i965: Add intel_batchbuffer_flush_fence()
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "intel_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34
35 #include <xf86drm.h>
36 #include <i915_drm.h>
37
38 static void
39 intel_batchbuffer_reset(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
40 bool has_llc);
41
42 void
43 intel_batchbuffer_init(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
44 bool has_llc)
45 {
46 intel_batchbuffer_reset(batch, bufmgr, has_llc);
47
48 if (!has_llc) {
49 batch->cpu_map = malloc(BATCH_SZ);
50 batch->map = batch->cpu_map;
51 batch->map_next = batch->cpu_map;
52 }
53 }
54
55 static void
56 intel_batchbuffer_reset(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr,
57 bool has_llc)
58 {
59 if (batch->last_bo != NULL) {
60 drm_intel_bo_unreference(batch->last_bo);
61 batch->last_bo = NULL;
62 }
63 batch->last_bo = batch->bo;
64
65 batch->bo = drm_intel_bo_alloc(bufmgr, "batchbuffer", BATCH_SZ, 4096);
66 if (has_llc) {
67 drm_intel_bo_map(batch->bo, true);
68 batch->map = batch->bo->virtual;
69 }
70 batch->map_next = batch->map;
71
72 batch->reserved_space = BATCH_RESERVED;
73 batch->state_batch_offset = batch->bo->size;
74 batch->needs_sol_reset = false;
75 batch->state_base_address_emitted = false;
76
77 /* We don't know what ring the new batch will be sent to until we see the
78 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
79 */
80 batch->ring = UNKNOWN_RING;
81 }
82
83 static void
84 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
85 {
86 intel_batchbuffer_reset(&brw->batch, brw->bufmgr, brw->has_llc);
87 brw_render_cache_set_clear(brw);
88 }
89
90 void
91 intel_batchbuffer_save_state(struct brw_context *brw)
92 {
93 brw->batch.saved.map_next = brw->batch.map_next;
94 brw->batch.saved.reloc_count =
95 drm_intel_gem_bo_get_reloc_count(brw->batch.bo);
96 }
97
98 void
99 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
100 {
101 drm_intel_gem_bo_clear_relocs(brw->batch.bo, brw->batch.saved.reloc_count);
102
103 brw->batch.map_next = brw->batch.saved.map_next;
104 if (USED_BATCH(brw->batch) == 0)
105 brw->batch.ring = UNKNOWN_RING;
106 }
107
108 void
109 intel_batchbuffer_free(struct intel_batchbuffer *batch)
110 {
111 free(batch->cpu_map);
112 drm_intel_bo_unreference(batch->last_bo);
113 drm_intel_bo_unreference(batch->bo);
114 }
115
116 void
117 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
118 enum brw_gpu_ring ring)
119 {
120 /* If we're switching rings, implicitly flush the batch. */
121 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
122 brw->gen >= 6) {
123 intel_batchbuffer_flush(brw);
124 }
125
126 #ifdef DEBUG
127 assert(sz < BATCH_SZ - BATCH_RESERVED);
128 #endif
129 if (intel_batchbuffer_space(&brw->batch) < sz)
130 intel_batchbuffer_flush(brw);
131
132 enum brw_gpu_ring prev_ring = brw->batch.ring;
133 /* The intel_batchbuffer_flush() calls above might have changed
134 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
135 */
136 brw->batch.ring = ring;
137
138 if (unlikely(prev_ring == UNKNOWN_RING && ring == RENDER_RING))
139 intel_batchbuffer_emit_render_ring_prelude(brw);
140 }
141
142 static void
143 do_batch_dump(struct brw_context *brw)
144 {
145 struct drm_intel_decode *decode;
146 struct intel_batchbuffer *batch = &brw->batch;
147 int ret;
148
149 decode = drm_intel_decode_context_alloc(brw->screen->deviceID);
150 if (!decode)
151 return;
152
153 ret = drm_intel_bo_map(batch->bo, false);
154 if (ret == 0) {
155 drm_intel_decode_set_batch_pointer(decode,
156 batch->bo->virtual,
157 batch->bo->offset64,
158 USED_BATCH(*batch));
159 } else {
160 fprintf(stderr,
161 "WARNING: failed to map batchbuffer (%s), "
162 "dumping uploaded data instead.\n", strerror(ret));
163
164 drm_intel_decode_set_batch_pointer(decode,
165 batch->map,
166 batch->bo->offset64,
167 USED_BATCH(*batch));
168 }
169
170 drm_intel_decode_set_output_file(decode, stderr);
171 drm_intel_decode(decode);
172
173 drm_intel_decode_context_free(decode);
174
175 if (ret == 0) {
176 drm_intel_bo_unmap(batch->bo);
177
178 brw_debug_batch(brw);
179 }
180 }
181
182 void
183 intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw)
184 {
185 /* Un-used currently */
186 }
187
188 /**
189 * Called when starting a new batch buffer.
190 */
191 static void
192 brw_new_batch(struct brw_context *brw)
193 {
194 /* Create a new batchbuffer and reset the associated state: */
195 drm_intel_gem_bo_clear_relocs(brw->batch.bo, 0);
196 intel_batchbuffer_reset_and_clear_render_cache(brw);
197
198 /* If the kernel supports hardware contexts, then most hardware state is
199 * preserved between batches; we only need to re-emit state that is required
200 * to be in every batch. Otherwise we need to re-emit all the state that
201 * would otherwise be stored in the context (which for all intents and
202 * purposes means everything).
203 */
204 if (brw->hw_ctx == NULL)
205 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
206
207 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
208
209 brw->state_batch_count = 0;
210
211 brw->ib.type = -1;
212
213 /* We need to periodically reap the shader time results, because rollover
214 * happens every few seconds. We also want to see results every once in a
215 * while, because many programs won't cleanly destroy our context, so the
216 * end-of-run printout may not happen.
217 */
218 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
219 brw_collect_and_report_shader_time(brw);
220 }
221
222 /**
223 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
224 * sending it off.
225 *
226 * This function can emit state (say, to preserve registers that aren't saved
227 * between batches). All of this state MUST fit in the reserved space at the
228 * end of the batchbuffer. If you add more GPU state, increase the reserved
229 * space by updating the BATCH_RESERVED macro.
230 */
231 static void
232 brw_finish_batch(struct brw_context *brw)
233 {
234 /* Capture the closing pipeline statistics register values necessary to
235 * support query objects (in the non-hardware context world).
236 */
237 brw_emit_query_end(brw);
238
239 if (brw->batch.ring == RENDER_RING) {
240 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
241 * assume that the L3 cache is configured according to the hardware
242 * defaults.
243 */
244 if (brw->gen >= 7)
245 gen7_restore_default_l3_config(brw);
246
247 if (brw->is_haswell) {
248 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
249 * 3DSTATE_CC_STATE_POINTERS > "Note":
250 *
251 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
252 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
253 *
254 * From the example in the docs, it seems to expect a regular pipe control
255 * flush here as well. We may have done it already, but meh.
256 *
257 * See also WaAvoidRCZCounterRollover.
258 */
259 brw_emit_mi_flush(brw);
260 BEGIN_BATCH(2);
261 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
262 OUT_BATCH(brw->cc.state_offset | 1);
263 ADVANCE_BATCH();
264 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
265 PIPE_CONTROL_CS_STALL);
266 }
267 }
268
269 /* Mark that the current program cache BO has been used by the GPU.
270 * It will be reallocated if we need to put new programs in for the
271 * next batch.
272 */
273 brw->cache.bo_used_by_gpu = true;
274 }
275
276 static void
277 throttle(struct brw_context *brw)
278 {
279 /* Wait for the swapbuffers before the one we just emitted, so we
280 * don't get too many swaps outstanding for apps that are GPU-heavy
281 * but not CPU-heavy.
282 *
283 * We're using intelDRI2Flush (called from the loader before
284 * swapbuffer) and glFlush (for front buffer rendering) as the
285 * indicator that a frame is done and then throttle when we get
286 * here as we prepare to render the next frame. At this point for
287 * round trips for swap/copy and getting new buffers are done and
288 * we'll spend less time waiting on the GPU.
289 *
290 * Unfortunately, we don't have a handle to the batch containing
291 * the swap, and getting our hands on that doesn't seem worth it,
292 * so we just use the first batch we emitted after the last swap.
293 */
294 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
295 if (brw->throttle_batch[1]) {
296 if (!brw->disable_throttling)
297 drm_intel_bo_wait_rendering(brw->throttle_batch[1]);
298 drm_intel_bo_unreference(brw->throttle_batch[1]);
299 }
300 brw->throttle_batch[1] = brw->throttle_batch[0];
301 brw->throttle_batch[0] = NULL;
302 brw->need_swap_throttle = false;
303 /* Throttling here is more precise than the throttle ioctl, so skip it */
304 brw->need_flush_throttle = false;
305 }
306
307 if (brw->need_flush_throttle) {
308 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
309 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
310 brw->need_flush_throttle = false;
311 }
312 }
313
314 /* Drop when RS headers get pulled to libdrm */
315 #ifndef I915_EXEC_RESOURCE_STREAMER
316 #define I915_EXEC_RESOURCE_STREAMER (1<<15)
317 #endif
318
319 /* TODO: Push this whole function into bufmgr.
320 */
321 static int
322 do_flush_locked(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
323 {
324 struct intel_batchbuffer *batch = &brw->batch;
325 int ret = 0;
326
327 if (brw->has_llc) {
328 drm_intel_bo_unmap(batch->bo);
329 } else {
330 ret = drm_intel_bo_subdata(batch->bo, 0, 4 * USED_BATCH(*batch), batch->map);
331 if (ret == 0 && batch->state_batch_offset != batch->bo->size) {
332 ret = drm_intel_bo_subdata(batch->bo,
333 batch->state_batch_offset,
334 batch->bo->size - batch->state_batch_offset,
335 (char *)batch->map + batch->state_batch_offset);
336 }
337 }
338
339 if (!brw->screen->no_hw) {
340 int flags;
341
342 if (brw->gen >= 6 && batch->ring == BLT_RING) {
343 flags = I915_EXEC_BLT;
344 } else {
345 flags = I915_EXEC_RENDER |
346 (brw->use_resource_streamer ? I915_EXEC_RESOURCE_STREAMER : 0);
347 }
348 if (batch->needs_sol_reset)
349 flags |= I915_EXEC_GEN7_SOL_RESET;
350
351 if (ret == 0) {
352 if (unlikely(INTEL_DEBUG & DEBUG_AUB))
353 brw_annotate_aub(brw);
354
355 if (brw->hw_ctx == NULL || batch->ring != RENDER_RING) {
356 assert(in_fence_fd == -1);
357 assert(out_fence_fd == NULL);
358 ret = drm_intel_bo_mrb_exec(batch->bo, 4 * USED_BATCH(*batch),
359 NULL, 0, 0, flags);
360 } else {
361 ret = drm_intel_gem_bo_fence_exec(batch->bo, brw->hw_ctx,
362 4 * USED_BATCH(*batch),
363 in_fence_fd, out_fence_fd,
364 flags);
365 }
366 }
367
368 throttle(brw);
369 }
370
371 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
372 do_batch_dump(brw);
373
374 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
375 brw_check_for_reset(brw);
376
377 if (ret != 0) {
378 fprintf(stderr, "intel_do_flush_locked failed: %s\n", strerror(-ret));
379 exit(1);
380 }
381
382 return ret;
383 }
384
385 /**
386 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
387 * of the fd.
388 *
389 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
390 * of the returned fd.
391 */
392 int
393 _intel_batchbuffer_flush_fence(struct brw_context *brw,
394 int in_fence_fd, int *out_fence_fd,
395 const char *file, int line)
396 {
397 int ret;
398
399 if (USED_BATCH(brw->batch) == 0)
400 return 0;
401
402 if (brw->throttle_batch[0] == NULL) {
403 brw->throttle_batch[0] = brw->batch.bo;
404 drm_intel_bo_reference(brw->throttle_batch[0]);
405 }
406
407 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
408 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
409 int bytes_for_state = brw->batch.bo->size - brw->batch.state_batch_offset;
410 int total_bytes = bytes_for_commands + bytes_for_state;
411 fprintf(stderr, "%s:%d: Batchbuffer flush with %4db (pkt) + "
412 "%4db (state) = %4db (%0.1f%%)\n", file, line,
413 bytes_for_commands, bytes_for_state,
414 total_bytes,
415 100.0f * total_bytes / BATCH_SZ);
416 }
417
418 brw->batch.reserved_space = 0;
419
420 brw_finish_batch(brw);
421
422 /* Mark the end of the buffer. */
423 intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
424 if (USED_BATCH(brw->batch) & 1) {
425 /* Round batchbuffer usage to 2 DWORDs. */
426 intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
427 }
428
429 intel_upload_finish(brw);
430
431 /* Check that we didn't just wrap our batchbuffer at a bad time. */
432 assert(!brw->no_batch_wrap);
433
434 ret = do_flush_locked(brw, in_fence_fd, out_fence_fd);
435
436 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
437 fprintf(stderr, "waiting for idle\n");
438 drm_intel_bo_wait_rendering(brw->batch.bo);
439 }
440
441 if (brw->use_resource_streamer)
442 gen7_reset_hw_bt_pool_offsets(brw);
443
444 /* Start a new batch buffer. */
445 brw_new_batch(brw);
446
447 return ret;
448 }
449
450
451 /* This is the only way buffers get added to the validate list.
452 */
453 uint32_t
454 intel_batchbuffer_reloc(struct intel_batchbuffer *batch,
455 drm_intel_bo *buffer, uint32_t offset,
456 uint32_t read_domains, uint32_t write_domain,
457 uint32_t delta)
458 {
459 int ret;
460
461 ret = drm_intel_bo_emit_reloc(batch->bo, offset,
462 buffer, delta,
463 read_domains, write_domain);
464 assert(ret == 0);
465 (void)ret;
466
467 /* Using the old buffer offset, write in what the right data would be, in
468 * case the buffer doesn't move and we can short-circuit the relocation
469 * processing in the kernel
470 */
471 return buffer->offset64 + delta;
472 }
473
474 uint64_t
475 intel_batchbuffer_reloc64(struct intel_batchbuffer *batch,
476 drm_intel_bo *buffer, uint32_t offset,
477 uint32_t read_domains, uint32_t write_domain,
478 uint32_t delta)
479 {
480 int ret = drm_intel_bo_emit_reloc(batch->bo, offset,
481 buffer, delta,
482 read_domains, write_domain);
483 assert(ret == 0);
484 (void) ret;
485
486 /* Using the old buffer offset, write in what the right data would be, in
487 * case the buffer doesn't move and we can short-circuit the relocation
488 * processing in the kernel
489 */
490 return buffer->offset64 + delta;
491 }
492
493
494 void
495 intel_batchbuffer_data(struct brw_context *brw,
496 const void *data, GLuint bytes, enum brw_gpu_ring ring)
497 {
498 assert((bytes & 3) == 0);
499 intel_batchbuffer_require_space(brw, bytes, ring);
500 memcpy(brw->batch.map_next, data, bytes);
501 brw->batch.map_next += bytes >> 2;
502 }
503
504 static void
505 load_sized_register_mem(struct brw_context *brw,
506 uint32_t reg,
507 drm_intel_bo *bo,
508 uint32_t read_domains, uint32_t write_domain,
509 uint32_t offset,
510 int size)
511 {
512 int i;
513
514 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
515 assert(brw->gen >= 7);
516
517 if (brw->gen >= 8) {
518 BEGIN_BATCH(4 * size);
519 for (i = 0; i < size; i++) {
520 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
521 OUT_BATCH(reg + i * 4);
522 OUT_RELOC64(bo, read_domains, write_domain, offset + i * 4);
523 }
524 ADVANCE_BATCH();
525 } else {
526 BEGIN_BATCH(3 * size);
527 for (i = 0; i < size; i++) {
528 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
529 OUT_BATCH(reg + i * 4);
530 OUT_RELOC(bo, read_domains, write_domain, offset + i * 4);
531 }
532 ADVANCE_BATCH();
533 }
534 }
535
536 void
537 brw_load_register_mem(struct brw_context *brw,
538 uint32_t reg,
539 drm_intel_bo *bo,
540 uint32_t read_domains, uint32_t write_domain,
541 uint32_t offset)
542 {
543 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 1);
544 }
545
546 void
547 brw_load_register_mem64(struct brw_context *brw,
548 uint32_t reg,
549 drm_intel_bo *bo,
550 uint32_t read_domains, uint32_t write_domain,
551 uint32_t offset)
552 {
553 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 2);
554 }
555
556 /*
557 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
558 */
559 void
560 brw_store_register_mem32(struct brw_context *brw,
561 drm_intel_bo *bo, uint32_t reg, uint32_t offset)
562 {
563 assert(brw->gen >= 6);
564
565 if (brw->gen >= 8) {
566 BEGIN_BATCH(4);
567 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
568 OUT_BATCH(reg);
569 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
570 offset);
571 ADVANCE_BATCH();
572 } else {
573 BEGIN_BATCH(3);
574 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
575 OUT_BATCH(reg);
576 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
577 offset);
578 ADVANCE_BATCH();
579 }
580 }
581
582 /*
583 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
584 */
585 void
586 brw_store_register_mem64(struct brw_context *brw,
587 drm_intel_bo *bo, uint32_t reg, uint32_t offset)
588 {
589 assert(brw->gen >= 6);
590
591 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
592 * read a full 64-bit register, we need to do two of them.
593 */
594 if (brw->gen >= 8) {
595 BEGIN_BATCH(8);
596 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
597 OUT_BATCH(reg);
598 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
599 offset);
600 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
601 OUT_BATCH(reg + sizeof(uint32_t));
602 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
603 offset + sizeof(uint32_t));
604 ADVANCE_BATCH();
605 } else {
606 BEGIN_BATCH(6);
607 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
608 OUT_BATCH(reg);
609 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
610 offset);
611 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
612 OUT_BATCH(reg + sizeof(uint32_t));
613 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
614 offset + sizeof(uint32_t));
615 ADVANCE_BATCH();
616 }
617 }
618
619 /*
620 * Write a 32-bit register using immediate data.
621 */
622 void
623 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
624 {
625 assert(brw->gen >= 6);
626
627 BEGIN_BATCH(3);
628 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
629 OUT_BATCH(reg);
630 OUT_BATCH(imm);
631 ADVANCE_BATCH();
632 }
633
634 /*
635 * Write a 64-bit register using immediate data.
636 */
637 void
638 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
639 {
640 assert(brw->gen >= 6);
641
642 BEGIN_BATCH(5);
643 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
644 OUT_BATCH(reg);
645 OUT_BATCH(imm & 0xffffffff);
646 OUT_BATCH(reg + 4);
647 OUT_BATCH(imm >> 32);
648 ADVANCE_BATCH();
649 }
650
651 /*
652 * Copies a 32-bit register.
653 */
654 void
655 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
656 {
657 assert(brw->gen >= 8 || brw->is_haswell);
658
659 BEGIN_BATCH(3);
660 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
661 OUT_BATCH(src);
662 OUT_BATCH(dest);
663 ADVANCE_BATCH();
664 }
665
666 /*
667 * Copies a 64-bit register.
668 */
669 void
670 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
671 {
672 assert(brw->gen >= 8 || brw->is_haswell);
673
674 BEGIN_BATCH(6);
675 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
676 OUT_BATCH(src);
677 OUT_BATCH(dest);
678 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
679 OUT_BATCH(src + sizeof(uint32_t));
680 OUT_BATCH(dest + sizeof(uint32_t));
681 ADVANCE_BATCH();
682 }
683
684 /*
685 * Write 32-bits of immediate data to a GPU memory buffer.
686 */
687 void
688 brw_store_data_imm32(struct brw_context *brw, drm_intel_bo *bo,
689 uint32_t offset, uint32_t imm)
690 {
691 assert(brw->gen >= 6);
692
693 BEGIN_BATCH(4);
694 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
695 if (brw->gen >= 8)
696 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
697 offset);
698 else {
699 OUT_BATCH(0); /* MBZ */
700 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
701 offset);
702 }
703 OUT_BATCH(imm);
704 ADVANCE_BATCH();
705 }
706
707 /*
708 * Write 64-bits of immediate data to a GPU memory buffer.
709 */
710 void
711 brw_store_data_imm64(struct brw_context *brw, drm_intel_bo *bo,
712 uint32_t offset, uint64_t imm)
713 {
714 assert(brw->gen >= 6);
715
716 BEGIN_BATCH(5);
717 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
718 if (brw->gen >= 8)
719 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
720 offset);
721 else {
722 OUT_BATCH(0); /* MBZ */
723 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
724 offset);
725 }
726 OUT_BATCH(imm & 0xffffffffu);
727 OUT_BATCH(imm >> 32);
728 ADVANCE_BATCH();
729 }