i965: Drop duplicate #defines now that we've bumped libdrm requirements.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "intel_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34
35 #include <xf86drm.h>
36 #include <i915_drm.h>
37
38 static void
39 intel_batchbuffer_reset(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
40 bool has_llc);
41
42 void
43 intel_batchbuffer_init(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
44 bool has_llc)
45 {
46 intel_batchbuffer_reset(batch, bufmgr, has_llc);
47
48 if (!has_llc) {
49 batch->cpu_map = malloc(BATCH_SZ);
50 batch->map = batch->cpu_map;
51 batch->map_next = batch->cpu_map;
52 }
53 }
54
55 static void
56 intel_batchbuffer_reset(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
57 bool has_llc)
58 {
59 if (batch->last_bo != NULL) {
60 drm_intel_bo_unreference(batch->last_bo);
61 batch->last_bo = NULL;
62 }
63 batch->last_bo = batch->bo;
64
65 batch->bo = drm_intel_bo_alloc(bufmgr, "batchbuffer", BATCH_SZ, 4096);
66 if (has_llc) {
67 drm_intel_bo_map(batch->bo, true);
68 batch->map = batch->bo->virtual;
69 }
70 batch->map_next = batch->map;
71
72 batch->reserved_space = BATCH_RESERVED;
73 batch->state_batch_offset = batch->bo->size;
74 batch->needs_sol_reset = false;
75 batch->state_base_address_emitted = false;
76
77 /* We don't know what ring the new batch will be sent to until we see the
78 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
79 */
80 batch->ring = UNKNOWN_RING;
81 }
82
83 static void
84 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
85 {
86 intel_batchbuffer_reset(&brw->batch, brw->bufmgr, brw->has_llc);
87 brw_render_cache_set_clear(brw);
88 }
89
90 void
91 intel_batchbuffer_save_state(struct brw_context *brw)
92 {
93 brw->batch.saved.map_next = brw->batch.map_next;
94 brw->batch.saved.reloc_count =
95 drm_intel_gem_bo_get_reloc_count(brw->batch.bo);
96 }
97
98 void
99 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
100 {
101 drm_intel_gem_bo_clear_relocs(brw->batch.bo, brw->batch.saved.reloc_count);
102
103 brw->batch.map_next = brw->batch.saved.map_next;
104 if (USED_BATCH(brw->batch) == 0)
105 brw->batch.ring = UNKNOWN_RING;
106 }
107
108 void
109 intel_batchbuffer_free(struct intel_batchbuffer *batch)
110 {
111 free(batch->cpu_map);
112 drm_intel_bo_unreference(batch->last_bo);
113 drm_intel_bo_unreference(batch->bo);
114 }
115
116 void
117 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
118 enum brw_gpu_ring ring)
119 {
120 /* If we're switching rings, implicitly flush the batch. */
121 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
122 brw->gen >= 6) {
123 intel_batchbuffer_flush(brw);
124 }
125
126 #ifdef DEBUG
127 assert(sz < BATCH_SZ - BATCH_RESERVED);
128 #endif
129 if (intel_batchbuffer_space(&brw->batch) < sz)
130 intel_batchbuffer_flush(brw);
131
132 enum brw_gpu_ring prev_ring = brw->batch.ring;
133 /* The intel_batchbuffer_flush() calls above might have changed
134 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
135 */
136 brw->batch.ring = ring;
137
138 if (unlikely(prev_ring == UNKNOWN_RING && ring == RENDER_RING))
139 intel_batchbuffer_emit_render_ring_prelude(brw);
140 }
141
142 static void
143 do_batch_dump(struct brw_context *brw)
144 {
145 struct drm_intel_decode *decode;
146 struct intel_batchbuffer *batch = &brw->batch;
147 int ret;
148
149 decode = drm_intel_decode_context_alloc(brw->screen->deviceID);
150 if (!decode)
151 return;
152
153 ret = drm_intel_bo_map(batch->bo, false);
154 if (ret == 0) {
155 drm_intel_decode_set_batch_pointer(decode,
156 batch->bo->virtual,
157 batch->bo->offset64,
158 USED_BATCH(*batch));
159 } else {
160 fprintf(stderr,
161 "WARNING: failed to map batchbuffer (%s), "
162 "dumping uploaded data instead.\n", strerror(ret));
163
164 drm_intel_decode_set_batch_pointer(decode,
165 batch->map,
166 batch->bo->offset64,
167 USED_BATCH(*batch));
168 }
169
170 drm_intel_decode_set_output_file(decode, stderr);
171 drm_intel_decode(decode);
172
173 drm_intel_decode_context_free(decode);
174
175 if (ret == 0) {
176 drm_intel_bo_unmap(batch->bo);
177
178 brw_debug_batch(brw);
179 }
180 }
181
182 void
183 intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw)
184 {
185 /* Un-used currently */
186 }
187
188 /**
189 * Called when starting a new batch buffer.
190 */
191 static void
192 brw_new_batch(struct brw_context *brw)
193 {
194 /* Create a new batchbuffer and reset the associated state: */
195 drm_intel_gem_bo_clear_relocs(brw->batch.bo, 0);
196 intel_batchbuffer_reset_and_clear_render_cache(brw);
197
198 /* If the kernel supports hardware contexts, then most hardware state is
199 * preserved between batches; we only need to re-emit state that is required
200 * to be in every batch. Otherwise we need to re-emit all the state that
201 * would otherwise be stored in the context (which for all intents and
202 * purposes means everything).
203 */
204 if (brw->hw_ctx == NULL)
205 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
206
207 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
208
209 brw->state_batch_count = 0;
210
211 brw->ib.type = -1;
212
213 /* We need to periodically reap the shader time results, because rollover
214 * happens every few seconds. We also want to see results every once in a
215 * while, because many programs won't cleanly destroy our context, so the
216 * end-of-run printout may not happen.
217 */
218 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
219 brw_collect_and_report_shader_time(brw);
220 }
221
222 /**
223 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
224 * sending it off.
225 *
226 * This function can emit state (say, to preserve registers that aren't saved
227 * between batches). All of this state MUST fit in the reserved space at the
228 * end of the batchbuffer. If you add more GPU state, increase the reserved
229 * space by updating the BATCH_RESERVED macro.
230 */
231 static void
232 brw_finish_batch(struct brw_context *brw)
233 {
234 /* Capture the closing pipeline statistics register values necessary to
235 * support query objects (in the non-hardware context world).
236 */
237 brw_emit_query_end(brw);
238
239 if (brw->batch.ring == RENDER_RING) {
240 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
241 * assume that the L3 cache is configured according to the hardware
242 * defaults.
243 */
244 if (brw->gen >= 7)
245 gen7_restore_default_l3_config(brw);
246
247 if (brw->is_haswell) {
248 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
249 * 3DSTATE_CC_STATE_POINTERS > "Note":
250 *
251 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
252 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
253 *
254 * From the example in the docs, it seems to expect a regular pipe control
255 * flush here as well. We may have done it already, but meh.
256 *
257 * See also WaAvoidRCZCounterRollover.
258 */
259 brw_emit_mi_flush(brw);
260 BEGIN_BATCH(2);
261 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
262 OUT_BATCH(brw->cc.state_offset | 1);
263 ADVANCE_BATCH();
264 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
265 PIPE_CONTROL_CS_STALL);
266 }
267 }
268
269 /* Mark that the current program cache BO has been used by the GPU.
270 * It will be reallocated if we need to put new programs in for the
271 * next batch.
272 */
273 brw->cache.bo_used_by_gpu = true;
274 }
275
276 static void
277 throttle(struct brw_context *brw)
278 {
279 /* Wait for the swapbuffers before the one we just emitted, so we
280 * don't get too many swaps outstanding for apps that are GPU-heavy
281 * but not CPU-heavy.
282 *
283 * We're using intelDRI2Flush (called from the loader before
284 * swapbuffer) and glFlush (for front buffer rendering) as the
285 * indicator that a frame is done and then throttle when we get
286 * here as we prepare to render the next frame. At this point for
287 * round trips for swap/copy and getting new buffers are done and
288 * we'll spend less time waiting on the GPU.
289 *
290 * Unfortunately, we don't have a handle to the batch containing
291 * the swap, and getting our hands on that doesn't seem worth it,
292 * so we just use the first batch we emitted after the last swap.
293 */
294 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
295 if (brw->throttle_batch[1]) {
296 if (!brw->disable_throttling)
297 drm_intel_bo_wait_rendering(brw->throttle_batch[1]);
298 drm_intel_bo_unreference(brw->throttle_batch[1]);
299 }
300 brw->throttle_batch[1] = brw->throttle_batch[0];
301 brw->throttle_batch[0] = NULL;
302 brw->need_swap_throttle = false;
303 /* Throttling here is more precise than the throttle ioctl, so skip it */
304 brw->need_flush_throttle = false;
305 }
306
307 if (brw->need_flush_throttle) {
308 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
309 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
310 brw->need_flush_throttle = false;
311 }
312 }
313
314 /* TODO: Push this whole function into bufmgr.
315 */
316 static int
317 do_flush_locked(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
318 {
319 struct intel_batchbuffer *batch = &brw->batch;
320 int ret = 0;
321
322 if (brw->has_llc) {
323 drm_intel_bo_unmap(batch->bo);
324 } else {
325 ret = drm_intel_bo_subdata(batch->bo, 0, 4 * USED_BATCH(*batch), batch->map);
326 if (ret == 0 && batch->state_batch_offset != batch->bo->size) {
327 ret = drm_intel_bo_subdata(batch->bo,
328 batch->state_batch_offset,
329 batch->bo->size - batch->state_batch_offset,
330 (char *)batch->map + batch->state_batch_offset);
331 }
332 }
333
334 if (!brw->screen->no_hw) {
335 int flags;
336
337 if (brw->gen >= 6 && batch->ring == BLT_RING) {
338 flags = I915_EXEC_BLT;
339 } else {
340 flags = I915_EXEC_RENDER |
341 (brw->use_resource_streamer ? I915_EXEC_RESOURCE_STREAMER : 0);
342 }
343 if (batch->needs_sol_reset)
344 flags |= I915_EXEC_GEN7_SOL_RESET;
345
346 if (ret == 0) {
347 if (unlikely(INTEL_DEBUG & DEBUG_AUB))
348 brw_annotate_aub(brw);
349
350 if (brw->hw_ctx == NULL || batch->ring != RENDER_RING) {
351 assert(in_fence_fd == -1);
352 assert(out_fence_fd == NULL);
353 ret = drm_intel_bo_mrb_exec(batch->bo, 4 * USED_BATCH(*batch),
354 NULL, 0, 0, flags);
355 } else {
356 ret = drm_intel_gem_bo_fence_exec(batch->bo, brw->hw_ctx,
357 4 * USED_BATCH(*batch),
358 in_fence_fd, out_fence_fd,
359 flags);
360 }
361 }
362
363 throttle(brw);
364 }
365
366 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
367 do_batch_dump(brw);
368
369 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
370 brw_check_for_reset(brw);
371
372 if (ret != 0) {
373 fprintf(stderr, "intel_do_flush_locked failed: %s\n", strerror(-ret));
374 exit(1);
375 }
376
377 return ret;
378 }
379
380 /**
381 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
382 * of the fd.
383 *
384 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
385 * of the returned fd.
386 */
387 int
388 _intel_batchbuffer_flush_fence(struct brw_context *brw,
389 int in_fence_fd, int *out_fence_fd,
390 const char *file, int line)
391 {
392 int ret;
393
394 if (USED_BATCH(brw->batch) == 0)
395 return 0;
396
397 if (brw->throttle_batch[0] == NULL) {
398 brw->throttle_batch[0] = brw->batch.bo;
399 drm_intel_bo_reference(brw->throttle_batch[0]);
400 }
401
402 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
403 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
404 int bytes_for_state = brw->batch.bo->size - brw->batch.state_batch_offset;
405 int total_bytes = bytes_for_commands + bytes_for_state;
406 fprintf(stderr, "%s:%d: Batchbuffer flush with %4db (pkt) + "
407 "%4db (state) = %4db (%0.1f%%)\n", file, line,
408 bytes_for_commands, bytes_for_state,
409 total_bytes,
410 100.0f * total_bytes / BATCH_SZ);
411 }
412
413 brw->batch.reserved_space = 0;
414
415 brw_finish_batch(brw);
416
417 /* Mark the end of the buffer. */
418 intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
419 if (USED_BATCH(brw->batch) & 1) {
420 /* Round batchbuffer usage to 2 DWORDs. */
421 intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
422 }
423
424 intel_upload_finish(brw);
425
426 /* Check that we didn't just wrap our batchbuffer at a bad time. */
427 assert(!brw->no_batch_wrap);
428
429 ret = do_flush_locked(brw, in_fence_fd, out_fence_fd);
430
431 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
432 fprintf(stderr, "waiting for idle\n");
433 drm_intel_bo_wait_rendering(brw->batch.bo);
434 }
435
436 if (brw->use_resource_streamer)
437 gen7_reset_hw_bt_pool_offsets(brw);
438
439 /* Start a new batch buffer. */
440 brw_new_batch(brw);
441
442 return ret;
443 }
444
445
446 /* This is the only way buffers get added to the validate list.
447 */
448 uint32_t
449 intel_batchbuffer_reloc(struct intel_batchbuffer *batch,
450 drm_intel_bo *buffer, uint32_t offset,
451 uint32_t read_domains, uint32_t write_domain,
452 uint32_t delta)
453 {
454 int ret;
455
456 ret = drm_intel_bo_emit_reloc(batch->bo, offset,
457 buffer, delta,
458 read_domains, write_domain);
459 assert(ret == 0);
460 (void)ret;
461
462 /* Using the old buffer offset, write in what the right data would be, in
463 * case the buffer doesn't move and we can short-circuit the relocation
464 * processing in the kernel
465 */
466 return buffer->offset64 + delta;
467 }
468
469 uint64_t
470 intel_batchbuffer_reloc64(struct intel_batchbuffer *batch,
471 drm_intel_bo *buffer, uint32_t offset,
472 uint32_t read_domains, uint32_t write_domain,
473 uint32_t delta)
474 {
475 int ret = drm_intel_bo_emit_reloc(batch->bo, offset,
476 buffer, delta,
477 read_domains, write_domain);
478 assert(ret == 0);
479 (void) ret;
480
481 /* Using the old buffer offset, write in what the right data would be, in
482 * case the buffer doesn't move and we can short-circuit the relocation
483 * processing in the kernel
484 */
485 return buffer->offset64 + delta;
486 }
487
488
489 void
490 intel_batchbuffer_data(struct brw_context *brw,
491 const void *data, GLuint bytes, enum brw_gpu_ring ring)
492 {
493 assert((bytes & 3) == 0);
494 intel_batchbuffer_require_space(brw, bytes, ring);
495 memcpy(brw->batch.map_next, data, bytes);
496 brw->batch.map_next += bytes >> 2;
497 }
498
499 static void
500 load_sized_register_mem(struct brw_context *brw,
501 uint32_t reg,
502 drm_intel_bo *bo,
503 uint32_t read_domains, uint32_t write_domain,
504 uint32_t offset,
505 int size)
506 {
507 int i;
508
509 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
510 assert(brw->gen >= 7);
511
512 if (brw->gen >= 8) {
513 BEGIN_BATCH(4 * size);
514 for (i = 0; i < size; i++) {
515 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
516 OUT_BATCH(reg + i * 4);
517 OUT_RELOC64(bo, read_domains, write_domain, offset + i * 4);
518 }
519 ADVANCE_BATCH();
520 } else {
521 BEGIN_BATCH(3 * size);
522 for (i = 0; i < size; i++) {
523 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
524 OUT_BATCH(reg + i * 4);
525 OUT_RELOC(bo, read_domains, write_domain, offset + i * 4);
526 }
527 ADVANCE_BATCH();
528 }
529 }
530
531 void
532 brw_load_register_mem(struct brw_context *brw,
533 uint32_t reg,
534 drm_intel_bo *bo,
535 uint32_t read_domains, uint32_t write_domain,
536 uint32_t offset)
537 {
538 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 1);
539 }
540
541 void
542 brw_load_register_mem64(struct brw_context *brw,
543 uint32_t reg,
544 drm_intel_bo *bo,
545 uint32_t read_domains, uint32_t write_domain,
546 uint32_t offset)
547 {
548 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 2);
549 }
550
551 /*
552 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
553 */
554 void
555 brw_store_register_mem32(struct brw_context *brw,
556 drm_intel_bo *bo, uint32_t reg, uint32_t offset)
557 {
558 assert(brw->gen >= 6);
559
560 if (brw->gen >= 8) {
561 BEGIN_BATCH(4);
562 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
563 OUT_BATCH(reg);
564 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
565 offset);
566 ADVANCE_BATCH();
567 } else {
568 BEGIN_BATCH(3);
569 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
570 OUT_BATCH(reg);
571 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
572 offset);
573 ADVANCE_BATCH();
574 }
575 }
576
577 /*
578 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
579 */
580 void
581 brw_store_register_mem64(struct brw_context *brw,
582 drm_intel_bo *bo, uint32_t reg, uint32_t offset)
583 {
584 assert(brw->gen >= 6);
585
586 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
587 * read a full 64-bit register, we need to do two of them.
588 */
589 if (brw->gen >= 8) {
590 BEGIN_BATCH(8);
591 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
592 OUT_BATCH(reg);
593 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
594 offset);
595 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
596 OUT_BATCH(reg + sizeof(uint32_t));
597 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
598 offset + sizeof(uint32_t));
599 ADVANCE_BATCH();
600 } else {
601 BEGIN_BATCH(6);
602 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
603 OUT_BATCH(reg);
604 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
605 offset);
606 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
607 OUT_BATCH(reg + sizeof(uint32_t));
608 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
609 offset + sizeof(uint32_t));
610 ADVANCE_BATCH();
611 }
612 }
613
614 /*
615 * Write a 32-bit register using immediate data.
616 */
617 void
618 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
619 {
620 assert(brw->gen >= 6);
621
622 BEGIN_BATCH(3);
623 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
624 OUT_BATCH(reg);
625 OUT_BATCH(imm);
626 ADVANCE_BATCH();
627 }
628
629 /*
630 * Write a 64-bit register using immediate data.
631 */
632 void
633 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
634 {
635 assert(brw->gen >= 6);
636
637 BEGIN_BATCH(5);
638 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
639 OUT_BATCH(reg);
640 OUT_BATCH(imm & 0xffffffff);
641 OUT_BATCH(reg + 4);
642 OUT_BATCH(imm >> 32);
643 ADVANCE_BATCH();
644 }
645
646 /*
647 * Copies a 32-bit register.
648 */
649 void
650 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
651 {
652 assert(brw->gen >= 8 || brw->is_haswell);
653
654 BEGIN_BATCH(3);
655 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
656 OUT_BATCH(src);
657 OUT_BATCH(dest);
658 ADVANCE_BATCH();
659 }
660
661 /*
662 * Copies a 64-bit register.
663 */
664 void
665 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
666 {
667 assert(brw->gen >= 8 || brw->is_haswell);
668
669 BEGIN_BATCH(6);
670 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
671 OUT_BATCH(src);
672 OUT_BATCH(dest);
673 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
674 OUT_BATCH(src + sizeof(uint32_t));
675 OUT_BATCH(dest + sizeof(uint32_t));
676 ADVANCE_BATCH();
677 }
678
679 /*
680 * Write 32-bits of immediate data to a GPU memory buffer.
681 */
682 void
683 brw_store_data_imm32(struct brw_context *brw, drm_intel_bo *bo,
684 uint32_t offset, uint32_t imm)
685 {
686 assert(brw->gen >= 6);
687
688 BEGIN_BATCH(4);
689 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
690 if (brw->gen >= 8)
691 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
692 offset);
693 else {
694 OUT_BATCH(0); /* MBZ */
695 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
696 offset);
697 }
698 OUT_BATCH(imm);
699 ADVANCE_BATCH();
700 }
701
702 /*
703 * Write 64-bits of immediate data to a GPU memory buffer.
704 */
705 void
706 brw_store_data_imm64(struct brw_context *brw, drm_intel_bo *bo,
707 uint32_t offset, uint64_t imm)
708 {
709 assert(brw->gen >= 6);
710
711 BEGIN_BATCH(5);
712 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
713 if (brw->gen >= 8)
714 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
715 offset);
716 else {
717 OUT_BATCH(0); /* MBZ */
718 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
719 offset);
720 }
721 OUT_BATCH(imm & 0xffffffffu);
722 OUT_BATCH(imm >> 32);
723 ADVANCE_BATCH();
724 }