW_VS_PROG_DATA */
2540 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
2541
2542 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX);
2543 gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state);
2544
2545 #if GEN_GEN >= 7
2546 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail)
2547 gen7_emit_vs_workaround_flush(brw);
2548
2549 upload_constant_state(brw, stage_state, true /* active */,
2550 MESA_SHADER_VERTEX);
2551 #endif
2552 }
2553
2554 static const struct brw_tracked_state genX(vs_push_constants) = {
2555 .dirty = {
2556 .mesa = _NEW_PROGRAM_CONSTANTS |
2557 _NEW_TRANSFORM,
2558 .brw = BRW_NEW_BATCH |
2559 BRW_NEW_BLORP |
2560 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2561 BRW_NEW_VERTEX_PROGRAM |
2562 BRW_NEW_VS_PROG_DATA,
2563 },
2564 .emit = genX(upload_vs_push_constants),
2565 };
2566
2567 static void
2568 genX(upload_gs_push_constants)(struct brw_context *brw)
2569 {
2570 struct brw_stage_state *stage_state = &brw->gs.base;
2571
2572 /* BRW_NEW_GEOMETRY_PROGRAM */
2573 const struct brw_program *gp = brw_program_const(brw->geometry_program);
2574
2575 if (gp) {
2576 /* BRW_NEW_GS_PROG_DATA */
2577 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
2578
2579 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY);
2580 gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state);
2581 }
2582
2583 #if GEN_GEN >= 7
2584 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY);
2585 #endif
2586 }
2587
2588 static const struct brw_tracked_state genX(gs_push_constants) = {
2589 .dirty = {
2590 .mesa = _NEW_PROGRAM_CONSTANTS |
2591 _NEW_TRANSFORM,
2592 .brw = BRW_NEW_BATCH |
2593 BRW_NEW_BLORP |
2594 BRW_NEW_GEOMETRY_PROGRAM |
2595 BRW_NEW_GS_PROG_DATA |
2596 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2597 },
2598 .emit = genX(upload_gs_push_constants),
2599 };
2600
2601 static void
2602 genX(upload_wm_push_constants)(struct brw_context *brw)
2603 {
2604 struct brw_stage_state *stage_state = &brw->wm.base;
2605 /* BRW_NEW_FRAGMENT_PROGRAM */
2606 const struct brw_program *fp = brw_program_const(brw->fragment_program);
2607 /* BRW_NEW_FS_PROG_DATA */
2608 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
2609
2610 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT);
2611
2612 gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state);
2613
2614 #if GEN_GEN >= 7
2615 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT);
2616 #endif
2617 }
2618
2619 static const struct brw_tracked_state genX(wm_push_constants) = {
2620 .dirty = {
2621 .mesa = _NEW_PROGRAM_CONSTANTS,
2622 .brw = BRW_NEW_BATCH |
2623 BRW_NEW_BLORP |
2624 BRW_NEW_FRAGMENT_PROGRAM |
2625 BRW_NEW_FS_PROG_DATA |
2626 BRW_NEW_PUSH_CONSTANT_ALLOCATION,
2627 },
2628 .emit = genX(upload_wm_push_constants),
2629 };
2630 #endif
2631
2632 /* ---------------------------------------------------------------------- */
2633
2634 #if GEN_GEN >= 6
2635 static unsigned
2636 genX(determine_sample_mask)(struct brw_context *brw)
2637 {
2638 struct gl_context *ctx = &brw->ctx;
2639 float coverage = 1.0f;
2640 float coverage_invert = false;
2641 unsigned sample_mask = ~0u;
2642
2643 /* BRW_NEW_NUM_SAMPLES */
2644 unsigned num_samples = brw->num_samples;
2645
2646 if (_mesa_is_multisample_enabled(ctx)) {
2647 if (ctx->Multisample.SampleCoverage) {
2648 coverage = ctx->Multisample.SampleCoverageValue;
2649 coverage_invert = ctx->Multisample.SampleCoverageInvert;
2650 }
2651 if (ctx->Multisample.SampleMask) {
2652 sample_mask = ctx->Multisample.SampleMaskValue;
2653 }
2654 }
2655
2656 if (num_samples > 1) {
2657 int coverage_int = (int) (num_samples * coverage + 0.5f);
2658 uint32_t coverage_bits = (1 << coverage_int) - 1;
2659 if (coverage_invert)
2660 coverage_bits ^= (1 << num_samples) - 1;
2661 return coverage_bits & sample_mask;
2662 } else {
2663 return 1;
2664 }
2665 }
2666
2667 static void
2668 genX(emit_3dstate_multisample2)(struct brw_context *brw,
2669 unsigned num_samples)
2670 {
2671 assert(brw->num_samples <= 16);
2672
2673 unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1;
2674
2675 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
2676 multi.PixelLocation = CENTER;
2677 multi.NumberofMultisamples = log2_samples;
2678 #if GEN_GEN == 6
2679 GEN_SAMPLE_POS_4X(multi.Sample);
2680 #elif GEN_GEN == 7
2681 switch (num_samples) {
2682 case 1:
2683 GEN_SAMPLE_POS_1X(multi.Sample);
2684 break;
2685 case 2:
2686 GEN_SAMPLE_POS_2X(multi.Sample);
2687 break;
2688 case 4:
2689 GEN_SAMPLE_POS_4X(multi.Sample);
2690 break;
2691 case 8:
2692 GEN_SAMPLE_POS_8X(multi.Sample);
2693 break;
2694 default:
2695 break;
2696 }
2697 #endif
2698 }
2699 }
2700
2701 static void
2702 genX(upload_multisample_state)(struct brw_context *brw)
2703 {
2704 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
2705
2706 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
2707 sm.SampleMask = genX(determine_sample_mask)(brw);
2708 }
2709 }
2710
2711 static const struct brw_tracked_state genX(multisample_state) = {
2712 .dirty = {
2713 .mesa = _NEW_MULTISAMPLE,
2714 .brw = BRW_NEW_BLORP |
2715 BRW_NEW_CONTEXT |
2716 BRW_NEW_NUM_SAMPLES,
2717 },
2718 .emit = genX(upload_multisample_state)
2719 };
2720 #endif
2721
2722 /* ---------------------------------------------------------------------- */
2723
2724 #if GEN_GEN >= 6
2725 static void
2726 genX(upload_color_calc_state)(struct brw_context *brw)
2727 {
2728 struct gl_context *ctx = &brw->ctx;
2729
2730 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
2731 /* _NEW_COLOR */
2732 cc.AlphaTestFormat = ALPHATEST_UNORM8;
2733 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
2734 ctx->Color.AlphaRef);
2735
2736 #if GEN_GEN < 9
2737 /* _NEW_STENCIL */
2738 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
2739 cc.BackfaceStencilReferenceValue =
2740 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
2741 #endif
2742
2743 /* _NEW_COLOR */
2744 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
2745 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
2746 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
2747 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
2748 }
2749
2750 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2751 ptr.ColorCalcStatePointer = brw->cc.state_offset;
2752 #if GEN_GEN != 7
2753 ptr.ColorCalcStatePointerValid = true;
2754 #endif
2755 }
2756 }
2757
2758 static const struct brw_tracked_state genX(color_calc_state) = {
2759 .dirty = {
2760 .mesa = _NEW_COLOR |
2761 _NEW_STENCIL,
2762 .brw = BRW_NEW_BATCH |
2763 BRW_NEW_BLORP |
2764 BRW_NEW_CC_STATE |
2765 BRW_NEW_STATE_BASE_ADDRESS,
2766 },
2767 .emit = genX(upload_color_calc_state),
2768 };
2769
2770 #endif
2771
2772 /* ---------------------------------------------------------------------- */
2773
2774 #if GEN_GEN >= 7
2775 static void
2776 genX(upload_sbe)(struct brw_context *brw)
2777 {
2778 struct gl_context *ctx = &brw->ctx;
2779 /* BRW_NEW_FS_PROG_DATA */
2780 const struct brw_wm_prog_data *wm_prog_data =
2781 brw_wm_prog_data(brw->wm.base.prog_data);
2782 #if GEN_GEN >= 8
2783 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
2784 #else
2785 #define attr_overrides sbe.Attribute
2786 #endif
2787 uint32_t urb_entry_read_length;
2788 uint32_t urb_entry_read_offset;
2789 uint32_t point_sprite_enables;
2790
2791 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
2792 sbe.AttributeSwizzleEnable = true;
2793 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2794
2795 /* _NEW_BUFFERS */
2796 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2797
2798 /* _NEW_POINT
2799 *
2800 * Window coordinates in an FBO are inverted, which means point
2801 * sprite origin must be inverted.
2802 */
2803 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
2804 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
2805 else
2806 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
2807
2808 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
2809 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
2810 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
2811 * BRW_NEW_VUE_MAP_GEOM_OUT
2812 */
2813 genX(calculate_attr_overrides)(brw,
2814 attr_overrides,
2815 &point_sprite_enables,
2816 &urb_entry_read_length,
2817 &urb_entry_read_offset);
2818
2819 /* Typically, the URB entry read length and offset should be programmed
2820 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
2821 * stage which produces geometry. However, we don't know the proper
2822 * value until we call calculate_attr_overrides().
2823 *
2824 * To fit with our existing code, we override the inherited values and
2825 * specify it here directly, as we did on previous generations.
2826 */
2827 sbe.VertexURBEntryReadLength = urb_entry_read_length;
2828 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
2829 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
2830 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2831
2832 #if GEN_GEN >= 8
2833 sbe.ForceVertexURBEntryReadLength = true;
2834 sbe.ForceVertexURBEntryReadOffset = true;
2835 #endif
2836
2837 #if GEN_GEN >= 9
2838 /* prepare the active component dwords */
2839 int input_index = 0;
2840 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
2841 if (!(brw->fragment_program->info.inputs_read &
2842 BITFIELD64_BIT(attr))) {
2843 continue;
2844 }
2845
2846 assert(input_index < 32);
2847
2848 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
2849 ++input_index;
2850 }
2851 #endif
2852 }
2853
2854 #if GEN_GEN >= 8
2855 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
2856 for (int i = 0; i < 16; i++)
2857 sbes.Attribute[i] = attr_overrides[i];
2858 }
2859 #endif
2860
2861 #undef attr_overrides
2862 }
2863
2864 static const struct brw_tracked_state genX(sbe_state) = {
2865 .dirty = {
2866 .mesa = _NEW_BUFFERS |
2867 _NEW_LIGHT |
2868 _NEW_POINT |
2869 _NEW_POLYGON |
2870 _NEW_PROGRAM,
2871 .brw = BRW_NEW_BLORP |
2872 BRW_NEW_CONTEXT |
2873 BRW_NEW_FRAGMENT_PROGRAM |
2874 BRW_NEW_FS_PROG_DATA |
2875 BRW_NEW_GS_PROG_DATA |
2876 BRW_NEW_TES_PROG_DATA |
2877 BRW_NEW_VUE_MAP_GEOM_OUT |
2878 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
2879 : 0),
2880 },
2881 .emit = genX(upload_sbe),
2882 };
2883 #endif
2884
2885 /* ---------------------------------------------------------------------- */
2886
2887 #if GEN_GEN >= 7
2888 /**
2889 * Outputs the 3DSTATE_SO_DECL_LIST command.
2890 *
2891 * The data output is a series of 64-bit entries containing a SO_DECL per
2892 * stream. We only have one stream of rendering coming out of the GS unit, so
2893 * we only emit stream 0 (low 16 bits) SO_DECLs.
2894 */
2895 static void
2896 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
2897 const struct brw_vue_map *vue_map)
2898 {
2899 struct gl_context *ctx = &brw->ctx;
2900 /* BRW_NEW_TRANSFORM_FEEDBACK */
2901 struct gl_transform_feedback_object *xfb_obj =
2902 ctx->TransformFeedback.CurrentObject;
2903 const struct gl_transform_feedback_info *linked_xfb_info =
2904 xfb_obj->program->sh.LinkedTransformFeedback;
2905 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2906 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2907 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2908 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2909 int max_decls = 0;
2910 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2911
2912 memset(so_decl, 0, sizeof(so_decl));
2913
2914 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2915 * command feels strange -- each dword pair contains a SO_DECL per stream.
2916 */
2917 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
2918 int buffer = linked_xfb_info->Outputs[i].OutputBuffer;
2919 struct GENX(SO_DECL) decl = {0};
2920 int varying = linked_xfb_info->Outputs[i].OutputRegister;
2921 const unsigned components = linked_xfb_info->Outputs[i].NumComponents;
2922 unsigned component_mask = (1 << components) - 1;
2923 unsigned stream_id = linked_xfb_info->Outputs[i].StreamId;
2924 unsigned decl_buffer_slot = buffer;
2925 assert(stream_id < MAX_VERTEX_STREAMS);
2926
2927 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w
2928 * gl_Layer is stored in VARYING_SLOT_PSIZ.y
2929 * gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
2930 */
2931 if (varying == VARYING_SLOT_PSIZ) {
2932 assert(components == 1);
2933 component_mask <<= 3;
2934 } else if (varying == VARYING_SLOT_LAYER) {
2935 assert(components == 1);
2936 component_mask <<= 1;
2937 } else if (varying == VARYING_SLOT_VIEWPORT) {
2938 assert(components == 1);
2939 component_mask <<= 2;
2940 } else {
2941 component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset;
2942 }
2943
2944 buffer_mask[stream_id] |= 1 << buffer;
2945
2946 decl.OutputBufferSlot = decl_buffer_slot;
2947 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT) {
2948 decl.RegisterIndex = vue_map->varying_to_slot[VARYING_SLOT_PSIZ];
2949 } else {
2950 assert(vue_map->varying_to_slot[varying] >= 0);
2951 decl.RegisterIndex = vue_map->varying_to_slot[varying];
2952 }
2953 decl.ComponentMask = component_mask;
2954
2955 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2956 * array. Instead, it simply increments DstOffset for the following
2957 * input by the number of components that should be skipped.
2958 *
2959 * Our hardware is unusual in that it requires us to program SO_DECLs
2960 * for fake "hole" components, rather than simply taking the offset
2961 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2962 * program as many size = 4 holes as we can, then a final hole to
2963 * accommodate the final 1, 2, or 3 remaining.
2964 */
2965 int skip_components =
2966 linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer];
2967
2968 next_offset[buffer] += skip_components;
2969
2970 while (skip_components >= 4) {
2971 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
2972 d->HoleFlag = 1;
2973 d->OutputBufferSlot = decl_buffer_slot;
2974 d->ComponentMask = 0xf;
2975 skip_components -= 4;
2976 }
2977
2978 if (skip_components > 0) {
2979 struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++];
2980 d->HoleFlag = 1;
2981 d->OutputBufferSlot = decl_buffer_slot;
2982 d->ComponentMask = (1 << skip_components) - 1;
2983 }
2984
2985 assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]);
2986
2987 next_offset[buffer] += components;
2988
2989 so_decl[stream_id][decls[stream_id]++] = decl;
2990
2991 if (decls[stream_id] > max_decls)
2992 max_decls = decls[stream_id];
2993 }
2994
2995 uint32_t *dw;
2996 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
2997 .StreamtoBufferSelects0 = buffer_mask[0],
2998 .StreamtoBufferSelects1 = buffer_mask[1],
2999 .StreamtoBufferSelects2 = buffer_mask[2],
3000 .StreamtoBufferSelects3 = buffer_mask[3],
3001 .NumEntries0 = decls[0],
3002 .NumEntries1 = decls[1],
3003 .NumEntries2 = decls[2],
3004 .NumEntries3 = decls[3]);
3005
3006 for (int i = 0; i < max_decls; i++) {
3007 GENX(SO_DECL_ENTRY_pack)(
3008 brw, dw + 2 + i * 2,
3009 &(struct GENX(SO_DECL_ENTRY)) {
3010 .Stream0Decl = so_decl[0][i],
3011 .Stream1Decl = so_decl[1][i],
3012 .Stream2Decl = so_decl[2][i],
3013 .Stream3Decl = so_decl[3][i],
3014 });
3015 }
3016 }
3017
3018 static void
3019 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3020 {
3021 struct gl_context *ctx = &brw->ctx;
3022 /* BRW_NEW_TRANSFORM_FEEDBACK */
3023 struct gl_transform_feedback_object *xfb_obj =
3024 ctx->TransformFeedback.CurrentObject;
3025 #if GEN_GEN < 8
3026 const struct gl_transform_feedback_info *linked_xfb_info =
3027 xfb_obj->program->sh.LinkedTransformFeedback;
3028 #else
3029 struct brw_transform_feedback_object *brw_obj =
3030 (struct brw_transform_feedback_object *) xfb_obj;
3031 uint32_t mocs_wb = brw->gen >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3032 #endif
3033
3034 /* Set up the up to 4 output buffers. These are the ranges defined in the
3035 * gl_transform_feedback_object.
3036 */
3037 for (int i = 0; i < 4; i++) {
3038 struct intel_buffer_object *bufferobj =
3039 intel_buffer_object(xfb_obj->Buffers[i]);
3040
3041 if (!bufferobj) {
3042 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3043 sob.SOBufferIndex = i;
3044 }
3045 continue;
3046 }
3047
3048 uint32_t start = xfb_obj->Offset[i];
3049 assert(start % 4 == 0);
3050 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3051 struct brw_bo *bo =
3052 intel_bufferobj_buffer(brw, bufferobj, start, end - start);
3053 assert(end <= bo->size);
3054
3055 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3056 sob.SOBufferIndex = i;
3057
3058 sob.SurfaceBaseAddress = render_bo(bo, start);
3059 #if GEN_GEN < 8
3060 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3061 sob.SurfaceEndAddress = render_bo(bo, end);
3062 #else
3063 sob.SOBufferEnable = true;
3064 sob.StreamOffsetWriteEnable = true;
3065 sob.StreamOutputBufferOffsetAddressEnable = true;
3066 sob.SOBufferMOCS = mocs_wb;
3067
3068 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3069 sob.StreamOutputBufferOffsetAddress =
3070 instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3071
3072 if (brw_obj->zero_offsets) {
3073 /* Zero out the offset and write that to offset_bo */
3074 sob.StreamOffset = 0;
3075 } else {
3076 /* Use offset_bo as the "Stream Offset." */
3077 sob.StreamOffset = 0xFFFFFFFF;
3078 }
3079 #endif
3080 }
3081 }
3082
3083 #if GEN_GEN >= 8
3084 brw_obj->zero_offsets = false;
3085 #endif
3086 }
3087
3088 static inline bool
3089 query_active(struct gl_query_object *q)
3090 {
3091 return q && q->Active;
3092 }
3093
3094 static void
3095 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3096 const struct brw_vue_map *vue_map)
3097 {
3098 struct gl_context *ctx = &brw->ctx;
3099 /* BRW_NEW_TRANSFORM_FEEDBACK */
3100 struct gl_transform_feedback_object *xfb_obj =
3101 ctx->TransformFeedback.CurrentObject;
3102
3103 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3104 if (active) {
3105 int urb_entry_read_offset = 0;
3106 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3107 urb_entry_read_offset;
3108
3109 sos.SOFunctionEnable = true;
3110 sos.SOStatisticsEnable = true;
3111
3112 /* BRW_NEW_RASTERIZER_DISCARD */
3113 if (ctx->RasterDiscard) {
3114 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3115 sos.RenderingDisable = true;
3116 } else {
3117 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3118 "query active relies on the clipper.");
3119 }
3120 }
3121
3122 /* _NEW_LIGHT */
3123 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3124 sos.ReorderMode = TRAILING;
3125
3126 #if GEN_GEN < 8
3127 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3128 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3129 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3130 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3131 #else
3132 const struct gl_transform_feedback_info *linked_xfb_info =
3133 xfb_obj->program->sh.LinkedTransformFeedback;
3134 /* Set buffer pitches; 0 means unbound. */
3135 if (xfb_obj->Buffers[0])
3136 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3137 if (xfb_obj->Buffers[1])
3138 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3139 if (xfb_obj->Buffers[2])
3140 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3141 if (xfb_obj->Buffers[3])
3142 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3143 #endif
3144
3145 /* We always read the whole vertex. This could be reduced at some
3146 * point by reading less and offsetting the register index in the
3147 * SO_DECLs.
3148 */
3149 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3150 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3151 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3152 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3153 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3154 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3155 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3156 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3157 }
3158 }
3159 }
3160
3161 static void
3162 genX(upload_sol)(struct brw_context *brw)
3163 {
3164 struct gl_context *ctx = &brw->ctx;
3165 /* BRW_NEW_TRANSFORM_FEEDBACK */
3166 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3167
3168 if (active) {
3169 genX(upload_3dstate_so_buffers)(brw);
3170
3171 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3172 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3173 }
3174
3175 /* Finally, set up the SOL stage. This command must always follow updates to
3176 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3177 * MMIO register updates (current performed by the kernel at each batch
3178 * emit).
3179 */
3180 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3181 }
3182
3183 static const struct brw_tracked_state genX(sol_state) = {
3184 .dirty = {
3185 .mesa = _NEW_LIGHT,
3186 .brw = BRW_NEW_BATCH |
3187 BRW_NEW_BLORP |
3188 BRW_NEW_RASTERIZER_DISCARD |
3189 BRW_NEW_VUE_MAP_GEOM_OUT |
3190 BRW_NEW_TRANSFORM_FEEDBACK,
3191 },
3192 .emit = genX(upload_sol),
3193 };
3194 #endif
3195
3196 /* ---------------------------------------------------------------------- */
3197
3198 #if GEN_GEN >= 7
3199 static void
3200 genX(upload_ps)(struct brw_context *brw)
3201 {
3202 UNUSED const struct gl_context *ctx = &brw->ctx;
3203 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3204
3205 /* BRW_NEW_FS_PROG_DATA */
3206 const struct brw_wm_prog_data *prog_data =
3207 brw_wm_prog_data(brw->wm.base.prog_data);
3208 const struct brw_stage_state *stage_state = &brw->wm.base;
3209
3210 #if GEN_GEN < 8
3211 #endif
3212
3213 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3214 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3215 * incorrect for subspans where some of the pixels are unlit. We believe
3216 * the bit just didn't take effect in previous generations.
3217 */
3218 ps.VectorMaskEnable = GEN_GEN >= 8;
3219
3220 ps.SamplerCount =
3221 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3222
3223 /* BRW_NEW_FS_PROG_DATA */
3224 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3225
3226 if (prog_data->base.use_alt_mode)
3227 ps.FloatingPointMode = Alternate;
3228
3229 /* Haswell requires the sample mask to be set in this packet as well as
3230 * in 3DSTATE_SAMPLE_MASK; the values should match.
3231 */
3232
3233 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3234 #if GEN_IS_HASWELL
3235 ps.SampleMask = genX(determine_sample_mask(brw));
3236 #endif
3237
3238 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3239 * it implicitly scales for different GT levels (which have some # of
3240 * PSDs).
3241 *
3242 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3243 */
3244 #if GEN_GEN >= 9
3245 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3246 #elif GEN_GEN >= 8
3247 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3248 #else
3249 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3250 #endif
3251
3252 if (prog_data->base.nr_params > 0)
3253 ps.PushConstantEnable = true;
3254
3255 #if GEN_GEN < 8
3256 /* From the IVB PRM, volume 2 part 1, page 287:
3257 * "This bit is inserted in the PS payload header and made available to
3258 * the DataPort (either via the message header or via header bypass) to
3259 * indicate that oMask data (one or two phases) is included in Render
3260 * Target Write messages. If present, the oMask data is used to mask off
3261 * samples."
3262 */
3263 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3264
3265 /* The hardware wedges if you have this bit set but don't turn on any
3266 * dual source blend factors.
3267 *
3268 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3269 */
3270 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3271 (ctx->Color.BlendEnabled & 1) &&
3272 ctx->Color.Blend[0]._UsesDualSrc;
3273
3274 /* BRW_NEW_FS_PROG_DATA */
3275 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3276 #endif
3277
3278 /* From the documentation for this packet:
3279 * "If the PS kernel does not need the Position XY Offsets to
3280 * compute a Position Value, then this field should be programmed
3281 * to POSOFFSET_NONE."
3282 *
3283 * "SW Recommendation: If the PS kernel needs the Position Offsets
3284 * to compute a Position XY value, this field should match Position
3285 * ZW Interpolation Mode to ensure a consistent position.xyzw
3286 * computation."
3287 *
3288 * We only require XY sample offsets. So, this recommendation doesn't
3289 * look useful at the moment. We might need this in future.
3290 */
3291 if (prog_data->uses_pos_offset)
3292 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3293 else
3294 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3295
3296 ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op;
3297 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3298 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3299 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3300 prog_data->base.dispatch_grf_start_reg;
3301 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3302 prog_data->dispatch_grf_start_reg_2;
3303
3304 ps.KernelStartPointer0 = stage_state->prog_offset;
3305 ps.KernelStartPointer2 = stage_state->prog_offset +
3306 prog_data->prog_offset_2;
3307
3308 if (prog_data->base.total_scratch) {
3309 ps.ScratchSpaceBasePointer =
3310 render_bo(stage_state->scratch_bo,
3311 ffs(stage_state->per_thread_scratch) - 11);
3312 }
3313 }
3314 }
3315
3316 static const struct brw_tracked_state genX(ps_state) = {
3317 .dirty = {
3318 .mesa = _NEW_MULTISAMPLE |
3319 (GEN_GEN < 8 ? _NEW_BUFFERS |
3320 _NEW_COLOR
3321 : 0),
3322 .brw = BRW_NEW_BATCH |
3323 BRW_NEW_BLORP |
3324 BRW_NEW_FS_PROG_DATA,
3325 },
3326 .emit = genX(upload_ps),
3327 };
3328 #endif
3329
3330 /* ---------------------------------------------------------------------- */
3331
3332 #if GEN_GEN >= 7
3333 static void
3334 genX(upload_hs_state)(struct brw_context *brw)
3335 {
3336 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3337 struct brw_stage_state *stage_state = &brw->tcs.base;
3338 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3339 const struct brw_vue_prog_data *vue_prog_data =
3340 brw_vue_prog_data(stage_prog_data);
3341
3342 /* BRW_NEW_TES_PROG_DATA */
3343 struct brw_tcs_prog_data *tcs_prog_data =
3344 brw_tcs_prog_data(stage_prog_data);
3345
3346 if (!tcs_prog_data) {
3347 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3348 } else {
3349 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3350 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3351
3352 hs.InstanceCount = tcs_prog_data->instances - 1;
3353 hs.IncludeVertexHandles = true;
3354
3355 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3356 }
3357 }
3358 }
3359
3360 static const struct brw_tracked_state genX(hs_state) = {
3361 .dirty = {
3362 .mesa = 0,
3363 .brw = BRW_NEW_BATCH |
3364 BRW_NEW_BLORP |
3365 BRW_NEW_TCS_PROG_DATA |
3366 BRW_NEW_TESS_PROGRAMS,
3367 },
3368 .emit = genX(upload_hs_state),
3369 };
3370
3371 static void
3372 genX(upload_ds_state)(struct brw_context *brw)
3373 {
3374 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3375 const struct brw_stage_state *stage_state = &brw->tes.base;
3376 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3377
3378 /* BRW_NEW_TES_PROG_DATA */
3379 const struct brw_tes_prog_data *tes_prog_data =
3380 brw_tes_prog_data(stage_prog_data);
3381 const struct brw_vue_prog_data *vue_prog_data =
3382 brw_vue_prog_data(stage_prog_data);
3383
3384 if (!tes_prog_data) {
3385 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3386 } else {
3387 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3388 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3389
3390 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3391 ds.ComputeWCoordinateEnable =
3392 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3393
3394 #if GEN_GEN >= 8
3395 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3396 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3397 ds.UserClipDistanceCullTestEnableBitmask =
3398 vue_prog_data->cull_distance_mask;
3399 #endif
3400 }
3401 }
3402 }
3403
3404 static const struct brw_tracked_state genX(ds_state) = {
3405 .dirty = {
3406 .mesa = 0,
3407 .brw = BRW_NEW_BATCH |
3408 BRW_NEW_BLORP |
3409 BRW_NEW_TESS_PROGRAMS |
3410 BRW_NEW_TES_PROG_DATA,
3411 },
3412 .emit = genX(upload_ds_state),
3413 };
3414
3415 /* ---------------------------------------------------------------------- */
3416
3417 static void
3418 upload_te_state(struct brw_context *brw)
3419 {
3420 /* BRW_NEW_TESS_PROGRAMS */
3421 bool active = brw->tess_eval_program;
3422
3423 /* BRW_NEW_TES_PROG_DATA */
3424 const struct brw_tes_prog_data *tes_prog_data =
3425 brw_tes_prog_data(brw->tes.base.prog_data);
3426
3427 if (active) {
3428 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3429 te.Partitioning = tes_prog_data->partitioning;
3430 te.OutputTopology = tes_prog_data->output_topology;
3431 te.TEDomain = tes_prog_data->domain;
3432 te.TEEnable = true;
3433 te.MaximumTessellationFactorOdd = 63.0;
3434 te.MaximumTessellationFactorNotOdd = 64.0;
3435 }
3436 } else {
3437 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
3438 }
3439 }
3440
3441 static const struct brw_tracked_state genX(te_state) = {
3442 .dirty = {
3443 .mesa = 0,
3444 .brw = BRW_NEW_BLORP |
3445 BRW_NEW_CONTEXT |
3446 BRW_NEW_TES_PROG_DATA |
3447 BRW_NEW_TESS_PROGRAMS,
3448 },
3449 .emit = upload_te_state,
3450 };
3451
3452 /* ---------------------------------------------------------------------- */
3453
3454 static void
3455 genX(upload_tes_push_constants)(struct brw_context *brw)
3456 {
3457 struct brw_stage_state *stage_state = &brw->tes.base;
3458 /* BRW_NEW_TESS_PROGRAMS */
3459 const struct brw_program *tep = brw_program_const(brw->tess_eval_program);
3460
3461 if (tep) {
3462 /* BRW_NEW_TES_PROG_DATA */
3463 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
3464 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL);
3465 gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state);
3466 }
3467
3468 upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL);
3469 }
3470
3471 static const struct brw_tracked_state genX(tes_push_constants) = {
3472 .dirty = {
3473 .mesa = _NEW_PROGRAM_CONSTANTS,
3474 .brw = BRW_NEW_BATCH |
3475 BRW_NEW_BLORP |
3476 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3477 BRW_NEW_TESS_PROGRAMS |
3478 BRW_NEW_TES_PROG_DATA,
3479 },
3480 .emit = genX(upload_tes_push_constants),
3481 };
3482
3483 static void
3484 genX(upload_tcs_push_constants)(struct brw_context *brw)
3485 {
3486 struct brw_stage_state *stage_state = &brw->tcs.base;
3487 /* BRW_NEW_TESS_PROGRAMS */
3488 const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program);
3489 bool active = brw->tess_eval_program;
3490
3491 if (active) {
3492 /* BRW_NEW_TCS_PROG_DATA */
3493 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
3494
3495 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL);
3496 gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state);
3497 }
3498
3499 upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL);
3500 }
3501
3502 static const struct brw_tracked_state genX(tcs_push_constants) = {
3503 .dirty = {
3504 .mesa = _NEW_PROGRAM_CONSTANTS,
3505 .brw = BRW_NEW_BATCH |
3506 BRW_NEW_BLORP |
3507 BRW_NEW_DEFAULT_TESS_LEVELS |
3508 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
3509 BRW_NEW_TESS_PROGRAMS |
3510 BRW_NEW_TCS_PROG_DATA,
3511 },
3512 .emit = genX(upload_tcs_push_constants),
3513 };
3514 #endif
3515
3516 /* ---------------------------------------------------------------------- */
3517
3518 #if GEN_GEN >= 8
3519 static void
3520 genX(upload_raster)(struct brw_context *brw)
3521 {
3522 struct gl_context *ctx = &brw->ctx;
3523
3524 /* _NEW_BUFFERS */
3525 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3526
3527 /* _NEW_POLYGON */
3528 struct gl_polygon_attrib *polygon = &ctx->Polygon;
3529
3530 /* _NEW_POINT */
3531 struct gl_point_attrib *point = &ctx->Point;
3532
3533 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
3534 if (polygon->_FrontBit == render_to_fbo)
3535 raster.FrontWinding = CounterClockwise;
3536
3537 if (polygon->CullFlag) {
3538 switch (polygon->CullFaceMode) {
3539 case GL_FRONT:
3540 raster.CullMode = CULLMODE_FRONT;
3541 break;
3542 case GL_BACK:
3543 raster.CullMode = CULLMODE_BACK;
3544 break;
3545 case GL_FRONT_AND_BACK:
3546 raster.CullMode = CULLMODE_BOTH;
3547 break;
3548 default:
3549 unreachable("not reached");
3550 }
3551 } else {
3552 raster.CullMode = CULLMODE_NONE;
3553 }
3554
3555 point->SmoothFlag = raster.SmoothPointEnable;
3556
3557 raster.DXMultisampleRasterizationEnable =
3558 _mesa_is_multisample_enabled(ctx);
3559
3560 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
3561 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
3562 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
3563
3564 switch (polygon->FrontMode) {
3565 case GL_FILL:
3566 raster.FrontFaceFillMode = FILL_MODE_SOLID;
3567 break;
3568 case GL_LINE:
3569 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
3570 break;
3571 case GL_POINT:
3572 raster.FrontFaceFillMode = FILL_MODE_POINT;
3573 break;
3574 default:
3575 unreachable("not reached");
3576 }
3577
3578 switch (polygon->BackMode) {
3579 case GL_FILL:
3580 raster.BackFaceFillMode = FILL_MODE_SOLID;
3581 break;
3582 case GL_LINE:
3583 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
3584 break;
3585 case GL_POINT:
3586 raster.BackFaceFillMode = FILL_MODE_POINT;
3587 break;
3588 default:
3589 unreachable("not reached");
3590 }
3591
3592 /* _NEW_LINE */
3593 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
3594
3595 /* _NEW_SCISSOR */
3596 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
3597
3598 /* _NEW_TRANSFORM */
3599 if (!ctx->Transform.DepthClamp) {
3600 #if GEN_GEN >= 9
3601 raster.ViewportZFarClipTestEnable = true;
3602 raster.ViewportZNearClipTestEnable = true;
3603 #else
3604 raster.ViewportZClipTestEnable = true;
3605 #endif
3606 }
3607
3608 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
3609 #if GEN_GEN >= 9
3610 raster.ConservativeRasterizationEnable =
3611 ctx->IntelConservativeRasterization;
3612 #endif
3613
3614 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
3615 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
3616
3617 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
3618 }
3619 }
3620
3621 static const struct brw_tracked_state genX(raster_state) = {
3622 .dirty = {
3623 .mesa = _NEW_BUFFERS |
3624 _NEW_LINE |
3625 _NEW_MULTISAMPLE |
3626 _NEW_POINT |
3627 _NEW_POLYGON |
3628 _NEW_SCISSOR |
3629 _NEW_TRANSFORM,
3630 .brw = BRW_NEW_BLORP |
3631 BRW_NEW_CONTEXT |
3632 BRW_NEW_CONSERVATIVE_RASTERIZATION,
3633 },
3634 .emit = genX(upload_raster),
3635 };
3636 #endif
3637
3638 /* ---------------------------------------------------------------------- */
3639
3640 #if GEN_GEN >= 8
3641 static void
3642 genX(upload_ps_extra)(struct brw_context *brw)
3643 {
3644 UNUSED struct gl_context *ctx = &brw->ctx;
3645
3646 const struct brw_wm_prog_data *prog_data =
3647 brw_wm_prog_data(brw->wm.base.prog_data);
3648
3649 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
3650 psx.PixelShaderValid = true;
3651 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
3652 psx.PixelShaderKillsPixel = prog_data->uses_kill;
3653 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
3654 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
3655 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
3656 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
3657
3658 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
3659 if (prog_data->uses_sample_mask) {
3660 #if GEN_GEN >= 9
3661 if (prog_data->post_depth_coverage)
3662 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3663 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
3664 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
3665 else
3666 psx.InputCoverageMaskState = ICMS_NORMAL;
3667 #else
3668 psx.PixelShaderUsesInputCoverageMask = true;
3669 #endif
3670 }
3671
3672 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3673 #if GEN_GEN >= 9
3674 psx.PixelShaderPullsBary = prog_data->pulls_bary;
3675 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
3676 #endif
3677
3678 /* The stricter cross-primitive coherency guarantees that the hardware
3679 * gives us with the "Accesses UAV" bit set for at least one shader stage
3680 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
3681 * are redundant within the current image, atomic counter and SSBO GL
3682 * APIs, which all have very loose ordering and coherency requirements
3683 * and generally rely on the application to insert explicit barriers when
3684 * a shader invocation is expected to see the memory writes performed by
3685 * the invocations of some previous primitive. Regardless of the value
3686 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
3687 * cause an in most cases useless DC flush when the lowermost stage with
3688 * the bit set finishes execution.
3689 *
3690 * It would be nice to disable it, but in some cases we can't because on
3691 * Gen8+ it also has an influence on rasterization via the PS UAV-only
3692 * signal (which could be set independently from the coherency mechanism
3693 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
3694 * determine whether the hardware skips execution of the fragment shader
3695 * or not via the ThreadDispatchEnable signal. However if we know that
3696 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
3697 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
3698 * difference so we may just disable it here.
3699 *
3700 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
3701 * take into account KillPixels when no depth or stencil writes are
3702 * enabled. In order for occlusion queries to work correctly with no
3703 * attachments, we need to force-enable here.
3704 *
3705 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
3706 * _NEW_COLOR
3707 */
3708 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
3709 !brw_color_buffer_write_enabled(brw))
3710 psx.PixelShaderHasUAV = true;
3711 }
3712 }
3713
3714 const struct brw_tracked_state genX(ps_extra) = {
3715 .dirty = {
3716 .mesa = _NEW_BUFFERS | _NEW_COLOR,
3717 .brw = BRW_NEW_BLORP |
3718 BRW_NEW_CONTEXT |
3719 BRW_NEW_FRAGMENT_PROGRAM |
3720 BRW_NEW_FS_PROG_DATA |
3721 BRW_NEW_CONSERVATIVE_RASTERIZATION,
3722 },
3723 .emit = genX(upload_ps_extra),
3724 };
3725 #endif
3726
3727 /* ---------------------------------------------------------------------- */
3728
3729 #if GEN_GEN >= 8
3730 static void
3731 genX(upload_ps_blend)(struct brw_context *brw)
3732 {
3733 struct gl_context *ctx = &brw->ctx;
3734
3735 /* _NEW_BUFFERS */
3736 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
3737 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
3738
3739 /* _NEW_COLOR */
3740 struct gl_colorbuffer_attrib *color = &ctx->Color;
3741
3742 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
3743 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
3744 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
3745
3746 if (!buffer0_is_integer) {
3747 /* _NEW_MULTISAMPLE */
3748 pb.AlphaToCoverageEnable =
3749 _mesa_is_multisample_enabled(ctx) &&
3750 ctx->Multisample.SampleAlphaToCoverage;
3751
3752 pb.AlphaTestEnable = color->AlphaEnabled;
3753 }
3754
3755 /* Used for implementing the following bit of GL_EXT_texture_integer:
3756 * "Per-fragment operations that require floating-point color
3757 * components, including multisample alpha operations, alpha test,
3758 * blending, and dithering, have no effect when the corresponding
3759 * colors are written to an integer color buffer."
3760 *
3761 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
3762 * "If drawbuffer zero is not NONE and the buffer it references has an
3763 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
3764 * operations are skipped."
3765 */
3766 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
3767 GLenum eqRGB = color->Blend[0].EquationRGB;
3768 GLenum eqA = color->Blend[0].EquationA;
3769 GLenum srcRGB = color->Blend[0].SrcRGB;
3770 GLenum dstRGB = color->Blend[0].DstRGB;
3771 GLenum srcA = color->Blend[0].SrcA;
3772 GLenum dstA = color->Blend[0].DstA;
3773
3774 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
3775 srcRGB = dstRGB = GL_ONE;
3776
3777 if (eqA == GL_MIN || eqA == GL_MAX)
3778 srcA = dstA = GL_ONE;
3779
3780 /* Due to hardware limitations, the destination may have information
3781 * in an alpha channel even when the format specifies no alpha
3782 * channel. In order to avoid getting any incorrect blending due to
3783 * that alpha channel, coerce the blend factors to values that will
3784 * not read the alpha channel, but will instead use the correct
3785 * implicit value for alpha.
3786 */
3787 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
3788 GL_TEXTURE_ALPHA_TYPE)) {
3789 srcRGB = brw_fix_xRGB_alpha(srcRGB);
3790 srcA = brw_fix_xRGB_alpha(srcA);
3791 dstRGB = brw_fix_xRGB_alpha(dstRGB);
3792 dstA = brw_fix_xRGB_alpha(dstA);
3793 }
3794
3795 pb.ColorBufferBlendEnable = true;
3796 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
3797 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
3798 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
3799 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
3800
3801 pb.IndependentAlphaBlendEnable =
3802 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
3803 }
3804 }
3805 }
3806
3807 static const struct brw_tracked_state genX(ps_blend) = {
3808 .dirty = {
3809 .mesa = _NEW_BUFFERS |
3810 _NEW_COLOR |
3811 _NEW_MULTISAMPLE,
3812 .brw = BRW_NEW_BLORP |
3813 BRW_NEW_CONTEXT |
3814 BRW_NEW_FRAGMENT_PROGRAM,
3815 },
3816 .emit = genX(upload_ps_blend)
3817 };
3818
3819 #endif
3820
3821 /* ---------------------------------------------------------------------- */
3822
3823 #if GEN_GEN == 6
3824 static void
3825 genX(upload_viewport_state_pointers)(struct brw_context *brw)
3826 {
3827 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
3828 vp.CCViewportStateChange = 1;
3829 vp.SFViewportStateChange = 1;
3830 vp.CLIPViewportStateChange = 1;
3831 vp.PointertoCLIP_VIEWPORT = brw->clip.vp_offset;
3832 vp.PointertoSF_VIEWPORT = brw->sf.vp_offset;
3833 vp.PointertoCC_VIEWPORT = brw->cc.vp_offset;
3834 }
3835 }
3836
3837 static const struct brw_tracked_state genX(viewport_state) = {
3838 .dirty = {
3839 .mesa = 0,
3840 .brw = BRW_NEW_BATCH |
3841 BRW_NEW_BLORP |
3842 BRW_NEW_CC_VP |
3843 BRW_NEW_CLIP_VP |
3844 BRW_NEW_SF_VP |
3845 BRW_NEW_STATE_BASE_ADDRESS,
3846 },
3847 .emit = genX(upload_viewport_state_pointers),
3848 };
3849 #endif
3850
3851 /* ---------------------------------------------------------------------- */
3852
3853 void
3854 genX(init_atoms)(struct brw_context *brw)
3855 {
3856 #if GEN_GEN < 6
3857 static const struct brw_tracked_state *render_atoms[] =
3858 {
3859 /* Once all the programs are done, we know how large urb entry
3860 * sizes need to be and can decide if we need to change the urb
3861 * layout.
3862 */
3863 &brw_curbe_offsets,
3864 &brw_recalculate_urb_fence,
3865
3866 &brw_cc_vp,
3867 &brw_cc_unit,
3868
3869 /* Surface state setup. Must come before the VS/WM unit. The binding
3870 * table upload must be last.
3871 */
3872 &brw_vs_pull_constants,
3873 &brw_wm_pull_constants,
3874 &brw_renderbuffer_surfaces,
3875 &brw_renderbuffer_read_surfaces,
3876 &brw_texture_surfaces,
3877 &brw_vs_binding_table,
3878 &brw_wm_binding_table,
3879
3880 &brw_fs_samplers,
3881 &brw_vs_samplers,
3882
3883 /* These set up state for brw_psp_urb_cbs */
3884 &brw_wm_unit,
3885 &brw_sf_vp,
3886 &brw_sf_unit,
3887 &brw_vs_unit, /* always required, enabled or not */
3888 &brw_clip_unit,
3889 &brw_gs_unit,
3890
3891 /* Command packets:
3892 */
3893 &brw_invariant_state,
3894
3895 &brw_binding_table_pointers,
3896 &brw_blend_constant_color,
3897
3898 &brw_depthbuffer,
3899
3900 &genX(polygon_stipple),
3901 &genX(polygon_stipple_offset),
3902
3903 &genX(line_stipple),
3904
3905 &brw_psp_urb_cbs,
3906
3907 &genX(drawing_rect),
3908 &brw_indices, /* must come before brw_vertices */
3909 &brw_index_buffer,
3910 &genX(vertices),
3911
3912 &brw_constant_buffer
3913 };
3914 #elif GEN_GEN == 6
3915 static const struct brw_tracked_state *render_atoms[] =
3916 {
3917 &genX(sf_clip_viewport),
3918
3919 /* Command packets: */
3920
3921 &brw_cc_vp,
3922 &genX(viewport_state), /* must do after *_vp stages */
3923
3924 &gen6_urb,
3925 &genX(blend_state), /* must do before cc unit */
3926 &genX(color_calc_state), /* must do before cc unit */
3927 &genX(depth_stencil_state), /* must do before cc unit */
3928
3929 &genX(vs_push_constants), /* Before vs_state */
3930 &genX(gs_push_constants), /* Before gs_state */
3931 &genX(wm_push_constants), /* Before wm_state */
3932
3933 /* Surface state setup. Must come before the VS/WM unit. The binding
3934 * table upload must be last.
3935 */
3936 &brw_vs_pull_constants,
3937 &brw_vs_ubo_surfaces,
3938 &brw_gs_pull_constants,
3939 &brw_gs_ubo_surfaces,
3940 &brw_wm_pull_constants,
3941 &brw_wm_ubo_surfaces,
3942 &gen6_renderbuffer_surfaces,
3943 &brw_renderbuffer_read_surfaces,
3944 &brw_texture_surfaces,
3945 &gen6_sol_surface,
3946 &brw_vs_binding_table,
3947 &gen6_gs_binding_table,
3948 &brw_wm_binding_table,
3949
3950 &brw_fs_samplers,
3951 &brw_vs_samplers,
3952 &brw_gs_samplers,
3953 &gen6_sampler_state,
3954 &genX(multisample_state),
3955
3956 &genX(vs_state),
3957 &genX(gs_state),
3958 &genX(clip_state),
3959 &genX(sf_state),
3960 &genX(wm_state),
3961
3962 &genX(scissor_state),
3963
3964 &gen6_binding_table_pointers,
3965
3966 &brw_depthbuffer,
3967
3968 &genX(polygon_stipple),
3969 &genX(polygon_stipple_offset),
3970
3971 &genX(line_stipple),
3972
3973 &genX(drawing_rect),
3974
3975 &brw_indices, /* must come before brw_vertices */
3976 &brw_index_buffer,
3977 &genX(vertices),
3978 };
3979 #elif GEN_GEN == 7
3980 static const struct brw_tracked_state *render_atoms[] =
3981 {
3982 /* Command packets: */
3983
3984 &brw_cc_vp,
3985 &genX(sf_clip_viewport),
3986
3987 &gen7_l3_state,
3988 &gen7_push_constant_space,
3989 &gen7_urb,
3990 &genX(blend_state), /* must do before cc unit */
3991 &genX(color_calc_state), /* must do before cc unit */
3992 &genX(depth_stencil_state), /* must do before cc unit */
3993
3994 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
3995 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
3996 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
3997 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
3998 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
3999
4000 &genX(vs_push_constants), /* Before vs_state */
4001 &genX(tcs_push_constants),
4002 &genX(tes_push_constants),
4003 &genX(gs_push_constants), /* Before gs_state */
4004 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4005
4006 /* Surface state setup. Must come before the VS/WM unit. The binding
4007 * table upload must be last.
4008 */
4009 &brw_vs_pull_constants,
4010 &brw_vs_ubo_surfaces,
4011 &brw_vs_abo_surfaces,
4012 &brw_tcs_pull_constants,
4013 &brw_tcs_ubo_surfaces,
4014 &brw_tcs_abo_surfaces,
4015 &brw_tes_pull_constants,
4016 &brw_tes_ubo_surfaces,
4017 &brw_tes_abo_surfaces,
4018 &brw_gs_pull_constants,
4019 &brw_gs_ubo_surfaces,
4020 &brw_gs_abo_surfaces,
4021 &brw_wm_pull_constants,
4022 &brw_wm_ubo_surfaces,
4023 &brw_wm_abo_surfaces,
4024 &gen6_renderbuffer_surfaces,
4025 &brw_renderbuffer_read_surfaces,
4026 &brw_texture_surfaces,
4027 &brw_vs_binding_table,
4028 &brw_tcs_binding_table,
4029 &brw_tes_binding_table,
4030 &brw_gs_binding_table,
4031 &brw_wm_binding_table,
4032
4033 &brw_fs_samplers,
4034 &brw_vs_samplers,
4035 &brw_tcs_samplers,
4036 &brw_tes_samplers,
4037 &brw_gs_samplers,
4038 &genX(multisample_state),
4039
4040 &genX(vs_state),
4041 &genX(hs_state),
4042 &genX(te_state),
4043 &genX(ds_state),
4044 &genX(gs_state),
4045 &genX(sol_state),
4046 &genX(clip_state),
4047 &genX(sbe_state),
4048 &genX(sf_state),
4049 &genX(wm_state),
4050 &genX(ps_state),
4051
4052 &genX(scissor_state),
4053
4054 &gen7_depthbuffer,
4055
4056 &genX(polygon_stipple),
4057 &genX(polygon_stipple_offset),
4058
4059 &genX(line_stipple),
4060
4061 &genX(drawing_rect),
4062
4063 &brw_indices, /* must come before brw_vertices */
4064 &brw_index_buffer,
4065 &genX(vertices),
4066
4067 #if GEN_IS_HASWELL
4068 &genX(cut_index),
4069 #endif
4070 };
4071 #elif GEN_GEN >= 8
4072 static const struct brw_tracked_state *render_atoms[] =
4073 {
4074 &brw_cc_vp,
4075 &genX(sf_clip_viewport),
4076
4077 &gen7_l3_state,
4078 &gen7_push_constant_space,
4079 &gen7_urb,
4080 &genX(blend_state),
4081 &genX(color_calc_state),
4082
4083 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
4084 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
4085 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
4086 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
4087 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
4088
4089 &genX(vs_push_constants), /* Before vs_state */
4090 &genX(tcs_push_constants),
4091 &genX(tes_push_constants),
4092 &genX(gs_push_constants), /* Before gs_state */
4093 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
4094
4095 /* Surface state setup. Must come before the VS/WM unit. The binding
4096 * table upload must be last.
4097 */
4098 &brw_vs_pull_constants,
4099 &brw_vs_ubo_surfaces,
4100 &brw_vs_abo_surfaces,
4101 &brw_tcs_pull_constants,
4102 &brw_tcs_ubo_surfaces,
4103 &brw_tcs_abo_surfaces,
4104 &brw_tes_pull_constants,
4105 &brw_tes_ubo_surfaces,
4106 &brw_tes_abo_surfaces,
4107 &brw_gs_pull_constants,
4108 &brw_gs_ubo_surfaces,
4109 &brw_gs_abo_surfaces,
4110 &brw_wm_pull_constants,
4111 &brw_wm_ubo_surfaces,
4112 &brw_wm_abo_surfaces,
4113 &gen6_renderbuffer_surfaces,
4114 &brw_renderbuffer_read_surfaces,
4115 &brw_texture_surfaces,
4116 &brw_vs_binding_table,
4117 &brw_tcs_binding_table,
4118 &brw_tes_binding_table,
4119 &brw_gs_binding_table,
4120 &brw_wm_binding_table,
4121
4122 &brw_fs_samplers,
4123 &brw_vs_samplers,
4124 &brw_tcs_samplers,
4125 &brw_tes_samplers,
4126 &brw_gs_samplers,
4127 &genX(multisample_state),
4128
4129 &genX(vs_state),
4130 &genX(hs_state),
4131 &genX(te_state),
4132 &genX(ds_state),
4133 &genX(gs_state),
4134 &genX(sol_state),
4135 &genX(clip_state),
4136 &genX(raster_state),
4137 &genX(sbe_state),
4138 &genX(sf_state),
4139 &genX(ps_blend),
4140 &genX(ps_extra),
4141 &genX(ps_state),
4142 &genX(depth_stencil_state),
4143 &genX(wm_state),
4144
4145 &genX(scissor_state),
4146
4147 &gen7_depthbuffer,
4148
4149 &genX(polygon_stipple),
4150 &genX(polygon_stipple_offset),
4151
4152 &genX(line_stipple),
4153
4154 &genX(drawing_rect),
4155
4156 &gen8_vf_topology,
4157
4158 &brw_indices,
4159 &gen8_index_buffer,
4160 &genX(vertices),
4161
4162 &genX(cut_index),
4163 &gen8_pma_fix,
4164 };
4165 #endif
4166
4167 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
4168 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
4169 render_atoms, ARRAY_SIZE(render_atoms));
4170
4171 #if GEN_GEN >= 7
4172 static const struct brw_tracked_state *compute_atoms[] =
4173 {
4174 &gen7_l3_state,
4175 &brw_cs_image_surfaces,
4176 &gen7_cs_push_constants,
4177 &brw_cs_pull_constants,
4178 &brw_cs_ubo_surfaces,
4179 &brw_cs_abo_surfaces,
4180 &brw_cs_texture_surfaces,
4181 &brw_cs_work_groups_surface,
4182 &brw_cs_samplers,
4183 &brw_cs_state,
4184 };
4185
4186 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
4187 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
4188 compute_atoms, ARRAY_SIZE(compute_atoms));
4189 #endif
4190 }