i965: Call gen6_upload_push_constants() even when the stage is disabled.
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "common/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35
36 #include "brw_context.h"
37 #if GEN_GEN == 6
38 #include "brw_defines.h"
39 #endif
40 #include "brw_draw.h"
41 #include "brw_multisample_state.h"
42 #include "brw_state.h"
43 #include "brw_wm.h"
44 #include "brw_util.h"
45
46 #include "intel_batchbuffer.h"
47 #include "intel_buffer_objects.h"
48 #include "intel_fbo.h"
49
50 #include "main/enums.h"
51 #include "main/fbobject.h"
52 #include "main/framebuffer.h"
53 #include "main/glformats.h"
54 #include "main/samplerobj.h"
55 #include "main/shaderapi.h"
56 #include "main/stencil.h"
57 #include "main/transformfeedback.h"
58 #include "main/varray.h"
59 #include "main/viewport.h"
60 #include "util/half_float.h"
61
62 UNUSED static void *
63 emit_dwords(struct brw_context *brw, unsigned n)
64 {
65 intel_batchbuffer_begin(brw, n, RENDER_RING);
66 uint32_t *map = brw->batch.map_next;
67 brw->batch.map_next += n;
68 intel_batchbuffer_advance(brw);
69 return map;
70 }
71
72 struct brw_address {
73 struct brw_bo *bo;
74 unsigned reloc_flags;
75 uint32_t offset;
76 };
77
78 #define __gen_address_type struct brw_address
79 #define __gen_user_data struct brw_context
80
81 static uint64_t
82 __gen_combine_address(struct brw_context *brw, void *location,
83 struct brw_address address, uint32_t delta)
84 {
85 struct intel_batchbuffer *batch = &brw->batch;
86 uint32_t offset;
87
88 if (address.bo == NULL) {
89 return address.offset + delta;
90 } else {
91 if (GEN_GEN < 6 && brw_ptr_in_state_buffer(batch, location)) {
92 offset = (char *) location - (char *) brw->batch.state_map;
93 return brw_state_reloc(batch, offset, address.bo,
94 address.offset + delta,
95 address.reloc_flags);
96 }
97
98 assert(!brw_ptr_in_state_buffer(batch, location));
99
100 offset = (char *) location - (char *) brw->batch.map;
101 return brw_batch_reloc(batch, offset, address.bo,
102 address.offset + delta,
103 address.reloc_flags);
104 }
105 }
106
107 static struct brw_address
108 rw_bo(struct brw_bo *bo, uint32_t offset)
109 {
110 return (struct brw_address) {
111 .bo = bo,
112 .offset = offset,
113 .reloc_flags = RELOC_WRITE,
114 };
115 }
116
117 static struct brw_address
118 ro_bo(struct brw_bo *bo, uint32_t offset)
119 {
120 return (struct brw_address) {
121 .bo = bo,
122 .offset = offset,
123 };
124 }
125
126 UNUSED static struct brw_address
127 ggtt_bo(struct brw_bo *bo, uint32_t offset)
128 {
129 return (struct brw_address) {
130 .bo = bo,
131 .offset = offset,
132 .reloc_flags = RELOC_WRITE | RELOC_NEEDS_GGTT,
133 };
134 }
135
136 #if GEN_GEN == 4
137 static struct brw_address
138 KSP(struct brw_context *brw, uint32_t offset)
139 {
140 return ro_bo(brw->cache.bo, offset);
141 }
142 #else
143 static uint32_t
144 KSP(struct brw_context *brw, uint32_t offset)
145 {
146 return offset;
147 }
148 #endif
149
150 #include "genxml/genX_pack.h"
151
152 #define _brw_cmd_length(cmd) cmd ## _length
153 #define _brw_cmd_length_bias(cmd) cmd ## _length_bias
154 #define _brw_cmd_header(cmd) cmd ## _header
155 #define _brw_cmd_pack(cmd) cmd ## _pack
156
157 #define brw_batch_emit(brw, cmd, name) \
158 for (struct cmd name = { _brw_cmd_header(cmd) }, \
159 *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \
160 __builtin_expect(_dst != NULL, 1); \
161 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
162 _dst = NULL)
163
164 #define brw_batch_emitn(brw, cmd, n, ...) ({ \
165 uint32_t *_dw = emit_dwords(brw, n); \
166 struct cmd template = { \
167 _brw_cmd_header(cmd), \
168 .DWordLength = n - _brw_cmd_length_bias(cmd), \
169 __VA_ARGS__ \
170 }; \
171 _brw_cmd_pack(cmd)(brw, _dw, &template); \
172 _dw + 1; /* Array starts at dw[1] */ \
173 })
174
175 #define brw_state_emit(brw, cmd, align, offset, name) \
176 for (struct cmd name = {}, \
177 *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \
178 align, offset); \
179 __builtin_expect(_dst != NULL, 1); \
180 _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \
181 _dst = NULL)
182
183 /**
184 * Polygon stipple packet
185 */
186 static void
187 genX(upload_polygon_stipple)(struct brw_context *brw)
188 {
189 struct gl_context *ctx = &brw->ctx;
190
191 /* _NEW_POLYGON */
192 if (!ctx->Polygon.StippleFlag)
193 return;
194
195 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
196 /* Polygon stipple is provided in OpenGL order, i.e. bottom
197 * row first. If we're rendering to a window (i.e. the
198 * default frame buffer object, 0), then we need to invert
199 * it to match our pixel layout. But if we're rendering
200 * to a FBO (i.e. any named frame buffer object), we *don't*
201 * need to invert - we already match the layout.
202 */
203 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
204 for (unsigned i = 0; i < 32; i++)
205 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
206 } else {
207 for (unsigned i = 0; i < 32; i++)
208 poly.PatternRow[i] = ctx->PolygonStipple[i];
209 }
210 }
211 }
212
213 static const struct brw_tracked_state genX(polygon_stipple) = {
214 .dirty = {
215 .mesa = _NEW_POLYGON |
216 _NEW_POLYGONSTIPPLE,
217 .brw = BRW_NEW_CONTEXT,
218 },
219 .emit = genX(upload_polygon_stipple),
220 };
221
222 /**
223 * Polygon stipple offset packet
224 */
225 static void
226 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
227 {
228 struct gl_context *ctx = &brw->ctx;
229
230 /* _NEW_POLYGON */
231 if (!ctx->Polygon.StippleFlag)
232 return;
233
234 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
235 /* _NEW_BUFFERS
236 *
237 * If we're drawing to a system window we have to invert the Y axis
238 * in order to match the OpenGL pixel coordinate system, and our
239 * offset must be matched to the window position. If we're drawing
240 * to a user-created FBO then our native pixel coordinate system
241 * works just fine, and there's no window system to worry about.
242 */
243 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
244 poly.PolygonStippleYOffset =
245 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
246 }
247 }
248 }
249
250 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
251 .dirty = {
252 .mesa = _NEW_BUFFERS |
253 _NEW_POLYGON,
254 .brw = BRW_NEW_CONTEXT,
255 },
256 .emit = genX(upload_polygon_stipple_offset),
257 };
258
259 /**
260 * Line stipple packet
261 */
262 static void
263 genX(upload_line_stipple)(struct brw_context *brw)
264 {
265 struct gl_context *ctx = &brw->ctx;
266
267 if (!ctx->Line.StippleFlag)
268 return;
269
270 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
271 line.LineStipplePattern = ctx->Line.StipplePattern;
272
273 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
274 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
275 }
276 }
277
278 static const struct brw_tracked_state genX(line_stipple) = {
279 .dirty = {
280 .mesa = _NEW_LINE,
281 .brw = BRW_NEW_CONTEXT,
282 },
283 .emit = genX(upload_line_stipple),
284 };
285
286 /* Constant single cliprect for framebuffer object or DRI2 drawing */
287 static void
288 genX(upload_drawing_rect)(struct brw_context *brw)
289 {
290 struct gl_context *ctx = &brw->ctx;
291 const struct gl_framebuffer *fb = ctx->DrawBuffer;
292 const unsigned int fb_width = _mesa_geometric_width(fb);
293 const unsigned int fb_height = _mesa_geometric_height(fb);
294
295 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
296 rect.ClippedDrawingRectangleXMax = fb_width - 1;
297 rect.ClippedDrawingRectangleYMax = fb_height - 1;
298 }
299 }
300
301 static const struct brw_tracked_state genX(drawing_rect) = {
302 .dirty = {
303 .mesa = _NEW_BUFFERS,
304 .brw = BRW_NEW_BLORP |
305 BRW_NEW_CONTEXT,
306 },
307 .emit = genX(upload_drawing_rect),
308 };
309
310 static uint32_t *
311 genX(emit_vertex_buffer_state)(struct brw_context *brw,
312 uint32_t *dw,
313 unsigned buffer_nr,
314 struct brw_bo *bo,
315 unsigned start_offset,
316 unsigned end_offset,
317 unsigned stride,
318 unsigned step_rate)
319 {
320 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
321 .VertexBufferIndex = buffer_nr,
322 .BufferPitch = stride,
323 .BufferStartingAddress = ro_bo(bo, start_offset),
324 #if GEN_GEN >= 8
325 .BufferSize = end_offset - start_offset,
326 #endif
327
328 #if GEN_GEN >= 7
329 .AddressModifyEnable = true,
330 #endif
331
332 #if GEN_GEN < 8
333 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
334 .InstanceDataStepRate = step_rate,
335 #if GEN_GEN >= 5
336 .EndAddress = ro_bo(bo, end_offset - 1),
337 #endif
338 #endif
339
340 #if GEN_GEN == 10
341 .VertexBufferMOCS = CNL_MOCS_WB,
342 #elif GEN_GEN == 9
343 .VertexBufferMOCS = SKL_MOCS_WB,
344 #elif GEN_GEN == 8
345 .VertexBufferMOCS = BDW_MOCS_WB,
346 #elif GEN_GEN == 7
347 .VertexBufferMOCS = GEN7_MOCS_L3,
348 #endif
349 };
350
351 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
352 return dw + GENX(VERTEX_BUFFER_STATE_length);
353 }
354
355 UNUSED static bool
356 is_passthru_format(uint32_t format)
357 {
358 switch (format) {
359 case ISL_FORMAT_R64_PASSTHRU:
360 case ISL_FORMAT_R64G64_PASSTHRU:
361 case ISL_FORMAT_R64G64B64_PASSTHRU:
362 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
363 return true;
364 default:
365 return false;
366 }
367 }
368
369 UNUSED static int
370 uploads_needed(uint32_t format)
371 {
372 if (!is_passthru_format(format))
373 return 1;
374
375 switch (format) {
376 case ISL_FORMAT_R64_PASSTHRU:
377 case ISL_FORMAT_R64G64_PASSTHRU:
378 return 1;
379 case ISL_FORMAT_R64G64B64_PASSTHRU:
380 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
381 return 2;
382 default:
383 unreachable("not reached");
384 }
385 }
386
387 /*
388 * Returns the format that we are finally going to use when upload a vertex
389 * element. It will only change if we are using *64*PASSTHRU formats, as for
390 * gen < 8 they need to be splitted on two *32*FLOAT formats.
391 *
392 * @upload points in which upload we are. Valid values are [0,1]
393 */
394 static uint32_t
395 downsize_format_if_needed(uint32_t format,
396 int upload)
397 {
398 assert(upload == 0 || upload == 1);
399
400 if (!is_passthru_format(format))
401 return format;
402
403 switch (format) {
404 case ISL_FORMAT_R64_PASSTHRU:
405 return ISL_FORMAT_R32G32_FLOAT;
406 case ISL_FORMAT_R64G64_PASSTHRU:
407 return ISL_FORMAT_R32G32B32A32_FLOAT;
408 case ISL_FORMAT_R64G64B64_PASSTHRU:
409 return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT
410 : ISL_FORMAT_R32G32_FLOAT;
411 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
412 return ISL_FORMAT_R32G32B32A32_FLOAT;
413 default:
414 unreachable("not reached");
415 }
416 }
417
418 /*
419 * Returns the number of componentes associated with a format that is used on
420 * a 64 to 32 format split. See downsize_format()
421 */
422 static int
423 upload_format_size(uint32_t upload_format)
424 {
425 switch (upload_format) {
426 case ISL_FORMAT_R32G32_FLOAT:
427 return 2;
428 case ISL_FORMAT_R32G32B32A32_FLOAT:
429 return 4;
430 default:
431 unreachable("not reached");
432 }
433 }
434
435 static void
436 genX(emit_vertices)(struct brw_context *brw)
437 {
438 const struct gen_device_info *devinfo = &brw->screen->devinfo;
439 uint32_t *dw;
440
441 brw_prepare_vertices(brw);
442 brw_prepare_shader_draw_parameters(brw);
443
444 #if GEN_GEN < 6
445 brw_emit_query_begin(brw);
446 #endif
447
448 const struct brw_vs_prog_data *vs_prog_data =
449 brw_vs_prog_data(brw->vs.base.prog_data);
450
451 #if GEN_GEN >= 8
452 struct gl_context *ctx = &brw->ctx;
453 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
454 ctx->Polygon.BackMode != GL_FILL);
455
456 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
457 unsigned vue = brw->vb.nr_enabled;
458
459 /* The element for the edge flags must always be last, so we have to
460 * insert the SGVS before it in that case.
461 */
462 if (uses_edge_flag) {
463 assert(vue > 0);
464 vue--;
465 }
466
467 WARN_ONCE(vue >= 33,
468 "Trying to insert VID/IID past 33rd vertex element, "
469 "need to reorder the vertex attrbutes.");
470
471 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
472 if (vs_prog_data->uses_vertexid) {
473 vfs.VertexIDEnable = true;
474 vfs.VertexIDComponentNumber = 2;
475 vfs.VertexIDElementOffset = vue;
476 }
477
478 if (vs_prog_data->uses_instanceid) {
479 vfs.InstanceIDEnable = true;
480 vfs.InstanceIDComponentNumber = 3;
481 vfs.InstanceIDElementOffset = vue;
482 }
483 }
484
485 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
486 vfi.InstancingEnable = true;
487 vfi.VertexElementIndex = vue;
488 }
489 } else {
490 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
491 }
492
493 /* Normally we don't need an element for the SGVS attribute because the
494 * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an
495 * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if
496 * we're using draw parameters then we need an element for the those
497 * values. Additionally if there is an edge flag element then the SGVS
498 * can't be inserted past that so we need a dummy element to ensure that
499 * the edge flag is the last one.
500 */
501 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
502 vs_prog_data->uses_baseinstance ||
503 ((vs_prog_data->uses_instanceid ||
504 vs_prog_data->uses_vertexid)
505 && uses_edge_flag));
506 #else
507 const bool needs_sgvs_element = (vs_prog_data->uses_basevertex ||
508 vs_prog_data->uses_baseinstance ||
509 vs_prog_data->uses_instanceid ||
510 vs_prog_data->uses_vertexid);
511 #endif
512 unsigned nr_elements =
513 brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid;
514
515 #if GEN_GEN < 8
516 /* If any of the formats of vb.enabled needs more that one upload, we need
517 * to add it to nr_elements
518 */
519 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
520 struct brw_vertex_element *input = brw->vb.enabled[i];
521 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
522
523 if (uploads_needed(format) > 1)
524 nr_elements++;
525 }
526 #endif
527
528 /* If the VS doesn't read any inputs (calculating vertex position from
529 * a state variable for some reason, for example), emit a single pad
530 * VERTEX_ELEMENT struct and bail.
531 *
532 * The stale VB state stays in place, but they don't do anything unless
533 * a VE loads from them.
534 */
535 if (nr_elements == 0) {
536 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
537 1 + GENX(VERTEX_ELEMENT_STATE_length));
538 struct GENX(VERTEX_ELEMENT_STATE) elem = {
539 .Valid = true,
540 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
541 .Component0Control = VFCOMP_STORE_0,
542 .Component1Control = VFCOMP_STORE_0,
543 .Component2Control = VFCOMP_STORE_0,
544 .Component3Control = VFCOMP_STORE_1_FP,
545 };
546 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
547 return;
548 }
549
550 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
551 const bool uses_draw_params =
552 vs_prog_data->uses_basevertex ||
553 vs_prog_data->uses_baseinstance;
554 const unsigned nr_buffers = brw->vb.nr_buffers +
555 uses_draw_params + vs_prog_data->uses_drawid;
556
557 if (nr_buffers) {
558 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
559
560 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
561 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
562
563 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
564 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
565 /* Prior to Haswell and Bay Trail we have to use 4-component formats
566 * to fake 3-component ones. In particular, we do this for
567 * half-float and 8 and 16-bit integer formats. This means that the
568 * vertex element may poke over the end of the buffer by 2 bytes.
569 */
570 const unsigned padding =
571 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
572 const unsigned end = buffer->offset + buffer->size + padding;
573 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
574 buffer->offset,
575 end,
576 buffer->stride,
577 buffer->step_rate);
578 }
579
580 if (uses_draw_params) {
581 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
582 brw->draw.draw_params_bo,
583 brw->draw.draw_params_offset,
584 brw->draw.draw_params_bo->size,
585 0 /* stride */,
586 0 /* step rate */);
587 }
588
589 if (vs_prog_data->uses_drawid) {
590 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
591 brw->draw.draw_id_bo,
592 brw->draw.draw_id_offset,
593 brw->draw.draw_id_bo->size,
594 0 /* stride */,
595 0 /* step rate */);
596 }
597 }
598
599 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
600 * presumably for VertexID/InstanceID.
601 */
602 #if GEN_GEN >= 6
603 assert(nr_elements <= 34);
604 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
605 #else
606 assert(nr_elements <= 18);
607 #endif
608
609 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
610 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
611 unsigned i;
612 for (i = 0; i < brw->vb.nr_enabled; i++) {
613 const struct brw_vertex_element *input = brw->vb.enabled[i];
614 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
615 uint32_t comp0 = VFCOMP_STORE_SRC;
616 uint32_t comp1 = VFCOMP_STORE_SRC;
617 uint32_t comp2 = VFCOMP_STORE_SRC;
618 uint32_t comp3 = VFCOMP_STORE_SRC;
619 const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1;
620
621 #if GEN_GEN >= 8
622 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
623 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
624 * element which has edge flag enabled."
625 */
626 assert(!(is_passthru_format(format) && uses_edge_flag));
627 #endif
628
629 /* The gen4 driver expects edgeflag to come in as a float, and passes
630 * that float on to the tests in the clipper. Mesa's current vertex
631 * attribute value for EdgeFlag is stored as a float, which works out.
632 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
633 * integer ubyte. Just rewrite that to convert to a float.
634 *
635 * Gen6+ passes edgeflag as sideband along with the vertex, instead
636 * of in the VUE. We have to upload it sideband as the last vertex
637 * element according to the B-Spec.
638 */
639 #if GEN_GEN >= 6
640 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
641 gen6_edgeflag_input = input;
642 continue;
643 }
644 #endif
645
646 for (unsigned c = 0; c < num_uploads; c++) {
647 const uint32_t upload_format = GEN_GEN >= 8 ? format :
648 downsize_format_if_needed(format, c);
649 /* If we need more that one upload, the offset stride would be 128
650 * bits (16 bytes), as for previous uploads we are using the full
651 * entry. */
652 const unsigned offset = input->offset + c * 16;
653
654 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
655 upload_format_size(upload_format) : input->glarray->Size;
656
657 switch (size) {
658 case 0: comp0 = VFCOMP_STORE_0;
659 case 1: comp1 = VFCOMP_STORE_0;
660 case 2: comp2 = VFCOMP_STORE_0;
661 case 3:
662 if (GEN_GEN >= 8 && input->glarray->Doubles) {
663 comp3 = VFCOMP_STORE_0;
664 } else if (input->glarray->Integer) {
665 comp3 = VFCOMP_STORE_1_INT;
666 } else {
667 comp3 = VFCOMP_STORE_1_FP;
668 }
669
670 break;
671 }
672
673 #if GEN_GEN >= 8
674 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
675 *
676 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
677 * formats, 64-bit components are stored in the URB without any
678 * conversion. In this case, vertex elements must be written as 128
679 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
680 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
681 * component into the URB, Component 1 must be specified as
682 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
683 * order to output a 128-bit vertex element, or Components 1-3 must
684 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
685 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
686 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
687 * vertex element."
688 */
689 if (input->glarray->Doubles && !input->is_dual_slot) {
690 /* Store vertex elements which correspond to double and dvec2 vertex
691 * shader inputs as 128-bit vertex elements, instead of 256-bits.
692 */
693 comp2 = VFCOMP_NOSTORE;
694 comp3 = VFCOMP_NOSTORE;
695 }
696 #endif
697
698 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
699 .VertexBufferIndex = input->buffer,
700 .Valid = true,
701 .SourceElementFormat = upload_format,
702 .SourceElementOffset = offset,
703 .Component0Control = comp0,
704 .Component1Control = comp1,
705 .Component2Control = comp2,
706 .Component3Control = comp3,
707 #if GEN_GEN < 5
708 .DestinationElementOffset = i * 4,
709 #endif
710 };
711
712 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
713 dw += GENX(VERTEX_ELEMENT_STATE_length);
714 }
715 }
716
717 if (needs_sgvs_element) {
718 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
719 .Valid = true,
720 .Component0Control = VFCOMP_STORE_0,
721 .Component1Control = VFCOMP_STORE_0,
722 .Component2Control = VFCOMP_STORE_0,
723 .Component3Control = VFCOMP_STORE_0,
724 #if GEN_GEN < 5
725 .DestinationElementOffset = i * 4,
726 #endif
727 };
728
729 #if GEN_GEN >= 8
730 if (vs_prog_data->uses_basevertex ||
731 vs_prog_data->uses_baseinstance) {
732 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
733 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
734 elem_state.Component0Control = VFCOMP_STORE_SRC;
735 elem_state.Component1Control = VFCOMP_STORE_SRC;
736 }
737 #else
738 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
739 elem_state.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT;
740 if (vs_prog_data->uses_basevertex)
741 elem_state.Component0Control = VFCOMP_STORE_SRC;
742
743 if (vs_prog_data->uses_baseinstance)
744 elem_state.Component1Control = VFCOMP_STORE_SRC;
745
746 if (vs_prog_data->uses_vertexid)
747 elem_state.Component2Control = VFCOMP_STORE_VID;
748
749 if (vs_prog_data->uses_instanceid)
750 elem_state.Component3Control = VFCOMP_STORE_IID;
751 #endif
752
753 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
754 dw += GENX(VERTEX_ELEMENT_STATE_length);
755 }
756
757 if (vs_prog_data->uses_drawid) {
758 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
759 .Valid = true,
760 .VertexBufferIndex = brw->vb.nr_buffers + 1,
761 .SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
762 .Component0Control = VFCOMP_STORE_SRC,
763 .Component1Control = VFCOMP_STORE_0,
764 .Component2Control = VFCOMP_STORE_0,
765 .Component3Control = VFCOMP_STORE_0,
766 #if GEN_GEN < 5
767 .DestinationElementOffset = i * 4,
768 #endif
769 };
770
771 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
772 dw += GENX(VERTEX_ELEMENT_STATE_length);
773 }
774
775 #if GEN_GEN >= 6
776 if (gen6_edgeflag_input) {
777 const uint32_t format =
778 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
779
780 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
781 .Valid = true,
782 .VertexBufferIndex = gen6_edgeflag_input->buffer,
783 .EdgeFlagEnable = true,
784 .SourceElementFormat = format,
785 .SourceElementOffset = gen6_edgeflag_input->offset,
786 .Component0Control = VFCOMP_STORE_SRC,
787 .Component1Control = VFCOMP_STORE_0,
788 .Component2Control = VFCOMP_STORE_0,
789 .Component3Control = VFCOMP_STORE_0,
790 };
791
792 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
793 dw += GENX(VERTEX_ELEMENT_STATE_length);
794 }
795 #endif
796
797 #if GEN_GEN >= 8
798 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
799 const struct brw_vertex_element *input = brw->vb.enabled[i];
800 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
801 unsigned element_index;
802
803 /* The edge flag element is reordered to be the last one in the code
804 * above so we need to compensate for that in the element indices used
805 * below.
806 */
807 if (input == gen6_edgeflag_input)
808 element_index = nr_elements - 1;
809 else
810 element_index = j++;
811
812 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
813 vfi.VertexElementIndex = element_index;
814 vfi.InstancingEnable = buffer->step_rate != 0;
815 vfi.InstanceDataStepRate = buffer->step_rate;
816 }
817 }
818
819 if (vs_prog_data->uses_drawid) {
820 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
821
822 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
823 vfi.VertexElementIndex = element;
824 }
825 }
826 #endif
827 }
828
829 static const struct brw_tracked_state genX(vertices) = {
830 .dirty = {
831 .mesa = _NEW_POLYGON,
832 .brw = BRW_NEW_BATCH |
833 BRW_NEW_BLORP |
834 BRW_NEW_VERTICES |
835 BRW_NEW_VS_PROG_DATA,
836 },
837 .emit = genX(emit_vertices),
838 };
839
840 static void
841 genX(emit_index_buffer)(struct brw_context *brw)
842 {
843 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
844
845 if (index_buffer == NULL)
846 return;
847
848 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
849 #if GEN_GEN < 8 && !GEN_IS_HASWELL
850 ib.CutIndexEnable = brw->prim_restart.enable_cut_index;
851 #endif
852 ib.IndexFormat = brw_get_index_type(index_buffer->index_size);
853 ib.BufferStartingAddress = ro_bo(brw->ib.bo, 0);
854 #if GEN_GEN >= 8
855 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
856 ib.BufferSize = brw->ib.size;
857 #else
858 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
859 #endif
860 }
861 }
862
863 static const struct brw_tracked_state genX(index_buffer) = {
864 .dirty = {
865 .mesa = 0,
866 .brw = BRW_NEW_BATCH |
867 BRW_NEW_BLORP |
868 BRW_NEW_INDEX_BUFFER,
869 },
870 .emit = genX(emit_index_buffer),
871 };
872
873 #if GEN_IS_HASWELL || GEN_GEN >= 8
874 static void
875 genX(upload_cut_index)(struct brw_context *brw)
876 {
877 const struct gl_context *ctx = &brw->ctx;
878
879 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
880 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
881 vf.IndexedDrawCutIndexEnable = true;
882 vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size);
883 }
884 }
885 }
886
887 const struct brw_tracked_state genX(cut_index) = {
888 .dirty = {
889 .mesa = _NEW_TRANSFORM,
890 .brw = BRW_NEW_INDEX_BUFFER,
891 },
892 .emit = genX(upload_cut_index),
893 };
894 #endif
895
896 #if GEN_GEN >= 6
897 /**
898 * Determine the appropriate attribute override value to store into the
899 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
900 * override value contains two pieces of information: the location of the
901 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
902 * flag indicating whether to "swizzle" the attribute based on the direction
903 * the triangle is facing.
904 *
905 * If an attribute is "swizzled", then the given VUE location is used for
906 * front-facing triangles, and the VUE location that immediately follows is
907 * used for back-facing triangles. We use this to implement the mapping from
908 * gl_FrontColor/gl_BackColor to gl_Color.
909 *
910 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
911 * being instructed to begin reading attribute data. It can be set to a
912 * nonzero value to prevent the SF unit from wasting time reading elements of
913 * the VUE that are not needed by the fragment shader. It is measured in
914 * 256-bit increments.
915 */
916 static void
917 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
918 const struct brw_vue_map *vue_map,
919 int urb_entry_read_offset, int fs_attr,
920 bool two_side_color, uint32_t *max_source_attr)
921 {
922 /* Find the VUE slot for this attribute. */
923 int slot = vue_map->varying_to_slot[fs_attr];
924
925 /* Viewport and Layer are stored in the VUE header. We need to override
926 * them to zero if earlier stages didn't write them, as GL requires that
927 * they read back as zero when not explicitly set.
928 */
929 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
930 attr->ComponentOverrideX = true;
931 attr->ComponentOverrideW = true;
932 attr->ConstantSource = CONST_0000;
933
934 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
935 attr->ComponentOverrideY = true;
936 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
937 attr->ComponentOverrideZ = true;
938
939 return;
940 }
941
942 /* If there was only a back color written but not front, use back
943 * as the color instead of undefined
944 */
945 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
946 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
947 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
948 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
949
950 if (slot == -1) {
951 /* This attribute does not exist in the VUE--that means that the vertex
952 * shader did not write to it. This means that either:
953 *
954 * (a) This attribute is a texture coordinate, and it is going to be
955 * replaced with point coordinates (as a consequence of a call to
956 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
957 * hardware will ignore whatever attribute override we supply.
958 *
959 * (b) This attribute is read by the fragment shader but not written by
960 * the vertex shader, so its value is undefined. Therefore the
961 * attribute override we supply doesn't matter.
962 *
963 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
964 * previous shader stage.
965 *
966 * Note that we don't have to worry about the cases where the attribute
967 * is gl_PointCoord or is undergoing point sprite coordinate
968 * replacement, because in those cases, this function isn't called.
969 *
970 * In case (c), we need to program the attribute overrides so that the
971 * primitive ID will be stored in this slot. In every other case, the
972 * attribute override we supply doesn't matter. So just go ahead and
973 * program primitive ID in every case.
974 */
975 attr->ComponentOverrideW = true;
976 attr->ComponentOverrideX = true;
977 attr->ComponentOverrideY = true;
978 attr->ComponentOverrideZ = true;
979 attr->ConstantSource = PRIM_ID;
980 return;
981 }
982
983 /* Compute the location of the attribute relative to urb_entry_read_offset.
984 * Each increment of urb_entry_read_offset represents a 256-bit value, so
985 * it counts for two 128-bit VUE slots.
986 */
987 int source_attr = slot - 2 * urb_entry_read_offset;
988 assert(source_attr >= 0 && source_attr < 32);
989
990 /* If we are doing two-sided color, and the VUE slot following this one
991 * represents a back-facing color, then we need to instruct the SF unit to
992 * do back-facing swizzling.
993 */
994 bool swizzling = two_side_color &&
995 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
996 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
997 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
998 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
999
1000 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1001 if (*max_source_attr < source_attr + swizzling)
1002 *max_source_attr = source_attr + swizzling;
1003
1004 attr->SourceAttribute = source_attr;
1005 if (swizzling)
1006 attr->SwizzleSelect = INPUTATTR_FACING;
1007 }
1008
1009
1010 static void
1011 genX(calculate_attr_overrides)(const struct brw_context *brw,
1012 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1013 uint32_t *point_sprite_enables,
1014 uint32_t *urb_entry_read_length,
1015 uint32_t *urb_entry_read_offset)
1016 {
1017 const struct gl_context *ctx = &brw->ctx;
1018
1019 /* _NEW_POINT */
1020 const struct gl_point_attrib *point = &ctx->Point;
1021
1022 /* BRW_NEW_FRAGMENT_PROGRAM */
1023 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1024
1025 /* BRW_NEW_FS_PROG_DATA */
1026 const struct brw_wm_prog_data *wm_prog_data =
1027 brw_wm_prog_data(brw->wm.base.prog_data);
1028 uint32_t max_source_attr = 0;
1029
1030 *point_sprite_enables = 0;
1031
1032 int first_slot =
1033 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1034 &brw->vue_map_geom_out);
1035
1036 /* Each URB offset packs two varying slots */
1037 assert(first_slot % 2 == 0);
1038 *urb_entry_read_offset = first_slot / 2;
1039
1040 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1041 * description of dw10 Point Sprite Texture Coordinate Enable:
1042 *
1043 * "This field must be programmed to zero when non-point primitives
1044 * are rendered."
1045 *
1046 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1047 * must be programmed to zero when rendering non-point primitives, but
1048 * the IvyBridge PRM does, and if we don't, we get garbage.
1049 *
1050 * This is not required on Haswell, as the hardware ignores this state
1051 * when drawing non-points -- although we do still need to be careful to
1052 * correctly set the attr overrides.
1053 *
1054 * _NEW_POLYGON
1055 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1056 */
1057 bool drawing_points = brw_is_drawing_points(brw);
1058
1059 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1060 int input_index = wm_prog_data->urb_setup[attr];
1061
1062 if (input_index < 0)
1063 continue;
1064
1065 /* _NEW_POINT */
1066 bool point_sprite = false;
1067 if (drawing_points) {
1068 if (point->PointSprite &&
1069 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1070 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1071 point_sprite = true;
1072 }
1073
1074 if (attr == VARYING_SLOT_PNTC)
1075 point_sprite = true;
1076
1077 if (point_sprite)
1078 *point_sprite_enables |= (1 << input_index);
1079 }
1080
1081 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1082 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1083
1084 if (!point_sprite) {
1085 genX(get_attr_override)(&attribute,
1086 &brw->vue_map_geom_out,
1087 *urb_entry_read_offset, attr,
1088 _mesa_vertex_program_two_side_enabled(ctx),
1089 &max_source_attr);
1090 }
1091
1092 /* The hardware can only do the overrides on 16 overrides at a
1093 * time, and the other up to 16 have to be lined up so that the
1094 * input index = the output index. We'll need to do some
1095 * tweaking to make sure that's the case.
1096 */
1097 if (input_index < 16)
1098 attr_overrides[input_index] = attribute;
1099 else
1100 assert(attribute.SourceAttribute == input_index);
1101 }
1102
1103 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1104 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1105 *
1106 * "This field should be set to the minimum length required to read the
1107 * maximum source attribute. The maximum source attribute is indicated
1108 * by the maximum value of the enabled Attribute # Source Attribute if
1109 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1110 * enable is not set.
1111 * read_length = ceiling((max_source_attr + 1) / 2)
1112 *
1113 * [errata] Corruption/Hang possible if length programmed larger than
1114 * recommended"
1115 *
1116 * Similar text exists for Ivy Bridge.
1117 */
1118 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1119 }
1120 #endif
1121
1122 /* ---------------------------------------------------------------------- */
1123
1124 #if GEN_GEN >= 8
1125 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1126 #elif GEN_GEN >= 6
1127 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1128 #else
1129 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1130 #endif
1131
1132 static inline void
1133 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1134 {
1135 struct gl_context *ctx = &brw->ctx;
1136
1137 /* _NEW_BUFFERS */
1138 struct intel_renderbuffer *depth_irb =
1139 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1140
1141 /* _NEW_DEPTH */
1142 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1143
1144 /* _NEW_STENCIL */
1145 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1146 const int b = stencil->_BackFace;
1147
1148 if (depth->Test && depth_irb) {
1149 ds->DepthTestEnable = true;
1150 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1151 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1152 }
1153
1154 if (brw->stencil_enabled) {
1155 ds->StencilTestEnable = true;
1156 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1157 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1158
1159 ds->StencilTestFunction =
1160 intel_translate_compare_func(stencil->Function[0]);
1161 ds->StencilFailOp =
1162 intel_translate_stencil_op(stencil->FailFunc[0]);
1163 ds->StencilPassDepthPassOp =
1164 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1165 ds->StencilPassDepthFailOp =
1166 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1167
1168 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1169
1170 if (brw->stencil_two_sided) {
1171 ds->DoubleSidedStencilEnable = true;
1172 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1173 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1174
1175 ds->BackfaceStencilTestFunction =
1176 intel_translate_compare_func(stencil->Function[b]);
1177 ds->BackfaceStencilFailOp =
1178 intel_translate_stencil_op(stencil->FailFunc[b]);
1179 ds->BackfaceStencilPassDepthPassOp =
1180 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1181 ds->BackfaceStencilPassDepthFailOp =
1182 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1183 }
1184
1185 #if GEN_GEN <= 5 || GEN_GEN >= 9
1186 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1187 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1188 #endif
1189 }
1190 }
1191
1192 #if GEN_GEN >= 6
1193 static void
1194 genX(upload_depth_stencil_state)(struct brw_context *brw)
1195 {
1196 #if GEN_GEN >= 8
1197 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1198 set_depth_stencil_bits(brw, &wmds);
1199 }
1200 #else
1201 uint32_t ds_offset;
1202 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1203 set_depth_stencil_bits(brw, &ds);
1204 }
1205
1206 /* Now upload a pointer to the indirect state */
1207 #if GEN_GEN == 6
1208 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1209 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1210 ptr.DEPTH_STENCIL_STATEChange = true;
1211 }
1212 #else
1213 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1214 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1215 }
1216 #endif
1217 #endif
1218 }
1219
1220 static const struct brw_tracked_state genX(depth_stencil_state) = {
1221 .dirty = {
1222 .mesa = _NEW_BUFFERS |
1223 _NEW_DEPTH |
1224 _NEW_STENCIL,
1225 .brw = BRW_NEW_BLORP |
1226 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1227 : BRW_NEW_BATCH |
1228 BRW_NEW_STATE_BASE_ADDRESS),
1229 },
1230 .emit = genX(upload_depth_stencil_state),
1231 };
1232 #endif
1233
1234 /* ---------------------------------------------------------------------- */
1235
1236 #if GEN_GEN <= 5
1237
1238 static void
1239 genX(upload_clip_state)(struct brw_context *brw)
1240 {
1241 struct gl_context *ctx = &brw->ctx;
1242
1243 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1244 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1245 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1246 clip.GRFRegisterCount =
1247 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1248 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1249 clip.SingleProgramFlow = true;
1250 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1251 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1252
1253 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1254 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1255 clip.DispatchGRFStartRegisterForURBData = 1;
1256 clip.VertexURBEntryReadOffset = 0;
1257
1258 /* BRW_NEW_URB_FENCE */
1259 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1260 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1261
1262 if (brw->urb.nr_clip_entries >= 10) {
1263 /* Half of the URB entries go to each thread, and it has to be an
1264 * even number.
1265 */
1266 assert(brw->urb.nr_clip_entries % 2 == 0);
1267
1268 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1269 * only 2 threads can output VUEs at a time.
1270 */
1271 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1272 } else {
1273 assert(brw->urb.nr_clip_entries >= 5);
1274 clip.MaximumNumberofThreads = 1 - 1;
1275 }
1276
1277 clip.VertexPositionSpace = VPOS_NDCSPACE;
1278 clip.UserClipFlagsMustClipEnable = true;
1279 clip.GuardbandClipTestEnable = true;
1280
1281 clip.ClipperViewportStatePointer =
1282 ro_bo(brw->batch.state_bo, brw->clip.vp_offset);
1283
1284 clip.ScreenSpaceViewportXMin = -1;
1285 clip.ScreenSpaceViewportXMax = 1;
1286 clip.ScreenSpaceViewportYMin = -1;
1287 clip.ScreenSpaceViewportYMax = 1;
1288
1289 clip.ViewportXYClipTestEnable = true;
1290 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1291
1292 /* _NEW_TRANSFORM */
1293 if (GEN_GEN == 5 || GEN_IS_G4X) {
1294 clip.UserClipDistanceClipTestEnableBitmask =
1295 ctx->Transform.ClipPlanesEnabled;
1296 } else {
1297 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1298 * workaround.
1299 */
1300 clip.UserClipDistanceClipTestEnableBitmask =
1301 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1302 }
1303
1304 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1305 clip.APIMode = APIMODE_D3D;
1306 else
1307 clip.APIMode = APIMODE_OGL;
1308
1309 clip.GuardbandClipTestEnable = true;
1310
1311 clip.ClipMode = brw->clip.prog_data->clip_mode;
1312
1313 #if GEN_IS_G4X
1314 clip.NegativeWClipTestEnable = true;
1315 #endif
1316 }
1317 }
1318
1319 const struct brw_tracked_state genX(clip_state) = {
1320 .dirty = {
1321 .mesa = _NEW_TRANSFORM |
1322 _NEW_VIEWPORT,
1323 .brw = BRW_NEW_BATCH |
1324 BRW_NEW_BLORP |
1325 BRW_NEW_CLIP_PROG_DATA |
1326 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1327 BRW_NEW_PROGRAM_CACHE |
1328 BRW_NEW_URB_FENCE,
1329 },
1330 .emit = genX(upload_clip_state),
1331 };
1332
1333 #else
1334
1335 static void
1336 genX(upload_clip_state)(struct brw_context *brw)
1337 {
1338 struct gl_context *ctx = &brw->ctx;
1339
1340 /* _NEW_BUFFERS */
1341 struct gl_framebuffer *fb = ctx->DrawBuffer;
1342
1343 /* BRW_NEW_FS_PROG_DATA */
1344 struct brw_wm_prog_data *wm_prog_data =
1345 brw_wm_prog_data(brw->wm.base.prog_data);
1346
1347 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1348 clip.StatisticsEnable = !brw->meta_in_progress;
1349
1350 if (wm_prog_data->barycentric_interp_modes &
1351 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1352 clip.NonPerspectiveBarycentricEnable = true;
1353
1354 #if GEN_GEN >= 7
1355 clip.EarlyCullEnable = true;
1356 #endif
1357
1358 #if GEN_GEN == 7
1359 clip.FrontWinding = brw->polygon_front_bit == _mesa_is_user_fbo(fb);
1360
1361 if (ctx->Polygon.CullFlag) {
1362 switch (ctx->Polygon.CullFaceMode) {
1363 case GL_FRONT:
1364 clip.CullMode = CULLMODE_FRONT;
1365 break;
1366 case GL_BACK:
1367 clip.CullMode = CULLMODE_BACK;
1368 break;
1369 case GL_FRONT_AND_BACK:
1370 clip.CullMode = CULLMODE_BOTH;
1371 break;
1372 default:
1373 unreachable("Should not get here: invalid CullFlag");
1374 }
1375 } else {
1376 clip.CullMode = CULLMODE_NONE;
1377 }
1378 #endif
1379
1380 #if GEN_GEN < 8
1381 clip.UserClipDistanceCullTestEnableBitmask =
1382 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1383
1384 clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp;
1385 #endif
1386
1387 /* _NEW_LIGHT */
1388 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1389 clip.TriangleStripListProvokingVertexSelect = 0;
1390 clip.TriangleFanProvokingVertexSelect = 1;
1391 clip.LineStripListProvokingVertexSelect = 0;
1392 } else {
1393 clip.TriangleStripListProvokingVertexSelect = 2;
1394 clip.TriangleFanProvokingVertexSelect = 2;
1395 clip.LineStripListProvokingVertexSelect = 1;
1396 }
1397
1398 /* _NEW_TRANSFORM */
1399 clip.UserClipDistanceClipTestEnableBitmask =
1400 ctx->Transform.ClipPlanesEnabled;
1401
1402 #if GEN_GEN >= 8
1403 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1404 #endif
1405
1406 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1407 clip.APIMode = APIMODE_D3D;
1408 else
1409 clip.APIMode = APIMODE_OGL;
1410
1411 clip.GuardbandClipTestEnable = true;
1412
1413 /* BRW_NEW_VIEWPORT_COUNT */
1414 const unsigned viewport_count = brw->clip.viewport_count;
1415
1416 if (ctx->RasterDiscard) {
1417 clip.ClipMode = CLIPMODE_REJECT_ALL;
1418 #if GEN_GEN == 6
1419 perf_debug("Rasterizer discard is currently implemented via the "
1420 "clipper; having the GS not write primitives would "
1421 "likely be faster.\n");
1422 #endif
1423 } else {
1424 clip.ClipMode = CLIPMODE_NORMAL;
1425 }
1426
1427 clip.ClipEnable = true;
1428
1429 /* _NEW_POLYGON,
1430 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1431 */
1432 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1433 clip.ViewportXYClipTestEnable = true;
1434
1435 clip.MinimumPointWidth = 0.125;
1436 clip.MaximumPointWidth = 255.875;
1437 clip.MaximumVPIndex = viewport_count - 1;
1438 if (_mesa_geometric_layers(fb) == 0)
1439 clip.ForceZeroRTAIndexEnable = true;
1440 }
1441 }
1442
1443 static const struct brw_tracked_state genX(clip_state) = {
1444 .dirty = {
1445 .mesa = _NEW_BUFFERS |
1446 _NEW_LIGHT |
1447 _NEW_POLYGON |
1448 _NEW_TRANSFORM,
1449 .brw = BRW_NEW_BLORP |
1450 BRW_NEW_CONTEXT |
1451 BRW_NEW_FS_PROG_DATA |
1452 BRW_NEW_GS_PROG_DATA |
1453 BRW_NEW_VS_PROG_DATA |
1454 BRW_NEW_META_IN_PROGRESS |
1455 BRW_NEW_PRIMITIVE |
1456 BRW_NEW_RASTERIZER_DISCARD |
1457 BRW_NEW_TES_PROG_DATA |
1458 BRW_NEW_VIEWPORT_COUNT,
1459 },
1460 .emit = genX(upload_clip_state),
1461 };
1462 #endif
1463
1464 /* ---------------------------------------------------------------------- */
1465
1466 static void
1467 genX(upload_sf)(struct brw_context *brw)
1468 {
1469 struct gl_context *ctx = &brw->ctx;
1470 float point_size;
1471
1472 #if GEN_GEN <= 7
1473 /* _NEW_BUFFERS */
1474 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
1475 UNUSED const bool multisampled_fbo =
1476 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1477 #endif
1478
1479 #if GEN_GEN < 6
1480 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1481
1482 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1483
1484 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1485 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1486 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1487 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1488 sf.DispatchGRFStartRegisterForURBData = 3;
1489 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1490 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1491 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1492 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1493
1494 /* STATE_PREFETCH command description describes this state as being
1495 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1496 * domain.
1497 */
1498 sf.SetupViewportStateOffset =
1499 ro_bo(brw->batch.state_bo, brw->sf.vp_offset);
1500
1501 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1502
1503 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1504 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1505
1506 sf.MaximumNumberofThreads =
1507 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1508
1509 sf.SpritePointEnable = ctx->Point.PointSprite;
1510
1511 sf.DestinationOriginHorizontalBias = 0.5;
1512 sf.DestinationOriginVerticalBias = 0.5;
1513 #else
1514 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1515 sf.StatisticsEnable = true;
1516 #endif
1517 sf.ViewportTransformEnable = true;
1518
1519 #if GEN_GEN == 7
1520 /* _NEW_BUFFERS */
1521 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1522 #endif
1523
1524 #if GEN_GEN <= 7
1525 /* _NEW_POLYGON */
1526 sf.FrontWinding = brw->polygon_front_bit == render_to_fbo;
1527 #if GEN_GEN >= 6
1528 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1529 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1530 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1531
1532 switch (ctx->Polygon.FrontMode) {
1533 case GL_FILL:
1534 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1535 break;
1536 case GL_LINE:
1537 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1538 break;
1539 case GL_POINT:
1540 sf.FrontFaceFillMode = FILL_MODE_POINT;
1541 break;
1542 default:
1543 unreachable("not reached");
1544 }
1545
1546 switch (ctx->Polygon.BackMode) {
1547 case GL_FILL:
1548 sf.BackFaceFillMode = FILL_MODE_SOLID;
1549 break;
1550 case GL_LINE:
1551 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1552 break;
1553 case GL_POINT:
1554 sf.BackFaceFillMode = FILL_MODE_POINT;
1555 break;
1556 default:
1557 unreachable("not reached");
1558 }
1559
1560 if (multisampled_fbo && ctx->Multisample.Enabled)
1561 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1562
1563 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1564 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1565 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1566 #endif
1567
1568 sf.ScissorRectangleEnable = true;
1569
1570 if (ctx->Polygon.CullFlag) {
1571 switch (ctx->Polygon.CullFaceMode) {
1572 case GL_FRONT:
1573 sf.CullMode = CULLMODE_FRONT;
1574 break;
1575 case GL_BACK:
1576 sf.CullMode = CULLMODE_BACK;
1577 break;
1578 case GL_FRONT_AND_BACK:
1579 sf.CullMode = CULLMODE_BOTH;
1580 break;
1581 default:
1582 unreachable("not reached");
1583 }
1584 } else {
1585 sf.CullMode = CULLMODE_NONE;
1586 }
1587
1588 #if GEN_IS_HASWELL
1589 sf.LineStippleEnable = ctx->Line.StippleFlag;
1590 #endif
1591
1592 #endif
1593
1594 /* _NEW_LINE */
1595 #if GEN_GEN == 8
1596 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1597
1598 if (devinfo->is_cherryview)
1599 sf.CHVLineWidth = brw_get_line_width(brw);
1600 else
1601 sf.LineWidth = brw_get_line_width(brw);
1602 #else
1603 sf.LineWidth = brw_get_line_width(brw);
1604 #endif
1605
1606 if (ctx->Line.SmoothFlag) {
1607 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1608 #if GEN_GEN <= 7
1609 sf.AntiAliasingEnable = true;
1610 #endif
1611 }
1612
1613 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1614 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1615 /* Clamp to the hardware limits */
1616 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1617
1618 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1619 if (use_state_point_size(brw))
1620 sf.PointWidthSource = State;
1621
1622 #if GEN_GEN >= 8
1623 /* _NEW_POINT | _NEW_MULTISAMPLE */
1624 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1625 !ctx->Point.PointSprite)
1626 sf.SmoothPointEnable = true;
1627 #endif
1628
1629 #if GEN_IS_G4X || GEN_GEN >= 5
1630 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1631 #endif
1632
1633 /* _NEW_LIGHT */
1634 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1635 sf.TriangleStripListProvokingVertexSelect = 2;
1636 sf.TriangleFanProvokingVertexSelect = 2;
1637 sf.LineStripListProvokingVertexSelect = 1;
1638 } else {
1639 sf.TriangleFanProvokingVertexSelect = 1;
1640 }
1641
1642 #if GEN_GEN == 6
1643 /* BRW_NEW_FS_PROG_DATA */
1644 const struct brw_wm_prog_data *wm_prog_data =
1645 brw_wm_prog_data(brw->wm.base.prog_data);
1646
1647 sf.AttributeSwizzleEnable = true;
1648 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1649
1650 /*
1651 * Window coordinates in an FBO are inverted, which means point
1652 * sprite origin must be inverted, too.
1653 */
1654 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
1655 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1656 } else {
1657 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1658 }
1659
1660 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1661 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1662 */
1663 uint32_t urb_entry_read_length;
1664 uint32_t urb_entry_read_offset;
1665 uint32_t point_sprite_enables;
1666 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1667 &urb_entry_read_length,
1668 &urb_entry_read_offset);
1669 sf.VertexURBEntryReadLength = urb_entry_read_length;
1670 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1671 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1672 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1673 #endif
1674 }
1675 }
1676
1677 static const struct brw_tracked_state genX(sf_state) = {
1678 .dirty = {
1679 .mesa = _NEW_LIGHT |
1680 _NEW_LINE |
1681 _NEW_POINT |
1682 _NEW_PROGRAM |
1683 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1684 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0),
1685 .brw = BRW_NEW_BLORP |
1686 BRW_NEW_VUE_MAP_GEOM_OUT |
1687 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1688 BRW_NEW_PROGRAM_CACHE |
1689 BRW_NEW_SF_PROG_DATA |
1690 BRW_NEW_SF_VP |
1691 BRW_NEW_URB_FENCE
1692 : 0) |
1693 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1694 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1695 BRW_NEW_GS_PROG_DATA |
1696 BRW_NEW_PRIMITIVE |
1697 BRW_NEW_TES_PROG_DATA
1698 : 0) |
1699 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1700 BRW_NEW_FRAGMENT_PROGRAM
1701 : 0),
1702 },
1703 .emit = genX(upload_sf),
1704 };
1705
1706 /* ---------------------------------------------------------------------- */
1707
1708 static bool
1709 brw_color_buffer_write_enabled(struct brw_context *brw)
1710 {
1711 struct gl_context *ctx = &brw->ctx;
1712 /* BRW_NEW_FRAGMENT_PROGRAM */
1713 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1714 unsigned i;
1715
1716 /* _NEW_BUFFERS */
1717 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1718 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1719 uint64_t outputs_written = fp->info.outputs_written;
1720
1721 /* _NEW_COLOR */
1722 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1723 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1724 (ctx->Color.ColorMask[i][0] ||
1725 ctx->Color.ColorMask[i][1] ||
1726 ctx->Color.ColorMask[i][2] ||
1727 ctx->Color.ColorMask[i][3])) {
1728 return true;
1729 }
1730 }
1731
1732 return false;
1733 }
1734
1735 static void
1736 genX(upload_wm)(struct brw_context *brw)
1737 {
1738 struct gl_context *ctx = &brw->ctx;
1739
1740 /* BRW_NEW_FS_PROG_DATA */
1741 const struct brw_wm_prog_data *wm_prog_data =
1742 brw_wm_prog_data(brw->wm.base.prog_data);
1743
1744 UNUSED bool writes_depth =
1745 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1746 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1747 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1748
1749 #if GEN_GEN == 6
1750 /* We can't fold this into gen6_upload_wm_push_constants(), because
1751 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1752 * (3DSTATE_CONSTANT_PS [DevSNB]):
1753 *
1754 * "[DevSNB]: This packet must be followed by WM_STATE."
1755 */
1756 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1757 if (wm_prog_data->base.nr_params != 0) {
1758 wmcp.Buffer0Valid = true;
1759 /* Pointer to the WM constant buffer. Covered by the set of
1760 * state flags from gen6_upload_wm_push_constants.
1761 */
1762 wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset;
1763 wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1764 }
1765 }
1766 #endif
1767
1768 #if GEN_GEN >= 6
1769 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1770 wm.LineAntialiasingRegionWidth = _10pixels;
1771 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1772
1773 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1774 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1775 #else
1776 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1777 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1778 if (wm_prog_data->dispatch_8 && wm_prog_data->dispatch_16) {
1779 /* These two fields should be the same pre-gen6, which is why we
1780 * only have one hardware field to program for both dispatch
1781 * widths.
1782 */
1783 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1784 wm_prog_data->dispatch_grf_start_reg_2);
1785 }
1786
1787 if (wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16)
1788 wm.GRFRegisterCount0 = wm_prog_data->reg_blocks_0;
1789
1790 if (stage_state->sampler_count)
1791 wm.SamplerStatePointer =
1792 ro_bo(brw->batch.state_bo, stage_state->sampler_offset);
1793 #if GEN_GEN == 5
1794 if (wm_prog_data->prog_offset_2)
1795 wm.GRFRegisterCount2 = wm_prog_data->reg_blocks_2;
1796 #endif
1797
1798 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1799 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1800 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1801 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1802 wm.EarlyDepthTestEnable = true;
1803 wm.LineAntialiasingRegionWidth = _05pixels;
1804 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1805
1806 /* _NEW_POLYGON */
1807 if (ctx->Polygon.OffsetFill) {
1808 wm.GlobalDepthOffsetEnable = true;
1809 /* Something weird going on with legacy_global_depth_bias,
1810 * offset_constant, scaling and MRD. This value passes glean
1811 * but gives some odd results elsewere (eg. the
1812 * quad-offset-units test).
1813 */
1814 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1815
1816 /* This is the only value that passes glean:
1817 */
1818 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1819 }
1820
1821 wm.DepthCoefficientURBReadOffset = 1;
1822 #endif
1823
1824 /* BRW_NEW_STATS_WM */
1825 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1826
1827 #if GEN_GEN < 7
1828 if (wm_prog_data->base.use_alt_mode)
1829 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1830
1831 wm.SamplerCount = GEN_GEN == 5 ?
1832 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1833
1834 wm.BindingTableEntryCount =
1835 wm_prog_data->base.binding_table.size_bytes / 4;
1836 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1837 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1838 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1839 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1840 wm_prog_data->base.dispatch_grf_start_reg;
1841 if (GEN_GEN == 6 ||
1842 wm_prog_data->dispatch_8 || wm_prog_data->dispatch_16) {
1843 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1844 }
1845
1846 #if GEN_GEN >= 5
1847 if (GEN_GEN == 6 || wm_prog_data->prog_offset_2) {
1848 wm.KernelStartPointer2 =
1849 KSP(brw, stage_state->prog_offset + wm_prog_data->prog_offset_2);
1850 }
1851 #endif
1852
1853 #if GEN_GEN == 6
1854 wm.DualSourceBlendEnable =
1855 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1856 ctx->Color.Blend[0]._UsesDualSrc;
1857 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1858 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1859
1860 /* From the SNB PRM, volume 2 part 1, page 281:
1861 * "If the PS kernel does not need the Position XY Offsets
1862 * to compute a Position XY value, then this field should be
1863 * programmed to POSOFFSET_NONE."
1864 *
1865 * "SW Recommendation: If the PS kernel needs the Position Offsets
1866 * to compute a Position XY value, this field should match Position
1867 * ZW Interpolation Mode to ensure a consistent position.xyzw
1868 * computation."
1869 * We only require XY sample offsets. So, this recommendation doesn't
1870 * look useful at the moment. We might need this in future.
1871 */
1872 if (wm_prog_data->uses_pos_offset)
1873 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1874 else
1875 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1876
1877 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1878 wm_prog_data->dispatch_grf_start_reg_2;
1879 #endif
1880
1881 if (wm_prog_data->base.total_scratch) {
1882 wm.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0);
1883 wm.PerThreadScratchSpace =
1884 ffs(stage_state->per_thread_scratch) - 11;
1885 }
1886
1887 wm.PixelShaderComputedDepth = writes_depth;
1888 #endif
1889
1890 /* _NEW_LINE */
1891 wm.LineStippleEnable = ctx->Line.StippleFlag;
1892
1893 /* _NEW_POLYGON */
1894 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1895
1896 #if GEN_GEN < 8
1897
1898 #if GEN_GEN >= 6
1899 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1900
1901 /* _NEW_BUFFERS */
1902 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1903
1904 if (multisampled_fbo) {
1905 /* _NEW_MULTISAMPLE */
1906 if (ctx->Multisample.Enabled)
1907 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1908 else
1909 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1910
1911 if (wm_prog_data->persample_dispatch)
1912 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1913 else
1914 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1915 } else {
1916 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1917 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1918 }
1919 #endif
1920 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1921 if (wm_prog_data->uses_kill ||
1922 _mesa_is_alpha_test_enabled(ctx) ||
1923 _mesa_is_alpha_to_coverage_enabled(ctx) ||
1924 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
1925 wm.PixelShaderKillsPixel = true;
1926 }
1927
1928 /* _NEW_BUFFERS | _NEW_COLOR */
1929 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
1930 wm.PixelShaderKillsPixel ||
1931 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
1932 wm.ThreadDispatchEnable = true;
1933 }
1934
1935 #if GEN_GEN >= 7
1936 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1937 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1938 #endif
1939
1940 /* The "UAV access enable" bits are unnecessary on HSW because they only
1941 * seem to have an effect on the HW-assisted coherency mechanism which we
1942 * don't need, and the rasterization-related UAV_ONLY flag and the
1943 * DISPATCH_ENABLE bit can be set independently from it.
1944 * C.f. gen8_upload_ps_extra().
1945 *
1946 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
1947 * _NEW_COLOR
1948 */
1949 #if GEN_IS_HASWELL
1950 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
1951 wm_prog_data->has_side_effects)
1952 wm.PSUAVonly = ON;
1953 #endif
1954 #endif
1955
1956 #if GEN_GEN >= 7
1957 /* BRW_NEW_FS_PROG_DATA */
1958 if (wm_prog_data->early_fragment_tests)
1959 wm.EarlyDepthStencilControl = EDSC_PREPS;
1960 else if (wm_prog_data->has_side_effects)
1961 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1962 #endif
1963 }
1964
1965 #if GEN_GEN <= 5
1966 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
1967 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
1968 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1969 }
1970
1971 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
1972 }
1973 #endif
1974 }
1975
1976 static const struct brw_tracked_state genX(wm_state) = {
1977 .dirty = {
1978 .mesa = _NEW_LINE |
1979 _NEW_POLYGON |
1980 (GEN_GEN < 8 ? _NEW_BUFFERS |
1981 _NEW_COLOR :
1982 0) |
1983 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
1984 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
1985 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
1986 .brw = BRW_NEW_BLORP |
1987 BRW_NEW_FS_PROG_DATA |
1988 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1989 BRW_NEW_FRAGMENT_PROGRAM |
1990 BRW_NEW_PROGRAM_CACHE |
1991 BRW_NEW_SAMPLER_STATE_TABLE |
1992 BRW_NEW_STATS_WM
1993 : 0) |
1994 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
1995 },
1996 .emit = genX(upload_wm),
1997 };
1998
1999 /* ---------------------------------------------------------------------- */
2000
2001 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2002 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2003 pkt.SamplerCount = \
2004 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2005 pkt.BindingTableEntryCount = \
2006 stage_prog_data->binding_table.size_bytes / 4; \
2007 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2008 \
2009 if (stage_prog_data->total_scratch) { \
2010 pkt.ScratchSpaceBasePointer = rw_bo(stage_state->scratch_bo, 0); \
2011 pkt.PerThreadScratchSpace = \
2012 ffs(stage_state->per_thread_scratch) - 11; \
2013 } \
2014 \
2015 pkt.DispatchGRFStartRegisterForURBData = \
2016 stage_prog_data->dispatch_grf_start_reg; \
2017 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2018 pkt.prefix##URBEntryReadOffset = 0; \
2019 \
2020 pkt.StatisticsEnable = true; \
2021 pkt.Enable = true;
2022
2023 static void
2024 genX(upload_vs_state)(struct brw_context *brw)
2025 {
2026 UNUSED struct gl_context *ctx = &brw->ctx;
2027 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2028 struct brw_stage_state *stage_state = &brw->vs.base;
2029
2030 /* BRW_NEW_VS_PROG_DATA */
2031 const struct brw_vue_prog_data *vue_prog_data =
2032 brw_vue_prog_data(brw->vs.base.prog_data);
2033 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2034
2035 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2036 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2037
2038 #if GEN_GEN == 6
2039 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2040 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2041 *
2042 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2043 * command that causes the VS Function Enable to toggle. Pipeline
2044 * flush can be executed by sending a PIPE_CONTROL command with CS
2045 * stall bit set and a post sync operation.
2046 *
2047 * We've already done such a flush at the start of state upload, so we
2048 * don't need to do another one here.
2049 */
2050 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2051 if (stage_state->push_const_size != 0) {
2052 cvs.Buffer0Valid = true;
2053 cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset;
2054 cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2055 }
2056 }
2057 #endif
2058
2059 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2060 gen7_emit_vs_workaround_flush(brw);
2061
2062 #if GEN_GEN >= 6
2063 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2064 #else
2065 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2066 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2067 #endif
2068 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2069
2070 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2071
2072 #if GEN_GEN < 6
2073 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2074 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2075 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2076
2077 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2078 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2079
2080 vs.MaximumNumberofThreads =
2081 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2082
2083 vs.StatisticsEnable = false;
2084 vs.SamplerStatePointer =
2085 ro_bo(brw->batch.state_bo, stage_state->sampler_offset);
2086 #endif
2087
2088 #if GEN_GEN == 5
2089 /* Force single program flow on Ironlake. We cannot reliably get
2090 * all applications working without it. See:
2091 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2092 *
2093 * The most notable and reliably failing application is the Humus
2094 * demo "CelShading"
2095 */
2096 vs.SingleProgramFlow = true;
2097 vs.SamplerCount = 0; /* hardware requirement */
2098 #endif
2099
2100 #if GEN_GEN >= 8
2101 vs.SIMD8DispatchEnable =
2102 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2103
2104 vs.UserClipDistanceCullTestEnableBitmask =
2105 vue_prog_data->cull_distance_mask;
2106 #endif
2107 }
2108
2109 #if GEN_GEN == 6
2110 /* Based on my reading of the simulator, the VS constants don't get
2111 * pulled into the VS FF unit until an appropriate pipeline flush
2112 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2113 * references to them into a little FIFO. The flushes are common,
2114 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2115 * the primitive to use the wrong constants. Then the FIFO
2116 * containing the constant setup gets added to again on the next
2117 * constants change, and eventually when a flush does happen the
2118 * unit is overwhelmed by constant changes and dies.
2119 *
2120 * To avoid this, send a PIPE_CONTROL down the line that will
2121 * update the unit immediately loading the constants. The flush
2122 * type bits here were those set by the STATE_BASE_ADDRESS whose
2123 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2124 * bug reports that led to this workaround, and may be more than
2125 * what is strictly required to avoid the issue.
2126 */
2127 brw_emit_pipe_control_flush(brw,
2128 PIPE_CONTROL_DEPTH_STALL |
2129 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2130 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2131 #endif
2132 }
2133
2134 static const struct brw_tracked_state genX(vs_state) = {
2135 .dirty = {
2136 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2137 .brw = BRW_NEW_BATCH |
2138 BRW_NEW_BLORP |
2139 BRW_NEW_CONTEXT |
2140 BRW_NEW_VS_PROG_DATA |
2141 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2142 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2143 BRW_NEW_PROGRAM_CACHE |
2144 BRW_NEW_SAMPLER_STATE_TABLE |
2145 BRW_NEW_URB_FENCE
2146 : 0),
2147 },
2148 .emit = genX(upload_vs_state),
2149 };
2150
2151 /* ---------------------------------------------------------------------- */
2152
2153 static void
2154 genX(upload_cc_viewport)(struct brw_context *brw)
2155 {
2156 struct gl_context *ctx = &brw->ctx;
2157
2158 /* BRW_NEW_VIEWPORT_COUNT */
2159 const unsigned viewport_count = brw->clip.viewport_count;
2160
2161 struct GENX(CC_VIEWPORT) ccv;
2162 uint32_t cc_vp_offset;
2163 uint32_t *cc_map =
2164 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2165 32, &cc_vp_offset);
2166
2167 for (unsigned i = 0; i < viewport_count; i++) {
2168 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2169 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2170 if (ctx->Transform.DepthClamp) {
2171 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2172 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2173 } else {
2174 ccv.MinimumDepth = 0.0;
2175 ccv.MaximumDepth = 1.0;
2176 }
2177 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2178 cc_map += GENX(CC_VIEWPORT_length);
2179 }
2180
2181 #if GEN_GEN >= 7
2182 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2183 ptr.CCViewportPointer = cc_vp_offset;
2184 }
2185 #elif GEN_GEN == 6
2186 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2187 vp.CCViewportStateChange = 1;
2188 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2189 }
2190 #else
2191 brw->cc.vp_offset = cc_vp_offset;
2192 ctx->NewDriverState |= BRW_NEW_CC_VP;
2193 #endif
2194 }
2195
2196 const struct brw_tracked_state genX(cc_vp) = {
2197 .dirty = {
2198 .mesa = _NEW_TRANSFORM |
2199 _NEW_VIEWPORT,
2200 .brw = BRW_NEW_BATCH |
2201 BRW_NEW_BLORP |
2202 BRW_NEW_VIEWPORT_COUNT,
2203 },
2204 .emit = genX(upload_cc_viewport)
2205 };
2206
2207 /* ---------------------------------------------------------------------- */
2208
2209 static void
2210 set_scissor_bits(const struct gl_context *ctx, int i,
2211 bool render_to_fbo, unsigned fb_width, unsigned fb_height,
2212 struct GENX(SCISSOR_RECT) *sc)
2213 {
2214 int bbox[4];
2215
2216 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2217 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2218 bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0);
2219 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2220 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2221
2222 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2223 /* If the scissor was out of bounds and got clamped to 0 width/height
2224 * at the bounds, the subtraction of 1 from maximums could produce a
2225 * negative number and thus not clip anything. Instead, just provide
2226 * a min > max scissor inside the bounds, which produces the expected
2227 * no rendering.
2228 */
2229 sc->ScissorRectangleXMin = 1;
2230 sc->ScissorRectangleXMax = 0;
2231 sc->ScissorRectangleYMin = 1;
2232 sc->ScissorRectangleYMax = 0;
2233 } else if (render_to_fbo) {
2234 /* texmemory: Y=0=bottom */
2235 sc->ScissorRectangleXMin = bbox[0];
2236 sc->ScissorRectangleXMax = bbox[1] - 1;
2237 sc->ScissorRectangleYMin = bbox[2];
2238 sc->ScissorRectangleYMax = bbox[3] - 1;
2239 } else {
2240 /* memory: Y=0=top */
2241 sc->ScissorRectangleXMin = bbox[0];
2242 sc->ScissorRectangleXMax = bbox[1] - 1;
2243 sc->ScissorRectangleYMin = fb_height - bbox[3];
2244 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2245 }
2246 }
2247
2248 #if GEN_GEN >= 6
2249 static void
2250 genX(upload_scissor_state)(struct brw_context *brw)
2251 {
2252 struct gl_context *ctx = &brw->ctx;
2253 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2254 struct GENX(SCISSOR_RECT) scissor;
2255 uint32_t scissor_state_offset;
2256 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2257 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2258 uint32_t *scissor_map;
2259
2260 /* BRW_NEW_VIEWPORT_COUNT */
2261 const unsigned viewport_count = brw->clip.viewport_count;
2262
2263 scissor_map = brw_state_batch(
2264 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2265 32, &scissor_state_offset);
2266
2267 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2268
2269 /* The scissor only needs to handle the intersection of drawable and
2270 * scissor rect. Clipping to the boundaries of static shared buffers
2271 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2272 *
2273 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2274 * inclusive but max is exclusive.
2275 */
2276 for (unsigned i = 0; i < viewport_count; i++) {
2277 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height, &scissor);
2278 GENX(SCISSOR_RECT_pack)(
2279 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2280 }
2281
2282 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2283 ptr.ScissorRectPointer = scissor_state_offset;
2284 }
2285 }
2286
2287 static const struct brw_tracked_state genX(scissor_state) = {
2288 .dirty = {
2289 .mesa = _NEW_BUFFERS |
2290 _NEW_SCISSOR |
2291 _NEW_VIEWPORT,
2292 .brw = BRW_NEW_BATCH |
2293 BRW_NEW_BLORP |
2294 BRW_NEW_VIEWPORT_COUNT,
2295 },
2296 .emit = genX(upload_scissor_state),
2297 };
2298 #endif
2299
2300 /* ---------------------------------------------------------------------- */
2301
2302 static void
2303 brw_calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2304 float m00, float m11, float m30, float m31,
2305 float *xmin, float *xmax,
2306 float *ymin, float *ymax)
2307 {
2308 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2309 * Strips and Fans documentation:
2310 *
2311 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2312 * fixed-point "guardband" range supported by the rasterization hardware"
2313 *
2314 * and
2315 *
2316 * "In almost all circumstances, if an object’s vertices are actually
2317 * modified by this clamping (i.e., had X or Y coordinates outside of
2318 * the guardband extent the rendered object will not match the intended
2319 * result. Therefore software should take steps to ensure that this does
2320 * not happen - e.g., by clipping objects such that they do not exceed
2321 * these limits after the Drawing Rectangle is applied."
2322 *
2323 * I believe the fundamental restriction is that the rasterizer (in
2324 * the SF/WM stages) have a limit on the number of pixels that can be
2325 * rasterized. We need to ensure any coordinates beyond the rasterizer
2326 * limit are handled by the clipper. So effectively that limit becomes
2327 * the clipper's guardband size.
2328 *
2329 * It goes on to say:
2330 *
2331 * "In addition, in order to be correctly rendered, objects must have a
2332 * screenspace bounding box not exceeding 8K in the X or Y direction.
2333 * This additional restriction must also be comprehended by software,
2334 * i.e., enforced by use of clipping."
2335 *
2336 * This makes no sense. Gen7+ hardware supports 16K render targets,
2337 * and you definitely need to be able to draw polygons that fill the
2338 * surface. Our assumption is that the rasterizer was limited to 8K
2339 * on Sandybridge, which only supports 8K surfaces, and it was actually
2340 * increased to 16K on Ivybridge and later.
2341 *
2342 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2343 */
2344 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2345
2346 if (m00 != 0 && m11 != 0) {
2347 /* First, we compute the screen-space render area */
2348 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2349 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2350 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2351 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2352
2353 /* We want the guardband to be centered on that */
2354 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2355 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2356 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2357 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2358
2359 /* Now we need it in native device coordinates */
2360 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2361 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2362 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2363 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2364
2365 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2366 * flipped upside-down. X should be fine though.
2367 */
2368 assert(ndc_gb_xmin <= ndc_gb_xmax);
2369 *xmin = ndc_gb_xmin;
2370 *xmax = ndc_gb_xmax;
2371 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2372 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2373 } else {
2374 /* The viewport scales to 0, so nothing will be rendered. */
2375 *xmin = 0.0f;
2376 *xmax = 0.0f;
2377 *ymin = 0.0f;
2378 *ymax = 0.0f;
2379 }
2380 }
2381
2382 static void
2383 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2384 {
2385 struct gl_context *ctx = &brw->ctx;
2386 float y_scale, y_bias;
2387
2388 /* BRW_NEW_VIEWPORT_COUNT */
2389 const unsigned viewport_count = brw->clip.viewport_count;
2390
2391 /* _NEW_BUFFERS */
2392 const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2393 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2394 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2395
2396 #if GEN_GEN >= 7
2397 #define clv sfv
2398 struct GENX(SF_CLIP_VIEWPORT) sfv;
2399 uint32_t sf_clip_vp_offset;
2400 uint32_t *sf_clip_map =
2401 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2402 64, &sf_clip_vp_offset);
2403 #else
2404 struct GENX(SF_VIEWPORT) sfv;
2405 struct GENX(CLIP_VIEWPORT) clv;
2406 uint32_t sf_vp_offset, clip_vp_offset;
2407 uint32_t *sf_map =
2408 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2409 32, &sf_vp_offset);
2410 uint32_t *clip_map =
2411 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2412 32, &clip_vp_offset);
2413 #endif
2414
2415 /* _NEW_BUFFERS */
2416 if (render_to_fbo) {
2417 y_scale = 1.0;
2418 y_bias = 0;
2419 } else {
2420 y_scale = -1.0;
2421 y_bias = (float)fb_height;
2422 }
2423
2424 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2425 /* _NEW_VIEWPORT: Guardband Clipping */
2426 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2427 _mesa_get_viewport_xform(ctx, i, scale, translate);
2428
2429 sfv.ViewportMatrixElementm00 = scale[0];
2430 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2431 sfv.ViewportMatrixElementm22 = scale[2],
2432 sfv.ViewportMatrixElementm30 = translate[0],
2433 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2434 sfv.ViewportMatrixElementm32 = translate[2],
2435 brw_calculate_guardband_size(fb_width, fb_height,
2436 sfv.ViewportMatrixElementm00,
2437 sfv.ViewportMatrixElementm11,
2438 sfv.ViewportMatrixElementm30,
2439 sfv.ViewportMatrixElementm31,
2440 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2441
2442
2443 clv.XMinClipGuardband = gb_xmin;
2444 clv.XMaxClipGuardband = gb_xmax;
2445 clv.YMinClipGuardband = gb_ymin;
2446 clv.YMaxClipGuardband = gb_ymax;
2447
2448 #if GEN_GEN < 6
2449 set_scissor_bits(ctx, i, render_to_fbo, fb_width, fb_height,
2450 &sfv.ScissorRectangle);
2451 #elif GEN_GEN >= 8
2452 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2453 * The hardware will take the intersection of the drawing rectangle,
2454 * scissor rectangle, and the viewport extents. We don't need to be
2455 * smart, and can therefore just program the viewport extents.
2456 */
2457 const float viewport_Xmax =
2458 ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width;
2459 const float viewport_Ymax =
2460 ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height;
2461
2462 if (render_to_fbo) {
2463 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2464 sfv.XMaxViewPort = viewport_Xmax - 1;
2465 sfv.YMinViewPort = ctx->ViewportArray[i].Y;
2466 sfv.YMaxViewPort = viewport_Ymax - 1;
2467 } else {
2468 sfv.XMinViewPort = ctx->ViewportArray[i].X;
2469 sfv.XMaxViewPort = viewport_Xmax - 1;
2470 sfv.YMinViewPort = fb_height - viewport_Ymax;
2471 sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1;
2472 }
2473 #endif
2474
2475 #if GEN_GEN >= 7
2476 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2477 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2478 #else
2479 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2480 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2481 sf_map += GENX(SF_VIEWPORT_length);
2482 clip_map += GENX(CLIP_VIEWPORT_length);
2483 #endif
2484 }
2485
2486 #if GEN_GEN >= 7
2487 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2488 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2489 }
2490 #elif GEN_GEN == 6
2491 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2492 vp.SFViewportStateChange = 1;
2493 vp.CLIPViewportStateChange = 1;
2494 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2495 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2496 }
2497 #else
2498 brw->sf.vp_offset = sf_vp_offset;
2499 brw->clip.vp_offset = clip_vp_offset;
2500 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2501 #endif
2502 }
2503
2504 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2505 .dirty = {
2506 .mesa = _NEW_BUFFERS |
2507 _NEW_VIEWPORT |
2508 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2509 .brw = BRW_NEW_BATCH |
2510 BRW_NEW_BLORP |
2511 BRW_NEW_VIEWPORT_COUNT,
2512 },
2513 .emit = genX(upload_sf_clip_viewport),
2514 };
2515
2516 /* ---------------------------------------------------------------------- */
2517
2518 static void
2519 genX(upload_gs_state)(struct brw_context *brw)
2520 {
2521 UNUSED struct gl_context *ctx = &brw->ctx;
2522 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2523 const struct brw_stage_state *stage_state = &brw->gs.base;
2524 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2525 /* BRW_NEW_GEOMETRY_PROGRAM */
2526 bool active = GEN_GEN >= 6 && gs_prog;
2527
2528 /* BRW_NEW_GS_PROG_DATA */
2529 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2530 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2531 brw_vue_prog_data(stage_prog_data);
2532 #if GEN_GEN >= 7
2533 const struct brw_gs_prog_data *gs_prog_data =
2534 brw_gs_prog_data(stage_prog_data);
2535 #endif
2536
2537 #if GEN_GEN == 6
2538 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2539 if (active && stage_state->push_const_size != 0) {
2540 cgs.Buffer0Valid = true;
2541 cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset;
2542 cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2543 }
2544 }
2545 #endif
2546
2547 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2548 /**
2549 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2550 * Geometry > Geometry Shader > State:
2551 *
2552 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2553 * whole fixed function pipeline when the GS enable changes value in
2554 * the 3DSTATE_GS."
2555 *
2556 * The hardware architects have clarified that in this context "flush the
2557 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2558 * Stall" bit set.
2559 */
2560 if (devinfo->gt == 2 && brw->gs.enabled != active)
2561 gen7_emit_cs_stall_flush(brw);
2562 #endif
2563
2564 #if GEN_GEN >= 6
2565 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2566 #else
2567 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2568 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2569 #endif
2570
2571 #if GEN_GEN >= 6
2572 if (active) {
2573 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2574
2575 #if GEN_GEN >= 7
2576 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2577 gs.OutputTopology = gs_prog_data->output_topology;
2578 gs.ControlDataHeaderSize =
2579 gs_prog_data->control_data_header_size_hwords;
2580
2581 gs.InstanceControl = gs_prog_data->invocations - 1;
2582 gs.DispatchMode = vue_prog_data->dispatch_mode;
2583
2584 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2585
2586 gs.ControlDataFormat = gs_prog_data->control_data_format;
2587 #endif
2588
2589 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2590 * Ivy Bridge and Haswell.
2591 *
2592 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2593 * strip to be delivered to the geometry shader in an order that does
2594 * not strictly follow the OpenGL spec, but preserves triangle
2595 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2596 * the geometry shader sees triangles:
2597 *
2598 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2599 *
2600 * (Clearing the bit is even worse, because it fails to preserve
2601 * orientation).
2602 *
2603 * Triangle strips with adjacency always ordered in a way that preserves
2604 * triangle orientation but does not strictly follow the OpenGL spec,
2605 * regardless of the setting of this bit.
2606 *
2607 * On Haswell, both triangle strips and triangle strips with adjacency
2608 * are always ordered in a way that preserves triangle orientation.
2609 * Setting this bit causes the ordering to strictly follow the OpenGL
2610 * spec.
2611 *
2612 * So in either case we want to set the bit. Unfortunately on Ivy
2613 * Bridge this will get the order close to correct but not perfect.
2614 */
2615 gs.ReorderMode = TRAILING;
2616 gs.MaximumNumberofThreads =
2617 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2618 : (devinfo->max_gs_threads - 1);
2619
2620 #if GEN_GEN < 7
2621 gs.SOStatisticsEnable = true;
2622 if (gs_prog->info.has_transform_feedback_varyings)
2623 gs.SVBIPayloadEnable = true;
2624
2625 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2626 * was previously done for gen6.
2627 *
2628 * TODO: test with both disabled to see if the HW is behaving
2629 * as expected, like in gen7.
2630 */
2631 gs.SingleProgramFlow = true;
2632 gs.VectorMaskEnable = true;
2633 #endif
2634
2635 #if GEN_GEN >= 8
2636 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2637
2638 if (gs_prog_data->static_vertex_count != -1) {
2639 gs.StaticOutput = true;
2640 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2641 }
2642 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2643
2644 gs.UserClipDistanceCullTestEnableBitmask =
2645 vue_prog_data->cull_distance_mask;
2646
2647 const int urb_entry_write_offset = 1;
2648 const uint32_t urb_entry_output_length =
2649 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2650 urb_entry_write_offset;
2651
2652 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2653 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2654 #endif
2655 }
2656 #endif
2657
2658 #if GEN_GEN <= 6
2659 if (!active && brw->ff_gs.prog_active) {
2660 /* In gen6, transform feedback for the VS stage is done with an
2661 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2662 * for this.
2663 */
2664 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2665 gs.SingleProgramFlow = true;
2666 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2667 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2668
2669 #if GEN_GEN <= 5
2670 gs.GRFRegisterCount =
2671 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2672 /* BRW_NEW_URB_FENCE */
2673 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2674 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2675 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2676 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2677 #else
2678 gs.Enable = true;
2679 gs.VectorMaskEnable = true;
2680 gs.SVBIPayloadEnable = true;
2681 gs.SVBIPostIncrementEnable = true;
2682 gs.SVBIPostIncrementValue =
2683 brw->ff_gs.prog_data->svbi_postincrement_value;
2684 gs.SOStatisticsEnable = true;
2685 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2686 #endif
2687 }
2688 #endif
2689 if (!active && !brw->ff_gs.prog_active) {
2690 #if GEN_GEN < 8
2691 gs.DispatchGRFStartRegisterForURBData = 1;
2692 #if GEN_GEN >= 7
2693 gs.IncludeVertexHandles = true;
2694 #endif
2695 #endif
2696 }
2697
2698 #if GEN_GEN >= 6
2699 gs.StatisticsEnable = true;
2700 #endif
2701 #if GEN_GEN == 5 || GEN_GEN == 6
2702 gs.RenderingEnabled = true;
2703 #endif
2704 #if GEN_GEN <= 5
2705 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2706 #endif
2707 }
2708
2709 #if GEN_GEN == 6
2710 brw->gs.enabled = active;
2711 #endif
2712 }
2713
2714 static const struct brw_tracked_state genX(gs_state) = {
2715 .dirty = {
2716 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2717 .brw = BRW_NEW_BATCH |
2718 BRW_NEW_BLORP |
2719 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2720 BRW_NEW_PROGRAM_CACHE |
2721 BRW_NEW_URB_FENCE |
2722 BRW_NEW_VIEWPORT_COUNT
2723 : 0) |
2724 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2725 BRW_NEW_GEOMETRY_PROGRAM |
2726 BRW_NEW_GS_PROG_DATA
2727 : 0) |
2728 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2729 },
2730 .emit = genX(upload_gs_state),
2731 };
2732
2733 /* ---------------------------------------------------------------------- */
2734
2735 UNUSED static GLenum
2736 fix_dual_blend_alpha_to_one(GLenum function)
2737 {
2738 switch (function) {
2739 case GL_SRC1_ALPHA:
2740 return GL_ONE;
2741
2742 case GL_ONE_MINUS_SRC1_ALPHA:
2743 return GL_ZERO;
2744 }
2745
2746 return function;
2747 }
2748
2749 #define blend_factor(x) brw_translate_blend_factor(x)
2750 #define blend_eqn(x) brw_translate_blend_equation(x)
2751
2752 /**
2753 * Modify blend function to force destination alpha to 1.0
2754 *
2755 * If \c function specifies a blend function that uses destination alpha,
2756 * replace it with a function that hard-wires destination alpha to 1.0. This
2757 * is used when rendering to xRGB targets.
2758 */
2759 static GLenum
2760 brw_fix_xRGB_alpha(GLenum function)
2761 {
2762 switch (function) {
2763 case GL_DST_ALPHA:
2764 return GL_ONE;
2765
2766 case GL_ONE_MINUS_DST_ALPHA:
2767 case GL_SRC_ALPHA_SATURATE:
2768 return GL_ZERO;
2769 }
2770
2771 return function;
2772 }
2773
2774 #if GEN_GEN >= 6
2775 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2776 #else
2777 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2778 #endif
2779
2780 UNUSED static bool
2781 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2782 bool alpha_to_one)
2783 {
2784 struct gl_context *ctx = &brw->ctx;
2785
2786 /* _NEW_BUFFERS */
2787 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2788
2789 bool independent_alpha_blend = false;
2790
2791 /* Used for implementing the following bit of GL_EXT_texture_integer:
2792 * "Per-fragment operations that require floating-point color
2793 * components, including multisample alpha operations, alpha test,
2794 * blending, and dithering, have no effect when the corresponding
2795 * colors are written to an integer color buffer."
2796 */
2797 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2798
2799 const unsigned blend_enabled = GEN_GEN >= 6 ?
2800 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2801
2802 /* _NEW_COLOR */
2803 if (ctx->Color.ColorLogicOpEnabled) {
2804 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2805 : GL_UNSIGNED_NORMALIZED;
2806 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2807 rb_type != GL_UNSIGNED_NORMALIZED &&
2808 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2809 "renderbuffer\n",
2810 _mesa_enum_to_string(ctx->Color.LogicOp),
2811 _mesa_enum_to_string(rb_type));
2812 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2813 entry->LogicOpEnable = true;
2814 entry->LogicOpFunction =
2815 intel_translate_logic_op(ctx->Color.LogicOp);
2816 }
2817 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2818 && (GEN_GEN <= 5 || !integer)) {
2819 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2820 GLenum eqA = ctx->Color.Blend[i].EquationA;
2821 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2822 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2823 GLenum srcA = ctx->Color.Blend[i].SrcA;
2824 GLenum dstA = ctx->Color.Blend[i].DstA;
2825
2826 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2827 srcRGB = dstRGB = GL_ONE;
2828
2829 if (eqA == GL_MIN || eqA == GL_MAX)
2830 srcA = dstA = GL_ONE;
2831
2832 /* Due to hardware limitations, the destination may have information
2833 * in an alpha channel even when the format specifies no alpha
2834 * channel. In order to avoid getting any incorrect blending due to
2835 * that alpha channel, coerce the blend factors to values that will
2836 * not read the alpha channel, but will instead use the correct
2837 * implicit value for alpha.
2838 */
2839 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2840 GL_TEXTURE_ALPHA_TYPE)) {
2841 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2842 srcA = brw_fix_xRGB_alpha(srcA);
2843 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2844 dstA = brw_fix_xRGB_alpha(dstA);
2845 }
2846
2847 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2848 * "If Dual Source Blending is enabled, this bit must be disabled."
2849 *
2850 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2851 * and leave it enabled anyway.
2852 */
2853 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2854 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2855 srcA = fix_dual_blend_alpha_to_one(srcA);
2856 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2857 dstA = fix_dual_blend_alpha_to_one(dstA);
2858 }
2859
2860 entry->ColorBufferBlendEnable = true;
2861 entry->DestinationBlendFactor = blend_factor(dstRGB);
2862 entry->SourceBlendFactor = blend_factor(srcRGB);
2863 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2864 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2865 entry->ColorBlendFunction = blend_eqn(eqRGB);
2866 entry->AlphaBlendFunction = blend_eqn(eqA);
2867
2868 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2869 independent_alpha_blend = true;
2870 }
2871
2872 return independent_alpha_blend;
2873 }
2874
2875 #if GEN_GEN >= 6
2876 static void
2877 genX(upload_blend_state)(struct brw_context *brw)
2878 {
2879 struct gl_context *ctx = &brw->ctx;
2880 int size;
2881
2882 /* We need at least one BLEND_STATE written, because we might do
2883 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2884 * for computed depth or alpha test), which will do an FB write
2885 * with render target 0, which will reference BLEND_STATE[0] for
2886 * alpha test enable.
2887 */
2888 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2889 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2890 nr_draw_buffers = 1;
2891
2892 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2893 #if GEN_GEN >= 8
2894 size += GENX(BLEND_STATE_length) * 4;
2895 #endif
2896
2897 uint32_t *blend_map;
2898 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2899
2900 #if GEN_GEN >= 8
2901 struct GENX(BLEND_STATE) blend = { 0 };
2902 {
2903 #else
2904 for (int i = 0; i < nr_draw_buffers; i++) {
2905 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2906 #define blend entry
2907 #endif
2908 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2909 * "If drawbuffer zero is not NONE and the buffer it references has an
2910 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2911 * operations are skipped."
2912 */
2913 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2914 /* _NEW_MULTISAMPLE */
2915 if (_mesa_is_multisample_enabled(ctx)) {
2916 if (ctx->Multisample.SampleAlphaToCoverage) {
2917 blend.AlphaToCoverageEnable = true;
2918 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2919 }
2920 if (ctx->Multisample.SampleAlphaToOne)
2921 blend.AlphaToOneEnable = true;
2922 }
2923
2924 /* _NEW_COLOR */
2925 if (ctx->Color.AlphaEnabled) {
2926 blend.AlphaTestEnable = true;
2927 blend.AlphaTestFunction =
2928 intel_translate_compare_func(ctx->Color.AlphaFunc);
2929 }
2930
2931 if (ctx->Color.DitherFlag) {
2932 blend.ColorDitherEnable = true;
2933 }
2934 }
2935
2936 #if GEN_GEN >= 8
2937 for (int i = 0; i < nr_draw_buffers; i++) {
2938 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2939 #else
2940 {
2941 #endif
2942 blend.IndependentAlphaBlendEnable =
2943 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2944 blend.IndependentAlphaBlendEnable;
2945
2946 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2947 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2948 *
2949 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2950 * clamping in the fragment shader. For its clamping of
2951 * blending, the spec says:
2952 *
2953 * "RESOLVED: For fixed-point color buffers, the inputs and
2954 * the result of the blending equation are clamped. For
2955 * floating-point color buffers, no clamping occurs."
2956 *
2957 * So, generally, we want clamping to the render target's range.
2958 * And, good news, the hardware tables for both pre- and
2959 * post-blend color clamping are either ignored, or any are
2960 * allowed, or clamping is required but RT range clamping is a
2961 * valid option.
2962 */
2963 entry.PreBlendColorClampEnable = true;
2964 entry.PostBlendColorClampEnable = true;
2965 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
2966
2967 entry.WriteDisableRed = !ctx->Color.ColorMask[i][0];
2968 entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1];
2969 entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2];
2970 entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3];
2971
2972 #if GEN_GEN >= 8
2973 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
2974 #else
2975 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
2976 #endif
2977 }
2978 }
2979
2980 #if GEN_GEN >= 8
2981 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
2982 #endif
2983
2984 #if GEN_GEN < 7
2985 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2986 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
2987 ptr.BLEND_STATEChange = true;
2988 }
2989 #else
2990 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2991 ptr.BlendStatePointer = brw->cc.blend_state_offset;
2992 #if GEN_GEN >= 8
2993 ptr.BlendStatePointerValid = true;
2994 #endif
2995 }
2996 #endif
2997 }
2998
2999 static const struct brw_tracked_state genX(blend_state) = {
3000 .dirty = {
3001 .mesa = _NEW_BUFFERS |
3002 _NEW_COLOR |
3003 _NEW_MULTISAMPLE,
3004 .brw = BRW_NEW_BATCH |
3005 BRW_NEW_BLORP |
3006 BRW_NEW_STATE_BASE_ADDRESS,
3007 },
3008 .emit = genX(upload_blend_state),
3009 };
3010 #endif
3011
3012 /* ---------------------------------------------------------------------- */
3013
3014 #if GEN_GEN >= 7
3015 UNUSED static const uint32_t push_constant_opcodes[] = {
3016 [MESA_SHADER_VERTEX] = 21,
3017 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3018 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3019 [MESA_SHADER_GEOMETRY] = 22,
3020 [MESA_SHADER_FRAGMENT] = 23,
3021 [MESA_SHADER_COMPUTE] = 0,
3022 };
3023
3024 static void
3025 genX(upload_push_constant_packets)(struct brw_context *brw)
3026 {
3027 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3028 struct gl_context *ctx = &brw->ctx;
3029
3030 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3031
3032 struct brw_stage_state *stage_states[] = {
3033 &brw->vs.base,
3034 &brw->tcs.base,
3035 &brw->tes.base,
3036 &brw->gs.base,
3037 &brw->wm.base,
3038 };
3039
3040 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3041 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3042 gen7_emit_vs_workaround_flush(brw);
3043
3044 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3045 struct brw_stage_state *stage_state = stage_states[stage];
3046 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3047
3048 if (!stage_state->push_constants_dirty)
3049 continue;
3050
3051 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3052 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3053 if (stage_state->prog_data) {
3054 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3055 /* The Skylake PRM contains the following restriction:
3056 *
3057 * "The driver must ensure The following case does not occur
3058 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3059 * buffer 3 read length equal to zero committed followed by a
3060 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3061 * zero committed."
3062 *
3063 * To avoid this, we program the buffers in the highest slots.
3064 * This way, slot 0 is only used if slot 3 is also used.
3065 */
3066 int n = 3;
3067
3068 for (int i = 3; i >= 0; i--) {
3069 const struct brw_ubo_range *range =
3070 &stage_state->prog_data->ubo_ranges[i];
3071
3072 if (range->length == 0)
3073 continue;
3074
3075 const struct gl_uniform_block *block =
3076 prog->sh.UniformBlocks[range->block];
3077 const struct gl_buffer_binding *binding =
3078 &ctx->UniformBufferBindings[block->Binding];
3079
3080 if (binding->BufferObject == ctx->Shared->NullBufferObj) {
3081 static unsigned msg_id = 0;
3082 _mesa_gl_debug(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3083 MESA_DEBUG_TYPE_UNDEFINED,
3084 MESA_DEBUG_SEVERITY_HIGH,
3085 "UBO %d unbound, %s shader uniform data "
3086 "will be undefined.",
3087 range->block,
3088 _mesa_shader_stage_to_string(stage));
3089 continue;
3090 }
3091
3092 assert(binding->Offset % 32 == 0);
3093
3094 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3095 intel_buffer_object(binding->BufferObject),
3096 binding->Offset, range->length * 32, false);
3097
3098 pkt.ConstantBody.ReadLength[n] = range->length;
3099 pkt.ConstantBody.Buffer[n] =
3100 ro_bo(bo, range->start * 32 + binding->Offset);
3101 n--;
3102 }
3103
3104 if (stage_state->push_const_size > 0) {
3105 assert(n >= 0);
3106 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3107 pkt.ConstantBody.Buffer[n] =
3108 ro_bo(stage_state->push_const_bo,
3109 stage_state->push_const_offset);
3110 }
3111 #else
3112 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3113 pkt.ConstantBody.Buffer[0].offset =
3114 stage_state->push_const_offset | mocs;
3115 #endif
3116 }
3117 }
3118
3119 stage_state->push_constants_dirty = false;
3120 }
3121
3122 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3123 }
3124
3125 const struct brw_tracked_state genX(push_constant_packets) = {
3126 .dirty = {
3127 .mesa = 0,
3128 .brw = BRW_NEW_DRAW_CALL,
3129 },
3130 .emit = genX(upload_push_constant_packets),
3131 };
3132 #endif
3133
3134 #if GEN_GEN >= 6
3135 static void
3136 genX(upload_vs_push_constants)(struct brw_context *brw)
3137 {
3138 struct brw_stage_state *stage_state = &brw->vs.base;
3139
3140 /* BRW_NEW_VERTEX_PROGRAM */
3141 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3142 /* BRW_NEW_VS_PROG_DATA */
3143 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3144
3145 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3146 }
3147
3148 static const struct brw_tracked_state genX(vs_push_constants) = {
3149 .dirty = {
3150 .mesa = _NEW_PROGRAM_CONSTANTS |
3151 _NEW_TRANSFORM,
3152 .brw = BRW_NEW_BATCH |
3153 BRW_NEW_BLORP |
3154 BRW_NEW_VERTEX_PROGRAM |
3155 BRW_NEW_VS_PROG_DATA,
3156 },
3157 .emit = genX(upload_vs_push_constants),
3158 };
3159
3160 static void
3161 genX(upload_gs_push_constants)(struct brw_context *brw)
3162 {
3163 struct brw_stage_state *stage_state = &brw->gs.base;
3164
3165 /* BRW_NEW_GEOMETRY_PROGRAM */
3166 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3167
3168 /* BRW_NEW_GS_PROG_DATA */
3169 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3170
3171 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3172 }
3173
3174 static const struct brw_tracked_state genX(gs_push_constants) = {
3175 .dirty = {
3176 .mesa = _NEW_PROGRAM_CONSTANTS |
3177 _NEW_TRANSFORM,
3178 .brw = BRW_NEW_BATCH |
3179 BRW_NEW_BLORP |
3180 BRW_NEW_GEOMETRY_PROGRAM |
3181 BRW_NEW_GS_PROG_DATA,
3182 },
3183 .emit = genX(upload_gs_push_constants),
3184 };
3185
3186 static void
3187 genX(upload_wm_push_constants)(struct brw_context *brw)
3188 {
3189 struct brw_stage_state *stage_state = &brw->wm.base;
3190 /* BRW_NEW_FRAGMENT_PROGRAM */
3191 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3192 /* BRW_NEW_FS_PROG_DATA */
3193 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3194
3195 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3196 }
3197
3198 static const struct brw_tracked_state genX(wm_push_constants) = {
3199 .dirty = {
3200 .mesa = _NEW_PROGRAM_CONSTANTS,
3201 .brw = BRW_NEW_BATCH |
3202 BRW_NEW_BLORP |
3203 BRW_NEW_FRAGMENT_PROGRAM |
3204 BRW_NEW_FS_PROG_DATA,
3205 },
3206 .emit = genX(upload_wm_push_constants),
3207 };
3208 #endif
3209
3210 /* ---------------------------------------------------------------------- */
3211
3212 #if GEN_GEN >= 6
3213 static unsigned
3214 genX(determine_sample_mask)(struct brw_context *brw)
3215 {
3216 struct gl_context *ctx = &brw->ctx;
3217 float coverage = 1.0f;
3218 float coverage_invert = false;
3219 unsigned sample_mask = ~0u;
3220
3221 /* BRW_NEW_NUM_SAMPLES */
3222 unsigned num_samples = brw->num_samples;
3223
3224 if (_mesa_is_multisample_enabled(ctx)) {
3225 if (ctx->Multisample.SampleCoverage) {
3226 coverage = ctx->Multisample.SampleCoverageValue;
3227 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3228 }
3229 if (ctx->Multisample.SampleMask) {
3230 sample_mask = ctx->Multisample.SampleMaskValue;
3231 }
3232 }
3233
3234 if (num_samples > 1) {
3235 int coverage_int = (int) (num_samples * coverage + 0.5f);
3236 uint32_t coverage_bits = (1 << coverage_int) - 1;
3237 if (coverage_invert)
3238 coverage_bits ^= (1 << num_samples) - 1;
3239 return coverage_bits & sample_mask;
3240 } else {
3241 return 1;
3242 }
3243 }
3244
3245 static void
3246 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3247 unsigned num_samples)
3248 {
3249 unsigned log2_samples = ffs(num_samples) - 1;
3250
3251 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3252 multi.PixelLocation = CENTER;
3253 multi.NumberofMultisamples = log2_samples;
3254 #if GEN_GEN == 6
3255 GEN_SAMPLE_POS_4X(multi.Sample);
3256 #elif GEN_GEN == 7
3257 switch (num_samples) {
3258 case 1:
3259 GEN_SAMPLE_POS_1X(multi.Sample);
3260 break;
3261 case 2:
3262 GEN_SAMPLE_POS_2X(multi.Sample);
3263 break;
3264 case 4:
3265 GEN_SAMPLE_POS_4X(multi.Sample);
3266 break;
3267 case 8:
3268 GEN_SAMPLE_POS_8X(multi.Sample);
3269 break;
3270 default:
3271 break;
3272 }
3273 #endif
3274 }
3275 }
3276
3277 static void
3278 genX(upload_multisample_state)(struct brw_context *brw)
3279 {
3280 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3281
3282 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3283
3284 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3285 sm.SampleMask = genX(determine_sample_mask)(brw);
3286 }
3287 }
3288
3289 static const struct brw_tracked_state genX(multisample_state) = {
3290 .dirty = {
3291 .mesa = _NEW_MULTISAMPLE,
3292 .brw = BRW_NEW_BLORP |
3293 BRW_NEW_CONTEXT |
3294 BRW_NEW_NUM_SAMPLES,
3295 },
3296 .emit = genX(upload_multisample_state)
3297 };
3298 #endif
3299
3300 /* ---------------------------------------------------------------------- */
3301
3302 static void
3303 genX(upload_color_calc_state)(struct brw_context *brw)
3304 {
3305 struct gl_context *ctx = &brw->ctx;
3306
3307 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3308 #if GEN_GEN <= 5
3309 cc.IndependentAlphaBlendEnable =
3310 set_blend_entry_bits(brw, &cc, 0, false);
3311 set_depth_stencil_bits(brw, &cc);
3312
3313 if (ctx->Color.AlphaEnabled &&
3314 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3315 cc.AlphaTestEnable = true;
3316 cc.AlphaTestFunction =
3317 intel_translate_compare_func(ctx->Color.AlphaFunc);
3318 }
3319
3320 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3321
3322 cc.StatisticsEnable = brw->stats_wm;
3323
3324 cc.CCViewportStatePointer =
3325 ro_bo(brw->batch.state_bo, brw->cc.vp_offset);
3326 #else
3327 /* _NEW_COLOR */
3328 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3329 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3330 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3331 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3332
3333 #if GEN_GEN < 9
3334 /* _NEW_STENCIL */
3335 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3336 cc.BackfaceStencilReferenceValue =
3337 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3338 #endif
3339
3340 #endif
3341
3342 /* _NEW_COLOR */
3343 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3344 ctx->Color.AlphaRef);
3345 }
3346
3347 #if GEN_GEN >= 6
3348 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3349 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3350 #if GEN_GEN != 7
3351 ptr.ColorCalcStatePointerValid = true;
3352 #endif
3353 }
3354 #else
3355 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3356 #endif
3357 }
3358
3359 static const struct brw_tracked_state genX(color_calc_state) = {
3360 .dirty = {
3361 .mesa = _NEW_COLOR |
3362 _NEW_STENCIL |
3363 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3364 _NEW_DEPTH
3365 : 0),
3366 .brw = BRW_NEW_BATCH |
3367 BRW_NEW_BLORP |
3368 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3369 BRW_NEW_STATS_WM
3370 : BRW_NEW_CC_STATE |
3371 BRW_NEW_STATE_BASE_ADDRESS),
3372 },
3373 .emit = genX(upload_color_calc_state),
3374 };
3375
3376
3377 /* ---------------------------------------------------------------------- */
3378
3379 #if GEN_GEN >= 7
3380 static void
3381 genX(upload_sbe)(struct brw_context *brw)
3382 {
3383 struct gl_context *ctx = &brw->ctx;
3384 /* BRW_NEW_FRAGMENT_PROGRAM */
3385 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3386 /* BRW_NEW_FS_PROG_DATA */
3387 const struct brw_wm_prog_data *wm_prog_data =
3388 brw_wm_prog_data(brw->wm.base.prog_data);
3389 #if GEN_GEN >= 8
3390 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3391 #else
3392 #define attr_overrides sbe.Attribute
3393 #endif
3394 uint32_t urb_entry_read_length;
3395 uint32_t urb_entry_read_offset;
3396 uint32_t point_sprite_enables;
3397
3398 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3399 sbe.AttributeSwizzleEnable = true;
3400 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3401
3402 /* _NEW_BUFFERS */
3403 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
3404
3405 /* _NEW_POINT
3406 *
3407 * Window coordinates in an FBO are inverted, which means point
3408 * sprite origin must be inverted.
3409 */
3410 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
3411 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3412 else
3413 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3414
3415 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3416 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3417 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3418 * BRW_NEW_VUE_MAP_GEOM_OUT
3419 */
3420 genX(calculate_attr_overrides)(brw,
3421 attr_overrides,
3422 &point_sprite_enables,
3423 &urb_entry_read_length,
3424 &urb_entry_read_offset);
3425
3426 /* Typically, the URB entry read length and offset should be programmed
3427 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3428 * stage which produces geometry. However, we don't know the proper
3429 * value until we call calculate_attr_overrides().
3430 *
3431 * To fit with our existing code, we override the inherited values and
3432 * specify it here directly, as we did on previous generations.
3433 */
3434 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3435 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3436 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3437 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3438
3439 #if GEN_GEN >= 8
3440 sbe.ForceVertexURBEntryReadLength = true;
3441 sbe.ForceVertexURBEntryReadOffset = true;
3442 #endif
3443
3444 #if GEN_GEN >= 9
3445 /* prepare the active component dwords */
3446 const int num_inputs = urb_entry_read_length * 2;
3447 for (int input_index = 0; input_index < num_inputs; input_index++) {
3448 sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW;
3449 }
3450 #endif
3451 }
3452
3453 #if GEN_GEN >= 8
3454 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3455 for (int i = 0; i < 16; i++)
3456 sbes.Attribute[i] = attr_overrides[i];
3457 }
3458 #endif
3459
3460 #undef attr_overrides
3461 }
3462
3463 static const struct brw_tracked_state genX(sbe_state) = {
3464 .dirty = {
3465 .mesa = _NEW_BUFFERS |
3466 _NEW_LIGHT |
3467 _NEW_POINT |
3468 _NEW_POLYGON |
3469 _NEW_PROGRAM,
3470 .brw = BRW_NEW_BLORP |
3471 BRW_NEW_CONTEXT |
3472 BRW_NEW_FRAGMENT_PROGRAM |
3473 BRW_NEW_FS_PROG_DATA |
3474 BRW_NEW_GS_PROG_DATA |
3475 BRW_NEW_TES_PROG_DATA |
3476 BRW_NEW_VUE_MAP_GEOM_OUT |
3477 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3478 : 0),
3479 },
3480 .emit = genX(upload_sbe),
3481 };
3482 #endif
3483
3484 /* ---------------------------------------------------------------------- */
3485
3486 #if GEN_GEN >= 7
3487 /**
3488 * Outputs the 3DSTATE_SO_DECL_LIST command.
3489 *
3490 * The data output is a series of 64-bit entries containing a SO_DECL per
3491 * stream. We only have one stream of rendering coming out of the GS unit, so
3492 * we only emit stream 0 (low 16 bits) SO_DECLs.
3493 */
3494 static void
3495 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3496 const struct brw_vue_map *vue_map)
3497 {
3498 struct gl_context *ctx = &brw->ctx;
3499 /* BRW_NEW_TRANSFORM_FEEDBACK */
3500 struct gl_transform_feedback_object *xfb_obj =
3501 ctx->TransformFeedback.CurrentObject;
3502 const struct gl_transform_feedback_info *linked_xfb_info =
3503 xfb_obj->program->sh.LinkedTransformFeedback;
3504 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3505 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3506 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3507 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3508 int max_decls = 0;
3509 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3510
3511 memset(so_decl, 0, sizeof(so_decl));
3512
3513 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3514 * command feels strange -- each dword pair contains a SO_DECL per stream.
3515 */
3516 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3517 const struct gl_transform_feedback_output *output =
3518 &linked_xfb_info->Outputs[i];
3519 const int buffer = output->OutputBuffer;
3520 const int varying = output->OutputRegister;
3521 const unsigned stream_id = output->StreamId;
3522 assert(stream_id < MAX_VERTEX_STREAMS);
3523
3524 buffer_mask[stream_id] |= 1 << buffer;
3525
3526 assert(vue_map->varying_to_slot[varying] >= 0);
3527
3528 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3529 * array. Instead, it simply increments DstOffset for the following
3530 * input by the number of components that should be skipped.
3531 *
3532 * Our hardware is unusual in that it requires us to program SO_DECLs
3533 * for fake "hole" components, rather than simply taking the offset
3534 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3535 * program as many size = 4 holes as we can, then a final hole to
3536 * accommodate the final 1, 2, or 3 remaining.
3537 */
3538 int skip_components = output->DstOffset - next_offset[buffer];
3539
3540 while (skip_components > 0) {
3541 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3542 .HoleFlag = 1,
3543 .OutputBufferSlot = output->OutputBuffer,
3544 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3545 };
3546 skip_components -= 4;
3547 }
3548
3549 next_offset[buffer] = output->DstOffset + output->NumComponents;
3550
3551 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3552 .OutputBufferSlot = output->OutputBuffer,
3553 .RegisterIndex = vue_map->varying_to_slot[varying],
3554 .ComponentMask =
3555 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3556 };
3557
3558 if (decls[stream_id] > max_decls)
3559 max_decls = decls[stream_id];
3560 }
3561
3562 uint32_t *dw;
3563 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3564 .StreamtoBufferSelects0 = buffer_mask[0],
3565 .StreamtoBufferSelects1 = buffer_mask[1],
3566 .StreamtoBufferSelects2 = buffer_mask[2],
3567 .StreamtoBufferSelects3 = buffer_mask[3],
3568 .NumEntries0 = decls[0],
3569 .NumEntries1 = decls[1],
3570 .NumEntries2 = decls[2],
3571 .NumEntries3 = decls[3]);
3572
3573 for (int i = 0; i < max_decls; i++) {
3574 GENX(SO_DECL_ENTRY_pack)(
3575 brw, dw + 2 + i * 2,
3576 &(struct GENX(SO_DECL_ENTRY)) {
3577 .Stream0Decl = so_decl[0][i],
3578 .Stream1Decl = so_decl[1][i],
3579 .Stream2Decl = so_decl[2][i],
3580 .Stream3Decl = so_decl[3][i],
3581 });
3582 }
3583 }
3584
3585 static void
3586 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3587 {
3588 struct gl_context *ctx = &brw->ctx;
3589 /* BRW_NEW_TRANSFORM_FEEDBACK */
3590 struct gl_transform_feedback_object *xfb_obj =
3591 ctx->TransformFeedback.CurrentObject;
3592 #if GEN_GEN < 8
3593 const struct gl_transform_feedback_info *linked_xfb_info =
3594 xfb_obj->program->sh.LinkedTransformFeedback;
3595 #else
3596 struct brw_transform_feedback_object *brw_obj =
3597 (struct brw_transform_feedback_object *) xfb_obj;
3598 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3599 #endif
3600
3601 /* Set up the up to 4 output buffers. These are the ranges defined in the
3602 * gl_transform_feedback_object.
3603 */
3604 for (int i = 0; i < 4; i++) {
3605 struct intel_buffer_object *bufferobj =
3606 intel_buffer_object(xfb_obj->Buffers[i]);
3607
3608 if (!bufferobj) {
3609 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3610 sob.SOBufferIndex = i;
3611 }
3612 continue;
3613 }
3614
3615 uint32_t start = xfb_obj->Offset[i];
3616 assert(start % 4 == 0);
3617 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3618 struct brw_bo *bo =
3619 intel_bufferobj_buffer(brw, bufferobj, start, end - start, true);
3620 assert(end <= bo->size);
3621
3622 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3623 sob.SOBufferIndex = i;
3624
3625 sob.SurfaceBaseAddress = rw_bo(bo, start);
3626 #if GEN_GEN < 8
3627 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3628 sob.SurfaceEndAddress = rw_bo(bo, end);
3629 #else
3630 sob.SOBufferEnable = true;
3631 sob.StreamOffsetWriteEnable = true;
3632 sob.StreamOutputBufferOffsetAddressEnable = true;
3633 sob.SOBufferMOCS = mocs_wb;
3634
3635 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3636 sob.StreamOutputBufferOffsetAddress =
3637 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3638
3639 if (brw_obj->zero_offsets) {
3640 /* Zero out the offset and write that to offset_bo */
3641 sob.StreamOffset = 0;
3642 } else {
3643 /* Use offset_bo as the "Stream Offset." */
3644 sob.StreamOffset = 0xFFFFFFFF;
3645 }
3646 #endif
3647 }
3648 }
3649
3650 #if GEN_GEN >= 8
3651 brw_obj->zero_offsets = false;
3652 #endif
3653 }
3654
3655 static bool
3656 query_active(struct gl_query_object *q)
3657 {
3658 return q && q->Active;
3659 }
3660
3661 static void
3662 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3663 const struct brw_vue_map *vue_map)
3664 {
3665 struct gl_context *ctx = &brw->ctx;
3666 /* BRW_NEW_TRANSFORM_FEEDBACK */
3667 struct gl_transform_feedback_object *xfb_obj =
3668 ctx->TransformFeedback.CurrentObject;
3669
3670 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3671 if (active) {
3672 int urb_entry_read_offset = 0;
3673 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3674 urb_entry_read_offset;
3675
3676 sos.SOFunctionEnable = true;
3677 sos.SOStatisticsEnable = true;
3678
3679 /* BRW_NEW_RASTERIZER_DISCARD */
3680 if (ctx->RasterDiscard) {
3681 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3682 sos.RenderingDisable = true;
3683 } else {
3684 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3685 "query active relies on the clipper.\n");
3686 }
3687 }
3688
3689 /* _NEW_LIGHT */
3690 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3691 sos.ReorderMode = TRAILING;
3692
3693 #if GEN_GEN < 8
3694 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3695 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3696 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3697 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3698 #else
3699 const struct gl_transform_feedback_info *linked_xfb_info =
3700 xfb_obj->program->sh.LinkedTransformFeedback;
3701 /* Set buffer pitches; 0 means unbound. */
3702 if (xfb_obj->Buffers[0])
3703 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3704 if (xfb_obj->Buffers[1])
3705 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3706 if (xfb_obj->Buffers[2])
3707 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3708 if (xfb_obj->Buffers[3])
3709 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3710 #endif
3711
3712 /* We always read the whole vertex. This could be reduced at some
3713 * point by reading less and offsetting the register index in the
3714 * SO_DECLs.
3715 */
3716 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3717 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3718 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3719 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3720 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3721 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3722 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3723 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3724 }
3725 }
3726 }
3727
3728 static void
3729 genX(upload_sol)(struct brw_context *brw)
3730 {
3731 struct gl_context *ctx = &brw->ctx;
3732 /* BRW_NEW_TRANSFORM_FEEDBACK */
3733 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3734
3735 if (active) {
3736 genX(upload_3dstate_so_buffers)(brw);
3737
3738 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3739 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3740 }
3741
3742 /* Finally, set up the SOL stage. This command must always follow updates to
3743 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3744 * MMIO register updates (current performed by the kernel at each batch
3745 * emit).
3746 */
3747 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3748 }
3749
3750 static const struct brw_tracked_state genX(sol_state) = {
3751 .dirty = {
3752 .mesa = _NEW_LIGHT,
3753 .brw = BRW_NEW_BATCH |
3754 BRW_NEW_BLORP |
3755 BRW_NEW_RASTERIZER_DISCARD |
3756 BRW_NEW_VUE_MAP_GEOM_OUT |
3757 BRW_NEW_TRANSFORM_FEEDBACK,
3758 },
3759 .emit = genX(upload_sol),
3760 };
3761 #endif
3762
3763 /* ---------------------------------------------------------------------- */
3764
3765 #if GEN_GEN >= 7
3766 static void
3767 genX(upload_ps)(struct brw_context *brw)
3768 {
3769 UNUSED const struct gl_context *ctx = &brw->ctx;
3770 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3771
3772 /* BRW_NEW_FS_PROG_DATA */
3773 const struct brw_wm_prog_data *prog_data =
3774 brw_wm_prog_data(brw->wm.base.prog_data);
3775 const struct brw_stage_state *stage_state = &brw->wm.base;
3776
3777 #if GEN_GEN < 8
3778 #endif
3779
3780 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3781 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3782 * incorrect for subspans where some of the pixels are unlit. We believe
3783 * the bit just didn't take effect in previous generations.
3784 */
3785 ps.VectorMaskEnable = GEN_GEN >= 8;
3786
3787 ps.SamplerCount =
3788 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3789
3790 /* BRW_NEW_FS_PROG_DATA */
3791 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3792
3793 if (prog_data->base.use_alt_mode)
3794 ps.FloatingPointMode = Alternate;
3795
3796 /* Haswell requires the sample mask to be set in this packet as well as
3797 * in 3DSTATE_SAMPLE_MASK; the values should match.
3798 */
3799
3800 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3801 #if GEN_IS_HASWELL
3802 ps.SampleMask = genX(determine_sample_mask(brw));
3803 #endif
3804
3805 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
3806 * it implicitly scales for different GT levels (which have some # of
3807 * PSDs).
3808 *
3809 * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
3810 */
3811 #if GEN_GEN >= 9
3812 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3813 #elif GEN_GEN >= 8
3814 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3815 #else
3816 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3817 #endif
3818
3819 if (prog_data->base.nr_params > 0 ||
3820 prog_data->base.ubo_ranges[0].length > 0)
3821 ps.PushConstantEnable = true;
3822
3823 #if GEN_GEN < 8
3824 /* From the IVB PRM, volume 2 part 1, page 287:
3825 * "This bit is inserted in the PS payload header and made available to
3826 * the DataPort (either via the message header or via header bypass) to
3827 * indicate that oMask data (one or two phases) is included in Render
3828 * Target Write messages. If present, the oMask data is used to mask off
3829 * samples."
3830 */
3831 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3832
3833 /* The hardware wedges if you have this bit set but don't turn on any
3834 * dual source blend factors.
3835 *
3836 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3837 */
3838 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3839 (ctx->Color.BlendEnabled & 1) &&
3840 ctx->Color.Blend[0]._UsesDualSrc;
3841
3842 /* BRW_NEW_FS_PROG_DATA */
3843 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3844 #endif
3845
3846 /* From the documentation for this packet:
3847 * "If the PS kernel does not need the Position XY Offsets to
3848 * compute a Position Value, then this field should be programmed
3849 * to POSOFFSET_NONE."
3850 *
3851 * "SW Recommendation: If the PS kernel needs the Position Offsets
3852 * to compute a Position XY value, this field should match Position
3853 * ZW Interpolation Mode to ensure a consistent position.xyzw
3854 * computation."
3855 *
3856 * We only require XY sample offsets. So, this recommendation doesn't
3857 * look useful at the moment. We might need this in future.
3858 */
3859 if (prog_data->uses_pos_offset)
3860 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3861 else
3862 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3863
3864 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3865 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3866 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3867 prog_data->base.dispatch_grf_start_reg;
3868 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3869 prog_data->dispatch_grf_start_reg_2;
3870
3871 ps.KernelStartPointer0 = stage_state->prog_offset;
3872 ps.KernelStartPointer2 = stage_state->prog_offset +
3873 prog_data->prog_offset_2;
3874
3875 if (prog_data->base.total_scratch) {
3876 ps.ScratchSpaceBasePointer =
3877 rw_bo(stage_state->scratch_bo,
3878 ffs(stage_state->per_thread_scratch) - 11);
3879 }
3880 }
3881 }
3882
3883 static const struct brw_tracked_state genX(ps_state) = {
3884 .dirty = {
3885 .mesa = _NEW_MULTISAMPLE |
3886 (GEN_GEN < 8 ? _NEW_BUFFERS |
3887 _NEW_COLOR
3888 : 0),
3889 .brw = BRW_NEW_BATCH |
3890 BRW_NEW_BLORP |
3891 BRW_NEW_FS_PROG_DATA,
3892 },
3893 .emit = genX(upload_ps),
3894 };
3895 #endif
3896
3897 /* ---------------------------------------------------------------------- */
3898
3899 #if GEN_GEN >= 7
3900 static void
3901 genX(upload_hs_state)(struct brw_context *brw)
3902 {
3903 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3904 struct brw_stage_state *stage_state = &brw->tcs.base;
3905 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3906 const struct brw_vue_prog_data *vue_prog_data =
3907 brw_vue_prog_data(stage_prog_data);
3908
3909 /* BRW_NEW_TES_PROG_DATA */
3910 struct brw_tcs_prog_data *tcs_prog_data =
3911 brw_tcs_prog_data(stage_prog_data);
3912
3913 if (!tcs_prog_data) {
3914 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
3915 } else {
3916 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
3917 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
3918
3919 hs.InstanceCount = tcs_prog_data->instances - 1;
3920 hs.IncludeVertexHandles = true;
3921
3922 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3923 }
3924 }
3925 }
3926
3927 static const struct brw_tracked_state genX(hs_state) = {
3928 .dirty = {
3929 .mesa = 0,
3930 .brw = BRW_NEW_BATCH |
3931 BRW_NEW_BLORP |
3932 BRW_NEW_TCS_PROG_DATA |
3933 BRW_NEW_TESS_PROGRAMS,
3934 },
3935 .emit = genX(upload_hs_state),
3936 };
3937
3938 static void
3939 genX(upload_ds_state)(struct brw_context *brw)
3940 {
3941 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3942 const struct brw_stage_state *stage_state = &brw->tes.base;
3943 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
3944
3945 /* BRW_NEW_TES_PROG_DATA */
3946 const struct brw_tes_prog_data *tes_prog_data =
3947 brw_tes_prog_data(stage_prog_data);
3948 const struct brw_vue_prog_data *vue_prog_data =
3949 brw_vue_prog_data(stage_prog_data);
3950
3951 if (!tes_prog_data) {
3952 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
3953 } else {
3954 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
3955 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
3956
3957 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3958 ds.ComputeWCoordinateEnable =
3959 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3960
3961 #if GEN_GEN >= 8
3962 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
3963 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3964 ds.UserClipDistanceCullTestEnableBitmask =
3965 vue_prog_data->cull_distance_mask;
3966 #endif
3967 }
3968 }
3969 }
3970
3971 static const struct brw_tracked_state genX(ds_state) = {
3972 .dirty = {
3973 .mesa = 0,
3974 .brw = BRW_NEW_BATCH |
3975 BRW_NEW_BLORP |
3976 BRW_NEW_TESS_PROGRAMS |
3977 BRW_NEW_TES_PROG_DATA,
3978 },
3979 .emit = genX(upload_ds_state),
3980 };
3981
3982 /* ---------------------------------------------------------------------- */
3983
3984 static void
3985 upload_te_state(struct brw_context *brw)
3986 {
3987 /* BRW_NEW_TESS_PROGRAMS */
3988 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
3989
3990 /* BRW_NEW_TES_PROG_DATA */
3991 const struct brw_tes_prog_data *tes_prog_data =
3992 brw_tes_prog_data(brw->tes.base.prog_data);
3993
3994 if (active) {
3995 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
3996 te.Partitioning = tes_prog_data->partitioning;
3997 te.OutputTopology = tes_prog_data->output_topology;
3998 te.TEDomain = tes_prog_data->domain;
3999 te.TEEnable = true;
4000 te.MaximumTessellationFactorOdd = 63.0;
4001 te.MaximumTessellationFactorNotOdd = 64.0;
4002 }
4003 } else {
4004 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4005 }
4006 }
4007
4008 static const struct brw_tracked_state genX(te_state) = {
4009 .dirty = {
4010 .mesa = 0,
4011 .brw = BRW_NEW_BLORP |
4012 BRW_NEW_CONTEXT |
4013 BRW_NEW_TES_PROG_DATA |
4014 BRW_NEW_TESS_PROGRAMS,
4015 },
4016 .emit = upload_te_state,
4017 };
4018
4019 /* ---------------------------------------------------------------------- */
4020
4021 static void
4022 genX(upload_tes_push_constants)(struct brw_context *brw)
4023 {
4024 struct brw_stage_state *stage_state = &brw->tes.base;
4025 /* BRW_NEW_TESS_PROGRAMS */
4026 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4027
4028 /* BRW_NEW_TES_PROG_DATA */
4029 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4030 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4031 }
4032
4033 static const struct brw_tracked_state genX(tes_push_constants) = {
4034 .dirty = {
4035 .mesa = _NEW_PROGRAM_CONSTANTS,
4036 .brw = BRW_NEW_BATCH |
4037 BRW_NEW_BLORP |
4038 BRW_NEW_TESS_PROGRAMS |
4039 BRW_NEW_TES_PROG_DATA,
4040 },
4041 .emit = genX(upload_tes_push_constants),
4042 };
4043
4044 static void
4045 genX(upload_tcs_push_constants)(struct brw_context *brw)
4046 {
4047 struct brw_stage_state *stage_state = &brw->tcs.base;
4048 /* BRW_NEW_TESS_PROGRAMS */
4049 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4050
4051 /* BRW_NEW_TCS_PROG_DATA */
4052 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4053
4054 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4055 }
4056
4057 static const struct brw_tracked_state genX(tcs_push_constants) = {
4058 .dirty = {
4059 .mesa = _NEW_PROGRAM_CONSTANTS,
4060 .brw = BRW_NEW_BATCH |
4061 BRW_NEW_BLORP |
4062 BRW_NEW_DEFAULT_TESS_LEVELS |
4063 BRW_NEW_TESS_PROGRAMS |
4064 BRW_NEW_TCS_PROG_DATA,
4065 },
4066 .emit = genX(upload_tcs_push_constants),
4067 };
4068
4069 #endif
4070
4071 /* ---------------------------------------------------------------------- */
4072
4073 #if GEN_GEN >= 7
4074 static void
4075 genX(upload_cs_push_constants)(struct brw_context *brw)
4076 {
4077 struct brw_stage_state *stage_state = &brw->cs.base;
4078
4079 /* BRW_NEW_COMPUTE_PROGRAM */
4080 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4081
4082 if (cp) {
4083 /* BRW_NEW_CS_PROG_DATA */
4084 struct brw_cs_prog_data *cs_prog_data =
4085 brw_cs_prog_data(brw->cs.base.prog_data);
4086
4087 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4088 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4089 }
4090 }
4091
4092 const struct brw_tracked_state genX(cs_push_constants) = {
4093 .dirty = {
4094 .mesa = _NEW_PROGRAM_CONSTANTS,
4095 .brw = BRW_NEW_BATCH |
4096 BRW_NEW_BLORP |
4097 BRW_NEW_COMPUTE_PROGRAM |
4098 BRW_NEW_CS_PROG_DATA,
4099 },
4100 .emit = genX(upload_cs_push_constants),
4101 };
4102
4103 /**
4104 * Creates a new CS constant buffer reflecting the current CS program's
4105 * constants, if needed by the CS program.
4106 */
4107 static void
4108 genX(upload_cs_pull_constants)(struct brw_context *brw)
4109 {
4110 struct brw_stage_state *stage_state = &brw->cs.base;
4111
4112 /* BRW_NEW_COMPUTE_PROGRAM */
4113 struct brw_program *cp =
4114 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4115
4116 /* BRW_NEW_CS_PROG_DATA */
4117 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4118
4119 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4120 /* _NEW_PROGRAM_CONSTANTS */
4121 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4122 stage_state, prog_data);
4123 }
4124
4125 const struct brw_tracked_state genX(cs_pull_constants) = {
4126 .dirty = {
4127 .mesa = _NEW_PROGRAM_CONSTANTS,
4128 .brw = BRW_NEW_BATCH |
4129 BRW_NEW_BLORP |
4130 BRW_NEW_COMPUTE_PROGRAM |
4131 BRW_NEW_CS_PROG_DATA,
4132 },
4133 .emit = genX(upload_cs_pull_constants),
4134 };
4135
4136 static void
4137 genX(upload_cs_state)(struct brw_context *brw)
4138 {
4139 if (!brw->cs.base.prog_data)
4140 return;
4141
4142 uint32_t offset;
4143 uint32_t *desc = (uint32_t*) brw_state_batch(
4144 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4145 &offset);
4146
4147 struct brw_stage_state *stage_state = &brw->cs.base;
4148 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4149 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4150 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4151
4152 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4153 brw_emit_buffer_surface_state(
4154 brw, &stage_state->surf_offset[
4155 prog_data->binding_table.shader_time_start],
4156 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4157 brw->shader_time.bo->size, 1,
4158 RELOC_WRITE);
4159 }
4160
4161 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4162 32, &stage_state->bind_bo_offset);
4163
4164 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4165 if (prog_data->total_scratch) {
4166 uint32_t bo_offset;
4167
4168 if (GEN_GEN >= 8) {
4169 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4170 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4171 */
4172 bo_offset = ffs(stage_state->per_thread_scratch) - 11;
4173 } else if (GEN_IS_HASWELL) {
4174 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4175 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4176 */
4177 bo_offset = ffs(stage_state->per_thread_scratch) - 12;
4178 } else {
4179 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4180 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4181 */
4182 bo_offset = stage_state->per_thread_scratch / 1024 - 1;
4183 }
4184 vfe.ScratchSpaceBasePointer =
4185 rw_bo(stage_state->scratch_bo, bo_offset);
4186 }
4187
4188 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4189 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4190 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4191 vfe.ResetGatewayTimer =
4192 Resettingrelativetimerandlatchingtheglobaltimestamp;
4193 #if GEN_GEN < 9
4194 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4195 #endif
4196 #if GEN_GEN == 7
4197 vfe.GPGPUMode = 1;
4198 #endif
4199
4200 /* We are uploading duplicated copies of push constant uniforms for each
4201 * thread. Although the local id data needs to vary per thread, it won't
4202 * change for other uniform data. Unfortunately this duplication is
4203 * required for gen7. As of Haswell, this duplication can be avoided,
4204 * but this older mechanism with duplicated data continues to work.
4205 *
4206 * FINISHME: As of Haswell, we could make use of the
4207 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4208 * field to only store one copy of uniform data.
4209 *
4210 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4211 * which is described in the GPGPU_WALKER command and in the Broadwell
4212 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4213 * Operations => GPGPU Mode => Indirect Payload Storage.
4214 *
4215 * Note: The constant data is built in brw_upload_cs_push_constants
4216 * below.
4217 */
4218 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4219
4220 const uint32_t vfe_curbe_allocation =
4221 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4222 cs_prog_data->push.cross_thread.regs, 2);
4223 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4224 }
4225
4226 if (cs_prog_data->push.total.size > 0) {
4227 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4228 curbe.CURBETotalDataLength =
4229 ALIGN(cs_prog_data->push.total.size, 64);
4230 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4231 }
4232 }
4233
4234 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4235 memcpy(bind, stage_state->surf_offset,
4236 prog_data->binding_table.size_bytes);
4237 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4238 .KernelStartPointer = brw->cs.base.prog_offset,
4239 .SamplerStatePointer = stage_state->sampler_offset,
4240 .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2,
4241 .BindingTablePointer = stage_state->bind_bo_offset,
4242 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4243 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
4244 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4245 prog_data->total_shared),
4246 .BarrierEnable = cs_prog_data->uses_barrier,
4247 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4248 .CrossThreadConstantDataReadLength =
4249 cs_prog_data->push.cross_thread.regs,
4250 #endif
4251 };
4252
4253 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4254
4255 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4256 load.InterfaceDescriptorTotalLength =
4257 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4258 load.InterfaceDescriptorDataStartAddress = offset;
4259 }
4260 }
4261
4262 static const struct brw_tracked_state genX(cs_state) = {
4263 .dirty = {
4264 .mesa = _NEW_PROGRAM_CONSTANTS,
4265 .brw = BRW_NEW_BATCH |
4266 BRW_NEW_BLORP |
4267 BRW_NEW_CS_PROG_DATA |
4268 BRW_NEW_SAMPLER_STATE_TABLE |
4269 BRW_NEW_SURFACES,
4270 },
4271 .emit = genX(upload_cs_state)
4272 };
4273
4274 #endif
4275
4276 /* ---------------------------------------------------------------------- */
4277
4278 #if GEN_GEN >= 8
4279 static void
4280 genX(upload_raster)(struct brw_context *brw)
4281 {
4282 struct gl_context *ctx = &brw->ctx;
4283
4284 /* _NEW_BUFFERS */
4285 bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
4286
4287 /* _NEW_POLYGON */
4288 struct gl_polygon_attrib *polygon = &ctx->Polygon;
4289
4290 /* _NEW_POINT */
4291 struct gl_point_attrib *point = &ctx->Point;
4292
4293 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4294 if (brw->polygon_front_bit == render_to_fbo)
4295 raster.FrontWinding = CounterClockwise;
4296
4297 if (polygon->CullFlag) {
4298 switch (polygon->CullFaceMode) {
4299 case GL_FRONT:
4300 raster.CullMode = CULLMODE_FRONT;
4301 break;
4302 case GL_BACK:
4303 raster.CullMode = CULLMODE_BACK;
4304 break;
4305 case GL_FRONT_AND_BACK:
4306 raster.CullMode = CULLMODE_BOTH;
4307 break;
4308 default:
4309 unreachable("not reached");
4310 }
4311 } else {
4312 raster.CullMode = CULLMODE_NONE;
4313 }
4314
4315 point->SmoothFlag = raster.SmoothPointEnable;
4316
4317 raster.DXMultisampleRasterizationEnable =
4318 _mesa_is_multisample_enabled(ctx);
4319
4320 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4321 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4322 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4323
4324 switch (polygon->FrontMode) {
4325 case GL_FILL:
4326 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4327 break;
4328 case GL_LINE:
4329 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4330 break;
4331 case GL_POINT:
4332 raster.FrontFaceFillMode = FILL_MODE_POINT;
4333 break;
4334 default:
4335 unreachable("not reached");
4336 }
4337
4338 switch (polygon->BackMode) {
4339 case GL_FILL:
4340 raster.BackFaceFillMode = FILL_MODE_SOLID;
4341 break;
4342 case GL_LINE:
4343 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4344 break;
4345 case GL_POINT:
4346 raster.BackFaceFillMode = FILL_MODE_POINT;
4347 break;
4348 default:
4349 unreachable("not reached");
4350 }
4351
4352 /* _NEW_LINE */
4353 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4354
4355 /* _NEW_SCISSOR */
4356 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4357
4358 /* _NEW_TRANSFORM */
4359 if (!ctx->Transform.DepthClamp) {
4360 #if GEN_GEN >= 9
4361 raster.ViewportZFarClipTestEnable = true;
4362 raster.ViewportZNearClipTestEnable = true;
4363 #else
4364 raster.ViewportZClipTestEnable = true;
4365 #endif
4366 }
4367
4368 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4369 #if GEN_GEN >= 9
4370 raster.ConservativeRasterizationEnable =
4371 ctx->IntelConservativeRasterization;
4372 #endif
4373
4374 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4375 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4376
4377 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4378 }
4379 }
4380
4381 static const struct brw_tracked_state genX(raster_state) = {
4382 .dirty = {
4383 .mesa = _NEW_BUFFERS |
4384 _NEW_LINE |
4385 _NEW_MULTISAMPLE |
4386 _NEW_POINT |
4387 _NEW_POLYGON |
4388 _NEW_SCISSOR |
4389 _NEW_TRANSFORM,
4390 .brw = BRW_NEW_BLORP |
4391 BRW_NEW_CONTEXT |
4392 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4393 },
4394 .emit = genX(upload_raster),
4395 };
4396 #endif
4397
4398 /* ---------------------------------------------------------------------- */
4399
4400 #if GEN_GEN >= 8
4401 static void
4402 genX(upload_ps_extra)(struct brw_context *brw)
4403 {
4404 UNUSED struct gl_context *ctx = &brw->ctx;
4405
4406 const struct brw_wm_prog_data *prog_data =
4407 brw_wm_prog_data(brw->wm.base.prog_data);
4408
4409 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4410 psx.PixelShaderValid = true;
4411 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4412 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4413 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4414 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4415 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4416 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4417
4418 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4419 if (prog_data->uses_sample_mask) {
4420 #if GEN_GEN >= 9
4421 if (prog_data->post_depth_coverage)
4422 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4423 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4424 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4425 else
4426 psx.InputCoverageMaskState = ICMS_NORMAL;
4427 #else
4428 psx.PixelShaderUsesInputCoverageMask = true;
4429 #endif
4430 }
4431
4432 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4433 #if GEN_GEN >= 9
4434 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4435 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4436 #endif
4437
4438 /* The stricter cross-primitive coherency guarantees that the hardware
4439 * gives us with the "Accesses UAV" bit set for at least one shader stage
4440 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4441 * are redundant within the current image, atomic counter and SSBO GL
4442 * APIs, which all have very loose ordering and coherency requirements
4443 * and generally rely on the application to insert explicit barriers when
4444 * a shader invocation is expected to see the memory writes performed by
4445 * the invocations of some previous primitive. Regardless of the value
4446 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4447 * cause an in most cases useless DC flush when the lowermost stage with
4448 * the bit set finishes execution.
4449 *
4450 * It would be nice to disable it, but in some cases we can't because on
4451 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4452 * signal (which could be set independently from the coherency mechanism
4453 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4454 * determine whether the hardware skips execution of the fragment shader
4455 * or not via the ThreadDispatchEnable signal. However if we know that
4456 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4457 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4458 * difference so we may just disable it here.
4459 *
4460 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4461 * take into account KillPixels when no depth or stencil writes are
4462 * enabled. In order for occlusion queries to work correctly with no
4463 * attachments, we need to force-enable here.
4464 *
4465 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4466 * _NEW_COLOR
4467 */
4468 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4469 !brw_color_buffer_write_enabled(brw))
4470 psx.PixelShaderHasUAV = true;
4471 }
4472 }
4473
4474 const struct brw_tracked_state genX(ps_extra) = {
4475 .dirty = {
4476 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4477 .brw = BRW_NEW_BLORP |
4478 BRW_NEW_CONTEXT |
4479 BRW_NEW_FRAGMENT_PROGRAM |
4480 BRW_NEW_FS_PROG_DATA |
4481 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4482 },
4483 .emit = genX(upload_ps_extra),
4484 };
4485 #endif
4486
4487 /* ---------------------------------------------------------------------- */
4488
4489 #if GEN_GEN >= 8
4490 static void
4491 genX(upload_ps_blend)(struct brw_context *brw)
4492 {
4493 struct gl_context *ctx = &brw->ctx;
4494
4495 /* _NEW_BUFFERS */
4496 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4497 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4498
4499 /* _NEW_COLOR */
4500 struct gl_colorbuffer_attrib *color = &ctx->Color;
4501
4502 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4503 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4504 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4505
4506 bool alpha_to_one = false;
4507
4508 if (!buffer0_is_integer) {
4509 /* _NEW_MULTISAMPLE */
4510
4511 if (_mesa_is_multisample_enabled(ctx)) {
4512 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4513 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4514 }
4515
4516 pb.AlphaTestEnable = color->AlphaEnabled;
4517 }
4518
4519 /* Used for implementing the following bit of GL_EXT_texture_integer:
4520 * "Per-fragment operations that require floating-point color
4521 * components, including multisample alpha operations, alpha test,
4522 * blending, and dithering, have no effect when the corresponding
4523 * colors are written to an integer color buffer."
4524 *
4525 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4526 * "If drawbuffer zero is not NONE and the buffer it references has an
4527 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4528 * operations are skipped."
4529 */
4530 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4531 GLenum eqRGB = color->Blend[0].EquationRGB;
4532 GLenum eqA = color->Blend[0].EquationA;
4533 GLenum srcRGB = color->Blend[0].SrcRGB;
4534 GLenum dstRGB = color->Blend[0].DstRGB;
4535 GLenum srcA = color->Blend[0].SrcA;
4536 GLenum dstA = color->Blend[0].DstA;
4537
4538 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4539 srcRGB = dstRGB = GL_ONE;
4540
4541 if (eqA == GL_MIN || eqA == GL_MAX)
4542 srcA = dstA = GL_ONE;
4543
4544 /* Due to hardware limitations, the destination may have information
4545 * in an alpha channel even when the format specifies no alpha
4546 * channel. In order to avoid getting any incorrect blending due to
4547 * that alpha channel, coerce the blend factors to values that will
4548 * not read the alpha channel, but will instead use the correct
4549 * implicit value for alpha.
4550 */
4551 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4552 GL_TEXTURE_ALPHA_TYPE)) {
4553 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4554 srcA = brw_fix_xRGB_alpha(srcA);
4555 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4556 dstA = brw_fix_xRGB_alpha(dstA);
4557 }
4558
4559 /* Alpha to One doesn't work with Dual Color Blending. Override
4560 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4561 */
4562 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4563 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4564 srcA = fix_dual_blend_alpha_to_one(srcA);
4565 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4566 dstA = fix_dual_blend_alpha_to_one(dstA);
4567 }
4568
4569 pb.ColorBufferBlendEnable = true;
4570 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4571 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4572 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4573 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4574
4575 pb.IndependentAlphaBlendEnable =
4576 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4577 }
4578 }
4579 }
4580
4581 static const struct brw_tracked_state genX(ps_blend) = {
4582 .dirty = {
4583 .mesa = _NEW_BUFFERS |
4584 _NEW_COLOR |
4585 _NEW_MULTISAMPLE,
4586 .brw = BRW_NEW_BLORP |
4587 BRW_NEW_CONTEXT |
4588 BRW_NEW_FRAGMENT_PROGRAM,
4589 },
4590 .emit = genX(upload_ps_blend)
4591 };
4592 #endif
4593
4594 /* ---------------------------------------------------------------------- */
4595
4596 #if GEN_GEN >= 8
4597 static void
4598 genX(emit_vf_topology)(struct brw_context *brw)
4599 {
4600 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4601 vftopo.PrimitiveTopologyType = brw->primitive;
4602 }
4603 }
4604
4605 static const struct brw_tracked_state genX(vf_topology) = {
4606 .dirty = {
4607 .mesa = 0,
4608 .brw = BRW_NEW_BLORP |
4609 BRW_NEW_PRIMITIVE,
4610 },
4611 .emit = genX(emit_vf_topology),
4612 };
4613 #endif
4614
4615 /* ---------------------------------------------------------------------- */
4616
4617 #if GEN_GEN >= 7
4618 static void
4619 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4620 struct brw_bo *bo,
4621 uint32_t offset_in_bytes,
4622 uint32_t report_id)
4623 {
4624 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4625 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4626 mi_rpc.ReportID = report_id;
4627 }
4628 }
4629 #endif
4630
4631 /* ---------------------------------------------------------------------- */
4632
4633 /**
4634 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4635 */
4636 static void
4637 genX(emit_sampler_state_pointers_xs)(struct brw_context *brw,
4638 struct brw_stage_state *stage_state)
4639 {
4640 #if GEN_GEN >= 7
4641 static const uint16_t packet_headers[] = {
4642 [MESA_SHADER_VERTEX] = 43,
4643 [MESA_SHADER_TESS_CTRL] = 44,
4644 [MESA_SHADER_TESS_EVAL] = 45,
4645 [MESA_SHADER_GEOMETRY] = 46,
4646 [MESA_SHADER_FRAGMENT] = 47,
4647 };
4648
4649 /* Ivybridge requires a workaround flush before VS packets. */
4650 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4651 stage_state->stage == MESA_SHADER_VERTEX) {
4652 gen7_emit_vs_workaround_flush(brw);
4653 }
4654
4655 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4656 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4657 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4658 }
4659 #endif
4660 }
4661
4662 UNUSED static bool
4663 has_component(mesa_format format, int i)
4664 {
4665 if (_mesa_is_format_color_format(format))
4666 return _mesa_format_has_color_component(format, i);
4667
4668 /* depth and stencil have only one component */
4669 return i == 0;
4670 }
4671
4672 /**
4673 * Upload SAMPLER_BORDER_COLOR_STATE.
4674 */
4675 static void
4676 genX(upload_default_color)(struct brw_context *brw,
4677 const struct gl_sampler_object *sampler,
4678 mesa_format format, GLenum base_format,
4679 bool is_integer_format, bool is_stencil_sampling,
4680 uint32_t *sdc_offset)
4681 {
4682 union gl_color_union color;
4683
4684 switch (base_format) {
4685 case GL_DEPTH_COMPONENT:
4686 /* GL specs that border color for depth textures is taken from the
4687 * R channel, while the hardware uses A. Spam R into all the
4688 * channels for safety.
4689 */
4690 color.ui[0] = sampler->BorderColor.ui[0];
4691 color.ui[1] = sampler->BorderColor.ui[0];
4692 color.ui[2] = sampler->BorderColor.ui[0];
4693 color.ui[3] = sampler->BorderColor.ui[0];
4694 break;
4695 case GL_ALPHA:
4696 color.ui[0] = 0u;
4697 color.ui[1] = 0u;
4698 color.ui[2] = 0u;
4699 color.ui[3] = sampler->BorderColor.ui[3];
4700 break;
4701 case GL_INTENSITY:
4702 color.ui[0] = sampler->BorderColor.ui[0];
4703 color.ui[1] = sampler->BorderColor.ui[0];
4704 color.ui[2] = sampler->BorderColor.ui[0];
4705 color.ui[3] = sampler->BorderColor.ui[0];
4706 break;
4707 case GL_LUMINANCE:
4708 color.ui[0] = sampler->BorderColor.ui[0];
4709 color.ui[1] = sampler->BorderColor.ui[0];
4710 color.ui[2] = sampler->BorderColor.ui[0];
4711 color.ui[3] = float_as_int(1.0);
4712 break;
4713 case GL_LUMINANCE_ALPHA:
4714 color.ui[0] = sampler->BorderColor.ui[0];
4715 color.ui[1] = sampler->BorderColor.ui[0];
4716 color.ui[2] = sampler->BorderColor.ui[0];
4717 color.ui[3] = sampler->BorderColor.ui[3];
4718 break;
4719 default:
4720 color.ui[0] = sampler->BorderColor.ui[0];
4721 color.ui[1] = sampler->BorderColor.ui[1];
4722 color.ui[2] = sampler->BorderColor.ui[2];
4723 color.ui[3] = sampler->BorderColor.ui[3];
4724 break;
4725 }
4726
4727 /* In some cases we use an RGBA surface format for GL RGB textures,
4728 * where we've initialized the A channel to 1.0. We also have to set
4729 * the border color alpha to 1.0 in that case.
4730 */
4731 if (base_format == GL_RGB)
4732 color.ui[3] = float_as_int(1.0);
4733
4734 int alignment = 32;
4735 if (GEN_GEN >= 8) {
4736 alignment = 64;
4737 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
4738 alignment = 512;
4739 }
4740
4741 uint32_t *sdc = brw_state_batch(
4742 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
4743 alignment, sdc_offset);
4744
4745 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
4746
4747 #define ASSIGN(dst, src) \
4748 do { \
4749 dst = src; \
4750 } while (0)
4751
4752 #define ASSIGNu16(dst, src) \
4753 do { \
4754 dst = (uint16_t)src; \
4755 } while (0)
4756
4757 #define ASSIGNu8(dst, src) \
4758 do { \
4759 dst = (uint8_t)src; \
4760 } while (0)
4761
4762 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
4763 macro(state.BorderColor ## _color_type ## Red, src[0]); \
4764 macro(state.BorderColor ## _color_type ## Green, src[1]); \
4765 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
4766 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
4767
4768 #if GEN_GEN >= 8
4769 /* On Broadwell, the border color is represented as four 32-bit floats,
4770 * integers, or unsigned values, interpreted according to the surface
4771 * format. This matches the sampler->BorderColor union exactly; just
4772 * memcpy the values.
4773 */
4774 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
4775 #elif GEN_IS_HASWELL
4776 if (is_integer_format || is_stencil_sampling) {
4777 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
4778 const int bits_per_channel =
4779 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
4780
4781 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
4782 * "If any color channel is missing from the surface format,
4783 * corresponding border color should be programmed as zero and if
4784 * alpha channel is missing, corresponding Alpha border color should
4785 * be programmed as 1."
4786 */
4787 unsigned c[4] = { 0, 0, 0, 1 };
4788 for (int i = 0; i < 4; i++) {
4789 if (has_component(format, i))
4790 c[i] = color.ui[i];
4791 }
4792
4793 switch (bits_per_channel) {
4794 case 8:
4795 /* Copy RGBA in order. */
4796 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
4797 break;
4798 case 10:
4799 /* R10G10B10A2_UINT is treated like a 16-bit format. */
4800 case 16:
4801 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
4802 break;
4803 case 32:
4804 if (base_format == GL_RG) {
4805 /* Careful inspection of the tables reveals that for RG32 formats,
4806 * the green channel needs to go where blue normally belongs.
4807 */
4808 state.BorderColor32bitRed = c[0];
4809 state.BorderColor32bitBlue = c[1];
4810 state.BorderColor32bitAlpha = 1;
4811 } else {
4812 /* Copy RGBA in order. */
4813 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
4814 }
4815 break;
4816 default:
4817 assert(!"Invalid number of bits per channel in integer format.");
4818 break;
4819 }
4820 } else {
4821 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4822 }
4823 #elif GEN_GEN == 5 || GEN_GEN == 6
4824 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
4825 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
4826 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
4827
4828 #define MESA_FLOAT_TO_HALF(dst, src) \
4829 dst = _mesa_float_to_half(src);
4830
4831 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
4832
4833 #undef MESA_FLOAT_TO_HALF
4834
4835 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
4836 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
4837 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
4838 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
4839
4840 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4841 #elif GEN_GEN == 4
4842 BORDER_COLOR_ATTR(ASSIGN, , color.f);
4843 #else
4844 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
4845 #endif
4846
4847 #undef ASSIGN
4848 #undef BORDER_COLOR_ATTR
4849
4850 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
4851 }
4852
4853 static uint32_t
4854 translate_wrap_mode(struct brw_context *brw, GLenum wrap, bool using_nearest)
4855 {
4856 switch (wrap) {
4857 case GL_REPEAT:
4858 return TCM_WRAP;
4859 case GL_CLAMP:
4860 #if GEN_GEN >= 8
4861 /* GL_CLAMP is the weird mode where coordinates are clamped to
4862 * [0.0, 1.0], so linear filtering of coordinates outside of
4863 * [0.0, 1.0] give you half edge texel value and half border
4864 * color.
4865 *
4866 * Gen8+ supports this natively.
4867 */
4868 return TCM_HALF_BORDER;
4869 #else
4870 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
4871 * and set clamp_border here, which gets the result desired.
4872 * We just use clamp(_to_edge) for nearest, because for nearest
4873 * clamping to 1.0 gives border color instead of the desired
4874 * edge texels.
4875 */
4876 if (using_nearest)
4877 return TCM_CLAMP;
4878 else
4879 return TCM_CLAMP_BORDER;
4880 #endif
4881 case GL_CLAMP_TO_EDGE:
4882 return TCM_CLAMP;
4883 case GL_CLAMP_TO_BORDER:
4884 return TCM_CLAMP_BORDER;
4885 case GL_MIRRORED_REPEAT:
4886 return TCM_MIRROR;
4887 case GL_MIRROR_CLAMP_TO_EDGE:
4888 return TCM_MIRROR_ONCE;
4889 default:
4890 return TCM_WRAP;
4891 }
4892 }
4893
4894 /**
4895 * Return true if the given wrap mode requires the border color to exist.
4896 */
4897 static bool
4898 wrap_mode_needs_border_color(unsigned wrap_mode)
4899 {
4900 #if GEN_GEN >= 8
4901 return wrap_mode == TCM_CLAMP_BORDER ||
4902 wrap_mode == TCM_HALF_BORDER;
4903 #else
4904 return wrap_mode == TCM_CLAMP_BORDER;
4905 #endif
4906 }
4907
4908 /**
4909 * Sets the sampler state for a single unit based off of the sampler key
4910 * entry.
4911 */
4912 static void
4913 genX(update_sampler_state)(struct brw_context *brw,
4914 GLenum target, bool tex_cube_map_seamless,
4915 GLfloat tex_unit_lod_bias,
4916 mesa_format format, GLenum base_format,
4917 const struct gl_texture_object *texObj,
4918 const struct gl_sampler_object *sampler,
4919 uint32_t *sampler_state,
4920 uint32_t batch_offset_for_sampler_state)
4921 {
4922 struct GENX(SAMPLER_STATE) samp_st = { 0 };
4923
4924 /* Select min and mip filters. */
4925 switch (sampler->MinFilter) {
4926 case GL_NEAREST:
4927 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4928 samp_st.MipModeFilter = MIPFILTER_NONE;
4929 break;
4930 case GL_LINEAR:
4931 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4932 samp_st.MipModeFilter = MIPFILTER_NONE;
4933 break;
4934 case GL_NEAREST_MIPMAP_NEAREST:
4935 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4936 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4937 break;
4938 case GL_LINEAR_MIPMAP_NEAREST:
4939 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4940 samp_st.MipModeFilter = MIPFILTER_NEAREST;
4941 break;
4942 case GL_NEAREST_MIPMAP_LINEAR:
4943 samp_st.MinModeFilter = MAPFILTER_NEAREST;
4944 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4945 break;
4946 case GL_LINEAR_MIPMAP_LINEAR:
4947 samp_st.MinModeFilter = MAPFILTER_LINEAR;
4948 samp_st.MipModeFilter = MIPFILTER_LINEAR;
4949 break;
4950 default:
4951 unreachable("not reached");
4952 }
4953
4954 /* Select mag filter. */
4955 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
4956 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
4957
4958 /* Enable anisotropic filtering if desired. */
4959 samp_st.MaximumAnisotropy = RATIO21;
4960
4961 if (sampler->MaxAnisotropy > 1.0f) {
4962 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
4963 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
4964 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
4965 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
4966
4967 if (sampler->MaxAnisotropy > 2.0f) {
4968 samp_st.MaximumAnisotropy =
4969 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
4970 }
4971 }
4972
4973 /* Set address rounding bits if not using nearest filtering. */
4974 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
4975 samp_st.UAddressMinFilterRoundingEnable = true;
4976 samp_st.VAddressMinFilterRoundingEnable = true;
4977 samp_st.RAddressMinFilterRoundingEnable = true;
4978 }
4979
4980 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
4981 samp_st.UAddressMagFilterRoundingEnable = true;
4982 samp_st.VAddressMagFilterRoundingEnable = true;
4983 samp_st.RAddressMagFilterRoundingEnable = true;
4984 }
4985
4986 bool either_nearest =
4987 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
4988 unsigned wrap_s = translate_wrap_mode(brw, sampler->WrapS, either_nearest);
4989 unsigned wrap_t = translate_wrap_mode(brw, sampler->WrapT, either_nearest);
4990 unsigned wrap_r = translate_wrap_mode(brw, sampler->WrapR, either_nearest);
4991
4992 if (target == GL_TEXTURE_CUBE_MAP ||
4993 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
4994 /* Cube maps must use the same wrap mode for all three coordinate
4995 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
4996 *
4997 * Ivybridge and Baytrail seem to have problems with CUBE mode and
4998 * integer formats. Fall back to CLAMP for now.
4999 */
5000 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5001 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5002 wrap_s = TCM_CUBE;
5003 wrap_t = TCM_CUBE;
5004 wrap_r = TCM_CUBE;
5005 } else {
5006 wrap_s = TCM_CLAMP;
5007 wrap_t = TCM_CLAMP;
5008 wrap_r = TCM_CLAMP;
5009 }
5010 } else if (target == GL_TEXTURE_1D) {
5011 /* There's a bug in 1D texture sampling - it actually pays
5012 * attention to the wrap_t value, though it should not.
5013 * Override the wrap_t value here to GL_REPEAT to keep
5014 * any nonexistent border pixels from floating in.
5015 */
5016 wrap_t = TCM_WRAP;
5017 }
5018
5019 samp_st.TCXAddressControlMode = wrap_s;
5020 samp_st.TCYAddressControlMode = wrap_t;
5021 samp_st.TCZAddressControlMode = wrap_r;
5022
5023 samp_st.ShadowFunction =
5024 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5025 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5026
5027 #if GEN_GEN >= 7
5028 /* Set shadow function. */
5029 samp_st.AnisotropicAlgorithm =
5030 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5031 EWAApproximation : LEGACY;
5032 #endif
5033
5034 #if GEN_GEN >= 6
5035 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5036 #endif
5037
5038 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5039 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5040 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5041 samp_st.TextureLODBias =
5042 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5043
5044 #if GEN_GEN == 6
5045 samp_st.BaseMipLevel =
5046 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5047 samp_st.MinandMagStateNotEqual =
5048 samp_st.MinModeFilter != samp_st.MagModeFilter;
5049 #endif
5050
5051 /* Upload the border color if necessary. If not, just point it at
5052 * offset 0 (the start of the batch) - the color should be ignored,
5053 * but that address won't fault in case something reads it anyway.
5054 */
5055 uint32_t border_color_offset = 0;
5056 if (wrap_mode_needs_border_color(wrap_s) ||
5057 wrap_mode_needs_border_color(wrap_t) ||
5058 wrap_mode_needs_border_color(wrap_r)) {
5059 genX(upload_default_color)(brw, sampler, format, base_format,
5060 texObj->_IsIntegerFormat,
5061 texObj->StencilSampling,
5062 &border_color_offset);
5063 }
5064 #if GEN_GEN < 6
5065 samp_st.BorderColorPointer =
5066 ro_bo(brw->batch.state_bo, border_color_offset);
5067 #else
5068 samp_st.BorderColorPointer = border_color_offset;
5069 #endif
5070
5071 #if GEN_GEN >= 8
5072 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5073 #else
5074 samp_st.LODPreClampEnable = true;
5075 #endif
5076
5077 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5078 }
5079
5080 static void
5081 update_sampler_state(struct brw_context *brw,
5082 int unit,
5083 uint32_t *sampler_state,
5084 uint32_t batch_offset_for_sampler_state)
5085 {
5086 struct gl_context *ctx = &brw->ctx;
5087 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5088 const struct gl_texture_object *texObj = texUnit->_Current;
5089 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5090
5091 /* These don't use samplers at all. */
5092 if (texObj->Target == GL_TEXTURE_BUFFER)
5093 return;
5094
5095 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5096 genX(update_sampler_state)(brw, texObj->Target,
5097 ctx->Texture.CubeMapSeamless,
5098 texUnit->LodBias,
5099 firstImage->TexFormat, firstImage->_BaseFormat,
5100 texObj, sampler,
5101 sampler_state, batch_offset_for_sampler_state);
5102 }
5103
5104 static void
5105 genX(upload_sampler_state_table)(struct brw_context *brw,
5106 struct gl_program *prog,
5107 struct brw_stage_state *stage_state)
5108 {
5109 struct gl_context *ctx = &brw->ctx;
5110 uint32_t sampler_count = stage_state->sampler_count;
5111
5112 GLbitfield SamplersUsed = prog->SamplersUsed;
5113
5114 if (sampler_count == 0)
5115 return;
5116
5117 /* SAMPLER_STATE is 4 DWords on all platforms. */
5118 const int dwords = GENX(SAMPLER_STATE_length);
5119 const int size_in_bytes = dwords * sizeof(uint32_t);
5120
5121 uint32_t *sampler_state = brw_state_batch(brw,
5122 sampler_count * size_in_bytes,
5123 32, &stage_state->sampler_offset);
5124 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5125
5126 uint32_t batch_offset_for_sampler_state = stage_state->sampler_offset;
5127
5128 for (unsigned s = 0; s < sampler_count; s++) {
5129 if (SamplersUsed & (1 << s)) {
5130 const unsigned unit = prog->SamplerUnits[s];
5131 if (ctx->Texture.Unit[unit]._Current) {
5132 update_sampler_state(brw, unit, sampler_state,
5133 batch_offset_for_sampler_state);
5134 }
5135 }
5136
5137 sampler_state += dwords;
5138 batch_offset_for_sampler_state += size_in_bytes;
5139 }
5140
5141 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5142 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5143 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5144 } else {
5145 /* Flag that the sampler state table pointer has changed; later atoms
5146 * will handle it.
5147 */
5148 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5149 }
5150 }
5151
5152 static void
5153 genX(upload_fs_samplers)(struct brw_context *brw)
5154 {
5155 /* BRW_NEW_FRAGMENT_PROGRAM */
5156 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5157 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5158 }
5159
5160 static const struct brw_tracked_state genX(fs_samplers) = {
5161 .dirty = {
5162 .mesa = _NEW_TEXTURE,
5163 .brw = BRW_NEW_BATCH |
5164 BRW_NEW_BLORP |
5165 BRW_NEW_FRAGMENT_PROGRAM,
5166 },
5167 .emit = genX(upload_fs_samplers),
5168 };
5169
5170 static void
5171 genX(upload_vs_samplers)(struct brw_context *brw)
5172 {
5173 /* BRW_NEW_VERTEX_PROGRAM */
5174 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5175 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5176 }
5177
5178 static const struct brw_tracked_state genX(vs_samplers) = {
5179 .dirty = {
5180 .mesa = _NEW_TEXTURE,
5181 .brw = BRW_NEW_BATCH |
5182 BRW_NEW_BLORP |
5183 BRW_NEW_VERTEX_PROGRAM,
5184 },
5185 .emit = genX(upload_vs_samplers),
5186 };
5187
5188 #if GEN_GEN >= 6
5189 static void
5190 genX(upload_gs_samplers)(struct brw_context *brw)
5191 {
5192 /* BRW_NEW_GEOMETRY_PROGRAM */
5193 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5194 if (!gs)
5195 return;
5196
5197 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5198 }
5199
5200
5201 static const struct brw_tracked_state genX(gs_samplers) = {
5202 .dirty = {
5203 .mesa = _NEW_TEXTURE,
5204 .brw = BRW_NEW_BATCH |
5205 BRW_NEW_BLORP |
5206 BRW_NEW_GEOMETRY_PROGRAM,
5207 },
5208 .emit = genX(upload_gs_samplers),
5209 };
5210 #endif
5211
5212 #if GEN_GEN >= 7
5213 static void
5214 genX(upload_tcs_samplers)(struct brw_context *brw)
5215 {
5216 /* BRW_NEW_TESS_PROGRAMS */
5217 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5218 if (!tcs)
5219 return;
5220
5221 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5222 }
5223
5224 static const struct brw_tracked_state genX(tcs_samplers) = {
5225 .dirty = {
5226 .mesa = _NEW_TEXTURE,
5227 .brw = BRW_NEW_BATCH |
5228 BRW_NEW_BLORP |
5229 BRW_NEW_TESS_PROGRAMS,
5230 },
5231 .emit = genX(upload_tcs_samplers),
5232 };
5233 #endif
5234
5235 #if GEN_GEN >= 7
5236 static void
5237 genX(upload_tes_samplers)(struct brw_context *brw)
5238 {
5239 /* BRW_NEW_TESS_PROGRAMS */
5240 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5241 if (!tes)
5242 return;
5243
5244 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5245 }
5246
5247 static const struct brw_tracked_state genX(tes_samplers) = {
5248 .dirty = {
5249 .mesa = _NEW_TEXTURE,
5250 .brw = BRW_NEW_BATCH |
5251 BRW_NEW_BLORP |
5252 BRW_NEW_TESS_PROGRAMS,
5253 },
5254 .emit = genX(upload_tes_samplers),
5255 };
5256 #endif
5257
5258 #if GEN_GEN >= 7
5259 static void
5260 genX(upload_cs_samplers)(struct brw_context *brw)
5261 {
5262 /* BRW_NEW_COMPUTE_PROGRAM */
5263 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5264 if (!cs)
5265 return;
5266
5267 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5268 }
5269
5270 const struct brw_tracked_state genX(cs_samplers) = {
5271 .dirty = {
5272 .mesa = _NEW_TEXTURE,
5273 .brw = BRW_NEW_BATCH |
5274 BRW_NEW_BLORP |
5275 BRW_NEW_COMPUTE_PROGRAM,
5276 },
5277 .emit = genX(upload_cs_samplers),
5278 };
5279 #endif
5280
5281 /* ---------------------------------------------------------------------- */
5282
5283 #if GEN_GEN <= 5
5284
5285 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5286 {
5287 struct gl_context *ctx = &brw->ctx;
5288
5289 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5290 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5291 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5292 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5293 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5294 }
5295 }
5296
5297 static const struct brw_tracked_state genX(blend_constant_color) = {
5298 .dirty = {
5299 .mesa = _NEW_COLOR,
5300 .brw = BRW_NEW_CONTEXT |
5301 BRW_NEW_BLORP,
5302 },
5303 .emit = genX(upload_blend_constant_color)
5304 };
5305 #endif
5306
5307 /* ---------------------------------------------------------------------- */
5308
5309 void
5310 genX(init_atoms)(struct brw_context *brw)
5311 {
5312 #if GEN_GEN < 6
5313 static const struct brw_tracked_state *render_atoms[] =
5314 {
5315 /* Once all the programs are done, we know how large urb entry
5316 * sizes need to be and can decide if we need to change the urb
5317 * layout.
5318 */
5319 &brw_curbe_offsets,
5320 &brw_recalculate_urb_fence,
5321
5322 &genX(cc_vp),
5323 &genX(color_calc_state),
5324
5325 /* Surface state setup. Must come before the VS/WM unit. The binding
5326 * table upload must be last.
5327 */
5328 &brw_vs_pull_constants,
5329 &brw_wm_pull_constants,
5330 &brw_renderbuffer_surfaces,
5331 &brw_renderbuffer_read_surfaces,
5332 &brw_texture_surfaces,
5333 &brw_vs_binding_table,
5334 &brw_wm_binding_table,
5335
5336 &genX(fs_samplers),
5337 &genX(vs_samplers),
5338
5339 /* These set up state for brw_psp_urb_cbs */
5340 &genX(wm_state),
5341 &genX(sf_clip_viewport),
5342 &genX(sf_state),
5343 &genX(vs_state), /* always required, enabled or not */
5344 &genX(clip_state),
5345 &genX(gs_state),
5346
5347 /* Command packets:
5348 */
5349 &brw_invariant_state,
5350
5351 &brw_binding_table_pointers,
5352 &genX(blend_constant_color),
5353
5354 &brw_depthbuffer,
5355
5356 &genX(polygon_stipple),
5357 &genX(polygon_stipple_offset),
5358
5359 &genX(line_stipple),
5360
5361 &brw_psp_urb_cbs,
5362
5363 &genX(drawing_rect),
5364 &brw_indices, /* must come before brw_vertices */
5365 &genX(index_buffer),
5366 &genX(vertices),
5367
5368 &brw_constant_buffer
5369 };
5370 #elif GEN_GEN == 6
5371 static const struct brw_tracked_state *render_atoms[] =
5372 {
5373 &genX(sf_clip_viewport),
5374
5375 /* Command packets: */
5376
5377 &genX(cc_vp),
5378
5379 &gen6_urb,
5380 &genX(blend_state), /* must do before cc unit */
5381 &genX(color_calc_state), /* must do before cc unit */
5382 &genX(depth_stencil_state), /* must do before cc unit */
5383
5384 &genX(vs_push_constants), /* Before vs_state */
5385 &genX(gs_push_constants), /* Before gs_state */
5386 &genX(wm_push_constants), /* Before wm_state */
5387
5388 /* Surface state setup. Must come before the VS/WM unit. The binding
5389 * table upload must be last.
5390 */
5391 &brw_vs_pull_constants,
5392 &brw_vs_ubo_surfaces,
5393 &brw_gs_pull_constants,
5394 &brw_gs_ubo_surfaces,
5395 &brw_wm_pull_constants,
5396 &brw_wm_ubo_surfaces,
5397 &gen6_renderbuffer_surfaces,
5398 &brw_renderbuffer_read_surfaces,
5399 &brw_texture_surfaces,
5400 &gen6_sol_surface,
5401 &brw_vs_binding_table,
5402 &gen6_gs_binding_table,
5403 &brw_wm_binding_table,
5404
5405 &genX(fs_samplers),
5406 &genX(vs_samplers),
5407 &genX(gs_samplers),
5408 &gen6_sampler_state,
5409 &genX(multisample_state),
5410
5411 &genX(vs_state),
5412 &genX(gs_state),
5413 &genX(clip_state),
5414 &genX(sf_state),
5415 &genX(wm_state),
5416
5417 &genX(scissor_state),
5418
5419 &gen6_binding_table_pointers,
5420
5421 &brw_depthbuffer,
5422
5423 &genX(polygon_stipple),
5424 &genX(polygon_stipple_offset),
5425
5426 &genX(line_stipple),
5427
5428 &genX(drawing_rect),
5429
5430 &brw_indices, /* must come before brw_vertices */
5431 &genX(index_buffer),
5432 &genX(vertices),
5433 };
5434 #elif GEN_GEN == 7
5435 static const struct brw_tracked_state *render_atoms[] =
5436 {
5437 /* Command packets: */
5438
5439 &genX(cc_vp),
5440 &genX(sf_clip_viewport),
5441
5442 &gen7_l3_state,
5443 &gen7_push_constant_space,
5444 &gen7_urb,
5445 &genX(blend_state), /* must do before cc unit */
5446 &genX(color_calc_state), /* must do before cc unit */
5447 &genX(depth_stencil_state), /* must do before cc unit */
5448
5449 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5450 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5451 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5452 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5453 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5454
5455 &genX(vs_push_constants), /* Before vs_state */
5456 &genX(tcs_push_constants),
5457 &genX(tes_push_constants),
5458 &genX(gs_push_constants), /* Before gs_state */
5459 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5460
5461 /* Surface state setup. Must come before the VS/WM unit. The binding
5462 * table upload must be last.
5463 */
5464 &brw_vs_pull_constants,
5465 &brw_vs_ubo_surfaces,
5466 &brw_vs_abo_surfaces,
5467 &brw_tcs_pull_constants,
5468 &brw_tcs_ubo_surfaces,
5469 &brw_tcs_abo_surfaces,
5470 &brw_tes_pull_constants,
5471 &brw_tes_ubo_surfaces,
5472 &brw_tes_abo_surfaces,
5473 &brw_gs_pull_constants,
5474 &brw_gs_ubo_surfaces,
5475 &brw_gs_abo_surfaces,
5476 &brw_wm_pull_constants,
5477 &brw_wm_ubo_surfaces,
5478 &brw_wm_abo_surfaces,
5479 &gen6_renderbuffer_surfaces,
5480 &brw_renderbuffer_read_surfaces,
5481 &brw_texture_surfaces,
5482
5483 &genX(push_constant_packets),
5484
5485 &brw_vs_binding_table,
5486 &brw_tcs_binding_table,
5487 &brw_tes_binding_table,
5488 &brw_gs_binding_table,
5489 &brw_wm_binding_table,
5490
5491 &genX(fs_samplers),
5492 &genX(vs_samplers),
5493 &genX(tcs_samplers),
5494 &genX(tes_samplers),
5495 &genX(gs_samplers),
5496 &genX(multisample_state),
5497
5498 &genX(vs_state),
5499 &genX(hs_state),
5500 &genX(te_state),
5501 &genX(ds_state),
5502 &genX(gs_state),
5503 &genX(sol_state),
5504 &genX(clip_state),
5505 &genX(sbe_state),
5506 &genX(sf_state),
5507 &genX(wm_state),
5508 &genX(ps_state),
5509
5510 &genX(scissor_state),
5511
5512 &gen7_depthbuffer,
5513
5514 &genX(polygon_stipple),
5515 &genX(polygon_stipple_offset),
5516
5517 &genX(line_stipple),
5518
5519 &genX(drawing_rect),
5520
5521 &brw_indices, /* must come before brw_vertices */
5522 &genX(index_buffer),
5523 &genX(vertices),
5524
5525 #if GEN_IS_HASWELL
5526 &genX(cut_index),
5527 #endif
5528 };
5529 #elif GEN_GEN >= 8
5530 static const struct brw_tracked_state *render_atoms[] =
5531 {
5532 &genX(cc_vp),
5533 &genX(sf_clip_viewport),
5534
5535 &gen7_l3_state,
5536 &gen7_push_constant_space,
5537 &gen7_urb,
5538 &genX(blend_state),
5539 &genX(color_calc_state),
5540
5541 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5542 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5543 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5544 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5545 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5546
5547 &genX(vs_push_constants), /* Before vs_state */
5548 &genX(tcs_push_constants),
5549 &genX(tes_push_constants),
5550 &genX(gs_push_constants), /* Before gs_state */
5551 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5552
5553 /* Surface state setup. Must come before the VS/WM unit. The binding
5554 * table upload must be last.
5555 */
5556 &brw_vs_pull_constants,
5557 &brw_vs_ubo_surfaces,
5558 &brw_vs_abo_surfaces,
5559 &brw_tcs_pull_constants,
5560 &brw_tcs_ubo_surfaces,
5561 &brw_tcs_abo_surfaces,
5562 &brw_tes_pull_constants,
5563 &brw_tes_ubo_surfaces,
5564 &brw_tes_abo_surfaces,
5565 &brw_gs_pull_constants,
5566 &brw_gs_ubo_surfaces,
5567 &brw_gs_abo_surfaces,
5568 &brw_wm_pull_constants,
5569 &brw_wm_ubo_surfaces,
5570 &brw_wm_abo_surfaces,
5571 &gen6_renderbuffer_surfaces,
5572 &brw_renderbuffer_read_surfaces,
5573 &brw_texture_surfaces,
5574
5575 &genX(push_constant_packets),
5576
5577 &brw_vs_binding_table,
5578 &brw_tcs_binding_table,
5579 &brw_tes_binding_table,
5580 &brw_gs_binding_table,
5581 &brw_wm_binding_table,
5582
5583 &genX(fs_samplers),
5584 &genX(vs_samplers),
5585 &genX(tcs_samplers),
5586 &genX(tes_samplers),
5587 &genX(gs_samplers),
5588 &genX(multisample_state),
5589
5590 &genX(vs_state),
5591 &genX(hs_state),
5592 &genX(te_state),
5593 &genX(ds_state),
5594 &genX(gs_state),
5595 &genX(sol_state),
5596 &genX(clip_state),
5597 &genX(raster_state),
5598 &genX(sbe_state),
5599 &genX(sf_state),
5600 &genX(ps_blend),
5601 &genX(ps_extra),
5602 &genX(ps_state),
5603 &genX(depth_stencil_state),
5604 &genX(wm_state),
5605
5606 &genX(scissor_state),
5607
5608 &gen7_depthbuffer,
5609
5610 &genX(polygon_stipple),
5611 &genX(polygon_stipple_offset),
5612
5613 &genX(line_stipple),
5614
5615 &genX(drawing_rect),
5616
5617 &genX(vf_topology),
5618
5619 &brw_indices,
5620 &genX(index_buffer),
5621 &genX(vertices),
5622
5623 &genX(cut_index),
5624 &gen8_pma_fix,
5625 };
5626 #endif
5627
5628 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5629 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5630 render_atoms, ARRAY_SIZE(render_atoms));
5631
5632 #if GEN_GEN >= 7
5633 static const struct brw_tracked_state *compute_atoms[] =
5634 {
5635 &gen7_l3_state,
5636 &brw_cs_image_surfaces,
5637 &genX(cs_push_constants),
5638 &genX(cs_pull_constants),
5639 &brw_cs_ubo_surfaces,
5640 &brw_cs_abo_surfaces,
5641 &brw_cs_texture_surfaces,
5642 &brw_cs_work_groups_surface,
5643 &genX(cs_samplers),
5644 &genX(cs_state),
5645 };
5646
5647 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5648 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5649 compute_atoms, ARRAY_SIZE(compute_atoms));
5650
5651 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5652 #endif
5653 }